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ABsTrACT. Compactly supported distributions fi,..., fr on R? are refinable if each f; is a finite linear
combination of the rescaled and translated distributions f;(Az — k), where the translates k are taken
along a lattice T C R% and A is a dilation matriz that expansively maps I' into itself. Refinable
distributions satisfy a refinement equation f(x) = X pcp cx f(Az — k), where A is a finite subset of
T, the ¢ are 7 x r matrices, and f = (f1,..., fr)T. The accuracy of f is the highest degree p such
that all multivariate polynomials ¢ with degree(q) < p are exactly reproduced from linear combinations
of translates of fi,...,fr along the lattice I'. We determine the accuracy p from the matrices cg.
Moreover, we determine explicitly the coefficients yq ;(k) such that @ = 377, 37, -1 ya,i(k) fi(z + k).
These coeflicients are multivariate polynomials yq,;(z) of degree |a| evaluated at lattice points k € T

1. Introduction

A discrete set T' C R? is a lattice if it is the image of Z? under some nonsingular linear trans-
formation. A d x d matrix A is ezpansive if every eigenvalue A satisfies |[A\| > 1. An expansive matrix
A is a dilation matriz with respect to a lattice I" if A(I') C I'. Complex-valued functions f1,..., f,
on R? are refinable with respect to A and I if each f; equals a linear combination of the rescaled and
translated functions fj(Az — k). We shall only consider the case where the linear combinations are
finite. Then the vector-valued function f:R? — C7 defined by f(z) = (fi(z),..., fr(z))T satisfies
a refinement equation, dilation equation, or two-scale difference equation of the form

f(z) = Y e f(Az — k), (1)
kEA
where A is a finite subset of I' and the ¢; are r X r matrices.

Refinable functions play important roles in several areas, including wavelet theory [Dau92]
and subdivision schemes in approximation theory [CDM91]. A key goal is the determination of
properties of a refinable f:R? — C” based on the coefficient mask ¢ = {c;}rea. One fundamental
property is the accuracy of f, the largest integer p such that every multivariate polynomial ¢ with
deg(q) < p lies in the shift-invariant space

S(f) = {Ziwk,if,-(:v—Irk):wk,ieC} = {Zwkf(x—i-k):wk eclxr} (2)

kel i=1 kel
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generated by f, where C™ = C"*! is the space of column vectors of length » and C1*" is the space
of row vectors of length r. We shall deal only with compactly supported f, in which case each series
in (2) is well-defined for all choices of wy ;.

The typical one-dimensional, single-function refinement equation has d=1,r =1, ' = Z, and
A = 2. It is well-known that, with minor hypotheses, accuracy p holds in this case if and only if

N

N
ch:2 and Z(—l)kkjck:() forj=0,...,p—1.

The extension of these results to multiple functions, higher dimensions, general dilation matrices,
and distributional solutions presents several difficulties. For the one-dimensional, multi-function
cased=1,r>1,I'=7Z, A =2, Heil, Strang, and Strela [HSS96] and Plonka [P1o97] independently
derived the “matrix sum rules” that characterize accuracy for integrable refinable functions. A
previous paper [CHM98a] considered the higher-dimensional, multi-function case with an arbitrary
dilation matrix A, again assuming the existence of an integrable, compactly supported solution to
the refinement equation (1). Some similar results, for the case of diagonalizable A, were also derived
in [Jng96].

The determination of whether a refinement equation has an integrable solution is consider-
ably involved and complicated. However, every refinement equation such that the matrix A =
mZkeAck has eigenvalues A\; = --- = Ay = 1, |Ast1/,--.,|Ar] < 1 with the eigenvalue 1
nondegenerate always has a compactly supported distributional solution (see Proposition 4.1).

In this paper we consider the general case of compactly supported distributional solutions to
higher-dimensional, multi-function refinement equations with arbitrary dilation matrices. We present
necessary and sufficient conditions for accuracy, and show that these conditions are equivalent to a
finite set of finite linear equations. Our necessary condition requires only the additional hypothesis
that translates of f be independent, while our sufficient condition does not require this hypothesis.
For additional history and motivation of this problem, we refer to [CHM98a] and [JRZ97] and the
references contained therein.

The basic notation for our paper is presented in Section 2. In Section 3 we present some results
which apply to arbitrary distributions that are not necessarily refinable, and in Section 4 we present
our main results on refinable distributions.

2. Notation

2.1. General Notation.
The Lebesgue measure of a set E C R? is denoted |E)|.

We use the standard multi-index notation z® = z{" --- z5¢ for @ = (@,...,aq) and z € R%.
The degree of a is |a| = a3 + --- + ag. The number of multi-indices « of a given degree s is
ds = (*547")- We write 8 < a if ; < o for i = 1,...,d. If 8 < a then we set (5) = (§!) -~ (59),
otherwise (g) =0.

A dilation matrix A necessarily has integer determinant. We set m = |det(A)|. We let
di,...,dmn € ' be a full set of digits, i.e., a complete set of representatives of the order-m group

I'/A(T). Then T is partitioned into the disjoint cosets
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Let u1,...,uq € R? be a set of generators for the lattice T, i.e.,
' = {miui +---+mqgugq : m; € Z}.
Then the rectangular parallelepiped
P = {zju1 +---zquq: 0 < z; < 1} (3)

is a fundamental domain for the group R%/T, and R is partitioned into the disjoint sets {P+k}xer-

We use the following generalized matrix notation. Let J and K be finite or countable index
sets. Let m; j be ordinary r x s matrices for j € J and k € K. Then we say that M = [m; x]jesrex €
(Cr*s)IxK j5 3 “J x K matrix with 7 x s block entries.” If N = [ng Jxexer € (C**)EXL ] then
the product of the J x K matrix M with the K x L matrix N is the J x L matrix

MN = [ E :mj,knk,ﬂ] .
keK JEJLEL

Most summations encountered in this paper will contain only finitely many nonzero terms.
A column vector is a J x 1 matrix, which we denote by v = [v;];es. The entries v; may be
scalars or 7 X s blocks. Analogously, a row vector is a 1 x J matrix, which we denote by u = (u;);e.
Integrals of the vector-valued function f = (fi,..., f)T are computed componentwise. If f is
integrable then we define its Fourier transform by

T
f(w) — f(iL‘) e—2m’a:-w dr = ( fl(x) 6—27rim-w diL‘, e, fr(w) e—2m’x-w dlL‘> .
Rd Rd Rd

2.2 Vector-Valued Distributions.

C>(RY) is the space of all infinitely differentiable functions on R%. The Schwartz class S(R?)
contains all infinitely differentiable functions each of whose derivatives decay faster than the re-
ciprocal of any polynomial. C°(R?) is the space of compactly supported infinitely differentiable
functions. The topological dual of C°(R%) is the space of distributions D’'(R%). The space of
tempered distributions S’(R%) is the dual of S(R?%). The space of compactly supported distribu-
tions £'(R?) is the dual of C°(R?). We write (¢, g) or (¢(z),g(z)) to denote the evaluation of a
distribution g on a test function ¢. The Fourier transform maps S(R?) into itself, and extends to
S’(R?) by duality. The Paley-Wiener theorem for distributions implies that the Fourier transform
of a compactly supported distribution is a continuous function on R4 [Rud91, p. 198].

We let C°(R%, C") = C®(R?) x --- x C*®°(R?) denote the space of vector-valued functions
0= (¢1,---,0,)T with each component ; € C®(R?). We use analogous notations for other cross
)T

products of spaces of test functions or distributions. If ¢ = (¢1,...,¢,)" is a vector-valued test

function and f = (f1,..., fr)T is a vector-valued distribution, then we write

(1, f1)
(o, f) = :
(ors fr)

We allow a vector-valued distribution f to act on a scalar-valued test function ¢ by defining (@, f) =
({0, f1)s -5 (e, fT))T in this case.
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Note that if v = (v1,...,v,) € CX" is an ordinary row vector and f = (f1,...,fr)7T
E'(R4,C") is a compactly supported vector-valued distribution, then vf = >_I_, v;f; € &'(R?) is
the scalar-valued distribution defined by

T

<<pavf> = Z<(pavifi>a pE Coo(Rd)

In particular,

= imﬁw) = Zv (1, fi) = <1va> = (L,0f).

Given a compactly supported vector-valued distribution f € £'(R%, C") and given arbitrary
row vectors wy € C'X", the series Y., . wy f(z + k) defines a distribution in D’(R%) by the formula

(0@, Yo f@+h) = Y welpl@—k),f@), e CPR. )

kel kel

Since both f and ¢ are compactly supported, the right-hand side of (4) contains only finitely many
nonzero terms. Letting W = (wy)ger be the infinite row vector with block entries wy, we write
formally the infinite column vector of distributions

F(z) = [f(z 4 k)]ker,

and define W F to be the distribution in D'(R?) given by

WF(z) = > wg f(z+k).

kel

Note that if the wy grow in size at most polynomially, then WF € S'(R%).
As a consequence of the preceding remarks, if f € £ (R% C") then we can define the shift-
invariant space S(f) generated by f to be

S(f) = {Zwkf(m+k):wk eclxr} = {WF:W ¢ (C1xr)IxT},
kel

Note that S(f) is a subspace of D'(R?). Since all polynomials are distributions, the definition of
accuracy extends to distributions, i.e., we say that f € £'(R%, C") has accuracy p if each multivariate
polynomial ¢ with deg(q) < p lies in S(f).

We say that translates of f € £'(R%, C") along T are independent it WF (z) = 3, cr wi, f(z+k)
is the zero distribution if and only if W = (wy)ger is the zero vector.

Finally, we say that a compactly supported vector-valued distribution f € £'(R%, C") is refin-
able if it is a solution of the refinement equation (1) in the sense of distributions, i.e., if

= > cr (o), f(Az — k) ch Tz k) f(2)

keEA kGA
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for all ¢ € C°(RY,C"). If we set ¢y = 0 for k ¢ A and define L to be the T' x T' matrix
L = [cai-jlijer,
then we can recast the refinement equation in the following form:

fl@) =) o f(Az — k) — F(z) = LF(Az).
k€A
Additionally, if we define B = (A™")T and let M(w) = 1 3, _\ cx e7?™*“ be the matrix-valued
symbol of the refinement equation, then the refinement equation can be recast into the following
form by applying the Fourier transform:

f@) = ) ex f(Az — k) = f(w) = M(Bw) f(Bw).
keA
In particular, if f is refinable and A = M(0) = =3, . cx, then f(0) = M(0) f(0) = A f(0).
Therefore, f(0) is a right 1-eigenvector of A if f(0) # 0.

2.3. Translation and Dilation of Multidimensional Polynomials.
We shall often deal with matrix-valued functions v = [u;k]jeskek: R? — C7*K each of whose
entries uj y: R? — C is a polynomial. In this case, we refer to u as a matriz of polynomials. The

degree of u is deg(u) = max{deg(u;x)}jesrek-

s+d—1
d—1

the monomials of this degree together to form the vector of monomials X R? — C% defined by

The number of monomials % of degree s is dy = ( ) For a given degree s > 0, we collect

X[S](:L') = [:L‘a] z € RY.

jaf=s >

For each integer 0 < ¢ < s, we define the matrix of polynomials Qs 4: R? — Cdsxds by

Qps,g(y) = (=1)°7" [(g) y‘*‘ﬁ]mzs’lm:t,

where (g) = (‘;i) e (‘;Z) Then, by [CHM98a], translation of X, () obeys the rule

S
Xz —y) = Y Qualy) Xpy(=).
t=0
Given any d x d matrix Z = [2;,4]i,j=1,...,a and given s > 0, we let Z5) = [z 5lja|=s,|5/=s De
the ds x ds matrix whose scalar entries z;, 5 are defined by the equation

d

Z Zg,ﬁ 376 = (Zx)a — H (zz’,l-Tl 4o+ zi,dﬂid)ai.
|B1=s i=1

By [CHM98a], dilation of X4 (z) by Z obeys the rule
X15)(Zz) = Z[5) X[5)(@).

The matrix Z[,; has a number of surprising properties. For example, if A = (Aq,... ,Aq)T is the
vector consisting of all eigenvalues of Z, then [A%]|,|=, is the vector consisting of all eigenvalues
of Zp).
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2.4. Some Special Matrices and Polynomial Functions.
Given a collection

{va = (Va,1,-+-,Vayr) € C*":0 < |a| < p}

of row vectors of length r, we shall associate a number of special matrices and functions.
We group the v, by degree to form ds x 1 column vectors [, € (C1xr)dsX1 with block entries
that are the 1 x r row vectors v, i.e.,

Ual,l Ual,T
U] = [Valjaj=s =

/Uadsyl e vads T

Note that vy = [vo] = vo.
For each «, we define a row vector of polynomials y,: R — C*" by

pale) = 3 (~1)lel-18 (g) 05 29",

0<f<a

If we write yo () = (Ya,1(Z), - - -, Ya,r (z)), then the coefficients of the polynomial y, ; are determined
by the scalars vg; for those § with 0 < § < «a. Further, deg(y,) < ||, and deg(y,) = |¢] if and
only if vy # 0. In particular, y, is the constant polynomial yo(z) = vg.

As with the vectors v,, we collect the vectors of polynomials y, by degree and arrange them
as block entries in a column vector to form the matrix of polynomials yj,;: R? — (C'*7)% X! defined

by
Y1s1(2) = [Ya(@)]jaj=s = {2: > (ﬁ>aﬁ_ﬁ“ﬁ] =Y Q@) vpg
t=0

t=0 |B|=t |a|=s

We have deg(y[s)) < s, and deg(yj,)) = s if and only if vy # 0.
Finally, for each z we collect the blocks ys)(z + k) into an infinite row vector to form a function

Y R = ((CY7)dx1) T gpecifically,

Yig(2) = (ys1(z + k) er-

We adopt the convention that

Vi) = Y(0) = (k) per

Thus Y], is the row vector of evaluations of the matrix of polynomials y[,) at lattice points.
The following fact on the behavior of the matrix of polynomials y[,) under translation will be
useful.

Lemma 2.1. Given a collection {va € CX7 : 0 < |a| < p} of row vectors, define the matrix of
polynomials yjs)(x) = Y y_ Qrs,11(x) vy as above. Then

Y5 (= +y) Z QW) ym(z)  and  Yig(z+y) Z Qrs,11 () Yy ().
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3. Results for Arbitrary Distributions

The following result states that if an arbitrary compactly supported vector-valued distribution
f with independent translates has accuracy p, then the coefficients used to reconstruct polynomials
from translates of f are themselves polynomials evaluated at lattice points. A direct proof of this
result can be constructed from the proof of [CHM98a, Theorem 3.1] with distributional calculations
replacing functional calculations. Alternatively, this theorem can be viewed as a statement about
order of approximation, in which case proofs can be constructed by using the techniques of the
papers [deB90], [BR92], [BDR94a], [BDR94b)].

Theorem 3.1. Assume that translates of f € £'(R?, C") alongT are independent. If f has accuracy
p, then there exists a collection {v, € C'X" : 0 < |a| < p} of row vectors such that

(i) vo #0, and
(li) X[s](x) = Zy[s](k) f($+ k) = YP[S]F('T) for 0 < s <p,
kel

where Y[5) = (y[ 5] (k)),c cr is the row vector of evaluations at lattice points of the matrix of polynomials
Y1) (@) = 22720 Qs () vity-

In particular, if q is any polynomial with deg(q) < p, then there exists a unique row vector of
polynomials ug: R* — C*", with deg(u,) = deg(u), such that q(x) = Y, cpuq(k) f(z + k).

The following result (which also can be viewed as a consequence of Appell sequences), states
that, regardless of whether f has accuracy p or not, if any monomial z* can be reproduced from
lattice translates of f using coefficients that are themselves polynomials evaluated at lattice points,
then for each 0 < 3 < « the monomial z” can also be reproduced from translates of f. Moreover,
the coefficients used to obtain = are the evaluations at lattice points of a constant times the (a — 3)
derivative of the coefficients used to obtain z®.

Theorem 3.2. Assume that f € £'(R% C"), and let a be any multi-index. If u:R? — C*7 is a
row vector of polynomials such that

then for each 0 < 8 < a,
2 = Cg Y (D*Pu)(k) f(z+ k),

kel

where

ol ol ! ! !
Yo = (2 9 — (e (Cqyle—y D1 YA
D'y = (B:EVUI""’B:E'YUT) and C, = (-1) o (-1) ol agl

Proof. Note that since u(k) has polynomial growth, the series ) 3, . u(k) f(z+k) defines a tempered
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distribution. Fix any ¢ € S(R?). Then

(p(x), (z +0)%) = (p(z—10),z%)

- <<p:v—€) Y u k)fw+k)>
kel
- <g0 k)f(x—|—€+k)>
kel
- <¢ z), S ulk x+k)>. (5)
kel

For each y € R, define g, hy, € S'(R?%) by

gy(z) = (z+y)* and  hy(z) = Y ulk-y) flz+k).

Given ¢ € S(R?), the quantities
P(y) = (p,9y) = (p(z),(z + 1)),

Q) = () = (@), Y ulk—y) flz+k)),
ker
are both polynomials in the unknown y. From (5), we have P(£) = Q(¢) for every lattice point
¢ €T, and therefore P(y) = Q(y) for every y € RY.
Let e; be the multi-index of degree 1 with a 1 in the jth coordinate and 0’s elsewhere. Then
for every y € R4,
oP, ~ 0Q

{p(2), 0 (@ +9)7%) = 2 —(y)

W) = g, W) = > (D) (D9u)(k — y) (p(), f(z + k).

kel

Evaluating at y = 0, we have

(p(x),0;2°7) = Y (=1) (Du)(k) (p(x), f (z + k)).

kel

Hence, distributionally,
a;z®7% = (=1) (D9u)(k) f(z + k).
kel
The general result then follows by iteration. [

4. Results for Refinable Distributions

For the remainder of this paper we shall concentrate on compactly supported distributions
which satisfy the refinement equation (1). We assume throughout that A is a dilation matrix with
respect to a lattice I' in R%, and that the coefficient mask ¢ = {ci }xen is a finite collection of r x r
matrices.

We first note a mild condition on the coefficient mask which ensures that a compactly supported
distributional solution of the refinement equation exists.
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Proposition 4.1. Define M(w) = =3, .\ ¢ e”2™* % If the matrix A = M(0) = - >, ¢ has
eigenvalues \y = --- = Ay = 1, |As41],---,|Ar| < 1, with the eigenvalue 1 nondegenerate, then the
following statements hold.

(a) The infinite matrix product P(w) = H;’;l M (B’w) converges uniformly on compact sets to
a continuous function with at most polynomial growth at infinity, where B = (A=1)T.

(b) Ifv is any right 1-eigenvector for A, then f(w) = P(w)v defines a distribution f € &' (R?, C)
that satisfies the refinement equation (1), and f(0) = v.

(c) If f € &(R%,C") is a distributional solution to the refinement equation (1), then f(w) =
P(w) f(0). In particular, if f is nontrivial then f(0) # 0 and f(0) is a right 1-eigenvector
for A.

Proof. (a) It was shown in [CHM98a, Theorem A.3] that the infinite matrix product P(w) converges
uniformly on compact sets to a continuous function. Since A is expansive, the matrix B is contractive.
Hence, there exists a vector norm | -| on R? such that the corresponding matrix norm of B satisfies
|B| < 1. Let || - || be any norm on C, and define K = sup,|<; [|[P(w)|| and R = sup,egra [|M(w)]-
Set § = 1/|B|. Then

lﬁlé};nllP(w)ll < lslléI;nHP(an)H||M(an)||"'||M(Bw)|| < KR"

Hence ||P(w)|| < KR (1 + |w|)°8 £ so P has at most polynomial growth at infinity.

(b) Let v be any right 1-eigenvector for A. By part (a), f(w) = P(w)v then defines a tem-
pered distribution f € &'(R% C"). This distribution clearly satisfies f(w) = M(Bw) f(Bw), so f
is refinable. It therefore remains only to show that f is compactly supported. For each n, de-
fine u, € S'(R4,C") by ji,(w) = (H?:1 M (Biw))v. Since M(Biw) = L3, ¢k e~ 2mik-Blw
%Zke A Ck e~2miATkw  the entries of fi,(w) are finite linear combinations of the exponentials
e~2mitw with £ restricted to the discrete set A, = 2?21 A7I(A). Since A~! is contractive, there
exists a compact set © C R? such that A,, C Q for each n. Thus the entries of p, are finite linear
combinations of point masses &, with £ € €. Hence supp(u,) C 2. However, ji,(w) = P(w)v = f(w)
uniformly on compact sets, so u, — f weakly. Hence supp(f) C Q as well.

(c) Note that f(w) = (HJ 1 M(Biw)) f(Biw) for each n, and that f(Biw) — f(0) since B is
contractive and f is a continuous function. O

In order to prove a result giving necessary and sufficient conditions for a refinable distribution
to have accuracy p, we require the following ergodic-type lemma.

Lemma 4.2. Let u € S'(R?). If there exists a A € C such that
p(Az) = Ap(z) and  p(z—4) = pz), LeT,

then p is a constant. Moreover, if A # 1 then p = 0.

Proof. For each integer j € Z and each lattice point k € T', define y;x(z) = p(A%z — k). Then, by
hypothesis, p;x(z) = Mp(z). Let B = (A™1)T. With m = | det(4)|, we then have distributionally

that _
m—j e—27rik-B'7u) [L(BJ(U)
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Choose now any ¢ € S(R?) such that ¢ is compactly supported. Then v;(w) = ¢((AT)Iw) j(w)
is a compactly supported tempered distribution. Moreover, supp(v;) C supp(¢((AT)w). Since
A is expansive, by choosing j large enough we will have supp(v;) contained in the rectangular
parallelepiped R = {zju; + --- + zquq : —1/2 < z; < 1/2}, which is a fundamental domain for
I'. In this case, v; is completely determined by the values ©;(k) for k € I'. Since v; is compactly
supported, we can compute these values as follows.

7i(k) = (727, v, (w))
R G((ATY w) (W)
) —27ik-w ﬂ(w)>

(,5((4}), m—g e—27rzk (AT)= 9w » ((AT) )>

8y

Thus 7;(k) is a constant independent of k, so v; = C'4. Since v;(w) = ¢((AT) w) fi(w), it follows
that supp(it) = {0}. As a consequence, y must be a polynomial [Rud91, p. 194]. However, p is
I-periodic by hypothesis, so this implies that g must be a constant. Finally, since u(Az) = A u(z),
this constant must be zero if A # 1. O

The following result gives necessary and/or sufficient conditions for a refinable distribution to
have accuracy p. Recall that P is the fundamental domain for the lattice I' defined in (3).

Theorem 4.3. Assume that f € £'(R%,C") is a distributional solution of the refinement equation
(1). Consider the following statements.
(I) f has accuracy p.
(II) There exists a collection of row vectors {v, € C1*" : 0 < |a| < p} such that
(i) vof(0) # 0, and
(ii) Yy = A Y L for 0 < s < p,
where Y = (y1)(F)) yer
polynomials ypg(z) = Y 1_o Qs () vpz)-

Then we have the following.

is the row vector of evaluations at lattice points of the matrix of

(a) If translates of f along I" are independent, then statement (I) implies statement (II).

(b) Statement (II) implies statement (I). Moreover, in this case, after scaling the vectors v, by
the constant C = (vof(0))~! |P|, we have

Xp(z) = Y yk) fz+k) = Vg F(z), 0<s<p.
kel

Proof. (a) Assume that f has accuracy p and that translates of f along I' are independent. Then
Theorem 3.1 implies that there exist row vectors {v, € C1*" : 0 < |a| < p} such that

Xig(@) = Y _yk) fz+k) = YgF(z), 0<s<p. (6)
kel
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Combining this with the refinement equation F'(z) = L F(Az) and with the definition of A}, we
have
Y F(Az) = X(Az) = Ay Xg)(z) = Al Vg F(z) = A Y L F(Az).
Since translates of f are independent, this implies that Y[;l] = Ay Y[;f]L for 0 < s < p, which
proves (ii).
To prove (i), consider in (6) the case s = 0. Since yjo(k) = vo for every k, we have

1 =12° = Xjg(@) = > wflz+k).
kel
Recall that the rectangular parallelepiped P = {zyu; + -+ + z4uq : 0 < z; < 1} is a fundamen-
tal domain for I". Let ¢ € Cgo(Rd) be a nonnegative, compactly supported function such that
Y ker ©(x — k) = 1. Then, necessarily, [ ¢(x)dz = |P|. Therefore,

UOf(O) = <17'00f>

which completes the proof.

(b) Assume that statement (II) holds. For each 0 < s < p, define the vector-valued distribution
Glq € S'(R%, C%) by
G(z) = Y y(k) f(z+k) = Y F(z).
ker
Using the equation Y[ = Ay Y}, L and the refinement equation L F'(Az) = F(z), we have

G(Az) = Y F(Az) = Ay Y LF(Az) = Ay Y F(z) = A Gpg(a). (7)

We will show by induction that there is a constant C' independent of s so that G5)(z) = C X5(x)
for 0 < s < p, and we will show that the explicit value of C is C' = (vof(0)) |P|~ L.

Consider the case s = 0. We have dy = 1, so Gj; € S'(R?%). Since Ag) = 1, we have by
(7) that G|o)(Az) = Gjoj(z), and since yjg)(k) = vy for every k, we also have that Go(z —£) =
Y ker Vof(z — £+ k) = Gig(z) for every £ € . Lemma 4.2 therefore implies that G|y} is a constant

C. To evaluate this constant explicitly, fix a nonnegative, compactly supported function ¢ € S(R%)
with supp(p) C P such that 3, . ¢(z — k) = 1. Then [ ¢(z)dz = |P|, so

C|P| = (p,0C)
(@, Grop)

:<(p Zvofa:+k>

kel
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— (Xl — 0. wf@)

kel
= <1a vOf)
= v f(0) # 0.

Suppose now, inductively, that Gp(z) = C Xp(x) for 0 < ¢ < s. Then, recalling the notation
Yq(z) = (y[s] (z+ k))ker’ we have

Gz —£) = Y Flz—0)

= Z Q5,5 (£) Yy F () by Lemma 2.1

= Z Qps,q(£) Gy () by definition of Gy

s—1

— QD) C@) + 3 Qg Gy ()

t=0
s—1

= Q51O Gr(x) + C Y Qpuy(®) Xy(x) by induction

t=0
= QL0 Gr(x) + C D Q) Xi(z) — C Qpse1(f) Xg(x)
t=0

= Gg(z) + CXpg(z —£) — C Xpq(z) by definition of Qg 4.
Defining Hig)(z) = Gpq(z) — C X[5)(z), it therefore follows from the preceding calculation that
H[s](.’lr—e) = H[s](.’E), Lel. (8)
In addition, it follows from (7) that H[, also satisfies
His)(Az) = Ap) Hig ().

We will now invoke Lemma 4.2 to show that each of the entries of H, is zero. As in [CHM98a,
Lemma 4.2], by choosing an appropriate ordering of the monomials z* of degree s, we may assume
that the ds; x ds matrix A[, is lower-triangular. Let Ar,...,Aq, be the eigenvalues of A[;). Let
hi € S'(R?) be the ith component of Hp,), and let h, be the first nonzero component, so that
Hpy = (0,...,0,hp,...,hg,)T. By (8), we have h,(z — £) = h,(z) for £ € T. Moreover, since Arg
is lower-triangular with Aq,..., A4, on its diagonal and since H{,(Ax) = A, Hig)(z), we also have
hn(Az) = Ay hy(z). Since A is expansive and since s > 0, it follows from [CHM98a, Lemma 4.2]
that Af, is also expansive. Therefore [A,| > 1, so Lemma 4.2 implies that h,, = 0. Hence H, = 0,
whence Gi4(z) = C X[5)(z). This completes the proof. [
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Theorem 4.3 allows us to determine the accuracy of a compactly supported refinable distribu-
tion. The condition Y[, = A[,) Y[, L in statement (II) of Theorem 4.3 involves only the coefficients
¢, and the structure of the matrix L. In particular, it does not depend on whether the solution of the
refinement equation is a function or a distribution. It was shown in [CHM98a] that the seemingly
infinite set of conditions on the vectors v, given by the statement Y[;; = A, Y, L is in fact equiv-
alent to a finite system of finite linear equations. This equivalence is quoted here for completeness,
since it will be used for further results below.

Theorem 4.4. Let m = |det(A)|, and let dy,...,d,, €T be a full set of digits. Set I; = A(T") — d;.
Given a collection {vo, € C*" : 0 < |a| < p} of row vectors, let yq(z) = > 7y Qps,11(x) vy be

the associated matrix of polynomials and let Y] = (y[s](k)) be the row vector of evaluations of

kel
these polynomials at lattice points.

If vy # 0, then the following statements are equivalent.
(a) Yip-1) = App-1) Y-y L.
(b) YP[S] = A[s] YP[s] L for 0 < s < p.

(C) Vs] = Z Z Q[s,t](k) A[t] U[¢] Ck for0<s<pandi=1,...,m.

The test for accuracy in statement, (IT) of Theorem 4.3 includes the condition that v f(0) # 0.
We can formulate the following sufficient conditions so that vy # 0 implies v f(0) # 0.

Theorem 4.5. Assume that f € £'(R%,C") is a distributional solution of the refinement equation
(1.1). Let m = |det(A)|, and let dy,...,d, € T be a full set of digits. Assume that vy € C*"
satisfies statement (c) in Theorem 4.4 for the case s = 0, i.e.,

V9 = Vo E Ck, 1=1,...,m.
keTy

If vy # 0, then either of the following two conditions is sufficient to imply that vg f (0) # 0, and
therefore that f has accuracy at least p = 1:

(a) translates of f along T' are independent, or

b) the matrix A = X cr, satisfies “condition E(1),” i.e., it has eigenvalues \; = 1 and
m kEA
|>\2|, cee, |Ar| < 1.

Proof. (a) Define Go)(z) = vo ) _per f(x + k). Then the argument of the proof of Theorem 4.3(b)
shows that Gp(z) = C a.e., with C' = (vo£(0))|P|~!. Hence vof(0) # 0 if and only if C #
0. However, if translates of f along I' are independent, then we must have C' # 0 since C =
Y ker Vo f(z + k) and v # 0.

b) Assume that A = L ¢ has eigenvalues \; = 1 and |As|,...,|A.| < 1. Then, by
A m kEA

Proposition 4.1(b), f(0) is the right 1-eigenvector for A. On the other hand, since vo = v ) ycr, Ck
and since I' is the disjoint union of the I}, we have

1 m
vy = UOEZ ch = voA.

1=1 k€I
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Hence v, is the left 1-eigenvector for A. Since the dot product of the left and right 1-eigenvectors
must be nonzero when 1 is a simple eigenvalue, we have vy f(0) # 0. O

Thus, if either of these two conditions are satisfied, in order to determine the accuracy of f
we can use any of the three equivalent statements of Theorem 4.4. Moreover, the following result
implies that test (b) of Theorem 4.4 imposes a necessary condition on the left eigenvalues of L.

Proposition 4.6. Let A = (A1,...,Aq)T be the vector of all eigenvalues of A. If there exist row
vectors Y, € ((Clx’“)dSX1)1XF such that Y}, = Af Y[q L for 0 < s < p, then A= is a left eigenvalue
for L for each multi-index o with 0 < || < p.

Proof. By [CHM98a, Lemma 4.2], the eigenvalues of Ap,) are [A%]|4=s- Let S be such that J =
S1 A[q S is in Jordan form. If J is diagonal, then its diagonal entries are A®. Therefore, by
thinking of Zj,) = 57!V} = [2a]a|=s as having “rows” z, = (2a(k))rer € (C*7)!*T, we can
compute

[za]|a|:3 = Z[s] = §! Y[s] = §! A[S]SS_l Y[S]L = JZ[S]L = [)\azaL]|a|:s.

Thus z, is a left A™%-eigenvector for L for each || = s. If J is not diagonal, then for each distinct
value of A* there is still at least one z, such that z, = A\*z, L, so each of the distinct values of A™¢
is still a left eigenvalue for L. O

Considering Theorem 4.3, Theorem 4.4, and Proposition 4.6 together, we see that if f is to

have accuracy p, then A™¢

must be a left eigenvalue for L for each 0 < |a| < p. An example from
[JRZ97] shows that even in the case d = 1, » = 1, the existence of such eigenvalues alone is not
sufficient to imply accuracy for f; the corresponding left eigenvectors must have the polynomial
structure specified in Theorem 4.3.

Since L is an infinite matrix, it is conceivable that the determination of its eigenvalues could
be a difficult task. In fact, the eigenvalues and eigenvectors of L are completely determined by a
particular finite submatrix of L. This was shown by Jia for the one-dimensional, single-function
case in [Jia96]. The higher-dimensional, single-function case was considered in [Jia98], and the
one-dimensional, multi-function case was discussed in [JRZ97]. Because the characterization of the
eigenvalues of L leads to an alternative test for the accuracy of a refinable distribution, we briefly
sketch the extension of these ideas to the general higher-dimensional, multi-function setting of this
paper.

Define the support of a column vector a = [ag]xer to be supp(a) = {k € ' : ax # 0}, and set

() = {a=lagleer  a € O} = (€,
L.(T') = {a € 4(T') : supp(a) is finite}.

For each nonempty 2 C I" define
£(Q) = {a€{(T) :supp(a) C N},

and define £(()) = {0}. We will study a class of finite sets Q for which £(Q) is right-invariant under
L. In particular, we will show in Lemma 4.7 that £(Q) is invariant if

AT'Q+A)NT C Q. (9)
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We will say that a finite nonempty set Q C I' is admissible if (9) holds.

The language of Iterated Function Systems (IFS) is convenient for discussing the properties
of admissible sets. Let 7(R?) be the metric space of all nonempty compact subsets of R? under
the Hausdorff metric. For each k € A, define wy: R? — R? by wg(z) = A~!(z + k). Then define
wp: H(RY) — H(R?) by

wr(K) = |Jwe(K) = ATHE +1), KeHRY.
keEA

Note that:
Q CTisadmissible <= wx(Q)NT C Q.

Since A is expansive, there exists a vector norm ||-|| on R? such that ||A~}|| < 1. Therefore each
wy, is a contractive mapping on R4, and as a consequence it can be shown that w, is a contractive
mapping on H(R?). By the Contraction Mapping Theorem, there must therefore exist a unique
nonempty compact set Ky C R? such that wy(K,) = Kj, i.e., such that A~} (Ky + A) = K. In

fact,
Ky =) A"(A) = {ZA_"/\R:/\H EA}. (10)
n=1 n=1

The set K, is called the attractor of the iterated function system generated by {wg}ren [Hut81].
It can be shown that if f is compactly supported and satisfies the refinement equation (1), then
supp(f) C Ky [CHM98b].

We now prove some basic properties of admissible sets. In particular, we show that the set

Qpn = KanT

is admissible, and possesses some important special properties among the class of all admissible sets.
For the remainder of this article, we will let || - || denote any vector norm on R? such that ||A71|| < 1,
and we let

B(p) = {z € R :[lz]| < p}

denote the corresponding closed ball of radius p centered at the origin. We fix R so that A C B(R),

and we define
R

o AT
Lemma 4.7.
(a) Let Q be any finite subset of I". Then L maps £(2) into £(wa(2) NT).

(b) If Q C T is admissible, then £(Q) is right-invariant under L.

(c¢) Q = B(p)NT is admissible for all p > pg. In particular, every finite subset of " is contained
in an admissible set.

(d) QA = KaNT is admissible, and satisfies 2y = wp(Qa) NT.
(e) Let Q be an arbitrary finite subset of I'. If Q@ C wx () NT, then Q C Q4.

(f) If @ C T is admissible, then Q' = wp(Q2) NT' C Q is also admissible. Further, if Q5 C €,
then Q) C Q.
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(g) Assume p > pg is such that Qp C B(p). Then there exist admissible sets
QA= € C - C O C Ov=B(pnT

such that
wA(Quy) NT C Qu, n=0,...,N—1. (11)

Proof. (a) Let a = [ag]ker € £(2). Since La = [Zjer Cai—j a;] cr and a; # 0 only when j € ©, we

can only have (La); # 0 if there is a j € Q such that Ai — j € A. In this case, Ai € j+ A C Q + A,
and therefore i € A7 (Q + A)NT = wa (Q)NT.
(b) Follows immediately from (a).

(c) Let Q = B(p)NT. If p > pg, then ||[A7Y||(p+ R) < p, s0
ATMQ+A)NT Cc A7 (B(pp+R) NT C B(|A7Y|(p+R) NT C B(p)nT = Q.

(d) Since Q2 C Kp, we have wa(Q24) NT C wa(Ka)NT = Ka NT = Qy, and therefore 24
is admissible. To show that this inclusion is an equality, suppose that £ € Q5 = Kx NT. By (10),
there exist A\, € A so that k = >..2 , A™"X,. Therefore w = Ak — XAy = > 02 A" A\pq1 € Kj,
and furthermore w € T since Ak, \; € I'. Hence w € Q,, and therefore k = A= (w + ;) €
A_I(QA + A) NI = wA(QA) NnT.

() fQ Cwa()NT = A1 (A+Q)NT, then
Qc AT AN +A47HQ) ¢ ATHA)+ATEAN)+AT2(Q) C -
Since A™! is a contraction, it follows that @ C >°°° | A™"(A) = K. Since we also have Q C T, we

conclude that Q C Q4.

(f) If Q is admissible, then Q' = wx (Q) NT C Q. Hence, wa () NT Cwpa(Q)NT = Q' so
is admissible. Further, if 24 C ©, then Q = wa (22) NT C wa(Q) NT = .

(g) Define Ey = B(p). Since p > po, we have p > ||[A71|| (p + R). Therefore
wa(Eo) = A7 (B(p) +A) ¢ A7 (B(p+R))  B(|[A7'[(p+R)) C Blp) = Eo.

Recursively define E, 11 = wy(E,) for v > 0. An easy induction establishes that F,,1 C E, for
every v. Further, since Fy is compact, we have NE,, = K\ by the Contraction Mapping Theorem.
Therefore, we must have E, NT' = Q4 for all v large enough, so {E, NT'},>( is a finite collection
of sets. Let Qy = Qo C Q1 C --- C Qn = Ep NI be the distinct elements of this collection. Fix
0 <n < N. Then there exists a v such that Q, = E, NI C E,_1 NT = Q,41. Therefore

'wA(Qn—I—l) NI C ’UJA(EV_;[) N =E,NIL = Q,, (12)

so (11) holds. Moreover, since €2, C 2,41, it also follows from (12) that €, is admissible. Since
we know that Qy = Q, is admissible, the proof is complete. [
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We now show that the nonzero eigenvalues of L acting on £.(I') on the right coincide with
the nonzero eigenvalues of L acting on £(I") on the left, and that these further coincide with the
eigenvalues of the finite submatrix

Lo, = [cai-jli,jeon-
In particular, since L can have only finitely many nonzero eigenvalues, the accuracy of a refinable
f is necessarily finite. The main ideas are adapted from one-dimensional results in [JRZ97]. The
use of Z.(I") on one side of L and £(I") on the other is in fact natural, because £.(I") and ¢(T") are
algebraic adjoints of each other.

Let P:4(T) — (C"*1) X1 denote the restriction mapping defined by

P([ak ]kel“) = [ak ]keQA’
and let E: (C"*1)X1 _ ¢(T') denote the zero extension mapping defined by
E([ak]keqn,) = [aklper» where ap =0if k ¢ Q.
Theorem 4.8. Fix A\ # 0.
(a) If a € £.(T") is a A-eigenvector for L, then supp(a) C Q, so Pa is a A\-eigenvector for Lgq, .

Conversely, if a € (C™*1)24X1 js a \-eigenvector for Lq,, then Ea is a A-eigenvector for L.

(b) If a € 4(T) is a M-eigenvector for L™, then Pa is a A-eigenvector for L{, . Conversely, if
a € (Crx1)2ax1 jg g \-eigenvector for LE , then there exists a A-eigenvector b € {(T') for LT
such that Pb = a.

Proof. (a) Suppose a € £.(I") satisfies La = Aa with a # 0. Set Q = supp(a). Then Q = supp(Aa) =
supp(La) C wa(Q2) NT by Lemma 4.7(a), and therefore Q C Q4 by Lemma 4.7(e). In particular,
Pa # 0. Moreover, since supp(a) C 2, it follows that ca;—;a; # 0 can only hold when j € Qj,
and therefore

La, (Pa) = [Z CAij aj] - [Z CAi—j O
1€EQA

] = P(La) = MAPa.
JEQA jer i€EQA

Thus Pa is a A-eigenvector for Lq, .

For the converse statement, suppose that Lo, a = Aa for some nonzero a € (C"*1)4%1  Note
that if j € Qa, then ca;—; a; # 0 can hold only if Ai—j € A, which impliesi € A1 (Qx+A)NT = Q4.
Therefore,

i = (B, ([

] ) — E(La,a) = AEa.
JEQA JEQA 1€QA

Therefore Ea is a A-eigenvector for L.

(b) Choose any a = [ag]xer € £(I'). Note that if j € Qp, then Ai — j € A can hold only if

1 € Qp as well. Therefore,
T
PLYa = P([ZCAi—jai] )
Jer

i€l
T
= [E CAi—jai]
el JEQA
T
= [ E :cAz‘—ja'i:|
i€ JEQA

= L, Pa,
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and hence PLT = LEAP. Therefore, if a # 0 is a A-eigenvector for LT, then A\Pa = PL%a = LEA Pa.
Therefore, if we can show that Pa # 0, then we can conclude that Pa is a M-eigenvector for L.

Suppose that we had Pa = 0, i.e., that ap, = 0 for £ € Q4. Since a # 0, there must be
some ko € I' such that ag, # 0. Choose p > py such that B(p) contains both Q4 and ko, and
then let Q) = Q¢ € --- € Qn = B(p) NI be the admissible sets constructed in Lemma 4.7(g).
Recall that €y contains a point ko such that ar, # 0. We claim that the strictly smaller set
Qn_1 must also contain a point k; such that ax, # 0. Suppose on the contrary that ap = 0
for all kK € Qy_1. Note that Aag, = (LTa), = D ier c'gi_ko a;. However, if A7 — ky € A, then
i€ A7Y QN + A)NT = wa(Qn) C Qn-1, and therefore a; = 0. Hence Aag, = 0, which is a
contradiction. Therefore there must be some k1 € Qx_; such that a, # 0. Repeating this argument
with Qx_1 in place of Qy, we see that each 2,, must contain a point &, such that ay, # 0. However,
since 2y = 2 contains no such points, this is impossible. Therefore we must have Pa # 0, so Pa
is indeed a A-eigenvector for L™.

For the converse statement, let a € (C"*1)24X! be a -eigenvector for LEA. Choose p > po
large enough that Ky C B(p), and let Q) = Q¢ C --- C Qn = B(p) NI be the admissible sets
constructed in Lemma 4.7(g). Set px = p, and recursively define p, 11 = (pn,/||A7]|) — R for n > N.
If p is chosen large enough, then py < pyy1 < --- is an increasing sequence of numbers. Define
Q, = B(p,) NT for n > N. By Lemma 4.7(c), these 2,, are admissible. Combining with the sets
D, ..., QN constructed previously, we see that {2, },,>0 is a strictly increasing sequence of admissible
sets whose union is I' and such that Q¢ = Qa. Further, by (11), we have wx(Q2p41) NT C Q,, for
n=20,...,N — 1. Moreover, this inclusion holds for n > N since for these n we have

wA(Qn—I—l) = A_I(Qn+1+A) C B(||A_1||(pn+1+R)) = B(pn)

Now define a; for j ¢ Q5 recursively by the formula

a; = ; Z CL_J- a;, J € Qi1 \ Q.
i€Q,
Note that if Ai —j € A and j € Q, 41, then i € A7 (Qpy1 + A)NT = wpa(Qpy1) C Q- Tt follows
that the vector b = [a;];er satisfies LTb = Ab. Since Pb = a # 0, the vector b is a A-eigenvector for
LT O

We can now compare two possible finite tests for accuracy. The first test is provided by
Theorem 4.4(c). To determine the accuracy corresponding to a given refinement equation, we find
the largest value of p such that the finite system of linear equations in Theorem 4.4(c) has a solution.
This is an iterative process: the system is solved for s = 0,1,... in turn until the maximum number
of solvable equations is found. This test only involves solving linear equations. An upper bound on
the accuracy can be found in advance by computing the right eigenvalues of L|yq,), since accuracy
p requires that A~ be an eigenvalue of L for each eigenvalue A of A and each 0 < |a| < p.

An alternative test for accuracy, in the spirit of the one-dimensional results of [JRZ97], can be
based on Theorem 4.4(a). Once an upper bound for p has been computed by checking the eigenvalues
of L|yq,), the left eigenvectors for L lead to the vectors Yj,_;) such that Yj,_q) = A1) Y-y L. If
these vectors have a polynomial structure, then the accuracy is p. If they do not have a polynomial
structure, then the test must be repeated replacing p by p — 1. This test requires the computation
of the eigenvalues of a finite matrix, which cannot be done using only systems of linear equations.
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