Harmonic Analysis related to Schrödinger operators

Eleonor Harboure

Instituto de Matemática Aplicada del Litoral^{*}

Let us consider the Schrödinger operator on \mathbb{R}^d , $d \geq 3$,

$$\mathcal{L} = -\Delta + V,$$

where the potential $V \ge 0$ is a function satisfying, for some $q > \frac{d}{2}$, the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B} V(y)^{q} \, dy\right)^{1/q} \le \frac{C}{|B|}\int_{B} V(y) \, dy$$

for every ball $B \subset \mathbb{R}^d$.

The general theory of semigroups, in particular Yosida's generating Theorem, implies that \mathcal{L} is the infinitesimal operator of a semigroup, formally denoted by $T_t = e^{-t\mathcal{L}}$, that solves the diffusion problem

$$\frac{d}{dt}u(\cdot,t) = -\mathcal{L}u(\cdot,t),$$
$$u(\cdot,0) = f,$$

by setting $u(x,t) = e^{-t\mathcal{L}}f(x)$.

In this talk we will introduce the main operators of the Harmonic Analysis in this context and we will make a review of their behavior on the L^p spaces, pointing out the similarities and the differences with the classical versions corresponding to the Laplacian.

^{*}Güemes 3450, Santa Fe, Argentina. e-mail: harbour@santafe-conicet.gov.ar