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Minimum entropy deconvolution and simplicity: 
A noniterative algorithm 

Carlos A. Cabrelli* 

ABSTRACT 

Minimum entropy deconvolution (MED) is a tech- 
nique developed by Wiggins (1978) with the purpose of 
separating the components of a signal, as the convolu- 
tion model of a smooth wavelet with a series of im- 
pulses. 

The advantage of this method, as compared with tra- 
ditional methods, is that it obviates strong hypotheses 
over the components, which require only the simplicity 
of the output. The degree of simplicity is measured with 
the Varimax norm for factor analysis. An iterative algo- 
rithm for computation of the filter is derived from this 
norm, having as an outstanding characteristic its stabili- 
ty in presence of noise. 

Geometrical analysis of the Varimax norm suggests 
the definition of a new criterion for simplicity: the D 
norm. In case of multiple inputs, the D norm is ob- 
tained through modification of the kurtosis norm. 

One of the most outstanding characteristics of the 
new criterion, by comparison with the Varimax norm, is 
that a noniterative algorithm for computation of the 
deconvolution filter can be derived from the D norm. 
This is significant because the standard MED algorithm 
frequently requires in each iteration the inversion of an 
autocorrelation matrix whose order is the length of the 

filter, while the new algorithm derived from the D norm 
requires the inversion of a single matrix. 

On the other hand, results of numerical tests, per- 
formed jointly with Graciela A. Canziani’, show that 
the new algorithm produces outputs of greater sim- 
plicity than those produced by the traditional MED 
algorithm. These considerations imply that the D cri- 
terion yields a new computational method for minimum 
entropy deconvolution. 

A section of numerical examples is included, where 
the results of an extensive simulation study with syn- 
thetic data are analyzed. The numerical computations 
show in all cases a remarkable improvement resulting 
from use of the D norm. The properties of stability in 
the presence of noise are preserved as shown in the 
examples. 

In the case of a single input, the relation between the 
D norm and the spiking filter is analyzed (Appendix B). 
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INTRODUCTION 

The minimum entropy deconvolution (MED) technique rep- 

The system is usually represented by an operator S which 
acts on the source signal w by means of a convolution. More- 
over, if an additive noise component q is introduced, the model 

resents a new and interesting approach to the problem of 
deconvolution. First proposed in Wiggins (1978), the technique 
was later improved by Ooe and Ulrych (1979) who incorpor- 
ated an exponential transformation into the original algorithm. 
Recently, the technique was again considered in papers by 
Oldenburg et al. (1981) and Ulrych and Walker (1982). 

Deconvolution, a standard topic in signal processing, is also 
used in astronomy, seismic signals, radar, and image pro- 
cessing. A wide range of physical processes can be described by 
a system where a source signal is perturbed in order to produce 
an observable output (Figure 1). 

is represented by 

y=s*w+q 

where * denotes convolution. 
The deconvolution process involves separation of the com- 

ponents of convolution in the observed signal y. Satisfactory 
results were obtained when one component was known (Clay- 
ton and Ulrych, 1977). However, when only the observed sig- 
nals y are known, the problem becomes much more difficult. 
Here, uniqueness is lost and strong hypotheses over the compo- 
nents must be made. Validity of the model will then depend 
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FIG. 1. The system is usually represented by an operator S 
which acts on the source signal w by means of a convolution, 
producing an observable output Y. 

upon the extent to which the physical process can be adjusted 
to these hypotheses. 

Several solutions have been tried with success, although 
strong restrictions over the components had to be made. With 
predictive deconvolution (Robinson and Treitel, 1980) for ex- 
ample, some good results are obtained under the assumption of 
minimum phase for the source signal and white noise for the 
reflectivity function. An excellent review of these techniques is 
presented in Lines and Ulrych (1977). 

The advantage of the MED lies in elimination of these hy- 
pothesis, under only the assumption of “simplicity” for the 
desired signal, thus introducing a concept used in factor analy- 
sis. 

In this paper, the criterion for simplicity used by Wiggins 
(1978) is analyzed, and it is shown that certain geometrical, 
rather than statistical, considerations suggest another criterion 
for simplicity, which, together with the kurtosis norm used by 
Ooe and Ulrych (1979) leads into a noniterative algorithm for 
MED. 

THEORETICAL CONSIDERATIONS 

Consider N observed signals xi,. , x,~. For each i (i = 1,. , 
N), let xi be represented by 

xi = W * 9, + lj,, 

That is, each signal is considered as the convolution of a source 
signal w (same for all xi) with a disturbance signal qi and 
contaminated with an additive noise qi. 

Now suppose that each signal xi is convolved with the same 
filter f in order to obtain an output 

yi = f*x, = (f*W)*qi + f*q, (i = 1, . . . . N). 

If the q;s (i = 1, , N) are the desired signals, the filter f 
should. be such that (f * w) * qi approximates qi, which could be 
obtained if f represents an inverse of w. At the same time it 
should suppress noise, that is, elimination of terms f * qi (i = 1, 
. , N). 

The MED method assumes that the output yi resulting from 
the application of the filter f on xi is of a “simple” structure. 

The concept of “simplicity” or parsimony for a data matrix 
A = (qj) is one of the main points of factor analysis in multi- 
variate analysis. Roughly speaking, a simple structure for a 
matrix A means that almost all its coefficients are nearly zero, 
while a few of them take arbitrary values and location. 

More than twenty years elapsed before a satisfactory way 
was found to set this concept in precise mathematical terms 
(Carroll, 1953). The solution consisted in the definition of a 
“norm” that could measure the degree of simplicity of a matrix. 
Later a diversity of norms or simplicity criteria were considered 

(Harman, 1960). The problem of choosing the matrix with 
greatest simplicity from an infinite set of matrices which vary 
according to certain parameters now turns into the maximiza- 
tion or the minimization of a norm over the set mentioned 
above. The chosen norm should be such that a satisfactory 
algorithm, from the computational point of view, could be 
derived from it. 

Wiggins (1978) proposed the varimax norm or criterion de- 
fined for a matrix A = (aij) by 

where 

In statistical terms, V,(A) represents the variance of the squares 
of the entries of each normalized row of 4. 

The varimax criterion is then applied to the outputs y = (yij) 
in order to maximize V(y) over all filters f = (fi, . . , f() of fixed 
length e. Differentiating V(y) with respect to the filter coef- 
ficientsf, and equating to zero, a set of equations is obtained 
which can be rewritten in matrix form as 

R(f) * f = g(f), 

where B = R(f) is a Toeplitz matrix and g = g(f) a column 
vector whose coefficients depend upon f. 

Choosing an initial filter f” = (0, , 0, 1, 0, , 0), an 
iterative algorithm can be generated by taking 

f “+l = {R(f”)}_lg(f”), 

which leads to a satisfactory solution. 

GEOMETRICAL INTERPRETATION OF THE VARIMAX 
NORM 

In the case of a single sample input, let y E [w”, y # 0. Con- 
sider the Varimax norm 

V(Y) = c Y4/(C Yf)‘. (1) 
!i 

If the Euclidian norm of y is noted by 

II Y II = (1 J,:)1’2> 
k 

then (1) becomes 

V(Y) = c h A > 4. 
The norm V is homogeneous, 

V@Y) = V(Y) (2) 

for h c iw, ?, # 0. Besides, V can be factorized as a composition 
of two transformations 

TI 

(Y,, “‘> Y,) - C(YlilI Y lb2? ..‘> (Y,lII Y lD21> 

and 

(Y,, .1 Y,) -2 1 If = II Y I? 
I 
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This means that 
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Let us now analyze the etTect of r, on a vector y. First 
consider 

11 = ((X,, ) XJ E R” 1 c xi = 1, xi 2 0, i = I, . . , ml}. 
i 

The transformation T, takes a vector y E R”’ to a vector of the 
region H, since 

7 (Vi/II Y 11)’ = II Y II-’ T Yf = II Y 112/11 Yll’ = ’ 

and (yi/ll y ll)2 2 0 for all i. Moreover, any vector in the direc- 
tion of y will have the same image as y. 

In Figure 2a, H is represented in the case m = 3 and in Figure 
2b it is shown how T, transforms the vectors yr and y2. Note, 
that in Figure 2b H is the segment joining e, and e2, and m = 2. 
This transformation slightly modifies the angles between the 
vector and the coordinate axes because the coordinates are 
squared. 

el 
( 1) 

The transformation T2, defined over H, reaches its minimum 
at the barycenter B = (mm ‘, . . , me ‘) and its maxima at e,, , 
e,, the vertices of H (with m being the dimension of the space 
Rm), and increases as the distance from y to point B increases. 
This means that T2 measures the withdrawal of a vector y from 
B or the equivalent, its proximity to the set of vertices. There- 
fore, the simplicity of a vector following the varimax criterion 
increases with its proximity to any of the vertices. 

Considering the homogeneity of V, the simplicity of any 
nonzero vector of R” is given as a function of the angles formed 
by the line defined by the vector and the coordinate axes: the 
closer the line is to one of the axes, the higher the simplicity is 
(and the higher the modulus of the corresponding cosines). 

Also note that, for y E R”, y # 0, V(y) lies between the 
boundaries 

mm' 2 V(y) I 1. 

(b) 

FIG. 2. (a) The region H for m = 3. (b) Effect of the transforma- 
tion r, on 2-D vectors. 

Figure 3, illustrates the contour lines of transformation T2 
defined on H, for m = 3. 

VARIMAX NORM AND DECONVOLUTION 

Let x, f, and y be vectors of length n, e, and m = n + / - 1, 

respectively, and suppose that 

y=x*f, 

i.e., 

yk=~fsxk+l-s k = 1, . . . . m, (3) 

wherexi= Oifi 4 {l,...,n}. 
Written in matrix form equation (3) becomes 

Xl x2 .... x* 0 .” 0 

(Y,, x’ ‘. . ..> Y’,=((f,> . ..> 

0 F 0 .:. 

., . . . 

; 
0 ,.’ 0’ x,’ x2 “. x, 

I 

(4) 

Therefore, y = f - TC, where JJ is a G x m matrix. If vk is the kth 
row of matrix X, we can write y as a linear combination of 
vectors vk, where the coefficients are coordinates of the filter f: 

Y = 1 hVk. 
k FG 3. Contour lines for transformation T2. 
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The vectors vk are linearly independent (see Appendix A), hence 
they span an L-dimensional linear subspace W of R”. 

Each nonzero filter f generates a vector y, whose simplicity 
can be measured with norm V 

f H Y +b V(Y) 

tv - {O} H w I-+ ft. 

EQUIVALENCE OF CRITERIA 

A criterion of simplicity for a set of vectors A c R” can be 
defined as a function 

C: A-R. 

Two criteria C, and C, defined over a set A are equivalent if 

for all x, y E A C,(x) 5 C,(Y) * c, (xl 5 C,(Y), 

or if 

for all x, y E A C,(x) 5 C,(Y) es c, (xl 2 C,(Y). 

Clearly, two equivalent criteria should reach their extrema at 
the same vectors; therefore the selection of one or another will 
depend upon the algorithmic complexity derived from them. 

If C, = aC, + b, a # 0, a, b E R, then C, and C, are equiva- 
lent. For example, the varimax norm and the norm ]I T,(y) - 
B II*, where B is the barycenter of H, are equivalent since 

II T,(Y) - Bll’ = 1 {(Yilll Y II)’ - mm’}’ 
I 

= 7 (YilllY II)” - 2m-’ F (Yilll Y II)’ + 1 m-z 

= V(y) -m-‘. 

Subsequently, I define another criterion of simplicity from 
which a noniterative algorithm can be derived and which has 
given satisfactory results. 

THE D NORM 

Analysis of the Varimax norm indicates the need to measure 
the simplicity of a vector y as a function of the distance from y 
to the points e,, . . , e,, where 

ek = (0, . ., l,, . . . . 0) k=l,...,m, 

and 

e m+k = (0, . . . . -l,, . . . . 0) k= l,...,m. 

Now define 

D,(Y) = min II(Y/IIyII) - eill’ 
lbi<*m 

where the normalization of y is intended to preserve homoge- 
neity [equation (2)]. 

We have 

II (y/II y II) - e, II* = 2 - 2(y,lll Y II), k=l,...,m 

and 

I] (Y/ tI Y I]) - ek+,,, II2 = 2 + 2(Y,/ll Y II), k= l,...,m. 

Hence 

FIG. 4. Norms D and D, of a given vector y(m = 2). 

min II~y/IIyII -eill* = 2jl - max (lYkllllyll)I. 
I<Z<Zrn l<k4rn 

Therefore, by defining 

D(Y) = max I Yk l/II Y II 
ldk6m 

then 

D,(Y) = 2 - WY). 

Consequently, D, and D are equivalent criteria, in this sense. - 
In Figure 4, the length of the segment AB represents the 

distance between y/]]y]] and e,-this is [D,(y)]“2-and the 
length of CD is D(y). 

Figure 5 presents a graph of the behavior of norms D and V 
by changing the filter in three different outputs. In all cases 
x = (xl, x2) (an input trace of length 2) has been convolved with 
a filter of the same length f = (j’,, f2). 

Since the norms have the property of homogeneity, it is 
sufficient to consider 

f, = (cos U, sin a) 

for each a E (0, 2ff). The curves represent V(y,) and D(yJ, 
where 

y==x*f 01’ 

THE D NORM AND DECONVOLUTION 

When using the D criterion to solve the problem of deconvo- 
lution in the case of a single sample input, maximize D(y), 
y = f * x over all nonzero filters f = (f,, . , fG) of fixed length /. 
The result is 

sup D(Y) = sup {max (I Yi l/II Y II)} 
f t w feW i 

= max ( SUP (I Yi l/II Y ll)f. 
i /EW 

(5) 

‘3nE.f is a maximum of 1 1’. l/l] ~11 pf, and only if, f is an I,,,, I .I I 
extremal point (maximum or minimum) of yi/l] y 111, it is then 
equivalent in equation (5) to find first the extrema of yi/]] y )I for 
each i and then the maximum over i. 
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FIG. 5. Plots of the norms D(y) and V(y) for vectors y = f * x, where f = (cos a, sin a), a E [0, 2~1, and x E RZ such that (a) x = (1, 
1); (b) x = (- 1, - 2), and (c) x = (100, 1). 



Hence the extrema for each fixed i are found by differ- 
entiating with respect to the coefficients X of the filter and 
equating to zero: 
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the sum of the varimax of each input. This generalization for 
norm D leads to a noneffrcient algorithm from the compu- 
tational point of view. 

From 

+(YiillYll)=“i 

Nevertheless, the D norm can be extended to the case of 

k=l,...,C. multiple inputs, giving a noniterative algorithm of easy compu- 
k tation, by exploiting the idea implicit in the kurtosis norm. 

Consider N signals yi (i = 1,. , N) of length m, where 

II Y II = (C Yy Yij=c h”i.jmk+l j = 1, _.., m. 
k 

and 

it follows that 

Yi = Cfsxi&s+ 1 
5 

dYi 

afk = xi-k+1 

and 

a II Y II 
-~ll~ll~‘~Yj~=ll~ll~~ cYjxj-k+l. 

afk i j 

Therefore 

= IIyII-l{xi-k+l -YiIIyII-’ 

X (1 C fsxj-s+ lxj-k+ 1)). 
j s 

The aim is then to compute 

Equating to zero, gives, 

max { sup (IYijl/llYII)J 
i., f E w 

for all nonzero filters of fixed length L. 

(Yi/ll Y 11’) If, 1 txjms+ Ixjmk+ 1) = Xi-k+ 1’ NORMAL EQUATIONS FOR THE D NORM 

The kurtosis norm of matrix u = (Yij) is defined by 

K(Y) = 11 (Yij/ll Y II)” 
i J 

where 

IIYII = (CYV’ 
i. j 

(Ooe and Ulrych, 1979). 
This means that K(y) is the varimax norm applied to an 

Nm-dimensional vector whose coordinates are obtained by 
placing the rows of matrix y one after the other, as 

(Y (1, . . . . y,,. y21, . . . . y,,, . . . . Yh’l. . . . . YNJ 

The D norm applied to this vector yields 

D(Y) = max (I Yijlill Y II). 
i. j 

Let 

s j 

Consider the matrix y = (yij), where 

rs-k = 1 Xj-s+lXj-k+l. 

Then write 

Yij = 1 .hxi.jmki 1 
i = 1, . . . . N 

k j = 1, . . . . m’ 

From this and 
(Yi/llY1/*) 1 fsrs-k = xi-k+l k = 1, 

which can in turn be written in matrix form as 

e, 
II Y II = (C Y,:)‘.“> 

1. t 

it follows that 

where 

(Yilll Y ll*)B ’ f = xi 

I r. rl ... rt-1 

rl r. 

B= : : I rl 
rc-l rl 10 

is the matrix of autocorrelations of the input sample and xi is 
the vector 

xi = ‘[Xi, Xi-l, . . . . Xi-({_ 1,] 

withx, = Oifk $ {l,...,m). 

and 

If 

1 , 
ciij 
-= xt,j-s+l, 

Zfs 

1 

y = (2llyll)-‘c24’,, $ 
j 5 r. I 6 

= IIYII-lCY,rXr.r~s+l 

=l,~~,-‘~~,~kx,.,-k+lx,.,-,+, 
1.1 k 

=II~II~‘~~k~((cx~,,-k+lx,.l-s+l~~ 
I I 

MULTIPLE SAMPLE INPUT r;m, = c X,,,-k+lXr,t-s+lr 
t 

In the case of multiple inputs, the varimax norm maximizes the autocorrelation of x, in (k - s), then 
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= iiYi/-’ 1 fkrk-s> if Ti = 1 I-i 
k j 

Finally, this gives 

+(‘ij/IlyIl)=llyll-’ $!!IIYII-YYij 
s ( s s > 

= IIYII-2(xi.j-s+111YII - IIYIIK’ 

x (7 _hk rkmsbij). 

Equating this to zero in order to obtain the extrema, then 

YijIIYll-2~fkrk-s=xi,j-s+l s = 1, . . . . f, 
k 

which can be expressed in matrix form by writing 

(Yij/ll y II2)p - f = x’j 

where 

& = 1 I$, 

(6) 

with p,i the matrix of autocorrelations of the ith sample input, 
and x’J = [xii, xi, j_ Ir . . . . xi. j_(c- 1,], with xik = 0 if k # {l, ., 

m}. From equation (6) 

(Yij/ll y 112) * f = B - lxij. (7) 

If f” is a solution of equation (7), then hf’ is also a solution of 
this equation, since 

Yij(hf”) hYij(f”) 

11 y(hf”)ll’ hf” = h2II y(f")l12 lf” = 11 ;I2 f” 
where y(f) denotes the output obtained by applying the filter f 
and y,,(f) its ij-coordinate. 

In particular, if f” satisfies equation (7), then f” is a multiple 
of vector R-lx”. This means that f = R-‘x’jis a solution. If 

fij = R- lxii _ , 

the algorithm terminates by computing 

max(ly!i~)I/lJY’ij)II) ,, - ) 
i. i 

where xcin is the output obtained by applying the filter f’j. 

NUMERICAL EXAMPLES 

(In collaboration with G. A. Canziani’) 

Computational procedure and implementation 

I call MED the algorithm obtained by Wiggins (1978) from 
the Varimax norm, andf, the corresponding filter. Correspond- 
ingly MEDD and& will, respectively, denote the algorithm and 
the filter obtained from the D norm. 

‘Institute Argentino de MatemBtica, Consejo National de lnvesti- 
gaciones Cientificas y Ttcnicas, Viamonte 1636, 1055 Buenos Aires, 
and Departamento de Matemitica, Universidad de Buenos Aires, 
Pabellbn I, Ciudad Universitaria, 1428 Buenos Aires, Argentina. 

Because MED and MEDD entail autocorrelation matrices, 
which are Toeplitz forms, we use the Levinson recursion in 
their inversion. 

The MEDD algorithm is noniterative. One of its advantages 
is that it requires computation and inversion of just one auto- 
correlation matrix whose order is equal to the chosen filter 
length. 

All the tested examples indicate that the optimum filter 
length for the MEDD algorithm is smaller than for the MED 
algorithm. 

Fast convolution and crosscorrelation algorithms using fast 
Fourier transforms (FFT), essential to digital signal processing, 
have been incorporated in both MED and MEDD algorithms 
to improve efficiency. 

Convergence 

Note that initializing the filter in the MED algorithm to 
ft = (0, . . . . 1, . . . . 0)’ the value of the varimax norm of the 
output y (“) = f$’ * x, obtained from the nth iteration, grows 
significatively during the first N iterations (N depending on the 
input characteristics and the chosen filter length) until it be- 
comes steady. This limits the MED algorithm since thereafter it 
is not possible to make any improvement in the simplicity of 
the input. 

In the examples considered the Varimax norm of the MEDD 
output achieves values exceeding the maximum values reached 
by the Varimax norm of the MED output, when the chosen 
filter lengths used in both procedures are optimal. This can be 
written 

where 

V(Y,,) 2 V(Y,J 

and 

yrO = x*f,, (8) 

yr, = x * f, 

This means that the MEDD algorithm produces an output of 
greater simplicity, when simplicity is measured through the 
Varimax norm. 

However, outputs obtained by means of both methods main- 
tain the same relation of order, relative to the D norm (see 
Table 1). That is, 

D(Y,,) 2 D(Y,,). 

A larger varimax or D norm value is not a measure of success 
if the original reflectivity series is not reproduced. However, 
when the reflectivity was reproduced successfully, the inequality 
(8) suggests a better signal-to-noise ratio for the MEDD output 
which is definitely desirable. 

Note that the inequality (8) has not been confirmed in gener- 
al yet, but it holds for all the considered examples. 

THE EXAMPLES 

An extensive simulation study was carried out with synthetic 
data. First a comparative study of both methods was made, and 
subsequently the MEDD’s efficiency was tested in the case of 
data contaminated with white noise. 

Six examples are used to make evident the valuable charac- 
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teristics of the new algorithm. Three of them show results 
obtained through both methods with multiple trace inputs, 
using different types of source wavelets. For each example I 
present a graph showing the convergence of the Varimax norm 
of the MED outputs, as compared with that of the MEDD 
outputs. The last three examples refer to the behavior of the 
MEDD algorithm when different percentages of noise are 
added to the inputs. 

In the examples where white noise was added to the input 
traces, the percentages of noise represent the largest noise am- 
plitude as percentage of the largest signal amplitude. 

In all cases the source wavelet was recovered by inversion of 
the filter. This inversion has been done by taking the filter as 
input of the MEDD algorithm and choosing the length of the 
source wavelet as that of the inverted filter. 

For each example, the MEDD filter has been convolved with 
the source wavelet, resulting in a function which approximates 
the delta function. Adjustment of this approximation shows 
how good an approximation to the inverse of the source wave- 
let the filter is. 

It is worth noting that the polarity or delay of the output 
spikes does not affect the maximization. These should be ad- 
justed by comparing output with input. Generally, if the nega- 
tive lobes are larger in average than the positive, the polarity 
will appear reversed. 

In order to make the reflectors q(t) occur at each time sample, 
in all the examples 1 percent white noise was added to q(t). 

Examples 1 to 3. Model x = w * q 

Example l.-The aim of this example is to study the behav- 
ior of both methods in the case where the source wavelet is a 
damped wavelet (96 units long). Two four-impulse randomly 
generated spike series were used. Figure 6a shows w(t), q(t), and 
the convolved input trace x(t) = w(t) * q(t) used in both MED 
and MEDD algorithms. 

Usually the correct value of the filter length cannot be fore- 
seen straightforwardly, and a sufficiently good approximation 
must be searched by trying filters of different lengths and exam- 
ining the outputs. Under this assumption, I tried several filter 
lengths for both algorithms, concluding that the optimal length 
for the MED filter was sixteen points, whereas it was five for the 
MEDD filter. 

The MED algorithm became steady after the thirtieth iter- 
ation, reaching a Varimax value lower than that of the MEDD 
output (Table 1 and Figure 12a). This fact is clearly reflected in 
the resolution of the output. The recovered wavelet (Figure 6d, 

top) and the delta function obtained by convolving f,, with the 
source wavelet (Figure 13) show that the filter f, is a good 
inverse. 

Example 2.--I chose as source signal the Ricker wavelet 
(forty units long), considered in the geophysical literature as a 
good estimation of the source signal in problems related to 
seismic prospecting. Analytically, it represents the second de- 
rivative of the Gaussian density (Robinson and Treitel, 1980). I 
considered two two-impulse traces. The second spike in the 
second trace shows a modification in spacing, polarity, and 
amplitude as compared with the first trace. 

In this case, because of the particular characteristics of the 
source wavelet, the lengths of the filters had to be increased to 
40 points in both methods. 

Convergence of MED became steady after the ninth iter- 
ation. The Varimax norm of the MEDD output more than 
doubled the value of the MED output. The MED output 
exhibits a high percentage of noise, and as could be expected, its 
polarity was reversed (Figure 7). 

On the other hand, the MEDD output is a very good ap- 
proximation to the spike series: amplitude, polarity, and spac- 
ing have been preserved. The inversion of the f, filter produces 
a highly satisfactory wavelet. 

It can be confirmed through Figure 13 that fn is quite a good 
approximation to the inverse of the true wavelet. 

Example J.-This example proposes a particularly severe 
deconvolution problem. The source wavelet is a complicated 
nonminimum phase wavelet 60 points long. Three two- to 
three-impulse randomly generated spike series were picked for 
this example. 

The best outputs were obtained with filter lengths close to 60 
points in both cases. 

The Varimax values for both outputs are quite similar, that 
of the MEDD output being slightly higher. Convergence of the 
MED process became steady after the twelfth iteration. Po- 
larity was reversed in both cases, and a considerable level of 
deconvolution noise can be observed in both outputs. Not 
withstanding, the MEDD output shows an improved recovery 
of amplitudes and spacing (Figure 8). 

The wavelet recovered by inversion of the f, filter adjusts 
strikingly to the shape of the true wavelet, taking into account 
the reversal of polarity. 

Figure 13 shows, in spite of noise, that the narrowness of the 
delta function ensures that f,, is a good approximation to the 
inverse of the source wavelet. As in example 2, a delay can be 
observed in the position of the reversed delta. 

Table 1. Comparative values of Varimax and D norms for outputs obtained through filters resulting from MED and MEDD processing. 

Number 
of 

traces 

Example 1 Example 2 1; 

Example 3 Example 4 ; 
Example 5 3 

Varimax norm D norm 

MED output MEDD output MED output MEDD output 

0.3535 0.3600 0.6532 0.663 1 
1.6065 2.1078 0.2217 0.2356 
0.5763 1.1960 0.6069 0.7317 
0.6080 0.6498 0.4758 0.5106 
0.7992 0.8132 0.4609 0.5758 
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FIG. 12. Convergence of the MED process using the Varimax norm as compared with the V norm of the MEDD output (a) in 
example 1, (b) in example 2, and (c) in example 3. 
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FIG. 13. Approximations to the delta function resulting from the convolution of the MEDD filters f, with the corresponding source 
wavelets. 
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Examples 4 to 6. Model x(t) = w(r) *q(t) + n(t) 

The aim is to study the stability of the MEDD algorithm 
when additive noise contaminates the data. 

Examples 4 and 5.-The same source signal (50 units long) as 
in example 1 is used in these two examples. In both cases I took 
a single trace input plus 5 percent white noise (example 4) and 
25 percent white noise (example 5). 

Tests show that when white noise is added to the input, 
reduction in the length of the filter produces a better amplitude 
recovery of the impulses, but it also produces an increment in 
the amplitude of noise. Longer filters reduce remarkably the 
percentage of noise, but they can alter the amplitude of im- 
pulses even to the point of making them undistinguishable. 
This is a very important factor when deciding the length of the 
filter. This is discussed further in example 6. 

The optimal filter lengths, in this sense, consisted of twenty 
points (example 4) and ten points in (example 5). 

In example 4, the impulses of the output are perfectly dis- 
tinguishable, even if the amplitude of the second spike is slightly 
diminished. In example 5, the output shows a high percentage 
of noise but the spikes preserve their amplitude (Figures 9 and 
10). 

A very good approximation of the true wavelet can be ob- 
tained in example 4 by inversion of the fD filter; whereas in 
example 5 even if the recovered wavelet is contaminated with 
noise, it maintains the shape of the true wavelet (Figure 10, top 
right). 

Example 6.-The damped source wavelet of this last example 
is a combination of sines of various frequencies, whose coef- 
ficients were taken randomly. It was discretized in 50 points. 
Two two-impulse series were chosen. Here the corresponding 
spikes of both traces had the same amplitude, but they were 
spaced differently. The input traces were contaminated with 15 
percent white noise. 

I studied the outputs produced by steadily varying the length 
of the filter. For lengths less than five points, the filter was not 
able to resolve the output impulses. For lengths larger than 60 
points, the amplitude of the second impulses decreased to the 
point of being imperceptible. Figure 11 shows the MEDD 
outputs for a filter five points long (Figure 1 lc, example 6-i) and 
for a filter 45 points long (Figure 1 Id, example 6-ii). 

The resolution of the output is superior in the shorter filter. 
This is confirmed by the inversion of the filters, which give in 
the case of the shorter filter a better approximation to the 
source wavelet than the longer one. 

Figure 13 shows the delta functions obtained by convolving 
the filters obtained in these three examples with their source 
wavelets. It can be observed that broader delta functions are 
obtained when noise contaminates the input data. 

CONCLUSIONS 

I have proposed a new simplicity criterion in minimum en- 
tropy deconvolution, the D norm. This norm was developed 
following a geometrical interpretation of the Varimax norm 
proposed by Wiggins (1978). 

I also define a norm-equivalence criterion which is an ad- 
vance in the problem of norm choice and may possibly be 
beneficial in future work. 

The D norm yields a noniterative algorithm for the compu- 
tation of the deconvolution filter, which requires the inversion 
of a single autocorrelation matrix whose order is the length of 
the filter. In the considered examples, the optimal length for the 
filter f, was shorter than, or at least equal to, the optimal length 
for the filter fv 

Numerical tests show higher simplicity in outputs of the 
MEDD algorithm. This alone is not necessarily a measure of 
success, but when the reflectivity is reproduced successfully, it 
suggests a better signal-to-noise ratio for the MEDD output, 
which is definitely desirable. 

Finally, stability in the presence of additive noise, which is 
one of the outstanding characteristics of the MED process, is 
markedly enhanced by using the D criterion. 

Conventional noise suppression and stabilization techniques 
(e.g., adding a constant to the autocorrelation matrix R, or 
solving the normal equations using spectral decomposition of 
that matrix) can be easily incorporated into the MEDD algo- 
rithm, which increases its practicality. 
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APPENDIX A 

THE EQUATION y = xk f, vk 

Let x = (xi, , xn) be a sample of length n. The convolution 
of x with a filter f of length /can be written in matrix form as in 
equation (4): 

y=f.& 

where the rows of X are the vectors 

Vk =(O, . . . . 0, x1, . . . . X”, 0, . . . . 0) k= l,...,L. 

k-l ,I, 

I show that under the assumption of a nonzero sample, the set 
ofvectorsfv,,~,,..., vd} is linearly independent. 

Following the hypothesis presented above there is a non- 
empty subset of { 1, . , n} formed by index i such that xi # 0. 
Let v be the smallest index in the subset. 

Now consider the submatrix X’ of X formed by all the 
columns containing the entry x,. 

This submatrix X’ is an upper triangular matrix since xi = 0 for 
iE {l,...,v- l}.Hence 

Det (X’) = (x,)’ # 0, 

which means that 

rank (X’) = 6. 

Therefore, column rank (8) 2 /. But 

/ 2 row rank (X) = column rank (X) 2 L, 

so that 

rank (3) = L 

which implies that the set {vi, , v!} is linearly independent 
and spans a linear subspace W of R” of dimension 8. 

APPENDIX B 

THE D NORM AND THE SPIKING FILTER 

This appendix shows a relation between the D norm defined 
in the case of a single sample and the spiking filter, the tradi- 
tional method for the inversion of a wavelet (Robinson and 
Treitel, 1980). 

In the spiking filter process, the norm 

IIY - eill’ 

is minimized, for each i = 1, , m, over the set of filters f of 
length 6, where rn is the length of the output 

y=x*f. 

I already showed that the D norm is equivalent to minimizing 

II(Y/IlYII) -eill’ 

for each i = I, , tn. This means that both criteria differ only in 
the homogeneity factor )I y 11. I prove that this difference is not a 
factor in the choice of the filter. 

Let W be the linear subspace considered in Appendix A. The 
vector w E W which minimizes 11 w - e, II is the orthogonal 
projection of ei over W. Assume that ei 4 W, which means that 
11 w 11 # 0. Therefore (ei - w) I W. 

Here I show that wO = w/l/w )I minimizes II(y/II ~11) - ei(12. 
Let y be any nonzero vector of W, and take yO = y/II y II_ Then 

1 = II Yo II 5 II Yo - w II + II w II 

and 

1 = II wo II = II wo - w II + II w II 

since w = II w II w. and II w II I 1. This means that 

II wo - WII 5 IIYO - WII. 

Hence 

Then 

IIWO - w II2 g II Yo - w l12. 

II Wo - ei II2 =~lwo-w~12+Ilw-eil12 

5 II y. - w II2 + II w - ei II2 

= II Yo - eill’. 

This clearly shows that w minimizes II (y/II y II) - ei 11’. 



APPENDIX C 

DlFFERENCES BETWEEN THE 
THE V NORM 

In order to maximize the D norm, it is necessary to compute 

max IYil/llYll. (C-l) 

Clearly, maximization of ( yi l/II y (( is equivalent to maximiza- 
tion of its square yf/jl y II*. 

Denote y* = (y:, . , yi). Hence, (( y (I-*y* belongs to the set 
H previously defined. It is then clear that maximization (C-l) is 
equivalent to minimization of the distance from (( y I(-‘y* to the 
vertex ei in H. 

On the other hand, I have shown that the Varimax norm is ^ _ 

D NORM AND 

(a) For every filter f, y is obtained from y = f * x. 
(b) Then y is transformed by y+ II y Il-‘y’ E H 
(c) At this point the norms differ: 

(1) The D norm measures the distance from this 
point to the nearest vertex [i.e., min, II (y* II y II -‘) 

- ek Ill. 
(2) The V norm measures the distance from this 

point to the barycenter B of H. [i.e., 11 (y* )I y \I-*) 

- B 111. 

equivalent to maximizing the distance from I( y IJ-LyL to the 
barycenter B of H. Consequently, the behavior of norms V and 
D can be described as follows 

In Figure C-l this situation is shown for m = 3. 

(a> 

(b) 

FIG. C-l. Contour lines for (a) V norm and (b) D norm. (c) V and D norms of a vector y2/ii y iI*. 
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APPENDIX D 

FLOW CHART OF THE MEDD ALGORITHM 

START c> 
I INPUT I 

X(I,J), I= l,...,N 

J= l,...,M 

(Input traces) 

L (Lenqth of the 

filter1 

11 DD = 0 

I Calculation of the auto 

c(I,K)=x X(I,J) X(I,JtK) 

I K= O,...,L-1 
I 

411 
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I W= R -1 (LxL)-matrix 

1 

I 
, 

FOR I = 1 TO N I 

I- 
I 

FOR J = 1 TO M+L-1 / 

Calculation of 

(I,J)-filter F 

F(K)=L2X 
s=o 

(I ,J-S) W(S,K) 

K= l,...,L 

Y(K,S)=zF(U) X(K,S-U+l) 
U 

K= l,...,N 

S= l,...,M+L-1 
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Calculation of the 

(I,J)-coefficient of the 

(I,J)-output normalized 

D = ABS(Y(I,J)) 

II YII 

I END (J) 
I 

END (I) 

t 

OUTPUT 

/ 
DD (D NORM VALUE) 1 
DF (MEDD FILTER) 

, 

DY (MEDD OUTPUT) 
I 

t-, 
STOP 

NOTE: lrle consider 

X(H,S) = 0 if S # l,...,M 


