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Distintos Tipos de Estructuras Celulares en Espacios
Topológicos

Resumen

Introducimos y desarrollamos la teoŕıa de CW(A)-complejos, que son espacios que se
construyen pegando celdas que se obtienen tomando conos de suspensiones iteradas de un
espacio base A. Estos espacios generalizan a los CW-complejos y nuestras construcciones,
aplicaciones y resultados mantienen la intuición geométrica y la estructura combinatoria de
la teoŕıa original de J.H.C. Whitehead. Investigamos a fondo las propiedades topológicas
y homotópicas de CW(A)-complejos, su localización y los cambios de espacios base.

Como primeras aplicaciones, obtenemos generalizaciones de los teoremas homotópicos
clásicos de CW-complejos y del teorema fundamental de Whitehead.

También desarrollamos la teoŕıa de homoloǵıa de los CW(A)-complejos, generalizando
la teoŕıa de homoloǵıa celular clásica. En el caso de que la homoloǵıa del espacio base
A esté concentrada en cierto grado, definimos un complejo de cadenas A-celular que nos
permite calcular los grupos de homoloǵıa singular de un CW(A)-complejo X a partir de
la homoloǵıa de A y de la estructura A-celular de X. En el caso general, obtenemos una
sucesión espectral construida a partir de los grupos de homoloǵıa de A y de la estructura A-
celular de X que converge a la homoloǵıa de X. Además, utilizamos sucesiones espectrales
y una pequeña modificación de las clases de Serre, para obtener información de los grupos
de homotoṕıa de los CW(A)-complejos a partir de los grupos de homoloǵıa y homotoṕıa
de A y la estructura A-celular de dichos espacios.

Como una variante de la homoloǵıa clásica, dado un CW-complejo A, definimos en
esta tesis una teoŕıa de homoloǵıa llamada A-homoloǵıa, que coincide con la homoloǵıa
singular en el caso A = S0. Esta teoŕıa de homoloǵıa está inspirada en el teorema de Dold-
Thom. Obtenemos de esta forma generalizaciones de resultados clásicos como el teorema
de Hurewicz, que relaciona los grupos de A-homoloǵıa con los grupos de A-homotoṕıa.

Hacia el final de la tesis, damos dos teoremas de clasificación homotópica para CW(A)-
complejos, estudiamos aproximación de espacios por CW(A)-complejos y comenzamos el
desarrollo de la teoŕıa de obstrucción para estos espacios.

Palabras clave: Estructuras celulares, CW-complejos, sucesiones espectrales, teoŕıas de
homoloǵıa, grupos de homotoṕıa, clases de Serre.



Different Types of Cellular Structures in Topological
Spaces

Abstract

We introduce and develop the theory of CW(A)-complexes, which are spaces built up
out of cells obtained by taking cones of iterated suspensions of a base space A. These
spaces generalize CW-complexes and our constructions, applications and results keep the
geometric intuition and the combinatorial structure of J.H.C. Whitehead’s original theory.
We delve deeply into the topological and homotopical properties of CW(A)-complexes,
their localizations and changes of the base spaces.

As first applications, we obtain generalizations of classical homotopical theorems for
CW-complexes and Whitehead’s fundamental theorem.

We also develop the homology theory of CW(A)-complexes, generalizing classical cellu-
lar homology theory. In case the homology of the base space A is concentrated in certain
degree, we define an A-cellular chain complex which allows us to compute singular homol-
ogy groups of a CW(A)-complex X out of the homology of A and the A-cellular structure
of X. In the general case, we obtain a spectral sequence constructed from the homology
groups of A and the A-cellular structure of X which converges to the homology of X.
Furthermore, we use spectral sequences and a slight modification of Serre classes to obtain
information about the homotopy groups of CW(A)-complexes out of the homology and
homotopy groups of A and the CW(A)-structure of those spaces.

As a variant of classical homology, given a CW-complex A, we define in this thesis
a homology theory, called A-homology, which coincides with singular homology in the
case A = S0. This homology theory is inspired by the Dold-Thom theorem. We obtain
generalizations of classical results such as Hurewicz’s theorem, relating A-homology groups
with A-homotopy groups.

Towards the end of the thesis, we give two homotopy classification theorems for CW(A)-
complexes, investigate approximation of spaces by CW(A)-complexes and start developing
the obstruction theory for these spaces.

Key words: Cell structures, CW-Complexes, spectral sequences, homology theories, ho-
motopy groups, Serre classes.
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Introducción

Los CW-complejos son espacios que se construyen a partir de bloques simples o celdas. Los
discos son utilizados como modelos para las celdas y se adjuntan secuencialmente utilizando
funciones de adjunción, que están definidas en esferas, que son los bordes de los discos.
Desde su introducción a finales de la década de los ’40 por J.H.C. Whitehead [22], los CW-
complejos han jugado un rol esencial en geometŕıa y topoloǵıa. Una de las razones de esta
importancia vital es el teorema de CW-aproximación 1.4.18, que implica que en cuanto a
grupos de homotoṕıa, homoloǵıa y cohomoloǵıa respecta, todo espacio es equivalente a un
CW-complejo. Además, la estructura combinatoria de estos espacios permite el desarrollo
de herramientas que simplifican considerablemente el cálculo de grupos de homoloǵıa y
cohomoloǵıa (cf. p. 41) y también el cálculo de grupos de homotoṕıa (1.4.21). La teoŕıa
de homotoṕıa de CW-complejos es rica en resultados y su categoŕıa homotópica sirve de
modelo para otras categoŕıas homotópicas.

Las propiedades principales de los CW-complejos surgen de los siguientes dos hechos
básicos: El n-disco Dn es el cono topológico (reducido) de la (n− 1)-esfera Sn−1 y (2) la
n-esfera es la n-ésima suspensión (reducida) de la 0-esfera S0.

Por ejemplo, las propiedades de extensión de homotoṕıas de CW-complejos se siguen
de (1), porque la inclusión de la (n − 1)-esfera en el n-disco es una cofibración cerrada.
El item (2) está estrechamente relacionado con la definición de los grupos de homotoṕıa
clásicos y es usado para demostrar resultados como el teorema de Whitehead o el teorema
de escisión homotópica y en la construcción de espacios de Eilenberg-MacLane. Estos dos
hechos básicos sugieren que uno puede reemplazar el núcleo original S0 por otro espacio
cualquiera A y construir espacios a partir de celdas de diferentes formas o tipos utilizando
suspensiones y conos del espacio base A.

El propósito principal de esta tesis es introducir y desarrollar la teoŕıa de esos espacios.
Definimos la noción de CW-complejos de tipo A (o CW(A)-complejos, para abreviar)
generalizando la definición de CW-complejos (los cuales constituyen un caso particular y
especial de CW(A)-complejos obtenido tomando A = S0).

Debemos mencionar que existen muchas generalizaciones de CW-complejos en la liter-
atura. Por ejemplo, la generalización de Baues de complejos en categoŕıas de cofibraciones
[2] y la aproximación categórica a complejos celulares de Minian [12]. La teoŕıa de CW(A)-
complejos que desarrollamos en esta tesis está también relacionada con trabajos de E. Dror
Farjoun [5] y W. Chachólski [4]. Sin embargo, nuestro enfoque es muy diferente a ellos
y mantiene la intuición geométrica y combinatoria de la teoŕıa original de Whitehead.
Además, nos da una visión más profunda de la teoŕıa clásica de CW-complejos, como
veremos.

8
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Al igual que en el caso clásico, damos una definición constructiva y una descriptiva y
las comparamos, obteniendo los siguientes resultados

Proposición 1. Sea A un espacio T1. Si X es un CW(A)-complejo constructivo, entonces
es un CW(A)-complejo descriptivo.

Proposición 2. Sea A un espacio compacto y sea X un CW(A)-complejo descriptivo. Si
X es Hausdorff entonces es un CW(A)-complejo constructivo.

Además, damos contraejemplos si las hipótesis no se satisfacen.
En este contexto, también analizamos construcciones clásicas, como conos, suspen-

siones, cilindros y productos smash y determinamos si estos funtores aplicados a CW(A)-
complejos dan como resultado CW(A)-complejos. Sorpresivamente, algunos de estos re-
sultados no son ciertos para todos los núcleos A y algunas hipótesis son necesarias. Por
ejemplo, si el núcleo A es la suspensión de un espacio localmente compacto y Hausdorff,
entonces el cilindro reducido de un CW(A)-complejo es también un CW(A)-complejo, pero
esto no vale para núcleos arbitrarios A.

Mientras desarrollabámos esta teoŕıa, nos encontramos naturalmente con espacios que
se construyen de una manera similar que los CW-complejos, pero en los cuales las celdas
no eran adjuntadas en orden de dimensión creciente. Es sabido que espacios de este
tipo pueden no ser CW-complejos aunque tiene el tipo homotópico de un CW-complejo.
Nosotros los llamamos CW-complejos generalizados e inmediatamente definimos la noción
de CW(A)-complejos generalizados. Obtuvimos los siguientes resultados.

Proposición 3. Si A es un CW-complejo y X es un CW(A)-complejo generalizado, en-
tonces X tiene el tipo homotópico de un CW-complejo.

Teorema 4. Sea A un CW(B)-complejo generalizado con B compacto y sea X un CW(A)-
complejo generalizado. Si A y B son T1 entonces X es un CW(B)-complejo generalizado.

Además, damos un ejemplo de un CW(A)-complejo generalizado que no tiene el tipo
homotópico de un CW(A)-complejo (ver 5.2.9).

Otra pregunta que estudiamos es la siguiente. Supongamos que X es un CW(A)-
complejo, o en otras palabras, que X se puede construir con bloques de tipo A. Y su-
pongamos, además, que A es un CW(B)-complejo. Es natural preguntar si X se puede
construir con bloques de tipo B, es decir, si X es un CW(B)-complejo. En esta dirección
obtuvimos el siguiente resultado.

Teorema 5. Sean A y B espacios topológicos punteados. Sea X un CW(A)-complejo, y
sean α : A→ B y β : B → A funciones continuas.

i. Si βα = IdA, entonces existen un CW(B)-complejo Y y funciones continuas ϕ :
X → Y y ψ : Y → X tales que ψϕ = IdX .

ii. Supongamos que A y B tienen puntos base cerrados. Si β es una equivalencia ho-
motópica, entonces existe un CW(B)-complejo Y y una equivalencia homotópica
ϕ : X → Y .
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iii. Supongamos que A y B tienen puntos base cerrados. Si βα = IdA y αβ ' IdA
entonces existe un CW(B)-complejo Y y funciones continuas ϕ : X → Y y ψ : Y →
X tales que ψϕ = IdX y ϕψ ' IdY .

Como corolario tenemos

Corolario 6. Sea A un espacio contráctil (con punto base cerrado) y sea X un CW(A)-
complejo. Entonces X es contráctil.

Finalizando con las propiedades topológicas de los CW(A)-complejos, analizamos la
localización en CW(A)-complejos. El resultado obtenido es el más bonito posible, ya que,
en cierta forma, para localizar un CW(A)-complejo uno puede simplemente localizar cada
celda.

Teorema 7. Sea A un CW-complejo simplemente conexo y sea X un CW(A)-complejo
abeliano. Sea P un conjunto de primos. Dada una P-localización A→ AP existe una P-
localización X → XP con XP un CW(AP)-complejo. Además, la estructura de CW(AP)-
complejo de XP se obtiene localizando las funciones de adjunción de la estructura de
CW(A)-complejo de X.

Luego, comenzamos a desarrollar la teoŕıa de homotoṕıa de CW(A)-complejos, obte-
niendo muchas generalizaciones de teoremas clásicos (ver secciones 4.1 y 4.2). Uno de los
resultados más notables es la generalización del teorema de Whitehead, que ya se sab́ıa
válida en el enfoque de Dror Farjoun.

Teorema 8. Sean X, Y CW(A)-complejos y sea f : X → Y una función continua.
Entonces f es una equivalencia homotópica si y sólo si es una A-equivalencia débil.

Después estudiamos la teoŕıa de homoloǵıa de CW(A)-complejos buscando una suerte
de complejo de cadenas celular que nos permitiera calcular los grupos de homoloǵıa singular
de estos espacios a partir de la homoloǵıa del núcleo A y de la estructura de CW(A)-
complejo del espacio, generalizando la homoloǵıa celular clásica. Notamos que un hecho
bastante significativo en el contexto clásico es que la homoloǵıa (reducida) de S0 (con
coeficientes en Z) está concentrada en un grado (grado cero) y es libre (como grupo
abeliano). Teniendo esto en mente, estudiamos dos casos: cuando la homoloǵıa reducida
de A está concentrada en un cierto grado y cuando los grupos de homoloǵıa de A son
libres.

En el primer caso, dado un CW(A)-complejo X, pudimos construir un complejo de
cadenas A-celular, muy similar al clásico, cuyos grupos de homoloǵıa coinciden con los
grupos de homoloǵıa singular de X. Dos propiedades notables de este complejo de cadenas
A-celular son que da una manera sencilla de calcular grupos de homoloǵıa singular de X y
que los diferenciales se describen expĺıcitamente en términos de las funciones de adjunción
de las celdas, en forma parecida a lo que ocurre en el caso clásico.

En el segundo caso, también construimos un complejo de cadenas que permite el cálculo
de los grupos de homoloǵıa singular de CW(A)-complejos finitos. Desafortunadamente,
los diferenciales no están descriptos expĺıcitamente.
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Damos también un ejemplo (5.2.8) que muestra que si la homoloǵıa del núcleo A no
está concentrada en un grado ni es libre como grupo abeliano, entonces los grupos de
homoloǵıa de CW(A)-complejos no pueden calcularse mediante un complejo de cadenas
A-celular como antes. En este ejemplo tomamos el núcleo a como un cierto espacio cuya
homoloǵıa singular (reducida) es Z4 en grados 1 y 2 y el grupo trivial en otros grados y
construimos un CW(A)-complejoX tal queH3(X) tiene un elemento de orden 8. Entonces,
sus grupos de homoloǵıa no pueden calcularse mediante un complejo de cadenas A-celular,
porque este complejo de cadenas consiste de una suma directa de grupos ćıclicos de orden
cuatro en cada grado.

Sin embargo, por medio de sucesiones espectrales pudimos estudiar también el caso
general y obtuvimos en siguiente resultado.

Teorema 9. Sea A un CW-complejo de dimensión finita y sea X un CW(A)-complejo.
Entonces existe una sucesión espectral {Eap,q} con E1

p,q =
⊕

A−p−cells

Hq(A) que converge a

H∗(X).

Además, damos una descripción expĺıcita de los diferenciales de la cara 1 de esta
sucesión espectral.

Aqúı podemos pensar a las sucesiones espectrales como la generalización de los comple-
jos de cadena adecuada para CW(A)-complejos. Es interesante remarcar que en el caso en
que la homoloǵıa de A está concentrada en un cierto grado, la sucesión espectral de arriba
tiene sólo una fila no nula, dando lugar al complejo de cadenas A-celular que mencionamos
antes.

Dentro de la teoŕıa de homoloǵıa de CW(A)-complejos, también definimos la A-carac-
teŕıstica de Euler χA de CW(A)-complejos, que resulta ser un invariante homotópico si A
es un CW-complejo con χ(A) 6= 0. Es fácil demostrar que, para un CW(A)-complejo finito
X, χ(X) = χA(X)χ(A). También introducimos la caracteristica de Euler multiplicativa
χm para CW(A)-complejos finitos con grupos de homoloǵıa finitos, que es una versión
multiplicativa de la caracteŕıstica de Euler, y demostramos que si A es un CW-complejo
con homoloǵıa finita y X es un CW(A)-complejo finito, entonces χm(X) = χm(A)χA(X).

Pasando a un enfoque distinto para estudiar homoloǵıa, definimos una teoŕıa de ho-
moloǵıa ‘con forma A’ por HA

n (X) = πAn (SP (X)) donde SP (X) denota el producto
simétrico infinito de X. Un resultado interesante es la siguiente generalización del teorema
de Hurewicz

Teorema 10. Sea A un CW-complejo arcoconexo de dimensión k ≥ 1 y sea X un espacio
topoógico n-conexo (con n ≥ k). Entonces HA

r (X) = 0 para r ≤ n − k y πAn−k+1(X) '
HA
n−k+1(X).

Una de los caṕıtulos más importantes de esta tesis trata del estudio de grupos de
homoloǵıa, homotoṕıa y A-homotoṕıa de CW(A)-complejos a la luz de las clases de Serre
y de una generalización clásica del teorema de Hurewicz. Presentamos resultados variados
que dan información de los grupos de homotoṕıa de un CW(A)-complejo mostrando que
depende fuertemente de los grupos de homotoṕıa y homoloǵıa de A, como es de esperar.
Recordemos que una clase no vaćıa de grupos abelianos C se llama clase de Serre si para
toda sucesión exacta de tres términos A → B → C, si A,C ∈ C entonces B ∈ C . Una
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clase de Serre C se llama anillo de grupos abelianos si A⊗B y Tor(A,B) pertenecen a C
para todos A,B ∈ C .

Un espacio topológico X se llama C -aćıclico si Hn(X) ∈ C para todo n ≥ 1. Si C es
una clase de Serre, decimos que C es aćıclica si para todoG ∈ C , los espacios de Eilenberg -
MacLane de tipo (G, 1) son C -aćıclicos. Finalmente, un anillo aćıclico de grupos abelianos
es una clase de Serre aćıclica que es también un anillo de grupos abelianos.

Ejemplos de anillos aćıclicos de grupos abelianos son la clase de grupos abelianos finitos
y la clase de grupos abelianos de torsión. Otro ejemplo es la clase TP de grupos abelianos
de torsión cuyos elementos tienen órdenes divisibles sólo por primos en un conjunto fijo P
de números primos.

Obtuvimos los siguientes resultados.

Proposición 11. Sea C una clase de Serre de grupos abelianos y sea A un CW-complejo
finito. Sea k ∈ N y sea X un espacio topológico tal que πn(X) ∈ C para todo n ≥ k.
Entonces πAn (X) ∈ C para todo n ≥ k.

Teorema 12. Sea C una clase de Serre de grupos abelianos. Sea A un CW-complejo
C -aćıclico y sea X un CW(A)-complejo generalizado finito. Entonces X es también
C -aćıclico. Si, además, X es simplemente-conexo y C es un anillo aćıclico de grupos
abelianos, entonces πn(X) ∈ C para todo n ∈ N.

Corolario 13. Sea C un anillo aćıclico de grupos abelianos. Sea A un CW-complejo finito
y sea X un CW(A)-complejo generalizado finito. Supongamos que A es C -aćıclico y que
X es simplemente conexo. Entonces πAn (X) ∈ C para todo n ∈ N.

Proponemos después una pequeña modificación de las clases de Serre y de los anillos
de grupos abelianos para eliminar la hipótesis de finitud en los resultados previos e in-
troducimos la noción de clase de Serre especial (6.2.5). Aunque este es un concepto más
restrictivo, la clase de grupos abelianos de torsión y la clase TP son clases de Serre espe-
ciales. Éstas dan lugar a aplicaciones interesantes y concretas. Con este nuevo concepto
pudimos generalizar los resultados anteriores obteniendo la siguiente proposición.

Proposición 14. Sea C ′ una clase de Serre especial, sea A un CW-complejo C ′-aćıclico
y sea X un CW(A)-complejo generalizado. Entonces:

(a) X es C ′-aćıclico.

(b) Si, además, X es simplemente conexo y C ′ es un anillo aćıclico de grupos abelianos,
entonces πn(X) ∈ C ′ para todo n ∈ N.

(c) Si A es finito, X es simplemente conexo y C ′ es un anillo aćıclico de grupos abelianos,
entonces πAn (X) ∈ C ′ para todo n ∈ N.

Otra parte clave de esta tesis está constituida por la clasificación homotópica de CW(A)-
complejos y la CW(A)-aproximación, estrechamente relacionadas entre śı. El objetivo de
esta última es aproximar un espacio dado X por un CW(A)-complejo Z, donde una ‘apro-
ximación’ en teoŕıa de homotoṕıa significa una equivalencia débil f : Z → X. Obtuvimos
el siguiente resultado:
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Proposición 15. Sea A un espacio de Moore de tipo (Zp, r) con p primo, y sea X un
espacio topológico simplemente conexo. Entonces existen un CW(A)-complejo Z y una
equivalencia débil f : Z → X si y sólo si Hi(X) = 0 para 1 ≤ i ≤ max{r − 1, 1} y
Hi(X) =

⊕
Ji

Zp para todo i ≥ max{r, 2}.

Y aplicando el teorema de Whitehead obtenemos un teorema de clasificación homotó-
pica para CW(A)-complejos.

Teorema 16. Sea A un espacio de Moore de tipo (Zp, r) con p primo y sea X un espacio
topológico simplemente conexo que tiene el tipo homotópico de un CW-complejo. Entonces
X tiene el tipo homotópico de un CW(A)-complejo si y sólo si Hi(X) = 0 para 1 ≤ i ≤
max{r − 1, 1} y Hi(X) =

⊕
Ji

Zp para todo i ≥ max{r, 2}.

También damos un teorema de clasificación homotópica para CW(A)-complejos gene-
ralizados.

Teorema 17. Sea m ∈ N y sea A un espacio de Moore de tipo (Zm, r), con r ≥ 2. Sea X
un CW-complejo (r − 1)-conexo que satisface las siguientes condiciones

(a) Hr(X) =
⊕
j∈J

Zmj con mj |m para todo j ∈ J

(b) Para todo n ≥ r + 1, Hn(X) es un grupo abeliano finitamente generado tal que los
divisores primos de los órdenes de sus elementos también dividen a m.

Entonces X tiene el tipo homotópico de un CW(A)-complejo generalizado.

Vale la pena mencionar que, por la proposición 14 de antes, si un espacio topológico
X tiene el tipo homotópico de un CW(A)-complejo generalizado, donde A es un espacio
de Moore de tipo (Zm, r), entonces X es (r − 1)-conexo y para todo n ≥ r, Hn(X) es
un grupo abeliano de torsión tal que los divisores primos de los órdenes de sus elementos
también dividen a m. Aśı, el teorema previo es una rećıproca débil de este hecho.

En el último caṕıtulo de esta tesis, comenzamos a desarrollar la teoŕıa de obstrucción
para CW(A)-complejos. Observamos que el complejo de cadenas A-celular no era satisfac-
torio para este propósito. Entonces introdujimos un nuevo complejo de cadenas A-celular
adecuado para teoŕıa de obstrucción. Su definición se basa en los grupos de A-homotoṕıa
estable que se definen por πA,stn (X) = colim

j
πAn+j(Σ

jX).

Imponemos en A la restricción de ser un CW-complejo l-conexo y compacto de di-
mensión k con k ≤ 2l y l ≥ 1. Esto es para que la función Σ : [ΣnA,ΣnA] = πAn (A) →
[Σn+1A,Σn+1A] = πAn+1(A) sea biyectiva para n ≥ 0 y entonces un isomorfismo de gru-
pos para n ≥ 1. Notemos que la 0-esfera S0 no cumple la hipótesis de ser por lo menos
1-conexa. Sin embargo, sabemos que en el caso A = S0 también tenemos los isomorfismos
anteriores. Entonces, esta teoŕıa de obstrucción también funciona para A = S0, dando
lugar a la teoŕıa de obstrucción clásica.

Tomamos R = πA,st0 (X). Entonces R es isomorfo a πAr (ΣrA) para r ≥ 2. Le damos a R
una estructura de anillo como sigue. La suma + está inducida por la operación usual de
grupo abeliano en πAr (ΣrA) y el producto está inducido por [f ][g] = [g ◦ f ] en πAr (ΣrA).
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Dado un CW(A)-complejo X, el nuevo complejo de cadenas A-celular se define como
sigue. Cn es el R-módulo libre generado por las A-n-celdas de X y el morfismo de borde
d : Cn → Cn−1 se define de la siguiente manera. Sea enα una A-n-celda de X, sea gα
su función de adjunción y sea Jn−1 un conjunto que indexa las A-(n − 1)-celdas. Para

β ∈ Jn−1, sea qβ : Xn−1 → Xn−1/(Xn−1 −
◦

en−1
β ) = Σn−1A la función cociente. Definimos

d(enα) =
∑

β∈Jn−1

[qβgα]en−1
β . Dada una función continua f : Xn−1 → Y , donde X es

un CW(A)-complejo, definimos el cociclo de obstrucción c(f) ∈ HomR(Cn, πAn−1(Y )) que
satisface que c(f) = 0 si y sólo si f se puede extender a Xn. También, dado un CW(A)-
complejo X y funciones continuas f, g : Xn → Y tales que f |Xn−1 = g|Xn−1 definimos la
cocadena diferencia de f y g d(f, g) ∈ HomR(Cn, πAn (Y )).

Finalmente, demostramos las siguientes generalizaciones de teoremas clásicos de teoŕıa
de obstrucción.

Teorema 18. Sean A, X y f como antes y sea d ∈ HomR(Cn, πAn (Y )). Entonces existe
una función continua g : Xn → Y tal que g|Xn−1 = f |Xn−1 y d(f, g) = d.

Teorema 19. Sea X un CW(A)-complejo y sea f : Xn → Y una función continua.
Entonces existe una función continua g : Xn+1 → Y tal que g|Xn−1 = f |Xn−1 si y sólo si
c(f) es un coborde.

Teorema 20. Sea A la suspensión de un CW-complejo y sea X un CW(A)-complejo.
Sean f, g : Xn → Y funciones continuas. Entonces

(a) f ' g rel Xn−1 si y sólo si d(f, g) = 0.

(b) f ' g rel Xn−2 si y sólo si d(f, g) = 0 en Hn(C∗, δ).



Introduction

CW-complexes are spaces which are built up out of simple building blocks or cells. Balls are
used as models for the cells and these are attached step by step using attaching maps, which
are defined in the boundary spheres of the balls. Since their introduction in the late fourties
by J.H.C. Whitehead [22], CW-complexes have played an essential role in geometry and
topology. One of the reasons of this vital importance is the CW-approximation theorem
1.4.18, which implies that for the sake of homotopy, homology and cohomology groups,
every space is equivalent to a CW-complex. Moreover, the combinatorial structure of
these spaces allows the development of tools which considerably simplify the computation
of homology and cohomology groups (cf. p. 41) and also the computation of homotopy
groups (1.4.21). The homotopy theory of CW-complexes is pleasantly rich in results and
its homotopy category serves as a model for other homotopy categories.

The main properties of CW-complexes arise from the following two basic facts: (1) The
n-ball Dn is the topological (reduced) cone of the (n−1)-sphere Sn−1 and (2) The n-sphere
is the (reduced) n-th suspension of the 0-sphere S0. For example, the homotopy extension
properties of CW-complexes follow from (1), since the inclusion of the (n − 1)-sphere in
the n-disk is a closed cofibration. Item (2) is closely related to the definition of classical
homotopy groups of spaces and it is used to prove results such as Whitehead’s theorem
or homotopy excision and in the construction of Eilenberg-MacLane spaces. These two
basic facts suggest that one might replace the original core S0 by any other space A and
construct spaces from cells of different shapes or types using suspensions and cones of the
base space A.

The main purpose of this dissertation is to introduce and develop the theory of such
spaces. We define the notion of CW-complexes of type A (or CW(A)-spaces for short)
generalizing the definition of CW-complexes (which constitute the particular and special
case of CW(A)-complexes obtained by taking A = S0).

We ought to mention that there exist many generalizations of CW-complexes in the
literature. For instance, Baues’ generalization of complexes in cofibration categories [2] and
Minian’s categorical approach to cell complexes [12]. The theory of CW(A)-complexes that
we develop in this thesis is also related to works of E. Dror Farjoun [5] and W. Chachólski
[4]. However, our approach is quite different from these and keeps the geometric and
combinatorial intuition of Whitehead’s original theory. Moreover, it gives us a deeper
insight in the classical theory of CW-complexes, as we shall see.

As in the classical case, we give a constructive and a descriptive definition and compare
them obtaining the following results

15
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Proposition 1. Let A be a T1 space. If X is a constructive CW(A)-complex, then it is
a descriptive CW(A)-complex.

Proposition 2. Let A be a compact space and let X be a descriptive CW(A)-complex. If
X is Hausdorff then it is a constructive CW(A)-complex.

Furthermore, we give counterexamples if the hypotheses are not satisfied.
In this context, we also analyse classical constructions such as cones, suspensions,

cylinders and smash products and determine whether those functors applied to CW(A)-
complexes give CW(A)-complexes as result. Quite surprisingly, some of these results are
not true for every core A and a couple of hypotheses are needed. For instance, if the core
A is the suspension of a locally compact and Hausdorff space, then the reduced cylinder
of a CW(A)-complex is also CW(A)-complex, but this does not hold for arbitrary cores
A.

While developing this theory, we naturally encounter spaces which were constructed
in a similar way as CW-complexes, but in which cells were not attached in a dimension-
increasing order. It is known that spaces of this kind may not be CW-complexes altough
they have the homotopy type of a CW-complex. We called them generalized CW-complexes
and promptly define the notion of generalized CW(A)-complexes. The following results
were obtained.

Proposition 3. If A is a CW-complex and X is a generalized CW(A)-complex then X
has the homotopy type of a CW-complex.

Theorem 4. Let A be a generalized CW(B)-complex with B compact, and let X be a
generalized CW(A)-complex. If A and B are T1 then X is a generalized CW(B)-complex.

Furthermore, we give an example of a generalized CW(A)-complex which does not have
the homotopy type of a CW(A)-complex (see 5.2.9).

Another question that we studied is the following. Suppose X is a CW(A)-complex,
or in other words, X can be built with blocks of type A. And suppose in addition that A
is a CW(B)-complex. It seems natural to ask whether X can be built with blocks of type
B, that is whether X is a CW(B)-complex. In this direction we obtained the following
result.

Theorem 5. Let A and B be pointed topological spaces. Let X be a CW(A)-complex, and
let α : A→ B and β : B → A be continuous maps.

i. If βα = IdA, then there exists a CW(B)-complex Y and maps ϕ : X → Y and
ψ : Y → X such that ψϕ = IdX .

ii. Suppose A and B have closed base points. If β is a homotopy equivalence, then there
exists a CW(B)-complex Y and a homotopy equivalence ϕ : X → Y .

iii. Suppose A and B have closed base points. If βα = IdA and αβ ' IdA then there
exists a CW(B)-complex Y and maps ϕ : X → Y and ψ : Y → X such that
ψϕ = IdX and ϕψ ' IdY .

As a corollary we have
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Corollary 6. Let A be a contractible space (with closed base point) and let X be a CW(A)-
complex. Then X is contractible.

Finishing with the topological properties of CW(A)-complexes, we analysed localization
in CW(A)-complexes. The result obtained is the nicest possible since, to a certain extent,
to localize a CW(A)-complex one may simply localize each cell.

Theorem 7. Let A be a simply-connected CW-complex and let X be an abelian CW(A)-
complex. Let P be a set of prime numbers. Given a P-localization A → AP there exists
a P-localization X → XP with XP a CW(AP)-complex. Moreover, the CW(AP)-complex
structure of XP is obtained by localizing the adjunction maps of the CW(A)-complex struc-
ture of X.

Afterwards, we started developing the homotopy theory of CW(A)-complexes, obtain-
ing many generalizations of classical theorems (see sections 4.1 and 4.2). One of the most
remarkable results is the generalization of Whitehead’s theorem, which was already known
to be valid in Dror Farjoun’s approach.

Theorem 8. Let X and Y be CW(A)-complexes and let f : X → Y be a continuous map.
Then f is a homotopy equivalence if and only if it is an A-weak equivalence.

Then, we studied homology theory of CW(A)-complexes looking for a kind of cellular
chain complex which would allow us to compute the singular homology groups of these
spaces out of the homology of the core A and the CW(A)-structure of the space, gener-
alizing classical cellular homology. We noted that a quite significant fact in the classical
setting was that the (reduced) homology of S0 (with coefficients in Z) is concentrated
in one degree (degree zero) and is free (as an abelian group). Keeping this in mind, we
studied two cases: when the reduced homology of A is concentrated in a certain degree
and when the homology groups of A are free.

In the first case, given a CW(A)-complex X, we were able to construct an A-cellular
chain complex, very similar to the classical one, whose homology groups coincide with
the singular homology groups of X. Two remarkable properties of this A-cellular chain
complex are that it gives an easy way to compute singular homology groups of X and
that the differentials are described explicitly in terms of attaching map of cells, much as
it occurs in the classical case.

In the second case, we also constructed a chain complex which permits computation of
singular homology groups of finite CW(A)-complexes. Unfortunately, the differentials are
not explicitly described.

We also give an example (5.2.8) which shows that if the homology of the core A is
neither concentrated in one degree nor free as an abelian group, then the homology groups
of CW(A)-complexes cannot be computed by an A-cellular chain complex as above. In this
example, we take the core A to be a certain space whose (reduced) singular homology is
Z4 in degrees 1 and 2 and the trivial group otherwise and we construct a CW(A)-complex
X such that H3(X) has an element of order 8. Thus, its homology groups cannot be
computed by an A-cellular chain complex, since this chain complex consists of a direct
sum of cyclic groups of order four in each degree.
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However, by means of spectral sequences, we could also study the general case and
obtain the following result.

Theorem 9. Let A be a finite dimensional CW-complex and let X be a CW(A)-complex.
Then there exists a spectral sequence {Eap,q} with E1

p,q =
⊕

A−p−cells

Hq(A) which converges

to H∗(X).

Moreover, we give a explicit description of the differentials of the first page of this
spectral sequence.

Here, we may think of spectral sequences as the generalization of chain complexes
suitable for CW(A)-complexes. It is interesting to remark that in case the homology of
A is concentrated in a certain degree, the spectral sequence above has only one nontrivial
row, giving rise to the A-cellular chain complex that we mentioned before.

Regarding homology theory of CW(A)-complexes, we also define the A-Euler charac-
teristic χA of CW(A)-complexes, which turns out to be a homotopy invariant if A is a
CW-complex with χ(A) 6= 0. It is easy to prove that, for a finite CW(A)-complex X,
χ(X) = χA(X)χ(A). We also introduce the multiplicative Euler characteristic χm for
finite CW(A)-complexes with finite homology groups, which is a multiplicative version of
the Euler characteristic, and we prove that if A is a CW-complex with finite homology
and X is a finite CW(A)-complex, then χm(X) = χm(A)χA(X).

Turning to a different approach towards homology, we define an ‘A-shaped’ homology
theory by HA

n (X) = πAn (SP (X)) where SP (X) denotes the infinite symmetric product of
X. An interesting result is the following generalization of Hurewicz’s theorem

Theorem 10. Let A be a path-connected CW-complex of dimension k ≥ 1 and let X
be an n-connected topological space (with n ≥ k). Then HA

r (X) = 0 for r ≤ n − k and
πAn−k+1(X) ' HA

n−k+1(X).

One of the most important chapters of the thesis deals with the study of homology,
homotopy and A-homotopy groups of CW(A)-complexes in the light of Serre classes and a
classical generalization of Hurewicz’s theorem. We present a variety of results which give
information about the homotopy groups of a CW(A)-complex showing that it depends
strongly on the homology and homotopy groups of A, as one would expect. Recall that
a nonempty class of abelian groups C is called a Serre class if for any three term exact
sequence A → B → C, if A,C ∈ C then B ∈ C . A Serre class C is called an ring of
abelian groups if A⊗B and Tor(A,B) belong to C whenever A,B ∈ C .

A topological space X is called C -acyclic if Hn(X) ∈ C for all n ≥ 1. If C is a Serre
class, we say that C is acyclic if for all G ∈ C , Eilenberg - MacLane spaces of type (G, 1)
are C -acyclic. Finally, an acyclic ring of abelian groups is an acyclic Serre class which is
also a ring of abelian groups.

Examples of acyclic rings of abelian groups are the class of finite abelian groups and the
class of torsion abelian groups. Another example is the class TP of torsion abelian groups
whose elements have order divisible only by primes in a fixed set P of prime numbers.

We obtained the following results.

Proposition 11. Let C be a Serre class of abelian groups and let A be a finite CW-
complex. Let k ∈ N and let X be a topological space such that πn(X) ∈ C for all n ≥ k.
Then πAn (X) ∈ C for all n ≥ k.
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Theorem 12. Let C be a Serre class of abelian groups. Let A be a C -acyclic CW-
complex and let X be a finite generalized CW(A)-complex. Then X is also C -acyclic.
If, in addition, X is simply-connected and C is an acyclic ring of abelian groups, then
πn(X) ∈ C for all n ∈ N.

Corollary 13. Let C be an acyclic ring of abelian groups. Let A be a finite CW-complex
and let X be a finite generalized CW(A)-complex. Suppose that A is C -acyclic and that
X is simply connected. Then πAn (X) ∈ C for all n ∈ N.

We then propose a slight modification of Serre classes and rings of abelian groups to
get rid of the finiteness hypothesis in the previous results and introduce the notion of
special Serre class (6.2.5). Although this is a more restrictive concept, the class of torsion
abelian groups and the class TP are special Serre classes. These yield interesting and
concrete applications. With this new concept we were able to generalize the above results
obtaining the following proposition.

Proposition 14. Let C ′ be a special Serre class, let A be a C ′-acyclic CW-complex and
let X be a generalized CW(A)-complex. Then:

(a) X is C ′-acyclic.

(b) If, in addition, X is simply connected and C ′ is an acyclic ring of abelian groups,
then πn(X) ∈ C ′ for all n ∈ N.

(c) If A is finite, X is simply connected and C ′ is an acyclic ring of abelian groups, then
πAn (X) ∈ C ′ for all n ∈ N.

Another key part of this thesis is constituted by the homotopy classification of CW(A)-
complexes and the CW(A)-approximation, closely related to each other. The aim of the
last one is to approximate a given space X by a CW(A)-complex Z, where an ‘approx-
imation’ in homotopy theory means a weak equivalence f : Z → X. We obtained the
following nice result:

Proposition 15. Let A be a Moore space of type (Zp, r) with p prime, and let X be a
simply-connected topological space. Then there exists a CW(A)-complex Z and a weak
equivalence f : Z → X if and only if Hi(X) = 0 for 1 ≤ i ≤ max{r − 1, 1} and Hi(X) =⊕
Ji

Zp for all i ≥ max{r, 2}.

And applying Whitehead’s theorem we obtain a homotopy classification theorem for
CW(A)-complexes.

Theorem 16. Let A be a Moore space of type (Zp, r) with p prime, and let X be a simply-
connected topological space having the homotopy type of a CW-complex. Then X has the
homotopy type of a CW(A)-complex if and only if Hi(X) = 0 for 1 ≤ i ≤ max{r − 1, 1}
and Hi(X) =

⊕
Ji

Zp for all i ≥ max{r, 2}.

We also give a homotopy classification theorem for generalized CW(A)-complexes.
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Theorem 17. Let m ∈ N and let A be a Moore space of type (Zm, r), with r ≥ 2. Let X
be an (r − 1)-connected CW-complex satisfying the following conditions

(a) Hr(X) =
⊕
j∈J

Zmj with mj |m for all j ∈ J

(b) For all n ≥ r+ 1, Hn(X) is a finite abelian group such that the prime divisors of the
orders of its elements also divide m.

Then X has the homotopy type of a generalized CW(A)-complex.

It is worth mentioning that, by proposition 14 above, if a topological space X has
the homotopy type of a generalized CW(A)-complex, where A is a Moore space of type
(Zm, r), then X is (r − 1)-connected and for all n ≥ r, Hn(X) is a torsion abelian group
such that the prime divisors of the orders of its elements also divide m. Thus, the previous
theorem is a weak converse to this statement.

In the last chapter of this thesis, we started developing the obstruction theory for
CW(A)-complexes. We found out that the A-cellular chain complex was not satisfactory
for this purpose. Thus we introduced a new A-cellular chain complex suitable for obstruc-
tion theory. Its definition relies on the stable A-homotopy groups which are defined by
πA,stn (X) = colim

j
πAn+j(Σ

jX).

We impose on A the restriction to be an l-connected and compact CW-complex of
dimension k with k ≤ 2l and l ≥ 1. This is for the map Σ : [ΣnA,ΣnA] = πAn (A) →
[Σn+1A,Σn+1A] = πAn+1(A) to be a bijection for n ≥ 0 and hence an isomorphism of
groups for n ≥ 1. Note that the 0-sphere S0 does not satisfy the hypothesis of being
at least 1-connected. However, we know that in case A = S0 we also have the previous
isomorphisms. Thus, this obstruction theory also works for A = S0, yielding classical
obstruction theory.

We take R = πA,st0 (X). Then R is isomorphic to πAr (ΣrA) for r ≥ 2. We give R a
ring structure as follows. The sum + is induced by the usual abelian group operation in
πAr (ΣrA) and the product is induced by [f ][g] = [g ◦ f ] in πAr (ΣrA).

Given a CW(A)-complex X, the new A-cellular chain complex is defined as follows.
Cn is the free R-module generated by the A-n-cells of X and the boundary map d :
Cn → Cn−1 is defined in the following way. Let enα be an A-n-cell of X, let gα be its
attaching map and let Jn−1 be an index set for the A-(n − 1)-cells. For β ∈ Jn−1, let

qβ : Xn−1 → Xn−1/(Xn−1 −
◦

en−1
β ) = Σn−1A be the quotient map. We define d(enα) =∑

β∈Jn−1

[qβgα]en−1
β . Given a continuous map f : Xn−1 → Y , where X is a CW(A)-complex,

we define the obstruction cocycle c(f) ∈ HomR(Cn, πAn−1(Y )) satisfying that c(f) = 0 if
and only if f can be extended to Xn. Also, given a CW(A)-complex X and continuous
maps f, g : Xn → Y such that f |Xn−1 = g|Xn−1 we define difference cochain of f and g
d(f, g) ∈ HomR(Cn, πAn (Y )).

Finally, we prove the following generalizations of classical obstruction theory theorems

Theorem 18. Let A, X and f be as above and let d ∈ HomR(Cn, πAn (Y )). Then there
exists a continuous map g : Xn → Y such that g|Xn−1 = f |Xn−1 and d(f, g) = d.
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Theorem 19. Let X be a CW(A)-complex and let f : Xn → Y be a continuous map.
Then there exists a continuous map g : Xn+1 → Y such that g|Xn−1 = f |Xn−1 if and only
if c(f) is a coboundary.

Theorem 20. Let A be the suspension of a CW-complex and let X be a CW(A)-complex.
Let f, g : Xn → Y be continuous maps. Then

(a) f ' g rel Xn−1 if and only if d(f, g) = 0.

(b) f ' g rel Xn−2 if and only if d(f, g) = 0 in Hn(C∗, δ).



Chapter 1

CW-complexes

CW-complexes are spaces which are built in sequential process of attaching cells. They
were introduced by J.H.C. Whitehead [22] in the late fourties to meet the needs of homo-
topy theory. His idea was to work with a class of spaces which was broader than simplicial
complexes, and in consequence, more flexible, but which still retained a combinatorial
nature, so that computational considerations were not ignored.

In CW-complexes, cells are homeomorphic to disks, thus to simplices, and are attached
by their boundaries, in much the same way as simplicial complexes. The key point is that
in CW-complexes attaching maps are just continuous, which differs significantly from the
much more rigid structure of simplicial complexes.

For example, smooth finite-dimensional manifolds are CW-complexes. Also, every topo-
logical space can be approximated in a homotopical sense by a CW-complex. Moreover, the
homotopy category of CW-complexes is equivalent to the homotopy category of topolog-
ical spaces. However, the combinatorial structure of these spaces allows the development
of tools which simplify considerably computation of homology, cohomology and homotopy
groups.

In this chapter we will give an introduction to CW-complexes and their homotopy
theory. It is by no means exhaustive, though it includes a wide range of topics. Our aim
is that it serves as a basis for the rest of this thesis. The interested reader might also want
to consult [3, 7, 8, 20, 21]. Standard notation and terminology can be found in [20].

1.1 Adjunction spaces

In this section we recall some topological and homotopical properties of adjunction spaces
for later application to CW-complexes and to our work. The main reference for this section
is [3].

We begin with the definition of adjunction spaces.

Definition 1.1.1. Let X and B be topological spaces and let A ⊆ B be a closed subspace.
Let f : A→ X be a continuous map. The adjunction space X∪

f
B is defined by the pushout

22
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diagram

A
f //

inc

��
push

X

in1
��

B
in2

// X ∪
f
B

This is to say that X ∪
f
B is obtained from the disjoint union X t B by identifying each

point a ∈ A with its image f(a) ∈ X.

Remark 1.1.2. Let X ∪
f
B be as above and let q : X t B → X ∪

f
B be the quotient map.

From the quotient topology, we know that a subset U ⊂ X ∪
f
B is open (resp. closed) in

X ∪
f
B if and only if q−1(U) is open (resp. closed) in X tB. And this last statement holds

if and only if q−1(U)∩X is open (resp. closed) in X and q−1(U)∩B is open (resp. closed)
in B, or equivalently if and only if (in1)−1(U) is open (resp. closed) in X and (in2)−1(U)
is open (resp. closed) in B.

Examples 1.1.3.

(a) Let A and X be topological spaces and let f : A → X be a continuous map. The
cylinder of f , Zf , is an adjunction space:

A
f //

i0
��

push

X

��
A× I // Zf

(b) As in the previous example, if f : A → X is a continuous map then the cone of f ,
Cf , is an adjunction space:

A
f //

inc

��
push

X

��
CA // Cf

(c) As a particular case of the previous example we have the following. If A = Sn−1

(n ∈ N) and g : Sn−1 → X is a continuous map then the space Cg is called X with
an n-cell attached and denoted by X ∪ en:

Sn−1
f //

inc
��

push

X

��
Dn // X ∪ en

Usually, the space X will be a Hausdorff space. This example will be of utter
importance in next section.
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Proposition 1.1.4. Let X ∪
f
B be the adjunction space defined above. Then in1 : X →

X ∪
f
B is a closed subspace and in2|B−A : B −A→ X ∪

f
B is an open subspace.

Proof. For the first statement, we have to prove that in1 is injective, initial and closed.
Since in1 is continuous and injective, it suffices to prove that in1 is closed. Let F ⊆
X be a closed subspace. We have that (in1)−1(in1(F )) = F which is closed in X and
(in2)−1(in1(F )) = f−1(F ) which is closed in B. Hence, in1(F ) is closed in X ∪

f
B.

In a similar way, for the second statement it suffices to prove that in2|B−A is an open
map. Let U ⊆ B − A be an open subspace. Since B − A is open in B, U is also open in
B. Then (in1)−1(in2|B−A(U)) = ∅ and (in2)−1(in2|B−A(U)) = U . Hence, in2|B−A(U) is
open in X ∪

f
B.

The following proposition establishes conditions which assure that the adjunction space
will be a Hausdorff space.

Proposition 1.1.5. Let X and B be Hausdorff topological spaces and let A ⊆ B be a closed
subspace. Let f : A→ X be a continuous map. Suppose that the following conditions hold:

(a) For each b ∈ B − A there exists a closed neighbourhood Cb of b in B such that
Cb ∩A = ∅.

(b) There exists an open subset U ⊆ B and a retraction r : U → A.

Then the adjunction space X ∪
f
B is Hausdorff.

Proof. Let in1 : X → X ∪
f
B and in2 : B → X ∪

f
B be as in the definition of adjuntion

spaces and let x1, x2 ∈ X ∪
f
B. We must find disjoint open subsets V1, V2 ⊆ X ∪

f
B such

that x1 ∈ V1 and x2 ∈ V2. We divide the proof in three cases.
(1) x1, x2 ∈ B − A. Since B − A is Hausdorff there exist open and disjoint subsets

V1, V2 ⊆ B − A such that x1 ∈ V1 and x2 ∈ V2. But B − A is open in X ∪
f
B by the

previous proposition, hence V1 and V2 are also open in X ∪
f
B.

(2) x1 ∈ X and x2 ∈ B − A. We take V1 = X ∪
f
B − Cx2 and V2 = (Cx2)◦. Note

that (in1)−1(V1) = X, (in2)−1(V1) = B − Cx2 , (in1)−1(V2) = ∅ and (in2)−1(V2) = (Cx2)◦.
Hence V1 and V2 are open in X ∪

f
B.

(3) x1, x2 ∈ X. Since X is Hausdorff there exist open and disjoint subsets W1,W2 ⊆ X
such that x1 ∈ W1 and x2 ∈ W2. But W1 and W2 might not be open in X ∪

f
B. Using

the retraction r we will enlarge the subsets W1 and W2 so that they are open in X ∪
f
B

and remain disjoint. We take V1 = W1 ∪ r−1f−1(W1) and V2 = W2 ∪ r−1f−1(W2).
Note that V1 ∩ V2 = ∅ and that V1 and V2 are open in X ∪

f
B since (in1)−1(Vi) = Wi,

(in2)−1(Vi) = r−1f−1(Wi) for i = 1, 2.
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Important remark 1.1.6. If we take A = Sn−1 and B = Dn then conditions (a) and
(b) of the previous proposition hold. The same happens if we take A =

⊔
i∈I
Sn−1 and

B =
⊔
i∈I
Dn.

We want now to find conditions for two adjunction spaces to be homotopy equivalent.
To this end, we will need to work with cofibrations.

Definition 1.1.7. Let i : A → X be a continuous map. We say that i is a cofibration if
given a continuous map f : X → Z and a homotopy H : IA → Z such that Hi0 = fi
there exists a homotopy H : IX → Z such that Hi0 = f and HIi = H.

A
i0 //

i
��

IA

Ii
�� H

��

X
i0 //

f 00

IX
H

!!
Z

This property is called the homotopy extension property.

Examples 1.1.8. Let X be a topological space. Then:

(a) The inclusions i0, i1 : X → IX are cofibrations.

(b) The inclusion i : X × {0, 1} → IX is a cofibration.

(c) The inclusion i : X → CX is a cofibration.

(d) If f : X → Y is a continuous map, the inclusion i : X → Zf is a cofibration.

Proposition 1.1.9. Let i : A → X be a continuous map. Then i is a cofibration if and
only if there exists a retraction r : X × I → Zi.

Proof. Suppose first that i is a cofibration. Then there exists a map r in the diagram

A
i0 //

i
��

A× I
i×IdI
�� i1

��

X
i0 //

i2 00

X × I
r

##
Zi

The map r is the desired retraction.
Conversely, suppose that there exists a retraction r : X × I → Zi and continuous maps

f : X → Z and H : IA → Z such that Hi0 = fi. Let F be the dotted arrow in the
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diagram

A
i0 //

i
��

push

A× I
i×IdI
�� H

��

X
i0 //

f 00

Zi
F

""
Z

and let H = Fr. The map H is the desired homotopy extension.

The following proposition shows that it is not a coincidence that all the previous ex-
amples of cofibrations are inclusion maps.

Proposition 1.1.10. Let i : A→ X be a cofibration. Then i is a subspace map.

Proof. Let h : A × I → A × I be defined by h(a, t) = (a, 1 − t) and let inc : A × I → Zi
and j : X → Zi be the corresponding inclusion maps. We define H : A × I → Zi by
H = inc ◦ h. Since i is a cofibration, there exists a continuous map H : X × I → Zi such
that the following diagram commutes.

A
i0 //

i
��

A× I
i×IdI
�� H

��

X
i0 //

j 00

X × I
H

##
Zi

Then Hi0 = H ◦ (i × IdI) ◦ i0 = Hi0i. Since H and i0 are injective, it follows that i is
injective. Also, Hi0 is initial because it is a subspace map, it is initial. But Hi0 = Hi0i
and since Hi0 and i are continuous maps, it follows that i is initial. Therefore, i is a
subspace map.

Proposition 1.1.11. Let X be a topological space and let A ⊆ X be a subspace such that
the inclusion i : A → X is a cofibration. Then there exists a retraction r : X × I →
X × {0} ∪A× I.

Proof. Since i is a cofibration there exists a map r in the diagram

A
i0 //

i
��

A× I
i×IdI
��

inc

��

X
i0 //

inc --

X × I
r

''
X × {0} ∪A× I

The map r is the desired retraction.
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Proposition 1.1.12. Let X be a topological space and let A ⊆ X be a subspace such that
the inclusion i : A → X is a cofibration. Then i : X × {0} ∪ A × I → X × I is a strong
deformation retract.

Proof. Let r be defined as in the proof of the previous proposition. We want to see that
ir ' IdX×I rel X × {0} ∪A× I. We consider inc ◦ r : X × I → X × I and write it as
(inc ◦ r)(x, t) = (r1(x, t), r2(x, t)).

We define H : (X× I)× I → X× I by H(x, s, t) = (r1(x, st), s(1− t) + tr2(x, s)). Then
H is continuous and satisfies

• H(x, s, 0) = (x, s)

• H(x, s, 1) = r(x, s)

• H(x, 0, t) = (x, 0)

• H(a, s, t) = (a, s) for a ∈ A.

In a similar way we can prove that if i : A→ X is a cofibration, then i : X×{1}∪A×I →
X × I is a strong deformation retract.

It is quite interesting to note that the converse of propositions 1.1.11 and 1.1.12 hold
if i : A→ X is a closed cofibration. More precisely, we have the following result

Proposition 1.1.13. Let A ⊆ X be a closed subspace. Then the following are equivalent:

(a) The inclusion i : A→ X is a cofibration.

(b) X × {0} ∪A× I is a retract of X × I.

(c) X × {0} ∪A× I ⊆ X × I is a strong deformation retract.

Proof. The implication (a)⇒ (c) holds by 1.1.12 while the implication (c)⇒ (b) is trivial.
So it only remains to prove (b)⇒ (a).

Suppose that r : X× I → X×{0}∪A× I is a retraction and that there are continuous
maps f : X → Z and H : IA→ Z such that Hi0 = fi. Since A ⊆ X is a closed subspace
then IA, X × {0} and A× {0} are closed in IX. Hence, by the pasting lemma, there is a
well-defined and continuous map F : X × {0} ∪ A × I → Z such that F (x, 0) = f(x) for
all x ∈ X and F (a, t) = H(a, t) for all a ∈ A and t ∈ I. Then the map H = Fr is the
desired homotopy extension.

Remark 1.1.14. Note that if A ⊆ X is a closed subspace then there is a pushout diagram

A
inc //

i0
��

push

X

��
IA // X × {0} ∪ IA

since the space X × {0} ∪ IA clearly satisfies the universal property of pushouts by the
pasting lemma. However, this might not be true if A is not a closed subspace of X and it
is easy to find counterexamples.
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The following proposition follows from the exponential law

Proposition 1.1.15. If i : A→ X is a cofibration then Ii : IA→ IX is also a cofibration.

Now we will give a series of results which under certain conditions will tell us when
two adjunction spaces are homotopy equivalent. We begin with the following proposition,
which will be used many times throughout this thesis.

Proposition 1.1.16. Let i : A → X be a cofibration and let f, g : A → Y be continuous
maps such that f is homotopic to g. Then X ∪

f
Y and X ∪

g
Y are homotopy equivalent

relative to Y .

Proof. Let H : A × I → Y be a homotopy between f and g. Consider the adjunction
space

A× I H //

i×IdI

��
push

Y

��

X × I // X × I ∪
H
Y

Note that X × {0} ∪
H|A×{0}

Y = X ∪
f
Y and X × {0} ∪

H|A×{0}
Y ⊆ X × I ∪

H
Y is a strong

deformation retract since X × {0} ∪A× I → X × I is.
Hence, X ∪

f
Y ⊆ X × I ∪

H
Y is a strong deformation retract. In a similar way X ∪

g
Y ⊆

X × I ∪
H
Y is a strong deformation retract.

Thus, X ∪
f
Y and X ∪

g
Y are homotopy equivalent relative to Y .

The following proposition and its proof can be found in [3].

Proposition 1.1.17. Let i : A→ X be an inclusion. If i is a cofibration and a homotopy
equivalence then i : A→ X is a strong deformation retract.

As a corollary we obtain the following.

Corollary 1.1.18. Let f : X → Y be a continuous map. Then f is a homotopy equivalence
if and only if X is a strong deformation retract of Zf .

Proof. Let i : X → Zf be the inclusion and r : Zf → Y be the standard strong deformation
retraction. We have that f = ir. Hence, if f is a homotopy equivalence, then i is also
a homotopy equivalence. Since i is also a cofibration, by the previous proposition we
conclude that X is a strong deformation retract of Zf .

Conversely, if X is a strong deformation retract of Zf , then i is a homotopy equivalence.
Hence f = ri is also a homotopy equivalence.

The previous corollary will be useful because it allows us to replace a given homotopy
equivalence by a strong deformation retract.

We give now some results of [3] regarding cofibrations and homotopy equivalences that
are needed for our work.
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Proposition 1.1.19. Let X and B be topological spaces and let A ⊆ B be a closed subspace
such that the inclusion i : A → B is a cofibration. Let f, g : A → X be continuous maps
such that f ' g. Then X ∪

f
B ' X ∪

g
B rel X.

Theorem 1.1.20. Consider the commutative diagram

A
g //

i

��

φA

  AAAAAA X

j

��

φX

  BBBBBB

A′
g′ //

i′

��

X ′

j′

��

B
f
//

φB   AAAAAA Y
φY

  
B′

f ′
// Y ′

where the front and back faces are pushouts. If i and i′ are closed cofibrations and φA, φX
and φB are homotopy equivalences, then φY is a homotopy equivalence.

As a corollary of the previous theorem we obtain another useful result for our work.

Corollary 1.1.21. Let

A
g //

i
��
push

X

��
B

f
// Y

be a pushout diagram. If i is a closed cofibration and g is a homotopy equivalence, then f
is a homotopy equivalence.

We end this section with another result about cofibrations and homotopy equivalences
that will be needed later.

Proposition 1.1.22. Let

X0
i0 //

f0

��

X1
i1 //

f1

��

X2
i2 //

f2

��

. . .

Y0 j0
// Y1 j1

// Y2 j2
// . . .

be a commutative diagram such that for all n ∈ N0, the maps in and jn are closed inclusions
and cofibrations. Let X = colim Xn and Y = colim Yn and let f : X → Y be the induced
map. If fn is a homotopy equivalence for all n ∈ N0 then f is a homotopy equivalence.

A proof can be found in [7] (proposition A.5.11).
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1.2 Definition of CW-complexes

In this section we recall the definition of CW-complexes and some standard examples
and basic properties. We analyse both the constructive and descriptive approachs and we
prove that they are equivalent. Finally, we give the definition of subcomplexes and relative
CW-complexes and we study product cellular structures.

1.2.1 Constructive definition

Definition 1.2.1. We say that a topological space X is obtained from a topological space
B by attaching an n-cell if X is the adjunction space B ∪

g
Dn for some continuous map

g : Sn−1 → X, i.e. if there exists a pushout diagram

Sn−1
g //

i
��

push

B

��
Dn

f
// X

The cell is the image of f . The interior of the cell is f(Dn − Sn−1) and the boundary of
the cell is f(Sn−1). The map g is the attaching map of the cell, and f is its characteristic
map.

For example, Sn can be obtained from the singleton ∗ attaching and n-cell. Also, the
disk Dn can be obtained from Sn−1 attaching an n-cell by the identity map.

Remark 1.2.2.

(a) Attaching a 0-cell means adding a disjoint point.

(b) The interior of an n-cell is homeomorphic to (Dn)◦ = Dn − Sn−1.

(c) The space X of the definition above is the adjunction space X = B ∪
g
Dn. It can

also be seen as the mapping cone of the map g.

We can attach many n-cells at the same time by taking various copies of Sn−1 and Dn.

⊔
α∈J

Sn−1

F
α∈J

gα

//

i
��

push

B

��⊔
α∈J

Dn F
α∈J

fα

// X

Definition 1.2.3. Let X be a topological space. A CW-complex structure on X is a
sequence ∅ = X−1, X0, X1, . . . , Xn, . . . of subspaces of X such that the following three
conditions are satisfied.

(a) For all n ∈ N0, Xn is obtained from Xn−1 by attaching n-cells
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(b) X =
⋃
n∈N

Xn.

(c) The space X has the final topology with respect to the inclusions Xn ↪→ X, n ∈ N.

The space Xn is called the n-skeleton of X.
We say that the space X is a CW-complex if it admits some CW-complex structure.

Clearly, if X is a CW-complex it will generally admit many different CW-complex
structures.

Important remark 1.2.4. Condition (c) says that a map f : X → Z is continuous if
and only if f |Xn : Xn → Z is continuous for all n ∈ N0. Equivalently, U ⊆ X is open in
X if and only if U ∩Xn is open in Xn for all n ∈ N0.

Examples 1.2.5.

(a) The n-sphere Sn is a CW-complex. We will consider two different structures:

1) The m-skeleton of Sn is ∗ for all 0 ≤ m < n and Sn for m ≥ n. In this
structure we have 1 0-cell and 1 n-cell and the n-skeleton is obtained from the
(n− 1)-skeleton by attaching one n-cell:

Sn−1
g //

i
��

push

∗

��
Dn

f
// Sn

2) (Sn)m = Sm for all m ≤ n. The (m − 1)-skeleton Sm−1 is the equator of the
m-skeleton Sm for all m ≤ n and the last one is obtained from the first one by
attaching 2 m-cells which correspond to the northern and southern hemispheres
of Sm.

(b) The n-disk Dn is a CW-complex. We will consider two different CW-complex struc-
tures on Dn, both of which satisfy that (Dn)n−1 = Sn−1 and that the n-cell is
attached by the identity map. These two different structures are obtained giving
each of the structures of the previous example to the (n− 1)-skeleton Sn−1. Hence
one of them has 1 0-cell, 1 n− 1-cell and 1 n-cell and the other has 2 k-cells for each
0 ≤ k ≤ n− 1 and one n-cell.

(c) Polyhedra are CW-complexes with CW-complex structure induced by the simplicial
structure.

(d) The torus is a CW-complex with 1 0-cell, 2 1-cells and one 2 cell. The 1-skeleton is
a wedge of 2 copies of S1.

(e) The infinite dimensional sphere S∞ is a CW-complex. Recall that S∞ is defined as
follows. Let R(N) be the set of sequences of real numbers of finite support. We give
R(N) the final topology with respect to the inclusions

R ⊆ R2 ⊆ R3 ⊆ . . .
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The infinite dimensional sphere is defined as S∞ = {x ∈ R(N) : ‖x‖2 = 1}. We give
S∞ the following CW-complex structure. Its n-skeleton is Sn for all n ∈ N0 and it is
the equator of the (n + 1)-skeleton, as before. Hence S∞ =

⋃
n∈N

Sn. The n-skeleton

Sn is obtained from the (n−1)-skeleton Sn−1 by attaching two n-cells as the second
structure of example (a).

(f) The real proyective plane P2 is a CW-complex with 1 0-cell, 1 1-cell and 1 2-cell.
The 1-skeleton of this structure is S1 and the 2-cell is attached by the map g : S1 ⊆
C→ S1 ⊆ C defined by g(z) = z2.

(g) More generally, the n-dimensional real projective space Pn is a CW-complex with
one m-cell for each m ≤ n. Moreover, the m-skeleton of this CW-complex structure
is Pm for all 2 ≤ m ≤ n.

Definition 1.2.6. Let X be a non-empty CW-complex. The dimension of X is defined
as dimX = sup{n ∈ N0/ X

n−1 6= Xn}. The dimension may be +∞.

We ought to mention that the dimension of a CW-complex is well defined, i.e. it
does not depend on the CW-complex structure given to it. This can be proved using the
invariance of domain theorem.

If X is a CW-complex then, by 1.1.4, we obtain that Xn is a closed subspace of X for
all n, and if dimX = m, the interior of m-cells are open in X.

Proposition 1.2.7. If X is a CW-complex then X is a Hausdorff space.

Proof. By 1.1.5 and induction we get that the n-skeleton, Xn is a Hausdorff space for all
n ∈ N. So, if X is finite-dimensional we are done.

For the general case, let x and y be distinct points in X. There exists n ∈ N such that
x, y ∈ Xn. Since Xn is Hausdorff there exist open and disjoint subsets Un, Vn ⊆ Xn such
that x ∈ Un, y ∈ Vn. However, Un and Vn might not be open in X. Since we are under the
hypotheses of 1.1.5, we may proceed as in its proof to enlarge Un and Vn to open subsets
Un+1 and Vn+1 of Xn+1 such that Un+1∩Xn = Un, Vn+1∩Xn = Vn and Un+1∩Vn+1 = ∅.
Repeating this process inductively we obtain sequences (Uj)j≥n and (Vj)j≥n satisfying

• Uj and Vj are open in Xj

• Uj+1 ∩Xj = Uj and Vj+1 ∩Xj = Vj

• Uj ∩ Vj = ∅

for all j ≥ n.
Let U =

⋃
j≥n

Uj and V =
⋃
j≥n

Vj . Then x ∈ U , y ∈ V and U ∩ V = ∅. Since for all

m ≥ n, U ∩Xm = Um is open in Xm then U is open in X. In the same way V is open in
X.
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1.2.2 Descriptive definition

We will give now the descriptive definition of CW-complexes and study some of its prop-
erties. In the next subsection we will prove that it is equivalent to the constructive
definition given above. This equivalence is useful not only because it gives more insight
into the definition and theory of CW-complexes, but also because it provides one with two
different ways to work with CW-complexes. The constructive definition is needed to build
CW-complexes step by step, while the descriptive one is more suitable for proving that a
given space is a CW-complex by just decomposing it into cells and then checking that the
conditions are satisfied.

Definition 1.2.8. Let X be a Hausdorff space. A cell complex on a space X is a collection
K = {enα : n ∈ N0, α ∈ Jn} of subsets of X, called cells, which satisfy the properties below.
The cell enα is called a cell of dimension n or n-cell and the set Jn, n ∈ N is an index set
for the n-cells.

For n ≥ 0, we define the n-skeleton of K as Kn = {erα : r ≤ n, α ∈ Jr}. We also define
K−1 = ∅. Let |Kn| =

⋃
r≤n
α∈Jr

erα ⊆ X.

For each cell enα we define the boundary of enα as
•
enα = enα ∩ |Kn−1| and the interior of

enα as
◦
enα = enα −

•
enα.

The collection K must satisfy

(a) X =
⋃
n,α

enα

(b)
◦
enα ∩

◦
emβ = ∅ if enα 6= emβ

(c) For each n ∈ N0 and α ∈ Jn there exists a continuous and surjective map fnα :

(Dn, Sn−1)→ (enα,
•
enα) such that fnα (

◦
Dn) ⊆

◦
enα and fnα | ◦

Dn
:
◦
Dn →

◦
enα is a homeomor-

phism.

The map fnα is called the characteristic map of enα.

Note that, by condition (c), cells are compact subspaces of X and hence closed, since
X is Hausdorff.

Now, fix a cell enα and consider the equivalence relation in Dn defined by x ∼ y if and
only if fnα (x) = fnα (y). Then fnα induces a well defined map fnα : Dn/ ∼→ enα which is
continuous and bijective. Since Dn/ ∼ is compact and enα is Hausdorff it follows that fnα
is a homeomorphism. Thus, the cell enα is homeomorphic to Dn/ ∼ and A ⊆ enα is closed
(resp. open) in enα if and only if (fnα )−1(A) is closed (resp. open) in Dn.

Note also that X =
⋃
n,α

◦
enα and

◦
e0
α = e0

α.

Definition 1.2.9. Let X be a Hausdorff space and let K be a cell complex on X. We
define the dimension of K as dimK = sup{n ∈ N0/ Jn 6= ∅}. The dimension may be
+∞.
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Definition 1.2.10. Let K be a cell complex on X and let enα, emβ be cells of K. We say

that enα is an immediate face of emβ if
◦
enα∩emβ 6= ∅. If enα 6= emβ this implies that

◦
enα∩

•
emβ 6= ∅.

Note that if enα is an immediate face of emβ and enα 6= emβ then n < m.

Definition 1.2.11. We will say that the cell enα is a face of emβ if there exists a finite
sequence of cells e0 = enα, e1, . . . , er = emβ such that ej is an immediate face of ej+1 for
1 ≤ j ≤ r − 1.

A cell enα is called principal if it is not a face of any other cell.

Note that the faces of a cell enα are exactly those cells which we must attach first in
order to be able to attach the cell enα. This intuitive statement will become clearer after
introducing the notion of subcomplexes in subsection 1.2.4.

Remark 1.2.12. A cell complex K on X does not give much information on the topology
of X. For example, we may take K = X, that is every point of X is a 0-cell. This is a cell
complex which does not give any data on the topology of X.

This is certainly not among the sort of things one would like to accept. So we will
impose two extra conditions on a cell complex to call it a CW-complex.

Definition 1.2.13. Let X be a Hausdorff space. A CW-complex structure on X is a cell
complex K such that the following conditions are satisfied:

(C) Each cell of K has only a finite number of faces.

(W) The space X has the weak topology induced by the cells of K, that is, A ⊆ X is
closed if and only if A ∩ enα is closed in enα for all n ∈ N, α ∈ Jn.

A space X is called a CW-complex if it admits some CW-complex structure.
The following propositions follow easily from the definition of cell complex and condition

(W).

Proposition 1.2.14. If X is a CW-complex and enα is a principal cell, then
◦
enα is open in

X.

Condition (W) can also be stated in a couple of other ways, which allow us to understand
topology of CW-complexes better.

Proposition 1.2.15. Let X be a CW-complex with CW-structure K. The following are
equivalent:

(a) A ⊆ X is closed (resp. open).

(b) A ∩ enα is closed (resp. open) in enα for all n, α.

(c) (fnα )−1(A) ⊆ Dn is closed (resp. open) for all n, α.

(d) A ∩ |Kn| is closed (resp. open) in |Kn| for all n.

These equivalent statements can be reformulated in terms of continuous maps as next
proposition shows.
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Proposition 1.2.16. Let X be a CW-complex with CW-structure K, let Y be a topological
space and let f : X → Y be a map. Then the following are equivalent:

(a) f : X → Y is continuous.

(b) f |enα : enα → Y is continuous for all n, α.

(c) f ◦ fnα : Dn → Y is continuous for all n, α.

(d) f ||Kn| is continuous for all n.

This proposition will be useful when defining maps with domain a CW-complex. Usu-
ally, we will define maps skeleton by skeleton, continuous at each stage, and by the equiv-
alences above we will conclude that they are continuous.

The same argument will be used when defining homotopies from CW-complexes. The
following is the analogous of the previous proposition and follows from it applying the
exponential law.

Proposition 1.2.17. Let X be a CW-complex with CW-structure K, let Y be a topological
space and let H : X × I → Y be a map. Then the following are equivalent:

(a) H : X × I → Y is continuous.

(b) H|enα×I : enα × I → Y is continuous for all n, α.

(c) H ◦ (fnα × IdI) : Dn × I → Y is continuous for all n, α.

(d) H||Kn|×I is continuous for all n.

The next proposition shows a key point in the theory of CW-complexes, as will be
evident later on.

Proposition 1.2.18. Let X be a CW-complex and let K ⊆ X be a compact subset. Then
K intersects only a finite number of interiors of cells.

In particular, X is compact if and only if it is finite (i.e. has a finite number of cells).

Proof. For each n and α such that K ∩
◦
enα 6= ∅ we choose xnα ∈ C ∩

◦
enα. Let T = {xnα : n ∈

N0, α ∈ Jn}. Then T ⊆ K. We shall prove that T is finite.
We will show that T ⊆ K is closed (hence compact) and discrete. It suffices to prove

that every T ′ ⊆ T is closed in X.
By (W), T ′ ⊆ X is closed if and only if T ′ ∩ enα is closed in enα for all n, α. But by

(C), each cell has a finite number of faces, hence T ′ ∩ enα is finite. Since X is Hausdorff it
follows that T ′ ∩ enα is closed in X. Thus, T ′ is closed in X for all T ′ ⊆ T .

The following remark will be very important for our descriptive definition of CW(A)-
complexes (cf. 3.2.2) since it gives us the right way to generalize the descriptive definition
of CW-complexes.

Important remark 1.2.19. Conditions (C) and (W) are equivalent to (C’) and (W)
where

(C’) Every compact subspace intersects only a finite number of interiors of cells.

Indeed, (C) and (W) imply (C’) and (W) by the previous proposition. Conversely, (C’)
implies (C) because cells are compact subspaces.
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1.2.3 Equivalence of the two definitions

We will show now that the two definitions are equivalent. The first implication is stated
in the following proposition, which is easy to prove.

Proposition 1.2.20. Let X be a Hausdorff topological space and let K be a CW-complex
structure on X. Then X is a constructive CW-complex (i.e. according to definition 1.2.3)
where the skeletons Xn coincide with |Kn| and where the characteristic maps of the cells
are the same in the two structures.

For the converse we need the following lemma.

Lemma 1.2.21. Let X be a descriptive CW-complex of dimension n − 1 with cellular
structure K = {erα}r,α. Suppose that Y is obtained from X attaching n-cells {enα}α∈Jn.
Then K ′ = K ∪ {enα}α∈Jn is a CW-complex structure for Y .

Proof. It is clear that Y =
⋃
r≤n

erα. From the pushout

⊔
α∈Jn

Sn−1

F
α∈Jn

gα

//

i
��

push

X

��⊔
α∈Jn

Dn F
α∈Jn

fα

// Y

we deduce that
◦
enα ∩

◦
emβ = ∅ if enα 6= emβ .

Note that
•
enα = gnα(Sn−1). For each α ∈ Jn we define the characteristic map of the cell

enα as fnα : (Dn, Sn−1)→ (enα,
•
enα). From the previous pushout it is easily deduced that fnα

is surjective, fnα (
◦
Dn) ⊆

◦
enα and fnα | ◦

Dn
:
◦
Dn →

◦
enα is a homeomorphism.

From proposition 1.1.5 it follows that Y is Hausdorff. Thus K ′ is a cell complex on Y .
It remains to prove that it satisfies (C) and (W).

(C) Let α ∈ Jn. Since
•
enα = gα(Sn−1) ⊆ X is compact and X is a CW-complex, then

•
enα intersects a finite number of interiors of cells. Thus enα has a finite number of faces.

(W) The space Y has the final topology with respect to {erα}r≤n because it has the
final topology (the pushout topology) with respect to X and {enα}α∈Jn .

As a corollary we obtain that the constructive definition implies the descriptive one.
More precisely,

Proposition 1.2.22. Let X be a constructive CW-complex. Then there exists a CW-
complex structure K on X (i.e. X is a descriptive CW-complex) such that Xn = |Kn| for
all n ∈ N0 and where the characteristic maps of the cells in the two structures coincide.

Proof. By the previous lemma and induction, each Xn is a descriptive CW-complex of
dimension n. Hence items (a), (b) and (c) of definition 1.2.8 and conditions (C) and (W) of
1.2.13 hold. By 1.2.7, X is a Hausdorff space. Hence, X is a descriptive CW-complex.
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1.2.4 Subcomplexes and relative CW-complexes

We give first a quick glance at subcomplexes. As mentioned before, given a cell enα, its
faces can be interpreted as the cells that need to be pasted first so that the cell enα can be
attached. For if any of the immediate faces of enα is not attached first then the adjunction
map of enα will not be well defined. A similar argument applies for the immediate faces of
enα, and repeating this process we get the statement.

Definition 1.2.23. Let K be a cell complex on X. Let L ⊆ K. We say that L is a
subcomplex of K if for each cell enα ∈ L all its faces also belong to L.

The following proposition enlights and justifies the definition above.

Proposition 1.2.24. Let X be a topological space, K a cell complex on X and L ⊆ K a
subcomplex. Let |L| =

⋃
enα∈L

enα ⊆ X with the subspace topology. Then

(a) L is a cell complex on |L| with structure inherited from K (i.e. the characteristic
maps are the same).

(b) If K is a CW-complex structure on X then L is a CW-complex structure on |L|.

(c) |L| is closed in X.

Definition 1.2.25. A CW-pair is a topological pair (X,A) where X is a CW-complex
and A ⊆ X is a subcomplex.

In the constructive definition of CW-complexes we begin with the empty set and start
attaching cells of different dimensions. If instead we begin with a Hausdorff topological
space A, the space obtained is called relative CW-complex.

Definition 1.2.26. A relative CW-complex is a pair (X,A), where A and X are topolog-
ical spaces such that A ⊆ X, A is Hausdorff and there exists a sequence of subspaces of
X

A = X−1
A ⊆ X0

A ⊆ X1
A ⊆ . . . ⊆ Xn

A ⊆ . . .

satisfying that, for all n ∈ N0, Xn
A is obtained from Xn−1

A by attaching n-cells, X =
⋃
n∈N

Xn
A

and X has the final topology with respect to {Xn
A}n≥−1.

As in the absolute case, the subspace Xn
A is called the n-skeleton of (X,A).

Remark 1.2.27.

(a) Let (X,A) be a relative CW-complex. Then X is Hausdorff and A ⊆ X is a closed
subspace.

(b) If (X,A) is a CW-pair, then it is a relative CW-complex.

Definition 1.2.28. Let X and Y be CW-complexes. A continuous map f : X → Y is
called cellular if f(Xn) ⊆ Y n for all n ≥ 0.

Proposition 1.2.29. Let X and Y be CW-complexes and let f : X → Y be a cellular
map. Then the cylinder of f , Zf , is a CW-complex and X ⊆ Zf is subcomplex.
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1.2.5 Product of cellular spaces

We want to give a CW-complex structure to the cartesian product of CW-complexes. Note
that Dn ×Dm is homeomorphic to Dn+m. Hence, if X is a CW-complex with structure
K and Y is a CW-complex with structure K ′, it is reasonable that cells of the cartesian
product X × Y would be products of one cell of K with one cell of K ′. However, the
product topology in X × Y is not always the right one, as we shall see.

If K = {enα}n,α is a cellular structure in a Hausdorff space X and K ′ = {emβ }m,β is a
cellular structure in another Hausdorff space Y , we define the product cellular structure
in X × Y by K × K ′ = {enα × emβ }n,m,α,β. It is easy to prove that K × K ′ is a cellular
structure in X × Y .

It is clear that if the cellular structures K and K ′ satisfy condition (C) then K ×K ′
also satisfies (C). However, this is not always true for condition (W). Hence we define the
following.

Definition 1.2.30. Let X and Y be CW-complexes with cellular structures K and K ′

respectively. We define the CW-complex X×
w
Y as the space X×Y with cellular structure

K ×K ′ and with the final topology with respect to the cells of K ×K ′, i.e. F ⊆ X × Y
is closed if and only if F ∩ (enα × emβ ) is closed in enα × emβ for all cells enα × emβ ∈ K ×K ′.

Note that the weak topology in X × Y (that is, the final topology with respect to the
cells) has fewer open sets than the product topology. Nevertheless, the subspace topology
in enα × emβ is the same for the two topologies.

The next proposition is not difficult to prove and stablishes a relation between the two
topologies.

Proposition 1.2.31. Let X and Y be CW-complexes. If X or Y is locally compact then
X ×

w
Y = X × Y .

In particular, if we take Y = I with cellular structure {e0
0 = {0}, e0

1 = {1}, e1 = I}
and X is a CW-complex with cellular structure K, then X × I is also a CW-complex
and its cellular structure is {enα × e0

0, e
n
α × e0

1, e
n
α × e1 : enα ∈ K}. Note that enα × e0

0 and
enα × e0

1 are n-cells and enα × e1 is a (n + 1)-cell. Hence, if X is finite dimensional then
dim(X × I) = dim(X) + 1.

The following proposition sums up several properties of CW-complexes.

Proposition 1.2.32.

(a) Let (X,A) be a relative CW-complex. Then X/A is a CW-complex with cellular
structure inherited from (X,A).

(b) If X is obtained from A by attaching n-cells then X/A =
∨

α∈Jn
Sn (where Jn is the

set that indexes the n-cells).

Moreover, there is a homeomorphism between X/A and
∨

α∈Jn
Sn such that the follow-

ing diagram commutes for all α ∈ Jn.
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(Dn, Sn−1)
q //

fα %%KKKKKKKKKKK
(Sn, ∗) iα // (

∨
β∈Jn

Sn, ∗)

'
��

(X,A)
q′
// (X/A, ∗)

where fα is the characteristic map of the cell, iα is the inclusion and q and q′ are
the respective quotient maps.

(c) If (X,A) is a relative CW-complex (X,A) then Xn
A/X

n−1
A =

∨
α∈Jn

Sn for all n ∈ N0,

where Jn is the set that indexes the n-cells of (X,A).

In particular, if A = ∅ we obtain that Xn/Xn−1 =
∨

α∈Jn
Sn.

Another basic construction in homotopy theory is the smash product. Recall that if
(X,x0) and (Y, y0) are pointed topological spaces, then the smash product of X and Y is
defined as X ∧ Y = (X × Y )/(X × {y0} ∪ {x0} × Y ).

Since X × {y0} ∪ {x0} × Y is homeomorphic to X ∨ Y , the definition above is usually
written as X ∧ Y = (X × Y )/(X ∨ Y ).

In case (X,x0) and (Y, y0) are pointed CW-complexes such that either X or Y is locally
compact, we know that X×Y is a CW-complex. It is easy to verify that X×{y0}∪{x0}×Y
is a subcomplex of X × Y . Hence, X ∧ Y is a CW-complex.

1.3 Homology theory of CW-complexes

In this section we recall the homology theory of CW-complexes. The combinatorial struc-
ture of these spaces allows one to compute homology in a quite simple way.

1.3.1 Cellular homology

Definition 1.3.1. Let (X,A) be a topological pair. We say that (X,A) is a good pair if
A is a closed subspace of X and there exists an open subset U ⊆ X such that U ⊇ A and
the inclusion i : A→ U is a strong deformation retract.

Important example 1.3.2. If X is a CW-complex and A ⊆ X is a subcomplex then
(X,A) is a good pair.

Using excision for homology groups we can prove the following proposition which is
essential for computing homology of CW-complexes and developing cellular homology
theory.

Proposition 1.3.3. Let (X,A) be a topological pair and let q : (X,A) → (X/A, ∗) be
the quotient map. If (X,A) is a good pair then q induces isomorphisms q∗ : Hn(X,A) →
Hn(X/A, ∗) ' H̃n(X/A).

The proof is not difficult and will be omitted.
The definition and properties of cellular homology are based on the following lemma.
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Lemma 1.3.4. Let X be a CW-complex. Then:

(a) Hk(Xn, Xn−1) = 0 if k 6= n and Hn(Xn, Xn−1) '
⊕
i∈Jn

Z, where Jn is an index set

for the n-cells of X.

(b) Hk(Xn) = 0 if k > n.

(c) The inclusion i : Xn → X induces isomorphisms i∗ : Hk(Xn)→ Hk(X) for k < n.

Proof.
(a) Since (Xn, Xn−1) is a good pair, Hk(Xn, Xn−1) ' Hk(Xn/Xn−1) ' Hk(

∨
i∈Jn

Sn)

and the result follows.
(b) Consider the long exact sequence in homology of the pair (Xn, Xn−1):

. . . // Hk+1(Xn, Xn−1) // Hk(Xn−1) // Hk(Xn) // Hk(Xn, Xn−1) // . . .

If k > n, Hk+1(Xn, Xn−1) = 0 and Hk(Xn, Xn−1) = 0 by (a). Hence Hk(Xn) '
Hk(Xn−1) for k > n. Repeating this argument we obtain Hk(Xn) ' Hk(Xn−1) ' . . . '
Hk(X0) = 0.

(c) Proceeding as in (b), we get Hk(Xn) ' Hk(Xm) if k < n ≤ m. Hence (c) is proved
if X is finite dimensional. For the general case, let [a] ∈ Hk(X). Hence a is a singular
k-chain such that dk(a) = 0. Since the image of each singular simplex is compact, a is
also a singular k-chain in some skeleton Xm for a sufficiently large value of m. It follows
that the map i∗ : Hk(Xn)→ Hk(X) is surjective.

Now suppose that [a] ∈ Hk(Xn) is such that [a] = 0 in Hk(X). Hence the singular
k-chain a is the image of a singular (k+ 1)-chain b by dk+1. As above, b is also a singular
k-chain in some skeleton Xm for sufficiently large m. It follows that [a] = 0 in Hk(Xm).

To define the cellular chain complex of a CW-complex X we consider the long exact
sequences in homology of the pairs (Xn, Xn−1) for n ∈ N and arrange them in the following
diagram

Hn(Xn)
jn

$$IIIIIIIII

. . . // Hn+1(Xn+1, Xn)

∂n+1

99ssssssssss d′n+1 // Hn(Xn, Xn−1)
d′n //

∂n &&LLLLLLLLLL
Hn−1(Xn−1, Xn−2) // . . .

Hn−1(Xn−1)
jn−1

77ooooooooooo

where d′n is defined as d′n = jn−1∂n for all n ∈ N. Since ∂njn = 0, we obtain that d′nd
′
n+1 =

0. The horizontal row is the cellular chain complex of X and the group Hn(Xn, Xn−1)
corresponds to degree n. Note that, by the previous lemma, this group is

⊕
i∈Jn

Z, where Jn

is an index set for the n-cells of X.
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The cellular homology groups of X are defined as the homology groups of the cellular
chain complex of X. As we shall see shortly, cellular homology coincides with singular
homology and the differentials d′n can be calculated in terms of the attaching maps of
the cells. Hence, singular homology of CW-complexes can be computed directly from the
combinatorial structure of CW-complexes by means of cellular homology. Moreover, it is
clear that the cellular chain complex is far more simple that the singular one.

Before going on, we will prove that cellular homology groups coincide with singular
homology ones. Consider the long exact sequence

. . . // Hn+1(Xn+1, Xn)
∂n+1 // Hn(Xn) // Hn(Xn+1) // Hn(Xn+1, Xn) // . . .

By the previous lemma, Hn(Xn+1) ' Hn(X) and Hn(Xn+1, Xn) = 0. In consequence,
Hn(X) ' Hn(Xn)/Im ∂n+1.

On the other hand, given n ∈ N we consider the exact sequence

. . . // Hn(Xn−1) // Hn(Xn)
jn // Hn(Xn, Xn−1)

∂n // Hn−1(Xn−1) // . . .

By the previous lemma, Hn(Xn−1) = 0. Hence, jn is injective. Thus, the maps jn|Im ∂n+1 :
Im ∂n+1 → Im (jn∂n+1) = Im (d′n+1) and jn : Hn(Xn) → Im jn = ker ∂n are isomor-
phisms. Now, ker ∂n = ker d′n since jn−1 is injective. Then jn induces an isomorphism
Hn(Xn)/Im ∂n+1 ' ker d′n/Im (d′n+1). Hence, cellular homology groups coincide with
singular homology ones.

As mentioned before, the differentials d′n can be computed in terms of the attaching
maps of the cells as stated by the following proposition.

Proposition 1.3.5. Let X be a CW-complex. For each n ∈ N, let Jn be an index set
for the n-cells. We consider the cells enα, α ∈ Jn, as generators of the free abelian group
Hn(Xn, Xn−1) '

⊕
α∈Jn

Z. Then the differential d′n is defined by

d′n(enα) =
∑

β∈Jn−1

deg(qn−1
β gnα)en−1

β

where gαn is the attaching map of enα and qn−1
β : Xn−1 → Sn−1 is the quotient map which

collapses Xn−1 −
◦

en−1
β to a point.

Note that the sum above has finite support since the image of gnα is compact and hence
it intersects only a finite number of cells.

The proof of this proposition will not be given here. However, a generalization of this
result will be proved in chapter 5.

We will give now some examples of application of the above results which will show the
usefulness of cellular homology.

Examples 1.3.6.
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(a) The real projective plane P2 has a CW-complex structure consisting of one 0-cell,
one 1-cell and one 2-cell attached by a map of degree 2. Hence its cellular chain
complex is

. . . // 0 // Z .2 // Z 0 // Z

It follows that H0(P2) = Z, H1(P2) = Z2 and Hn(P2) = 0 for n ≥ 2.

(b) In a similar way, the real n-dimensional projective space has a CW-complex structure
consisting of one i-cell for all 0 ≤ i ≤ n. It is not hard to see that its cellular chain
complex is

. . . // 0 // Z
d′n // Z

d′n−1 // . . . // Z .2 // Z 0 // Z

where, for 1 ≤ i ≤ n, the map d′i is multiplication by 2 if i is even and trivial if i is
odd. Hence, if n is even,

Hi(Pn) =


Z if i = 0
Z2 if i is odd and 1 ≤ i ≤ n
0 if i is even and 1 ≤ i ≤ n
0 if i > n

and, if n is odd,

Hi(Pn) =


Z if i = 0
Z2 if i is odd and 1 ≤ i < n
0 if i is even and 1 ≤ i < n
Z if i = n
0 if i > n

(c) The torus S1 × S1 has a CW-complex structure consisting of one 0-cell, two 1-cells
and one 2-cell attached by the map induced by aba−1b−1 where a and b are the
generators of π1(S1 ∨ S1) given by the inclusions i1, i2 : S1 → S1 ∨ S1. Hence its
cellular chain complex is

. . . // 0 // Z 0 // Z⊕ Z 0 // Z

It follows that H0(S1 × S1) = Z, H1(S1 × S1) = Z ⊕ Z, H2(S1 × S1) = Z and
Hn(S1 × S1) = 0 for n ≥ 3.

1.3.2 Moore spaces

Definition 1.3.7. Let G be an abelian group and let n ∈ N. A Moore space of type
(G,n) is a CW-complex X such that Hn(X) ' G, H̃i(X) = 0 if i 6= n and such that X is
simply-connected if n > 1.
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For example, the projective plane P2 is a Moore space of type (Z2, 1) and its (n− 1)th
suspension is a Moore space of type (Z2, n). Also, if we attach an (n+ 1)-cell to Sn by a
map Sn → Sn of degree m we obtain a Moore space of type (Zm, n).

Note that if X is a Moore space of type (G,n) and Y is a Moore space of type (H,n)
then X ∨Y is a Moore space of type (G⊕H,n). Thus, if G is a finitely generated abelian
group, it is easy to construct a Moore space of type (G,n) by taking wedge sums of Moore
spaces of type (Hi, n), with Hi a cyclic group.

The following proposition states that this can be done for every abelian group G.

Proposition 1.3.8. Let G be an abelian group and let n ∈ N. Then there exists a Moore
space of type (G,n).

Proof. Let A ⊆ G be a set of generators of G and let F be a free abelian group with basis
A. Let φ : F → G be the induced group homomorphism. Then kerφ is also a free abelian
group. Let {hα : α ∈ J} be a basis of kerφ. We will construct a Moore space of type
(G,n) attaching (n+ 1)-cells to

∨
i∈A

Sn.

For i ∈ A let qi :
∨
i∈A

Sn → Sn be the quotient map which collapses everything except

the i-th copy of Sn to a point. We write hα =
∑
i∈A

di,αi (with diα ∈ Z) for α ∈ J . Note

that for each α, di,α = 0 except for a finite number of indexes i. For each α ∈ J let
gα : Sn →

∨
i∈A

Sn be a continuous map such that qigα is a map of degree di,α. This map

can be constructed in the following way.
Let m = #{i ; di,α 6= 0} and let D1, D2, . . . , Dm be m disjoint subsets of Sn, all of

which are homeomorphic to Dn. Let ∂Di denote the border of Di, i.e. ∂Di is the subset
of Di which corresponds to Sn−1 ⊆ Dn by the homeomorphism ϕi : Di → Dn. Let
q : Dn → Sn ' Dn/Sn−1 be the quotient map and let ini : Sn →

∨
i∈A

Sn be the inclusion

in the i-th copy. We define gα : Sn →
∨
i∈A

Sn by

gi(x) =


γdi,αqϕi(x) if x ∈ Di

∗ if x ∈ Sn −
m⋃
i=1

Di

where γdi,α : Sn → Sn is a map of degree di,α. It is easy to prove that the map gα satisfies
the required conditions.

Let X be defined by the pushout

⊔
α∈J

Sn
F
α∈J

gα

//

i

��
push

∨
i∈A

Sn

��⊔
α∈J

Dn+1 // X
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It follows that the cellular chain complex of X is

. . . // 0 // kerφ
dn+1 // F // 0 // . . .

where the map dn+1 is the inclusion. Hence, X is a Moore space of type (G,n).

As a corollary we obtain that we can build CW-complexes with arbitrary homology
groups.

Corollary 1.3.9. Let (Gn)n∈N be a sequence of abelian groups. Then there exists a con-
nected CW-complex X such that Hn(X) = Gn for all n ∈ N.

Proof. Take X =
∨
n∈N

Xn, where Xn is a Moore space of type (Gn, n).

1.4 Homotopy theory of CW-complexes

In this section we will study the homotopy theory of CW-complexes, which is rich in
results. Among them we ought to mention Whitehead’s Theorem, which is one of the most
important theorems of homotopy theory and asserts that a map between CW-complexes
which induces isomorphisms in all homotopy groups is a homotopy equivalence (1.4.14).
Another key result which will be given in this section is that every topological space can
be homotopically approximated by a CW-complex (1.4.18).

We will also recall the excision theorem for computing homotopy groups of CW-
complexes and some corollaries of it. We also mention the cellular approximation theorem
which says that every continuous map between CW-complexes is homotopic to a cellular
one. This is of much importance in the homotopy theory of CW-complexes as we shall
see.

We also study Eilenberg - MacLane spaces, which are the homotopical counterpart of
Moore spaces.

We then recall Hurewicz’s theorem, which is another key theorem in homotopy theory
and relates homotopy and homology groups of topological spaces. In chapter 2 we will
give an important and useful generalization of it, due to Serre [18].

In the last subsection we recall homology decomposition of spaces.

1.4.1 Basic properties

The following remark is one of the key properties of CW-complexes and is essential when
developing their homotopy theory.

Important remark 1.4.1. If X is obtained from A by attaching n-cells then the inclusion
A ↪→ X is a cofibration. In particular, if (X,A) is a relative CW-complex, then the
inclusion Xn−1

A ↪→ Xn
A is a cofibration.

The following proposition generalizes the previous remark.

Proposition 1.4.2. If (X,A) is a relative CW-complex then the inclusion i : A → X is
a cofibration.



Section 1.4: Homotopy theory of CW-complexes 45

Proof. Given a topological space Y and continuous maps f : X → Y and H : A× I → Y
such that Hi0 = fi we need to find a homotopy G : X × I → Y extending H and such
that Gi0 = f .

A
i0 //

i
��

A× I
i×IdI
�� H

��

X
i0 //

f 00

X × I
G

##
Y

Since Xn−1
A ↪→ Xn

A is a cofibration for all n, we may construct inductively a sequence
of continuous maps {Gn}n≥−1 with Gn : Xn

A × I → Y such that

(a) G−1 = H

(b) Gn|Xn−1
A ×I = Gn−1

(c) Gni0 = f |Xn
A

We define G : X × I → Y by G(x, t) = Gn(x, t) if x ∈ Xn
A. The map G is well defined

by (b) and continuous because X has the final topology with respect to the cells. By
construction it is clear that the map G is the required extension.

From the above proposition we get the following corollary.

Corollary 1.4.3. If (X,A) is a relative CW-complex and A is contractible then the quo-
tient map q : X → X/A is a homotopy equivalence.

Its proof is not difficult and can be found in [20] (proposition 6.6 p.75). It can also be
deduced from the previous proposition and 1.1.21.

As an example of an application consider the following. Let G be a graph, i.e. a
CW-complex of dimension 1. Let T ⊆ G be a maximal tree. Then (G,T ) is a relative
CW-complex and thus the inclusion T ↪→ G is a cofibration. If J indexes the edges of G
that do not belong to T we have that q : G→ G/T '

∨
α∈J

S1 is a homotopy equivalence.

1.4.2 Cellular approximation

The cellular approximation theorem says that every continuous map between CW-com-
plexes can be approximated by a cellular one.

Theorem 1.4.4 (Cellular approximation theorem). Let X and Y be CW-complexes and
let f : X → Y be a continuous map. Then there exists a cellular map f ′ : X → Y such
that f ′ ' f .

Moreover, if A ⊆ X is a subcomplex such that f |A is cellular, then we may take a
cellular approximation map f ′ satisfying f ′|A = f |A and f ′ ' f rel A.
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Its proof can be found in [20].
We will see now some important applications of this theorem. For the first of them we

need the following classical lemma about relative homotopy groups.

Lemma 1.4.5. Let (X,x0) be a pointed topological space and let A ⊆ X be a subspace
such that x0 ∈ A. Let f : (Dn, Sn−1) → (X,A) be a continuous map. Then the following
are equivalent.

i) There exists a base point preserving homotopy H : (Dn× I, Sn−1× I)→ (X,A) such
that Hi0 = f , Hi1(x) = x0 ∀x ∈ Dn.

ii) There exists a (base point preserving) homotopy G : Dn × I → X, relative to Sn−1,
such that Gi0 = f , Gi1(Dn) ⊆ A.

iii) There exists a (base point preserving) homotopy G : Dn×I → X, such that Gi0 = f ,
Gi1(Dn) ⊆ A.

We omit the proof which is not difficult. Besides, we will give later a generalization of
this result (4.1.5). As an immediate application we obtain the following corollary.

Corollary 1.4.6. Let (X,A, x0) be a pointed topological pair (i.e. (X,x0) is a pointed
topological space and A ⊆ X is a subspace such that x0 ∈ A) and let f : (Dn, Sn−1, s0)→
(X,A, x0) be a continuous map. Then [f ] = 0 in πn(X,A) if and only if f is homotopic
relative to Sn−1 to a map g such that g(Dn) ⊆ A.

With this results at hand, we are able to give the first application of the cellular
approximation theorem.

Corollary 1.4.7. If X is a CW-complex, then the topological pair (X,Xn) is n-connected,
i.e, πr(X,Xn) = 0 for all r ≤ n, or equivalently, the morphism i∗ : πr(Xn) → πr(X),
induced by the inclusion, is an isomorphism for r < n and an epimorphism for r = n.

Proof. Let r ≤ n and let [f ] ∈ πr(X,Xn). We can take any 0-cell as base point for
πr(X,Xn) since every point can be joined to a 0-cell by a continuous path. Hence, we
may suppose that f sends the base point of Dr to a 0-cell.

We consider in Sr−1 the cellular structure which consists of one 0-cell and one (r− 1)-
cell. Note that f |Sr−1 is cellular. Thus, by the cellular approximation theorem there exists
a cellular map f ′ : Dr → X such that f ′|Sr−1 = f |Sr−1 and f ′ ' f rel Sr−1.

Since f ′ is celular and r < n then Im f ′ ⊆ Xn. Hence f is homotopic (relative to Sr−1)
to a map f ′ with Im f ′ ⊆ Xn. Thus, [f ] = 0 in πr(X,Xn) by the corollary above.

Corollary 1.4.8. πr(Sn) = 0 for r < n.

Proof. Let r < n. We consider in Sr the cellular structure which consists of one 0-cell
and one r-cell, and in Sn the analogous structure. Let [f ] ∈ πr(Sn). By the cellular
approximation theorem, there exists a cellular map f ′ : Sr → Sn, such that f ′ ' f rel ∗
(where ∗ is the 0-cell). But then f ′(Sr) ⊆ (Sn)r = ∗, i. e. f ′ is constant.

Thus, [f ] = 0.
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We give now two variations of the cellular approximation theorem: for CW-pairs and
for relative CW-complexes.

Proposition 1.4.9 (Cellular approximation theorem for CW-pairs). Let f : (X,A) →
(Y,B) be a continuous map between CW-pairs. Then there exists a cellular map g :
(X,A)→ (Y,B) such that f ' g as maps between topological pairs.

Proposition 1.4.10 (Cellular approximation theorem for relative CW-complexes). Let
f : (X,A) → (Y,B) be a continuous map between relative CW-complexes. Then there
exists a cellular map g : (X,A) → (Y,B) (i.e. g(Xn

A) ⊆ Y n
B for all n) such that f ' g

relative to A.

As a corollary we get the following theorem, which is analogous to 1.4.7.

Corollary 1.4.11. Let (X,A) be a relative CW-complex and let n ∈ N0. If (X,A) has no
cells of dimension less than or equal to n, then the topological pair (X,A) is n-connected.

1.4.3 Whitehead’s theorem

Whitehead’s theorem is one of the most important theorems of the homotopy theory of
classical CW-complexes. The proof we will give here will use the cellular approximation
theorem. A bit more elementary proof, without using the cellular approximation theorem
can be found in [20] and a generalization of this proof is given in chapter 4 of this thesis,
in our generalization of Whitehead’s theorem (4.2.4).

For the proof of Whitehead’s theorem we will need the following lemma, interesting for
its own sake.

Lemma 1.4.12. Let (X,A) be a relative CW-complex and let (Y,B) be a topological
pair with B 6= ∅. Suppose that for all n ∈ N0 such that there exists at least one n-cell
in X − A we have that πn(Y,B, b0) = 0 for all b0 ∈ B. Then every continuous map
f : (X,A)→ (Y,B) is homotopic relative to A to a map g such that g(X) ⊆ B.

Note that this lemma generalizes 1.4.6.
In particular if dim(X,A) = n (resp. dim(X,A) =∞) and (Y,B) is n-connected (resp.

πn(Y,B) = 0 for all n ∈ N) then the hypothesis of the lemma are satisfied.

Proof. By induction, suppose h : X → Y is a continuous map such that h(Xn−1
A ) ⊆ B.

Let en ∈ Xn
A and let ϕ : (Dn, Sn−1)→ (Xn

A, X
n−1
A ) be the characteristic map of en. Then

hϕ : (Dn, Sn−1)→ (Y,B). Since πn(Y,B) = 0 then there exists a map ψ such that hϕ ' ψ
rel Sn−1 and ψ(Dn) ⊆ B.

Hence, there exists a continuous map h′ : Xn−1
A ∪ en → Y such that h′(Xn−1

A ∪ en) ⊆ B
and h|Xn−1

A ∪en ' h
′ rel Xn−1

A .

Doing this for all cells of dimension n we obtain a continuous map ĥ : Xn
A → Y with

ĥ(Xn
A) ⊆ B and a homotopy H : h|Xn

A
' ĥ rel Xn−1

A . Since the inclusion i : Xn
A → X is a
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cofibration, we extend H to X × I:

Xn
A

i0 //

i

��

Xn
A × I

i×IdI
�� H

��

X
i0 //

h 00

X × I
G

##
Y

Note that the homotopy G is relative to Xn−1
A since H is.

Hence, we may construct a sequence of continuous maps and homotopies

f = f−1 '
H0

f0 '
H1

f1 '
H2

. . .

with fn(Xn
A) ⊆ B and Hn relative to Xn−1

A .
Finally, we define H : X × I → Y by

H(x, t) =
{
Hn(x, 2n+1(t− (1− 1

2n ))) if t ∈ [1− 1
2n , 1−

1
2n+1 ]

fn(x) if t = 1 and x ∈ Xn
A

It is easy to verify that H is continuous and Hi0 = f . We take g = Hi1.

From this lemma, we obtain the following result.

Corollary 1.4.13. Let (X,A) be a relative CW-complex of dimension n (resp. of dimen-
sion ∞) such that (X,A) is n-connected (resp. πk(X,A) = 0 for all k ∈ N). Then A ⊆ X
is a strong deformation retract.

Proof. By the previous lemma we obtain the retraction r in the following diagram

A
IdA //

i
��

A

i
��

X
IdX
//

∃r
>>

X

where the upper left triangle commutes, while the lower right one commutes homotopically
relative to A (that is, there exists a homotopy ir ' IdX relative to A).

Now we state Whitehead’s theorem. Recall that a continuous map f : X → Y is called
a weak equivalence if it induces isomorphisms f∗ : πn(X,x0)→ πn(Y, f(x0)) for all x0 ∈ X
and for all n ∈ N0.

Theorem 1.4.14 (Whitehead’s theorem). A continuous map f : X → Y between CW-
complexes is a homotopy equivalence if and only if it is a weak equivalence.
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Proof. The first implication holds for every topological space (see [19]).
For the converse note that if f is the inclusion of a subcomplex in a CW-complex, the

result follows from the previous corollary.
For the general case, let f : X → Y be any continuous map. By the cellular approxi-

mation theorem there exists a cellular map f ′ : X → Y such that f ′ ' f . Note that f ′ is
a weak equivalence since f is.

By 1.2.29, Zf ′ is a CW-complex and X ⊆ Zf ′ is subcomplex. We have a commutative
diagram

X
f ′ //

j
��

Y

i~~}}}}}}}}

Zf ′

r
>>}}}}}}}}

where j and i are inclusion maps and where r : Zf ′ → Y is the standard strong deformation
retraction.

Since f ′ : X → Y is a weak equivalence, then j : X → Zf ′ is a weak equivalence. By
the previous case, j is a homotopy equivalence. Then f ′ = rj is a homotopy equivalence
and since f ' f ′, then f is a homotopy equivalence.

1.4.4 CW-approximations

We will now take study CW-approximations, that is, given a topological space X we want
to find a CW-complex which ‘homotopically approximates’ the space X. More precisely,

Definition 1.4.15. Let X be a topological space. A CW-approximation of X is a CW-
complex Z together with a weak equivalence f : Z → X.

We will prove that every topological space X admits a CW-approximation as a corollary
of a stronger result, for which we need the following definition.

Definition 1.4.16. Let (X,A) be a topological pair where A ⊆ X is a non-empty CW-
complex and let n ∈ N0. An n-connected CW-model of (X,A) (or simply an n-model of
(X,A)) is a CW-pair (Z,A) together with a continuous map f : Z → X such that f |A = Id
and such that

(a) The pair (Z,A) is n-connected.

(b) For every z0 ∈ Z the morphism f∗ : πr(Z, z0)→ πr(X, f(z0)) is an isomorphism for
all r > n and a monomorphism for r = n.

Note that an n-model (Z,A) of (X,A) is a kind of ‘homotopic mixture’ between A and
X. If i : A→ Z and j : A→ X are the inclusion maps and f : Z → X is as in the previous
definition, then i∗ : πr(A)→ πr(Z) is a isomorphism for all r < n and f∗ : πr(Z)→ πr(X)
is a isomorphism for all r > n.

Moreover, i∗ : πn(A) → πn(Z) is an epimorphism and f∗ : πn(Z) → πn(X) is a
monomorphism and since fi = j, then f∗i∗ = j∗. Hence, in some way πn(Z) can be
thought as the image of πn(A) in πn(X).
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Note also that if A consists of a point in each path-connected component of X, then a
0-model of (X,A) is a CW-approximation of X.

We give now the theorem of n-models from which we will deduce that every topological
space admits a CW-approximation.

Theorem 1.4.17. Let n ∈ N0 and let (X,A) be a topological pair where A is a non-empty
CW-complex. Then there exists an n-model f : (Z,A)→ (X,A).

Moreover, the n-model (Z,A) can be taken in such a way that Z is built from A by
attaching cells of dimension greater than n.

Proof. We build inductively CW-complexes Zm for m ≥ n together with maps fm : Zm →
X such that

A = Zn ⊆ Zn+1 ⊆ Zn+2 ⊆ . . .

Zm is obtained from Zm−1 attaching m-cells, fm|Zm−1 = fm−1, fm|A is the inclusion of A
in X and (fm)∗ : πr(Zm)→ πr(X) is a monomorphism for n ≤ r < m and an epimorphism
for n < r ≤ m.

Suppose we have constructed Zk and fk : Zk → X such that (fk)∗ : πr(Zk)→ πr(X) is
monomorphism for n ≤ r < k and epimorphism for n < r ≤ k. We will build Zk+1 and
extend fk to fk+1 : Zk+1 → X.

Henceforward, we will work in each path-connected component of A.
For each element α ∈ ker(fk)∗ ⊆ πk(Zk) we choose a continuous map ϕα : Sk → Zk,

which may be supposed cellular, such that [ϕα] = α. For each α we attach a (k + 1)-cell
ek+1
α to Zk with adjunction map ϕα. Let Yk+1 = Zk ∪

⋃
α∈ker(fk)∗

ek+1
α .

Since [ϕα] ∈ ker(fk)∗ then f ◦ϕα : Sk → X is nullhomotopic. Thus, it can be extended
to Dk+1. There is a commutative diagram

Sk
ϕα //

��
push

Zk

�� fk

��

Dk+1 //

00

Zk ∪ ek+1
α

f
(α)
k

$$
X

Pasting all the extensions f (α)
k we extend the map fk to Yk+1 as fk : Yk+1 → X. Note

that (Yk+1)k = Zk.
We will prove that (fk)∗ : πr(Yk+1) → πr(X) is a monomorphism for n ≤ r < k + 1.

Since (Yk+1)k = Zk, then (fk)∗ is a monomorphism for n ≤ r < k. Let φ : Sk → Yk+1

be a continuous map such that (fk)∗[φ] = 0. We may suppose that φ is cellular. Then
φ(Sk) ⊆ (Yk+1)k = Zk. Hence [φ] ∈ ker((fk)∗). Thus, [φ] = [ϕα] for some α ∈ ker(fk)∗.
Let j : Zk → Yk+1 be the inclusion map. Since jϕα : Sk → Yk+1 can be extended to the
disk Dk+1 it follows that [φ] = [ϕα] = 0 in πk(Yk+1).

Thus (fk)∗ : πr(Yk+1)→ πr(X) is a monomorphism for n ≤ r < k + 1. Note also that
(fk)∗ : πr(Yk+1) → πr(X) is an epimorphism for n < r ≤ k since fk ◦ j = fk. However,
(fk)∗ : πk+1(Yk+1)→ πk+1(X) may not be an epimorphism.



Section 1.4: Homotopy theory of CW-complexes 51

For each β ∈ πk+1(X) we take a continuous map ϕβ : Sk+1 → X such that [ϕβ] = β.
Let Zk+1 = Yk+1 ∨

∨
β∈πk+1(X)

Sk+1 and fk+1 : Zk+1 → X be defined by fk+1|Yk+1
= fk and

fk+1|Sk+1
β

= ϕβ.

Note that (Zk+1)k = (Yk+1)k = Zk. Hence πr(Yk+1) = πr(Zk+1) = πr(Zk) for n ≤ r <
k. Thus (fk+1)∗ : πr(Zm)→ πr(X) is a monomorphism for n ≤ r < k and an epimorphism
for n < r < k.

By construction, (fk+1)∗ : πk+1(Zk+1) → πk+1(X) is an epimorphism. Indeed, if
iβ : Sk+1 → Zk+1 denotes the inclusion in the β-th copy of Sk+1 then (fk+1)∗([iβ]) =
[fk+1iβ] = [ϕβ].

We will see now that (fk+1)∗ : πk(Zk+1) → πk(X) is an isomorphism. Since Yk+1 ⊆
Zk+1 is a retract (with retraction r : Zk+1 → Yk+1 sending

∨
β∈πk+1(X)

Sk+1 to a point) then

ri = IdYk+1
, where i : Yk+1 → Zk+1 is the inclusion. Then, r∗i∗ = Id, and it follows

that i∗ : πk(Yk+1)→ πk(Zk+1) is a monomorphism. Moreover, by cellular approximation,
i∗ : πk(Yk+1)→ πk(Zk+1) is an epimorphism. Then, it is an isomorphism. Since fk+1i = fk
it follows that (fk+1)∗ : πk(Zk+1)→ πk(X) is an isomorphism.

We take Z =
⋃
k≥n

Zk and f : Z → X defined by f |Zk = fk. It follows that f : (Z,A)→

(X,A) is an n-model of (X,A).

As said before, we obtain as a corollary the following theorem.

Theorem 1.4.18. Let X be a topological space. Then there exists a CW-approximation
for X.

Proof. We take A consisting of a point in each path-connected component of X. Let
f : (Z,A) → (X,A) be a 0-connected model of (X,A). The map f : Z → X is a CW-
approximation for X.

There is also a CW-approximation theorem for topological pairs.

Theorem 1.4.19. Let (X,A) be a topological pair. Then there exists a CW-pair (Z,B)
and a continuous map f : (Z,B) → (X,A) such that f∗ : πn(B) → πn(A), f∗ : πn(Z) →
πn(X) and f∗ : πn(Z,B)→ πn(X,A) are isomorphisms for all n.

Proof. Let g : B → A be a CW-approximation for A. Let in : A → X be the inclusion
map and let α : (Z,B) → (Zin◦g, B) be a 0-connected CW-model for (Zin◦g, B). Let
r : Zin◦g → B be the standard strong deformation retraction and let f = rα. It follows
that f |B = g and that f∗ : πn(B)→ πn(A) and f∗ : πn(Z)→ πn(X) are isomorphisms for
all n ∈ N0. Thus, from the five-lemma, f∗ : πn(Z,B) → πn(X,A) is also an isomorphism
for all n.

Another important consequence of 1.4.17 is the following proposition.

Proposition 1.4.20. If (X,A) is an n-connected relative CW-complex, then there exists
a relative CW-complex (Z,A) such that (X,A) is homotopy equivalent to (Z,A) relative
to A and (Z,A) has no cells of dimension less than n+ 1.
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1.4.5 More homotopical properties

In a similar way as in homology, for homotopy groups of CW-complexes there is an excision
theorem. However, it has a dimensional restriction.

Theorem 1.4.21 (Homotopy excision theorem). Let X be a topological space and let A
and B be subspaces of X such that X = A ∪ B, (A,A ∩ B) is an n-connected relative
CW-complex with n ≥ 1 and (B,A ∩ B) is an m-connected relative CW-complex. Let
j : (A,A ∩ B) → (X,B) be the inclusion. Then j∗ : πr(A,A ∩ B) → πr(X,B) is an
isomorphism for 1 ≤ r < n+m and an epimorphism for r = m+ n.

We will not give the proof here as it is quite technical and the ideas do not shed any
light on our work. However, it is an important result and shows the difference in difficulty
between dealing with homology groups and with homotopy groups.

As a corollary, we obtain the following proposition which is a refined version of 1.4.3.

Proposition 1.4.22. Let (X,A) be a CW-pair such that A is m-connected and (X,A) is
n-connected with n ≥ 1. Let q : (X,A)→ (X/A, ∗) be the quotient map. Then the induced
map q∗ : πr(X,A)→ πr(X/A) is an isomorphism for 2 ≤ r ≤ m+ n and an epimorphism
for r = m+ n+ 1.

Another important theorem concerning the homotopy theory of CW-complexes is the
Freudhental suspension theorem. Recall that for homology groups one always has an
isomorphism Hn(X) ' Hn+1(ΣX). This is not the case for homotopy groups, where some
conditions must be imposed.

Theorem 1.4.23 (Freudhental suspension theorem). Let X be an n-connected CW-
complex, with n ≥ 0. Then Σ : πr(X)→ πr+1(ΣX) is an isomorphism for 1 ≤ r ≤ 2n and
an epimorphism for r = 2n+ 1.

Using that π2(S2) = Z and Freudhental suspension theorem we obtain the following.

Corollary 1.4.24. πn(Sn) = Z for all n ∈ N.

Proof. Since Sn is (n − 1)-connected, Freudhental suspension theorem gives an isomor-
phism Σ : πn(Sn) → πn+1(Sn+1) if 1 ≤ n ≤ 2n − 2 (i.e. if n ≥ 2) and an epimorphism if
n = 2n− 1 (i.e. if n = 1).

The fact that π2(S2) = Z will be proved in next chapter (p. 65) as an application of
the exact sequence of homotopy groups associated to a fibration.

We define now the stable homotopy groups of a space X.

Definition 1.4.25. Let X be a topological space and let n ∈ N0. We define the n-th
stable homotopy group of X as πst

n (X) = colim
k

πn+k(ΣkX).

If X is a CW-complex then ΣkX is (k−1)-connected. From the Freudhental suspension
theorem it follows that πn+k(ΣkX) ' πn+k+1(Σk+1X) if n+ k ≤ 2(k − 1) or equivalently
if k ≥ n + 2. Then the groups πn+k(ΣkX), k ∈ N, stabilize for k sufficiently large and
πst
n (X) ' πn+k(ΣkX) for all k ≥ n+ 2.
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Continuing with our comparison between homology and homotopy properties, we will
analyse now the analogue for the homotopy groups of the wedge axiom for homology. As
before, some hypothesis on the degrees of connectedness of the spaces are needed so that
the wedge axiom holds.

Proposition 1.4.26. Let X be an n-connected CW-complex and let Y be an m-connected
CW-complex. Let iX : X → X ∨ Y and iY : Y → X ∨ Y be the inclusion maps. Suppose
that X or Y is locally compact. Then the induced map (iX)∗ ⊕ (iY )∗ : πr(X) ⊕ πr(Y ) →
πr(X ∨ Y ) is an isomorphism for 2 ≤ r ≤ n+m.

Proof. Since X or Y is locally compact the space X × Y with the product topology is a
CW-complex with the product CW-structure. Let x0 and y0 be the base points of X and
Y respectively. We know that X ∨ Y is homeomorphic to X × {y0} ∪ {x0} × Y ⊆ X × Y .
Hence we will consider X ∨ Y as a subspace of X × Y .

Since X is an n-connected CW-complex we may suppose that Xn = {x0}. In a similar
way, we may suppose that Y m = {y0}. Then (X × Y,X ∨ Y )n+m+1 = X ∨ Y . Let
j : X ∨ Y → X × Y be the inclusion map. From the long exact sequence of homotopy
groups associated to the pair (X × Y,X ∨ Y ) we obtain that j∗ : πr(X ∨ Y )→ πr(X × Y )
is an isomorphism for 1 ≤ r ≤ n+m.

Let pX : X×Y → X and pY : X×Y → Y be the projections. Clearly, the induced map
((pX)∗, (pY )∗) : πr(X×Y )→ πr(X)×πr(Y ) is an isomorphism for all r. But πr(X)×πr(Y )
is isomorphic to πr(X) ⊕ πr(Y ) for r ≥ 2, so we consider ((pX)∗, (pY )∗) : πr(X × Y ) →
πr(X)⊕ πr(Y ) for r ≥ 2.

Since ((pX)∗, (pY )∗) ◦ j∗ ◦ ((iX)∗ ⊕ (iY )∗) is the identity map of πr(X) ⊕ πr(Y ), the
result follows.

As a corollary we obtain the following

Corollary 1.4.27. Let I be an index set. For α ∈ I, let iα : Sn →
∨
i∈I

Sn denote the

inclusion in the α-th copy of Sn. Then the induced morphism
⊕
α∈I

(iα)∗ :
⊕
α∈I

πn(Sn) →

πn(
∨
i∈I

Sn) is an isomorphism for n ≥ 2.

The proof follows easily from the previous proposition if I is a finite set. For the general
case the result is proved by a standard compactness argument.

Recall that π1(
∨
α∈I

Sn) is the free group generated by {[iα] : α ∈ I}.

1.4.6 Eilenberg - MacLane spaces

Definition 1.4.28. Let n ∈ N and let G be a group, which we require to be abelian if
n ≥ 2. An Eilenberg - MacLane space of type (G,n) is a path-connected CW-complex X
such that πn(X) ' G and πi(X) = 0 if i 6= n.

For example, the circle S1 is an Eilenberg - MacLane space of type (Z, 1). Despite this
simple example, Eilenberg - MacLane spaces are in general much more complicated than
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Moore spaces. We will show now how to construct arbitrary Eilenberg - MacLane spaces.
In contrast to the construction of Moore spaces, we will need to attach an infinite number
of cells of different dimensions.

In order to make the key idea more explicit, we prove first the following lemma.

Lemma 1.4.29. Let X be a path-connected CW-complex and let n ∈ N, n ≥ 2. Then
there exists a CW-complex X ′ such that πi(X) ' πi(X ′) for i < n, πn(X ′) = 0 and X ′ is
obtained from X by attaching (n+ 1)-cells.

Proof. Let {φα : α ∈ J} be a set of generators of πn(X). For each α ∈ J let gα : Sn → X
be a continuous map such that [gα] = φα. By cellular approximation, we may suppose
that gα is a cellular map. Let X ′ be the CW-complex obtained by attaching (n+ 1)-cells
to X by the maps gα, α ∈ J .

Now we will see that X ′ satisfies the required conditions. Consider the long exact
sequence in homotopy groups associated to the pair (X ′, X):

. . . // πr(X) // πr(X ′) // πr(X ′, X) // πr−1(X) // . . .

Note that πr(X ′, X) = 0 for r ≤ n. Indeed, let [α] ∈ πr(X ′, X). Then α : (Dr, Sr−1) →
(X ′, X). By the cellular approximation theorem for CW-pairs α is homotopic (as maps
between pairs) to a cellular map β. But since r ≤ n, the image of β must be contained in
X. Thus, by 1.4.6, [α] = 0.

Hence, from the long exact sequence above it follows that the inclusion i∗ induces
isomorphisms i∗ : πr(X) → πr(X ′) for r < n and an epimorphism i∗ : πn(X) → πn(X ′).
Now, note that i∗([gα]) = 0 in πn(X ′) since gα can be extended to Dn (the extension is the
characteristic map of the (n+ 1)-cell attached). Since generators of πn(X) are mapped to
0 by the epimorphism i∗ : πn(X)→ πn(X ′), it follows that πn(X ′) = 0.

Proposition 1.4.30. Let n ∈ N and let G be a group if n = 1 and an abelian group if
n ≥ 2. Then there exists an Eilenberg - MacLane space of type (G,n).

Proof. We prove the case n ≥ 2. The case n = 1 is similar and can be found in [8]
(corollary 1.28).

Let {gi : i ∈ I} ⊆ G be a set of generators of G and let F be a free abelian group with
basis {gi : i ∈ I}. Let φ : F → G be the induced group homomorphism. Then kerφ is also
a free abelian group. Let {hα : α ∈ J} be a basis of kerφ. We will construct an Eilenberg -
MacLane space of type (G,n) attaching cells to

∨
i∈I

Sn. Note that πn(
∨
i∈I

Sn) =
⊕
i∈I

Z = F .

For each α ∈ J let gα : Sn →
∨
i∈I

Sn be a continuous map such that [gα] ∈ πn(
∨
i∈I

Sn)

corresponds to hα ∈ F .
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Let Xn =
∨
i∈I

Sn and let Xn+1 be defined by the pushout

⊔
α∈J

Sn
F
α∈J

gα

//

i

��
push

∨
i∈I

Sn

��⊔
α∈J

Dn+1 // Xn+1

Consider the following diagram

πn+1(Xn+1, Xn) ∂ //

ϕ '
��

πn(Xn)
i∗ //

β '
��

πn(Xn+1) // πn(Xn+1, Xn) = 0

kerφ
inc

// F
φ // G // 0

where the isomorphism ϕ is given by the composition

πn+1(Xn+1, Xn) ' πn+1(Xn+1/Xn) ' πn+1(
∨
α∈J

Sn) ' kerφ.

Hence, the characteristic maps {fα : α ∈ J} form a basis of πn+1(Xn+1, Xn) since they
correspond to the inclusions iα : Sn →

∨
α∈J

Sn. Note that the above square commutes since

∂([fα]) = [gα] = β−1(hα).
Thus, πn(Xn+1) ' G. And πr(Xn+1) ' πr(Xn) = 0 for r < n, since Xn+1 is obtained

from Xn by attaching (n+ 1)-cells.
Applying the previous lemma, we build inductively a sequence of CW-complexes

(Xm)m≥n+2 such that πn(Xm) ' G, πr(Xm) = 0 for r ≤ m − 1, r 6= n and Xm is
obtained from Xm−1 by attaching m-cells.

We take X = colimXn. Since πr(X) ' πr(Xr+1) for all r ∈ N, it follows that X is an
Eilenberg - MacLane space of type (G,n).

Corollary 1.4.31. Let (Gn)n∈N be a sequence of abelian groups. Then there exists a
path-connected CW-complex X such that πn(X) = Gn for all n ∈ N.

Proof. Take X =
∏
n∈N

Xn, where Xn is an Eilenberg - MacLane space of type (Gn, n).

An important result is that, for fixed G and n, Eilenberg - MacLane spaces of type
(G,n) are unique up to homotopy equivalence.

Proposition 1.4.32. The homotopy type of an Eilenberg - MacLane space of type (G,n)
is uniquely determined by G and n.

The proof is not difficult but technical and we omit it.
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1.4.7 The Hurewicz theorem

As it was mentioned earlier, Hurewicz’s theorem is one of the most important theorems of
homotopy theory. It connects homotopy theory with homology theory via a map known
as the Hurewicz map, which we recall right now.

Let X be a topological space and let 1 ∈ Hn(Sn) ' Z be a fixed generator of Hn(Sn).
We define the Hurewicz map h : πn(X)→ Hn(X) by h([α]) = α∗(1).

A relative version of the Hurewicz map can also be defined and this is done as follows.
Let (X,A) be a topological pair and let 1 ∈ Hn(Dn, Sn−1) ' Z be a fixed generator of
Hn(Dn, Sn−1). We define h : πn(X)→ Hn(X) by h([α]) = α∗(1).

Before stating Hurewicz’s theorem we give a technical lemma which will be needed for
the proof of the theorem.

Lemma 1.4.33. Let n ∈ N and let X be a space obtained by attaching (n + 1)-cells to∨
α∈I

Sn. Let Y be a path connected topological space and let ϕ : πn(X)→ πn(Y ) be a group

homomorphism. Then there exists a continuous map f : X → Y such that the induced
map f∗ : πn(X)→ πn(Y ) coincides with ϕ.

Proof. Let iα : Sn → X denote the composition of the inclusions Sn →
∨
i∈I

Sn and∨
i∈I

Sn → X, where the first one is the inclusion in the α-th copy, and let ηα : Sn → Y be

a continuous map such that [ηα] = ϕ([iα]).
We define η :

∨
α∈I

Sn → Y by η = +
α∈I

ηα. Then η∗([iα]) = [η ◦ iα] = [ηα] = ϕ([iα]) for all

α ∈ I. Since {iα : α ∈ I} is a set of generators of πn(
∨
i∈I

Sn) we obtain that η(γ) = ϕ(γ)

for all γ ∈ πn(
∨
i∈I

Sn).

Let J be an index set for the (n + 1)-cells of X. For each β ∈ J let gβ : Sn →
∨
α∈I

Sn

be the attaching map of the cell en+1
β . Note that gβ is nullhomotopic in X since the

corresponding characteristic map is an extension of gβ : Sn → X to the cone CSn.
Thus, [η ◦ gβ] = η∗([gβ]) = ψ([gβ]) = 0 since [gβ] = 0 in πn(X). Hence, there exists

continuous maps ϕβ : Dn+1 → Y such that φβ|Sn = η ◦ gβ.
We define f : X → Y as the dotted arrow in the diagram

⊔
β∈J

Sn
F
β∈J

gβ

//

i

��
push

∨
α∈I

Sn

inc

��
η

��

⊔
β∈J

Dn+1 F
β∈J

fβ

//

F
β∈J

φβ //

X

f

!!
Y
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Since the inclusion inc : Xn → X induces an epimorphism inc∗ : πn(Xn) → πn(X) by
1.4.5, then {inc∗([iα]) : α ∈ I} is a set of generators of πn(X). Note that f∗(inc∗([iα])) =
η∗([iα]) = ϕ([iα]). Hence, f∗ = ϕ.

Theorem 1.4.34 (Hurewicz’s theorem). Let n ∈ N, n ≥ 2 and let X be an (n − 1)-
connected topological space. Then H̃i(X) = 0 for i < n and the Hurewicz map h : πn(X)→
Hn(X) is an isomorphism.

Proof. By CW-approximation we may suppose thatX is a CW-complex. SinceX is (n−1)-
connected, by 1.4.20 we may also suppose that Xn−1 = ∗. Finally, since πi(X) = πi(Xn+1)
for i < n and Hi(X) = Hi(Xn+1) for i < n, we may suppose that X = Xn+1. Thus, X is
in the hypothesis of the previous lemma and clearly H̃i(X) = 0 for i < n.

We consider the long exact sequence of homotopy groups associated to the pair (X,Xn):

. . . // πn+1(X,Xn)
∂n+1 // πn(Xn) // πn(X) // πn(X,Xn) // . . .

Since (X,Xn) is n-connected, πn(X) ' coker ∂n+1. By 1.4.22,

πn+1(X,Xn) = πn+1(X/Xn) = πn+1(
∨

β∈Jn+1

Sn+1) =
⊕

β∈Jn+1

Z

It is not hard to prove that the following diagram commutes

. . . // πn+1(X,Xn)
∂n+1 //

h
��

πn(Xn) //

h
��

πn(X) //

h
��

0 //

��

. . .

. . . // Hn+1(X,Xn)
∂n+1 // Hn(Xn) // Hn(X) // 0 // . . .

and that the maps h : πn+1(X,Xn) '
⊕

β∈Jn+1

Z → Hn+1(X,Xn) '
⊕

β∈Jn+1

Z and h :

πn(Xn) '
⊕
α∈Jn

Z→ Hn(Xn) '
⊕
α∈Jn

Z are isomorphisms.

Since the rows are exact, the map h : πn(X)→ Hn(X) is also an isomorphism.

We give now the relative version of Hurewicz’s theorem.

Theorem 1.4.35 (Relative version of Hurewicz’s theorem). Let n ∈ N, n ≥ 2 and let
(X,A) be an (n− 1)-connected topological pair such that A is simply-connected and non-
empty. Then H̃i(X,A) = 0 for i < n and πn(X,A) ' Hn(X,A).

Proof. By 1.4.19, we may suppose that (X,A) is a CW-pair. Let q : (X,A) → (X/A, ∗)
be the quotient map and consider the following diagram

πn(X,A)
q∗ //

h
��

πn(X/A)

h
��

Hn(X,A) q∗
// Hn(X/A)
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It is not difficult to prove that this diagram commutes. We have that q∗ : πn(X,A) →
πn(X/A) is an isomorphism by 1.4.22 and that q∗ : Hn(X,A) → Hn(X/A) is an isomor-
phism. Also h : πn(X/A) → Hn(X/A) is an isomorphism by the previous version of the
Hurewicz theorem. Hence, h : πn(X,A)→ Hn(X,A) is an isomorphism.

From the relative Hurewicz theorem we obtain the homological version of Whitehead’s
theorem.

Theorem 1.4.36. Let X and Y be simply connected CW-complexes and let f : X → Y
be a continuous map such that f∗ : Hn(X) → Hn(Y ) is an isomorphism for all n ∈ N0.
Then f is a homotopy equivalence.

Proof. We may suppose that f is a cellular map. From the hypotheses of the theorem
and from the long exact sequences of homotopy and homology groups associated to the
pair (Zf , X) we obtain that π1(Zf , X) = 0 and Hn(Zf , X) = 0 for all n ∈ N. Hence,
πn(Zf , X) = 0 for all n ∈ N by the relative version of Hurewicz’s theorem. Then the
inclusion i : X → Zf is a weak equivalence. Since X and Zf are CW-complexes, i is a
homotopy equivalence by Whitehead’s theorem. But f = ri, where r : Zf → Y is the
standard strong deformation retraction. Hence, f is a homotopy equivalence.

1.4.8 Homology decomposition

We study now homology decomposition of spaces, which will prove useful for our work.

Definition 1.4.37. Let Y be a topological space. A homology decomposition of Y is a
CW-complex X together with a homotopy equivalence f : X → Y and a sequence (Xn)n∈N
of subcomplexes of X satisfying

(a) Xn ⊆ Xn+1 for all n ∈ N.

(b) X =
⋃
n∈N

Xn.

(c) X1 is a Moore space of type (H1(Y ), 1).

(d) For all n ∈ N, Xn+1 is the mapping cone of a cellular map gn : Mn → Xn, where
Mn is a Moore space of type (Hn+1(Y ), n), and gn is such that the induced map
(gn)∗ : Hn(Mn)→ Hn(Xn) is trivial.

Remark 1.4.38. The CW-complexes Xn satisfy Hi(Xn) = Hi(Y ) for i ≤ n and Hi(Xn) = 0
for i > n. Indeed, for n = 1 this holds by (c). Suppose that the statement is true for Xn.
Consider the long exact sequence of homology associated to the pair (Xn+1, Xn):

. . . // Hi(Xn) // Hi(Xn+1) // Hi(Xn+1, Xn)
∂i // Hi−1(Xn) // . . .

Since (Xn+1, Xn) is a CW-pair, Hi(Xn+1, Xn) ' Hi(Xn+1/Xn) ' Hi(ΣMn) ' Hi−1(Mn).
It is easy to prove that under this isomorphism the boundary map ∂n+1 coincides with
(gn)∗ which is trivial. Since Hn+1(Xn) = 0 we obtain that Hn+1(Xn+1) ' Hn(Mn) =
Hn+1(Y ). Since Hi(Xn+1, Xn) ' Hi−1(Mn) = 0 for i 6= n + 1 and ∂n+1 = 0 we obtain
that Hi(Xn) ' Hi(Xn+1) for i 6= n+ 1.
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Theorem 1.4.39. Every simply-connected CW-complex admits a homology decomposi-
tion.

Proof. Let Y be a simply-connected CW-complex. We will build the CW-complexes Xn of
the above definition inductively, together with maps fn : Xn → Y inducing isomorphisms
in Hi for i ≤ n. Since Y is simply-connected we take X1 = ∗ and f1 : X1 → Y any map.

Suppose we have constructed CW-complexes Xj and maps fj : Xj → Y for j ≤ n
such that the spaces Xj satisfy the conditions of the previous definition and fj induces
isomorphisms in Hi for i ≤ j. Let Zfn be the mapping cylinder of fn, let i : Xn → Zfn be
the inclusion and let r : Zfn → Y be the standard strong deformation retraction.

Note that by the long exact sequence in homology associated to the pair (Zfn , Xn) we
have that Hi(Zfn , Xn) = 0 for i ≤ n since fn induces isomorphisms in Hi for i ≤ n. By
the Hurewicz theorem and the long exact sequence mentioned previously we obtain that
πn+1(Zfn , Xn) ' Hn+1(Zfn , Xn) ' Hn+1(Zfn) ' Hn+1(Y ).

As we have seen before, we can build a Moore space of type (Hn+1(Y ), n), Mn, as
follows. We take a wedge of spheres Snλ corresponding to a set {gλ : λ ∈ Λ} of generators
of Hn+1(Y ) and we attach (n+ 1)-cells according to certain relations {rα =

∑
λ∈Λ

m
(α)
λ gλ =

0 : α ∈ J} such that the group Hn+1(Y ) is the abelian group generated by elements
{gλ : λ ∈ Λ} satisfying the relations {rα =

∑
λ∈Λ

m
(α)
λ gλ = 0 : α ∈ J}.

Under the isomorphism πn+1(Zfn , Xn) ' Hn+1(Y ), each generator gλ corresponds to
a map fλ : (Dn+1, Sn) → (Zfn , Xn) which may be supposed cellular. Hence, from the
relations above we get

∑
λ∈Λ

m
(α)
λ [fλ] = 0 in πn+1(Zfn , Xn) for all α ∈ J . The corresponding

homotopy Hα may be considered as a map Hα : (CDn+1,CSn) → (Zfn , Xn) such that
Hαinc =

∑
λ∈Λ

m
(α)
λ fλ, where inc : (Dn+1, Sn)→ (CDn+1,CSn) is the inclusion map and it

also might be taken cellular.
For λ ∈ Λ, let iλ : Sn →

∨
i∈Λ

Sn be the inclusion in the λ-th copy. We consider the

following commutative diagram of solid arrows

⊔
α∈J

Sn
F
α∈J

(
P
λ∈Λ

m
(α)
λ iλ)

//

�� push

zzttttttttttttttttttttt

∨
i∈Λ

Sn

��

+
λ∈Λ

fλ|Sn

��{{vvvvvvvvvvvvvvvvvvv⊔
α∈J

Dn+1

zztttttttttttttttttttt F
α∈J

Hα|CSn

00

//Mn

gn

((

{{vvvvvvvvvvvvvvvvvvvvvvv⊔
α∈J

CSn
C(
F
α∈J

(
P
λ∈Λ

m
(α)
λ iλ))

//

inc �� push

∨
i∈Λ

CSn

+
λ∈Λ

fλ

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

��

Xn

inc
��⊔

α∈J
CDn+1 //

F
α∈J

Hα

33CMn
ϕn // Zfn
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and define the dotted arrows gn and ϕn such that the whole diagram commutes. Note
that gn and ϕn are also cellular maps. Let Xn+1 be the cone of the map gn and let
f ′n+1 : Xn+1 → Zfn be defined so as to make commutative the following diagram

Mn
gn //

��
push

Xn

�� inc

��

CMn
//

ϕn //

Xn+1
f ′n+1

""FFFFFFFF

Zfn

By construction, it is not hard to prove that f ′n+1 induces an isomorphism (f ′n+1)∗ :
Hn+1(Xn+1, Xn)→ Hn+1(Zfn , Xn). Then, by the five-lemma we obtain that f ′n+1 induces
isomorphisms (f ′n+1)∗ : Hi(Xn+1) → Hi(Zfn) for i ≤ n. We take fn+1 = rf ′n+1 : Xn+1 →
Y which also induces isomorphisms in Hi for i ≤ n since r is a homotopy equivalence. Let
X =

⋃
n∈N

Xn and f : X → Y be defined by f(x) = fn(x) if x ∈ Xn. It is clear that f

is well defined and continuous and that f induces isomorphisms in all homology groups.
Since X and Y are simply connected CW-complexes it follows that f is a homotopy
equivalence.



Chapter 2

Fibrations and spectral sequences

Spectral sequences constitute a powerful computational tool whose areas of application
include algebra, topology and geometry. They where introduced by Leray in 1946 to
compute sheaf cohomology, but some years later other mathematicians noticed that his
idea could be applied to other settings. One of them was J.-P. Serre, who introduces a
spectral sequence associated to fibration of topological spaces [17]. The Serre spectral
sequence is a key tool in algebraic topology which has many applications including, for
example, computations regarding homotopy groups of spheres and a generalization of
Hurewicz’s theorem.

In the mid fifties, Federer also applies the machinery of spectral sequences to study
homotopy groups of spaces of maps and develops the spectral sequence named after him.

In this chapter we begin by recalling the definition of fibrations and some basic prop-
erties, such as the long exact homotopy sequence associated to a fibration. Then, we give
the definition and construction of Postnikov towers, which can be thought as a kind of
homotopy decomposition.

In the third section we give an algebraic approach to spectral sequences with some
examples and results. We then introduce Serre spectral sequence in section 4, using in its
proof the algebraic results given before. We also include important applications of it, such
as the generalized version of Hurewicz’s theorem and some others about homotopy group
of spheres.

Section 5 deals with localization of topological spaces. The key theorem of this section
is proved with the aid of Serre spectral sequence.

In the last section we give an alternative construction of Federer’s spectral sequence [6]
which is useful to obtain information about A-homotopy groups of spaces. We also use it
to prove a generalization of Hopf-Whitney theorem (2.5.6).

2.1 Fibrations

Fibrations constitute a class of continuous maps of great importance in algebraic topology.
Together with cofibrations and weak equivalences they form the basis of the classical
homotopy theory and serve as models for abstract homotopy theories.

Before starting to work with fibrations we will define lifting properties so as to have

61
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language for later use.

Definition 2.1.1. Let f : W → X and g : Y → Z be continuous maps between topological
spaces. We say that f has the left lifting property with respect to g or that g has the right
lifting property with respect to f if for every continuous maps h : W → Y and k : X → Z
such that gh = kf there exists a map φ : X → Y such that φf = h and gφ = k.

W
h //

f
��

Y

g

��
X

k
//

φ
>>

Z

Definition 2.1.2. Let f : X → Y be a continuous map and let F be a class of continuous
maps between topological spaces. We say that f has the left (resp. right) lifting property
with respect to F if f has the left (resp. right) lifting property with respect to g for all
g ∈ F .

Definition 2.1.3. Let f : Y → Z be a continuous map and let X be a topological space.
We say that f has the homotopy lifting property with respect to X if f has the right lifting
property with respect to i0 : X → IX, i.e. if for every continuous map g : X → Y and
every homotopy H : IX → Z such that Hi0 = fg there exists a homotopy H : IX → Y
such that Hi0 = g and fH = H.

X
g //

i0
��

Y

f

��
IX

H
//

H
==

Z

Now we are ready to define fibrations.

Definition 2.1.4. Let p : E → B be a continuous map. We say that p is a fibration if it
has the homotopy lifting property with respect to every space X.

In this case, B is called the base space of the firbation p and E is called the total space
of p. If b0 ∈ B, the space Fb0 = p−1(b0) is called the fibre over b0.

Examples 2.1.5.

(a) If B and F are topological spaces, the projection p : B × F → B is a fibration with
fibre F .

(b) Fibre bundles over paracompact spaces are fibrations.

(c) The Hopf map η : S3 → S2 is defined in the following way. We interpret S3 =
{(z, w) ∈ C2 / |z|2 + |w|2 = 1} and S2 = {(z, x) ∈ C × R / |z|2 + |x|2 = 1} and we
define η(z, w) = (2zw, |z|2 − |w|2). Then η : S3 → S2 is a fibration with fibre S1.

(d) Let X be a topological space and let x0 ∈ X. Let PX = {γ : [0, 1]→ X | γ(0) = x0}
and let p : PX → X be defined by p(γ) = γ(1). Then p is a fibration and Fx0 = ΩX.
The fibration p is called the path-space fibration.
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(e) Related to the previous example is the following construction. Let f : A → B be a
continuous map and let Ef ⊆ A×BI be defined by Ef = {(a, γ) ∈ A×BI | γ(0) =
f(a)}. Note that Ef can also be defined by the pullback diagram

Ef
pr1 //

pr2

��
pull

A

f

��
BI

ev0

// B

Then the map p : Ef → B defined by p(a, γ) = γ(1) is a fibration.

The construction of the last example above is very important since it gives us a way to
write any map as a composition of a fibration and a homotopy equivalence. Hence, if we
are only interested in homotopy types, any map can be converted into a fibration.

Proposition 2.1.6. Let f : A→ B be a continuous map. Then there exists a factorization
f = pi with p a fibration and i a homotopy equivalence.

Proof. Let Ef and p : Ef → B be defined as above and define i : A → Ef by i(a) =
(a, cf(a)), where cf(a) is the constant path at f(a). It is easy to prove that i is a strong
deformation retract, hence a homotopy equivalence. Clearly, pi = f .

Definition 2.1.7. Let p : E → B be a continuous map. We say that p is a Serre fibration
if it has the homotopy lifting property with respect to Dn for all n ≥ 0.

Note that any fibration is a Serre fibration.
From the fact that there is a homeomorphism of topological pairs (In+1, In × {0}) '

(IDn, Dn×{0}) it follows that a continuous map p is a Serre fibration if and only if it has
the homotopy lifting property with respect to In for all n ≥ 0.

We will now derive the long exact homotopy sequence associated to a Serre fibration
p : E → B. This is a very useful tool and constitutes one of the key homotopy properties
of fibrations. It relates the homotopy groups of the base space, the total space and the
fibre of a Serre fibration p : E → B and it is obtained in the following way.

Fix b0 ∈ B and e0 ∈ p−1(b0). Let F = p−1(b0). We consider the long exact sequence of
homotopy groups associated to the topological pair (E,F ):

. . . // πn(F, e0)
i∗ // πn(E, e0) // πn(E,F, e0) ∂ // πn−1(F, e0) // . . .

We shall prove that πn(E,F, e0) ' πn(B, b0). More precisely, we will prove that the
Serre fibration p induces an isomorphism p∗ : πn(E,F, e0) → πn(B, {b0}, b0) ' πn(B, b0)
for all n ≥ 1.

In order to do this more easily, we will work with an alternative description of the
homotopy groups. Let X be a topological space and let x0 ∈ X and A ⊆ X such that
x0 ∈ A. When needed, for n ≥ 2, we regard In−1 as the subspace In−1 × {0} ⊆ In. Let

Jn−1 =
n−1⋃
i=1

{(x1, . . . , xn) ∈ In / xi = 0 or xi = 1} ∪ {(x1, . . . , xn) ∈ In / xn = 1}
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Note that In−1 ∪ Jn−1 = ∂In.
It is known that πn(X,x0) can also be defined as [(In, ∂In), (X,x0)] and that

πn(X,A, x0) can also be defined as [(In, In−1, Jn−1), (X,A, x0)]. And it is easy to prove
that we can make a slight modification in this last alternative definition to obtain that
πn(X,A, x0) is in bijection with [(In, Jn−1, In−1), (X,A, x0)].

We will see now that p∗ : πn(E,F, e0) → πn(B, {b0}, b0) ' πn(B, b0) is surjective. Let
[g] ∈ πn(B, b0) with g : (In, ∂In) → (B, b0) and let q : In → In/In−1 be the quotient
map. Let ψ : (In/In−1, ∂In/In−1, ∗) → (In, ∂In, ∗) be a homeomorphism. There is a
commutative diagram

In−1
ce0 //

i0
��

E

p

��
In

gψq
// B

Since the topological pair (In, In−1) is homeomorphic to (IDn−1, Dn−1 × {0}) and p is
a Serre fibration, there exists a continuous map g′ : In → E such that pg′ = gψq and
g′i0 = ce0 . Thus, there exists a continuous map g′′ : (In/In−1, ∂In/In−1, ∗) → (E,F, e0)
such that g′′q = g′. Let g = g′′ψ−1. Note that g : (In, Jn−1, In) → (E,F, e0) and that
pgψq = pg′′ψ−1ψq = pg′′q = pg′ = gψq.

In
q //

g′ $$HHHHHHHHHH In/In−1 ψ //

g′′

��

In

g

��g
{{vvvvvvvvvv

E p
// B

But since q is surjective and ψ is a homeomorphism we conclude that pg = g. Thus p∗ is
surjective.

We prove now that p∗ : πn(E,F, e0) → πn(B, {b0}, b0) ' πn(B, b0) is injective. Let
α, β : (In, Jn−1, In−1) → (E,F, {e0}) be continuous maps such that p ◦ α ' p ◦ β and let
H : In × I → B be a homotopy between p ◦ α and p ◦ β relative to ∂In.

We define γ : In × {0, 1} ∪ In−1 × {0} × I → E by

γ(x1, x2, . . . , xn−1, xn, t) =


α(x1, . . . , xn) if t = 0
β(x1, . . . , xn) if t = 1

e0 if xn = 0

To prove injectivity, we must demonstrate that there exists a lift

In × {0, 1} ∪ In−1 × {0} × I
γ //

inc

��

E

p

��
In × I

H
//

H

55

B

since if such a lift exists, then H(∂In × I) ⊆ F and H(In−1 × {0} × I) = {e0}.
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Note that the topological pair (I2, I×{0, 1}∪{0}×I) is homeomorphic to (I2, I×{0}).
Taking product with In−1 gives a homeomorphism (In+1, In−1 × {0, 1} ∪ {0} × In−1) '
(In+1, In × {0}).

Since the inclusion i : In → In+1 has the left lifting property with respect to p, so does
the inclusion In−1 × {0, 1} ∪ {0} × In−1 → In+1. Hence, the desired lifting exists. Thus,
p∗ is injective.

In consequence, p∗ : πn(E,F, e0) → πn(B, b0) is a bijection for n ≥ 1 and we obtain a
long exact sequence

. . . // πn(F, e0)
i∗ // πn(E, e0)

p∗ // πn(B, b0) ∂ // πn−1(F, e0) // . . .

which is called the exact homotopy sequence of the Serre fibration p : E → B.
As an example of an application, consider the exact homotopy sequence of the Hopf

fibration η : S3 → S2.

. . . // π3(S1)
i∗ // π3(S3)

η∗ // π3(S2) ∂ // π2(S1)
i∗ // π2(S3)

η∗ // π2(S2) ∂ // π1(S1)
i∗ // π1(S3)

η∗ // . . .

Since π1(S3) and π2(S3) are trivial by corollary 1.4.8, we obtain that π2(S2) ' π1(S1) ' Z.

Note that from the homology of Sn and the Hurewicz theorem we can also deduce that
πn(Sn) ' Z for all n ≥ 2.

On the other hand, π2(S1) = 0 and π3(S1) = 0 because the universal covering of S1 is
contractible. Hence, from the exact sequence above we obtain that π3(S2) ' π3(S3) ' Z.

Another important homotopy property of fibrations is that changing the base point
in the base space we obtain homotopy equivalent fibers provided that the base space is
path-connected.

Proposition 2.1.8. Let p : E → B be a Serre fibration and let b0, b1 ∈ B. Let γ : I → B
be a continuous map such that γ(0) = b0 and γ(1) = b1. Then γ induces a homotopy
equivalence φγ : Fb0 → Fb1.

The proof can be found, for example, in [8].

2.1.1 Postnikov towers

In this subsection we recall the definition and construction of Postnikov towers.

Definition 2.1.9. Let X be a path-connected topological space. A Postnikov tower for
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X is a commutative diagram
...

��
X3

p3

��
X2

p2

��
X

f1

//
f2

>>}}}}}}}}

f3

FF���������������
X1

such that

(a) For all j ≥ 2, the map pj : Xj → Xj−1 is a fibration.

(b) The induced map (fn)∗ : πi(X)→ πi(Xn) is an isomorphism for i ≤ n.

(c) πi(Xn) = 0 for i > n.

Note that if Fn is the fibre of the fibration pn, from the exact homotopy sequence for
pn it follows that Fn is an Eilenberg - MacLane space of type (πn(X), n).

Thus, the spaces Xn can be thought as ‘homotopy approximations’ of X, and we have
better approximations as n increases.

We want to prove that any path-connected CW-complex admits a Postnikov tower, for
which we need the following lemma.

Lemma 2.1.10. Let (X,A) be a relative CW-complex and let Y be a path-connected
topological space. Suppose that for all n ∈ N0 such that there exists at least one n-cell in
X−A we have that πn−1(Y ) = 0. Then every continuous map f : A→ Y can be extended
to X, i.e. for every continuous map f : A→ Y there exists a continuous map f : X → Y
such that f |A = f .

Its proof follows from the fact that a nullhomotopic map Sn−1 → X can be extended
to the disk Dn.

Theorem 2.1.11. Let X be a path-connected CW-complex. Then X admits a Postnikov
tower.

Proof. By 1.4.17, we may build a CW-complex Xn such that (Xn, X) is an (n+ 1)-model
of (CX,X). Moreover, we may construct Xn by attaching cells of dimension greater than
(n+ 1) to X. We take fn : X → Xn to be the inclusion.

By the above lemma, the map fn : X → Xn can be extended to a map pn+1 : Xn+1 →
Xn since Xn+1 is obtained from X by attaching cells of dimension greater than (n + 2)
and πi(Xn) = 0 for i > n.

Now, we will turn the maps pn into fibrations. We proceed by induction in j. For
j = 2, consider a factorization p2 = p′2i2 with i2 : X2 → X ′2 a homotopy equivalence and
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p2 : X ′2 → X1 a fibration. For j ≥ 3, we write pjij−1 = p′jij with ij : Xj → X ′j a homotopy
equivalence and p′j : X ′j → X ′j−1 a fibration.

Thus, we obtain a commutative diagram

...

��

...

��
X3

p3

��

i3 // X ′3

p′3
��

X2

p2

��

i2 // X ′2

p′2
��

X
f1

//
f2

>>~~~~~~~~

f3

GG����������������
X1

i1=Id // X1

and clearly, the spaces X ′n, n ∈ N, together with the maps infn, n ∈ N, and the fibrations
p′n, n ∈ N, constitute a Postnikov tower for X.

Definition 2.1.12. Let p : E → B be a fibration with fibre F . We say that p is a principal
fibration if there is a commutative diagram

F //

��

E //

��

B

��
ΩB′ // F ′ // E′ // B′

where the bottom row is a fibration sequence (i.e F ′ is the fibre of the map E′ → B′) and
where the vertical arrows are weak equivalences.

Theorem 2.1.13. Let X be a path-connected CW-complex. Then X admits a Postnikov
tower of principal fibrations if and only if π1(X) acts trivially on πn(X) for all n > 1.

For its proof, see [8].
We end this section stating another result from [8] that we will need later.

Proposition 2.1.14. Let X be a path-connected CW-complex and let

...

��
X3

p3

��
X2

p2

��
X

f1

//
f2

>>}}}}}}}}

f3

FF���������������
X1

be a Postnikov tower for X. Then, the induced map X → lim
←−

Xn is a weak equivalence.
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2.2 Spectral sequences

In this section we will recall the basic notions about spectral sequences and fix the cor-
responding notation for later use throughout this thesis. For a comprehensive exposition
on spectral sequences and applications to algebra and topology, the reader might consult
[10].

2.2.1 Definition

Definition 2.2.1. A (homological) spectral sequence (starting in a ≥ 0) is a collection
(Er, dr)r≥a of (Z × Z)-graded modules Er = (Erp,q)p,q∈Z together with morphisms drp,q :
Ep,q → Ep−r,q+r−1 such that drp,qd

r
p+r,q−r+1 = 0 for all p, q, r, and explicit isomorphisms

Er+1
p,q ' Hp,q(Er) = ker drp,q/Im drp+r,q−r+1.

The (Z × Z)-graded module (Er, dr) is called the r-th page of E (or the r-th term of
E). Via the isomorphism Er+1

p,q ' Hp,q(Er), Er+1 can be identified to a subquotient of
Er. We define the total degree of Erp,q by n = p+ q. Clearly, the boundary morphisms dr

have total degree −1.
In a similar way we define cohomological spectral sequences.

Definition 2.2.2. A cohomological spectral sequence (starting in a ≥ 0) is a collection
(Er, dr)r≥a of Z×Z-graded modules Er = (Ep,qr )p,q together with morphisms dp,qr : Ep,qr →
Ep+r,q−r+1
r such that drp,qd

r
p−r,q+r−1 = 0 for all p, q, r, and explicit isomorphisms Ep,qr+1 '

Hp,q(Er) = ker dp,qr /Im dp−r,q+r−1
r .

For the following construction we will work with homological spectral sequences but
the cohomological version can be done too.

Let E be a spectral sequence starting in page a. We define Zap,q = Eap,q, B
a
p,q = 0,

Za+1
p,q = ker dap,q, B

a+1
p,q = Im dap,q. Then Ea+1

p,q = Za+1
p,q /B

a+1
p,q . Let πa+1

p,q : Za+1
p,q → Ea+1

p,q be
the quotient map. We define Za+2

p,q = (πa+1
p,q )−1(ker da+1

p,q ), Ba+2
p,q = (πa+1

p,q )−1(Im da+1
p,q ). By

the first isomorphism theorem, it is easy to verify that Za+2
p,q /B

a+2
p,q = Ea+2

p,q .
Thus, we define πa+2

p,q : Za+2
p,q → Ea+2

p,q as the quotient map and repeat the above
procedure. Inductively, for each (p, q) ∈ Z×Z we construct sequences of modules (Bj

p,q)j≥a
and (Zjp,q)j≥a such that

0 = Ba
p,q ⊆ Ba+1

p,q ⊆ . . . ⊆ Za+1
p,q ⊆ Zap,q = Eap,q

We define

B∞p,q =
∞⋃
r=a

Br
p,q , Z∞p,q =

∞⋂
r=a

Zrp,q and E∞p,q = Z∞p,q/B
∞
p,q.

The bigraded module E∞ = (E∞p,q)p,q∈Z is called limit of the spectral sequence E.
We say that the spectral sequence E converges if for all p, q ∈ Z there exists r(p, q) ≥ a

such that dr : Erp,q → Erp−r,q+r−1 is trivial for r ≥ r(p, q).
In this case, Er+1

p,q is isomorphic to a quotient of Erp,q and E∞p,q is isomorphic to the
direct limit

Er(p,q)p,q → Er(p,q)+1
p,q → . . .
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Definition 2.2.3. A first quadrant spectral sequence is a spectral sequence E such that
Ep,q = 0 if p < 0 or q < 0.

Note that if E is a first quadrant spectral sequence then E converges. Moreover, for
all (p, q) ∈ Z× Z there exists r0 such that Erp,q = E∞p,q if r ≥ r0.

Definition 2.2.4. Let E be a spectral sequence. We say that E collapses at page k if
drp,q = 0 for r ≥ k and for all p, q ∈ Z. In consequence, Er ' Er+1 ' . . . ' E∞.

Clearly, if the spectral sequence E collapses at page k then it converges.
We now recall the definition of a filtration of an R-module in order to complete the

notion of convergence.

Definition 2.2.5. Let M be an R-module. A filtration of M is a sequence of R-modules
(FnM)n∈Z such that {0} ⊆ . . . ⊆ FnM ⊆ Fn+1M ⊆ . . . ⊆M .

We will say that the filtration is bounded from below (resp. bounded from above) if
there exists a ∈ Z such that FnM = 0 for n ≤ a (resp. FnM = M for n ≥ a). We say
that a filtration is bounded if it is bounded from below and above.

Note that if M =
⊕
n∈N

Mn is a graded module and (FnM)n∈Z is a filtration of M then

(FnM ∩Mj)n∈Z is a filtration of Mj , for all j ∈ N.

Definition 2.2.6. Let E = (Er, dr)r≥a be a convergent spectral sequence. We say that E
converges to the graded module H =

⊕
n∈Z

Hn if there exists a filtration (FpH)p∈Z of H such

that for all p, q ∈ Z, E∞p,q is isomorphic to the quotient (FpH ∩Hp+q)/(Fp−1H ∩Hp+q).

2.2.2 Exact couples

Definition 2.2.7. An exact couple is a diagram of R-modules

A
i // A

j��~~~~~~~

E

k

__@@@@@@@

which is exact at each module, i.e. ker i = Im k, ker j = Im i and ker k = Im j. We will
denote it (A,E, i, j, k).

Given an exact couple as above, we consider the map d : E → E defined by d = j ◦ k.
From exactness, it is clear that d2 = 0. Hence, we may compute the homology of E
with respect to d and define E′ = ker d/Im d. We also define A′ = Im i and morphisms
i′ : A′ → A′, j′ : A′ → E′ and k′ : E′ → A′ by i′ = i|A′ , j′(i(a)) = [j(a)] and k′([e]) = k(e).

It is routine to check that k′ and j′ are well defined. Indeed, j(a) ∈ ker d since d(j(a)) =
(jkj)(a) = 0 and if i(a1) = i(a2) then a1 − a2 ∈ ker i = Im k, thus, j(a1) − j(a2) ∈
Im jk = Im d. Hence, j is well defined. Note also that if [e] ∈ E′ then e ∈ ker d, hence
jk(e) = d(e) = 0. Thus, k(e) ∈ ker j = Im i = A′. Then, Im k′ ⊆ A′ as desired. Moreover,
if [e] = 0 in E′ then e ∈ Im d ⊆ Im j = ker k. In consequence, k′ is well defined.
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The diagram

A′
i′ // A′

j′~~}}}}}}}}

E′
k′

``AAAAAAAA

is called the derived couple of the exact couple (A,E, i, j, k).
A crucial result is the following

Proposition 2.2.8. The derived couple of an exact couple is an exact couple.

The proof is easy and we omit it. It can be found in [10].
This result means that we can iterate the above process indefinitely. Given an exact

couple (A,E, i, j, k), we will denote its n-th derived couple by (A(n), E(n), i(n), j(n), k(n)).
Exact couples give rise to spectral sequences in the following way. Suppose that

A
i // A

j��~~~~~~~

E

k

__@@@@@@@

is an exact couple where A and E are (Z × Z)-graded modules and where the maps
i, j and k have bidegrees (1,−1), (0, 0) and (−1, 0) respectively. Let (A′, E′, i′, j′, k′)
denote its derived couple. The modules A′ and E′ inherit a graduation from A and E
since the morphisms i, j and k are bigraded. Moreover, it is clear that i′ and k′ have
the same bidegrees as i and k, i.e. (1,−1) and (−1, 0) respectively. Regarding j′, since
j′(i(a)) = [j(a)] it follows that deg(j′) + deg(i) = deg(j). Hence, j′ has bidegree (−1, 1).

By induction, it is easy to prove that for all n ∈ N, the morphisms i(n), j(n) and k(n)

have bidegrees (1,−1), (−n, n) and (−1, 0) respectively.
For r ∈ N, let Er = E(r−1) and dr = j(r−1) ◦ k(r−1), where (A(0), E(0), i(0), j(0), k(0)) =

(A,E, i, j, k) and d0 = j ◦ k . Hence, dr has bidegree (−r, r − 1). Thus, (Er, dr)r≥1 is an
spectral sequence.

In most topological applications one encounters an exact couple

A
i // A

j��~~~~~~~

E

k

__@@@@@@@

where A and E are (Z×Z)-graded modules and where the maps i, j and k have bidegrees
(0, 1), (0, 0) and (−1,−1) respectively. In this case, to obtain the spectral sequence as
above we will need to make a change of indexes. If A = (An,p)n,p and E = (En,p)n,p, we
call q = n−p and consider A = (Ap,q)p,q and E = (Ep,q)p,q. Since i, j and k have bidegrees
(0, 1), (0, 0) and (−1,−1) respectively in n and p, they have bidegrees (1,−1), (0, 0) and
(−1, 0) respectively in p and q. So, we are in the hypothesis of the previous construction.
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A useful presentation of this case of bigraded exact couples is by means of the following
‘staircase’ diagram

...
i
��

...
i
��

. . . k // An,p
j //

i��

En,p
k // An−1,p−1

j //

i��

. . .

. . . k // An,p+1
j //

i��

En,p+1
k // An−1,p

j //

i��

. . .

. . . k // An,p+2
j //

i��

En,p+2
k // An−1,p+1

j //

i��

. . .

...
...

Note that the sequences formed by arrows i, j and k in succession are exact and these are
arranged in staircase form.

Example 2.2.9. Let X be a topological space X and let {Xp}p∈Z be an increasing se-
quence of subspaces of X such that

⋃
p∈Z

Xp = X. For example, X might be a CW-complex

and Xp its p-skeleton. Take

A =
⊕
n,p∈Z

Hn(Xp) and E =
⊕
n,p∈Z

Hn(Xp, Xp−1)

and let i, j and k be the maps defined by the long exact sequence of homology groups
associated to the pairs (Xp, Xp−1) for p ∈ N:

. . . k // Hn+1(Xp−1) i // Hn+1(Xp)
j // Hn+1(Xp, Xp−1) k // Hn(Xp−1) i // . . .

This exact couple induces a spectral sequence which, under certain additional hypotheses
on the filtration of X, will converge to the homology of X. Note that if X is a CW-complex
and we consider the skeletal filtration, the morphism d is just the cellular boundary map.
We will come back to this example later.

Now we will impose some extra conditions on the exact couple (A,E, i, j, k). As above,
suppose that A and E are (Z×Z)-graded modules and that the maps i, j and k have bide-
grees (0, 1), (0, 0) and (−1,−1) respectively, and let (Er, dr) denote the induced spectral
sequence.

(1) For fixed n ∈ N there are only a finite number of nontrivial modules En,p i.e.
in the staircase diagram above only finitely many terms in each E column are not 0. By
exactness this is equivalent to saying that all but a finite number of maps in each A-column
are isomorphisms.

Two important consequences arise from (1). Firstly, since the differential dr has bide-
gree (−r, r − 1) (and total degree −1) it follows that the spectral sequence (Er, dr) con-
verges. Secondly, for all n ∈ N there exists modules An,−∞ and An,+∞ and integers a(n)
and b(n) such that An,p ' An,−∞ for all p ≤ a(n) and An,p ' An,+∞ for all p ≥ b(n).
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Taking this into account, we can state the other conditions to consider:
(2) An,−∞ = 0 for all n ∈ Z.
(3) An,+∞ = 0 for all n ∈ Z.

Theorem 2.2.10. Let (A,E, i, j, k) be an exact couple such that A and E are (Z × Z)-
graded modules and that the maps i, j and k have bidegrees (0, 1), (0, 0) and (−1,−1)
respectively, and let (Er, dr) denote the induced spectral sequence. Then

(a) If conditions (1) and (2) are satisfied then the induced spectral sequence converges to
the graded module

⊕
n∈Z

An,+∞. Moreover, for all p, q ∈ Z, E∞p,q is isomorphic to the

quotient F pn/F
p−1
n , where n = p+ q and F pn is the image of the map An,p → An,+∞.

(b) If conditions (1) and (3) are satisfied then the induced spectral sequence converges
to the graded module

⊕
n∈Z

An,−∞. Moreover, for all p, q ∈ Z, E∞p,q is isomorphic

to the quotient F pn−1/F
p−1
n−1 , where n = p + q and F pn−1 is the kernel of the map

An−1,−∞ → An−1,p.

Proof. Let (A(r), E(r), i(r), j(r), k(r)) denote the r-th derived couple of (A,E, i, j, k). For
each r ∈ N there is an exact sequence

E
(r)
n+1,p+r−1

k(r)
// A

(r)
n,p+r−2

i(r) // A
(r)
n,p+r−1

j(r) // E
(r)
n,p

k(r)
// A

(r)
n−1,p−1

i(r) // A
(r)
n−1,p

j(r) // E
(r)
n−1,p−r+1

Fix n and p. If r is sufficiently large, then the first and the last terms of this sequence
are 0 by condition (1). Since Arm,p = (i(r−1) ◦ . . . ◦ i(1) ◦ i)(Am,p−r) then for sufficiently

large r the last two A terms of this sequence are 0 by condition (2). Thus, E(r)
n,p =

A
(r)
n,p+r−1/i

(r)(A(r)
n,p+r−2) = (i(r−1) ◦ . . . ◦ i(1) ◦ i)(An,p)/(i(r) ◦ i(r−1) ◦ . . . ◦ i(1) ◦ i)(An,p−1).

Hence E∞n,p is isomorphic to the quotient F pn/F
p−1
n .

We prove now the second statement. As before, if r is sufficiently large, then the first
and the last terms of the sequence above as well as the two first A terms are 0. Hence,
E

(r)
n,p = ker(i(r) : A(r)

n−1,p−1 → A
(r)
n−1,p). We may suppose that An−1,p−r = An−1,p−r+1 =

An−1,−∞, thus there are epimorphisms ir−1 : An−1,−∞ = An−1,p−r → An−1,p−1 and ir :
An−1,−∞ = An−1,p−r → An−1,p. There is a commutative triangle

An−1,−∞
β=ir−1

//

γ=ir %%JJJJJJJJJJJ A
(r)
n−1,p−1

i
��

A
(r)
n−1,p

Applying the first isomorphism theorem to β|ker γ = ker γ → ker i we obtain that ker i =
ker γ/ kerβ = Fn−1

p /Fn−1
p−1 .

Examples 2.2.11.
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(a) We return to example 2.2.9. Suppose, in addition, that Xp = ∅ for p < 0 and that,
given n, the inclusion Xp ↪→ X induces isomorphisms in Hn for sufficiently large p.
Then the exact couple defined there satisfies conditions (1) and (2) and the induced
spectral sequence converges to the homology of X.

In particular, if we take Xp to be the p-skeleton of X for all p ∈ N0, then the
conditions mentioned above are satisfied and hence the induced spectral sequence
converges to the homology of X. In this case, the first page of this spectral sequence
has (at most) one nontrivial row, namely E1

p,0 = Hp(Xp, Xp−1) =
⊕

p-cells of X

Z.

As was noted in example 2.2.9, the differential d is the cellular boundary map. Hence
the nontrivial row of the induced spectral sequence coincides with the cellular chain
complex of X. Since this spectral sequence converges to the singular homology of X
it follows that cellular homology groups coincide with singular homology ones.

(b) We see now the cohomological version of example 2.2.9. As it was defined there, let
X be a topological space X and let {Xp}p∈Z be an increasing sequence of subspaces
of X such that

⋃
p∈Z

Xp = X. As above, suppose that Xp = ∅ for p < 0 and that for

all n ∈ N, the inclusion Xp ↪→ X induces isomorphisms in Hn for sufficiently large
p.

Now define

A =
⊕
n,p∈Z

H−n(X−p) and E =
⊕
n,p∈Z

H−n(X−p+1, X−p)

and let i, j and k be the maps defined by the long exact sequence of cohomology
groups associated to the pairs (Xp+1, Xp) for p ∈ N:

. . . j // Hn(Xp+1, Xp)
k // Hn(Xp+1) i // Hn(Xp)

j // Hn+1(Xp+1, Xp)
k // . . .

The exact couple (A,E, i, j, k) satisfies conditions (1) and (3) and the induced spec-
tral sequence converges to the cohomology of X.

2.3 Serre spectral sequence

Let p : E → B be a Serre fibration with B path-connected and let b0 ∈ B. By 2.1.8 all
the fibres are homotopy equivalent to F = Fb0 . Moreover, if γ ∈ π1(B) = π1(B, b0) then γ
induces a homotopy equivalence Lγ : F → F and hence isomorphisms (Lγ)∗ : Hn(F,G)→
Hn(F,G) for all n ∈ N and for all abelian groups G. Hence, π1(B) acts on Hn(F,G) with
action defined by γ.x = (Lγ)∗(x) for γ ∈ π1(B) and x ∈ Hn(F,G).

The following theorem is of great importance and is due to Serre ([17]). It gives a
relation between the homology groups of the base space, the total space and the fibre of
a Serre fibration by means of a spectral sequence: the Serre spectral sequence.
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Theorem 2.3.1. Let f : X → B a Serre fibration with fibre F , where B is a path-
connected CW-complex and let G be an abelian group. If π1(B) acts trivially on Hn(F ;G)
for all n ∈ N then there exists a homological spectral sequence {Erp,q, dr} which converges
to H∗(X;G) and such that E2

p,q ' Hp(B;Hq(F ;G)).

Proof. We consider the filtration ∅ ⊆ . . . ⊆ X−1 ⊆ X0 ⊆ X1 ⊆ . . . of X given by the
preimages of the skeletons of B, i.e. Xp = f−1(Bp) for p ≥ 0 and Xp = ∅ for p < 0. This
filtration induces an exact couple as in example 2.2.9 with

A =
⊕
n,p∈Z

Hn(Xp;G) and E =
⊕
n,p∈Z

Hn(Xp, Xp−1;G).

Since (B,Bp) is p-connected and f is a fibration, from the homotopy lifting property
of f it follows that (X,Xp) is also p-connected. Indeed, let b0 ∈ B0 be the base point
of B and suppose we are given a continuous map α : (Dr, Sr−1) → (X,Xp) with r ≤ n.
Since (B,Bp) is p-connected then fα : (Dr, Sr−1)→ (B,Bp) is nullhomotopic (as map of
topological pairs). Hence, there exists a homotopy H : Dr × I → B such that Hi0 = fα,
H(x, 1) = b0 for all x ∈ Dn and H(Sr−1×I) ⊆ Bp. Then, there is a commutative diagram
of solid arrows

Dr α //

i0
��

X

f

��
Dr × I

H
//

eH ;;

B

Since f is a fibration, there exists a homotopy H̃ making commutative the whole diagram.
Note that H̃(Sr−1 × I) ⊆ f−1(Bp) = Xp and H̃i1(Dr) ⊆ f−1(b0) ⊆ Xp. By, 1.4.5 α ' ∗.
Hence, (X,Xp) is p-connected.

Thus, by the Hurewicz theorem (1.4.34) it follows that Hn(X,Xp) = 0 if p ≥ max{1, n}.
Note that the result holds even if the spaces are not path-connected since we can apply
the Hurewicz theorem in each path-connected component. Then, the inclusion Xp ↪→ X
induces isomorphisms in Hn if p ≥ max{1, n}. From the universal coefficient theorem
(A.3) it follows that Xp ↪→ X induces isomorphisms in Hn( ;G) if p ≥ max{1, n}.

Then, for fixed n, Hn(Xp, Xp−1;G) is nontrivial only for a finite number of p’s. By
2.2.10, the induced spectral sequence converges to H∗(X;G).

The proof of the fact that E2
p,q ' Hp(B;Hq(F ;G)) can be found in [9].

We will give now two basic examples.

Example 2.3.2 (Homology of a K(Z, 2)). In this example we will compute the homology
groups of an Eilenberg - MacLane space of type (Z, 2) by means of spectral sequences. A
different way to do this is using the fact that CP∞ is a K(Z, 2) and computing then its
cellular homology.

Let B be a K(Z, 2) (note that B is simply connected). We consider the path space
fibration f : PB → B. Its fibre F is the loop space ΩB and hence it is a K(Z, 1). Then
F is homotopy equivalent to S1 and we obtain Hq(F ; Z) = Z if q = 0, 1 and Hq(F ; Z) = 0
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for q ≥ 2. Let (Er, dr)r≥1 be the spectral sequence associated to the fibration f . Then
E2
p,q = Hp(B; (Hq(F ; Z))) = 0 for q ≥ 2. Hence, page E2 has at most two nonzero rows:

. . . 0 0 0 0 0 0 . . .

. . . 0 Z H1(B) H2(B) H3(B) H4(B) . . .

. . . 0 Z H1(B) H2(B)

kkWWWWWWWWWWWW
H3(B)

kkXXXXXXXXXXXX
H4(B)

kkXXXXXXXXXXXX
. . .

. . . 0 0 0 0 0 0 . . .

Therefore, E3
p,q = E∞p,q, and since this spectral sequence converges to the homology of

P , which is contractible, then E3
p,q = 0 for (p, q) 6= (0, 0). Thus, the arrows of the previous

diagram must be isomorphisms and H1(B) = 0. In consequence,

Hn(B; Z) =
{

Z if n is even
0 if n is odd

Example 2.3.3 (Homology of ΩSn for n ≥ 2). In this example we will compute the
homology of ΩSn using the spectral sequence associated to the path space fibration f :
PSn → Sn. Note that the fibre of f is F = ΩSn and that it is simply-connected.

SinceHp(Sn; Z) = 0 if p 6= 0, n, H0(Sn; Z) = Z andHn(Sn; Z) = Z, by the universal coef-
ficient theorem we obtain thatHp(Sn;Hq(ΩSn; Z)) = 0 if p 6= 0, n andHp(Sn;Hq(ΩSn; Z)) =
Hq(ΩSn; Z) if p = 0, n.

Hence, the second page of the spectral sequence will have at most two nonzero columns:

. . . 0 Hn(ΩSn; Z) 0 . . . 0 Hn(ΩSn; Z) 0 . . .

. . . 0 Hn−1(ΩSn; Z) 0 . . . 0 Hn−1(ΩSn; Z) 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 H1(ΩSn; Z) 0 . . . 0 H1(ΩSn; Z)

jjVVVVVVVVVVVVVVVVVVV

0 . . .

. . . 0 H0(ΩSn; Z) 0 . . . 0 H0(ΩSn; Z)

jjVVVVVVVVVVVVVVVVVVV

0 . . .

It follows that E2 = E3 = . . . = En and En+1 = E∞. But since P is contractible,
then En+1

p,q = 0 for (p, q) 6= (0, 0). Hence, the arrows of the above diagram must be
isomorphisms. Thus, for n = 2 we obtain that Hq(ΩSn; Z) = Z for all q ≥ 0. If n ≥ 3,
since ΩSn is (n− 2)-connected, by the Hurewicz theorem we obtain that Hq(ΩSn) = 0 for
1 ≤ q ≤ n− 2. Hence,

Hq(ΩSn; Z) =
{

Z if q is a multiple of n− 1
0 if q is not a multiple of n− 1

Now we turn our attention to an important example of application of Serre spectral
sequence: a generalization of the Hurewicz theorem. This theorem is due to Serre himself,
who also introduced Serre classes [17]. We begin by recalling its definition.

Definition 2.3.4. A nonempty class C of abelian groups will be called a Serre class if
for all exact sequences of abelian groups of the form A→ B → C with A,C ∈ C we have
that B ∈ C .
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Note that if C is a Serre class then it satisfies the following properties

(a) 0 ∈ C .

(b) If A ∈ C and A′ is isomorphic to A, then A′ ∈ C .

(c) If A ⊆ B and B ∈ C then A ∈ C .

(d) If A ⊆ B and B ∈ C then B/A ∈ C .

(e) If 0→ A→ B → C → 0 is a short exact sequence with A,C ∈ C then B ∈ C .

Moreover, if a nonempty class of abelian groups satisfies (e) then it also satisfies (a),
(b), (c) and (d). From this, we get that a nonempty class C of abelian groups is a Serre
class if and only if it satisfies

(e’) If 0→ A→ B → C → 0 is a short exact sequence of abelian groups then A,C ∈ C
if and only if B ∈ C .

Indeed, it is clear that a Serre class satisfies this property. So, suppose C is a nonempty
class of abelian groups satisfying (e’) and let A i→ B

j→ C be a short exact sequence with

A,C ∈ C . We consider the induced short exact sequence 0→ A/ ker i i→ B
j→ Im j → 0.

Since A,C ∈ C then A/ ker i ∈ C and Im j ∈ C by (d) and (c) respectively. Thus, B ∈ C
by (e’).

It is easy to prove that the following classes of abelian groups are Serre classes.

• The class of finitely generated abelian groups.

• The class of finite abelian groups.

• The class TP of torsion abelian groups whose elements have orders which are divisible
only by primes in a set P of prime numbers.

• The class of finite groups in TP .

• The class of trivial groups.

These will prove to be very interesting and useful examples.

Definition 2.3.5. Let C be a Serre class and let f : G → H be a morphism between
abelian groups.

• We say that f is a C -monomorphism if ker f ∈ C .

• We say that f is a C -epimorphism if coker f ∈ C .

• We say that f is a C -isomorphism if it is a C -monomorphism and a C -epimorphism.
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For example, note that if C is the class of trivial groups then C -monomorphisms,
C -epimorphisms and C -isomorphisms are just monomorphisms, epimorphisms and iso-
morphisms of groups respectively.

Suppose now that C is the class of 2-torsion abelian groups. Then the trivial map from
Z2 to Z2 and the multiplication by 2 map from Z6 to Z6 are C -isomorphisms.

The following proposition helps us to understand C -isomorphisms in case C = TP .

Proposition 2.3.6. Let P be a set of prime numbers and let f : G → H be a morphism
between torsion abelian groups. We denote by TP(G) and TP(H) the subgroups of torsion
elements of G and H respectively such that their elements have orders which are divisible
only by primes in P. Then f is a TP-isomorphism if and only if the induced map f :
G/TP(G)→ H/TP(H) is an isomorphism.

Proof. Suppose first that f is a TP -isomorphism, i.e. ker f ∈ TP and coker f ∈ TP . Thus,
ker f ⊆ TP(G).

Let x ∈ G such that f(x) = 0 in H/TP(H). Then f(x) ∈ TP(H), i.e. there exists
m ∈ N divisible only by primes in P such that mf(x) = 0. Hence, mx ∈ ker f ⊆ TP(G).
Thus, x ∈ TP(G) and x = 0 in G/TP(G). So, f is a monomorphism.

Now, let y ∈ H/TP(H) and let [y] denote the class of y in H/Im f = coker f . Then,
there exists m ∈ N divisible only by primes in P such that m[y] = 0 in coker f . Thus,
my ∈ Im f , i.e. there exists x ∈ G such that f(x) = my. Hence, f(x) = my.

From group theory we know that if A is a torsion abelian group and p is a prime
number such that A has no elements of order p, then the map µp : A → A defined by
multiplication by p is an isomorphism. Indeed, it is clear that µp is a monomorphism.
We will prove that it is also an epimorphism. Let a ∈ A and let k = ord (a). Let
S = {ja : 0 ≤ j ≤ k − 1} ⊆ A. Then µp : S → S is a monomorphism. Since S is finite, µp
is an isomorphism. Thus, a ∈ Im µp. Hence, µp is an epimorphism.

Returning to the above situation, note that G/TP(G) and H/TP(H) are torsion groups
whose elements have orders which are divisible only by primes not in P. Since m ∈ N
is divisible only by primes in P it follows that µm : G/TP(G) → G/TP(G) and µm :
H/TP(H) → H/TP(H) are isomorphisms. Then we obtain (µm)−1f(x) = (µm)−1(my) =
y. Thus, f((µm)−1(x)) = y. Hence, f is an epimorphism.

Conversely, suppose f is an isomorphism. Let q : G→ /TP(G) and q′ : H → H/TP(H)
denote the quotient maps. Then ker f ⊆ ker(q′f) = ker(fq) = ker q = TP(G). Thus, f is
a TP(G)-monomorphism.

Now let h ∈ H. Then q′(h) = f(q(g)) for some g ∈ G. Hence, q′(h) = q′(f(g)) and thus
q′(h − f(g)) = 0. Then h − f(g) ∈ TP(H). In consequence, there exists m ∈ N divisible
only by primes in P such that m(h − f(g)) = 0. Thus, mh = mf(g) = f(mg) ∈ Im f .
Hence, m[h] = [mh] = 0 in H/Im f = coker f . Therefore, coker f ∈ TP .

Note that this proposition does not hold if G and H are not torsion groups. For
example, the multiplication by 2 map from Z to Z is a T{2}-isomorphism, but f : Z → Z
coincides with f which is not an isomorphism.

Definition 2.3.7. Let X be a topological space. We say that X is C -acyclic if Hn(X; Z) ∈
C for all n ∈ N.
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Later on, we will need that the product of C -acyclic spaces is again a C -acyclic space.
This does not hold for all Serre classes and hence leads to the following definition.

Definition 2.3.8. Let C be a Serre class. We say that C is a ring of abelian groups if
for all A,B ∈ C we have that A⊗B ∈ C and Tor(A,B) ∈ C .

Note that if C is a ring of abelian groups then by the Künneth formula the product of
C -acyclic spaces is a C -acyclic space.

It is easy to verify that the examples of Serre classes given above are also rings of
abelian groups.

Lemma 2.3.9. Let C be a ring of abelian groups and let f : X → B be a fibration between
path-connected spaces with path-connected fibre F such that π1(B) acts trivially on H∗(F ).
Then, any two of the followings three conditions imply the third

(a) Hn(F ) ∈ C for all n > 0.

(b) Hn(X) ∈ C for all n > 0.

(c) Hn(B) ∈ C for all n > 0.

Proof. Let (Er, dr)r∈N be the Serre spectral sequence associated to the fibration f .
Suppose first that (a) and (c) hold. Then, by the universal coefficient theorem E2

p,q =
Hp(B;Hq(F )) ' Hp(B) ⊗ Hq(F ) ⊕ Tor(Hp−1(B), Hq(F )). Since C is a ring of abelian
groups, we obtain that E2

p,q ∈ C for (p, q) 6= (0, 0). By induction on r, it follows that
Erp,q ∈ C for (p, q) 6= (0, 0) and for all r ≥ 2. Indeed, we have just proved the case r = 2,
and if we suppose that Erp,q ∈ C for some p, q ∈ Z, then its subgroups ker dr and Im dr are
also in C and hence their quotient Er+1

p,q also belongs to C .
But given p, q ∈ Z, there exists r ∈ N such that E∞p,q = Erp,q. Therefore, E∞p,q ∈ C for

(p, q) 6= (0, 0). But since the spectral sequence (Er, dr)r∈N converges to H∗(X) we know
that E∞p,n−p are the succesive quotients in a filtration

0 ⊆ F0Hn(X) ⊆ . . . ⊆ FnHn(X) = Hn(X).

Hence, by induction we obtain that FiHn(X) ∈ C for 0 ≤ i ≤ n. In particular, Hn(X) ∈
C .

Now suppose that (a) and (b) hold. Since B and F are path-connected we obtain that
E2
p,0 = Hp(B) for p > 0 and E2

0,q = Hq(F ) ∈ C for q > 0. By hypothesis, Hn(X) ∈ C for
all n > 0, hence E∞p,n−p ∈ C for n > 0 and 0 ≤ p ≤ n since they are the succesive quotients
in a filtration of Hn(X).

We will prove by induction that Hn(B) ∈ C for all n > 0. Thus, suppose that Hi(B) ∈
C for 0 < i < n. As before, by the universal coefficient theorem E2

p,q = Hp(B;Hq(F )) '
Hp(B)⊗Hq(F )⊕Tor(Hp−1(B), Hq(F )). Hence, E2

p,q ∈ C for 0 ≤ p < n and (p, q) 6= (0, 0).
Thus, Erp,q ∈ C for all r > 0 and for the same values of p and q.

Since (Er, dr)r∈N is a first cuadrant spectral sequence then Er+1
n,0 = ker drn,0 ⊆ Ern,0.

Thus, there is a short exact sequence

0 // Er+1
n,0

// Ern,0
drn,0 // Im drn,0 // 0
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Since Im drn,0 ⊆ Ern−r,r−1 ∈ C we obtain that Im drn,0 ∈ C . Thus, from the short exact
sequence above we get that Er+1

n,0 ∈ C if and only if Ern,0 ∈ C . Since E∞n,0 ∈ C and E∞n,0 =
Ekn,0 for sufficiently large k, then by an inductive process we get that E2

n,0 = Hn(B) ∈ C
as desired.

The third case of the proof is analogous to the previous one, so we omit it.

Moreover, with the same proof as above we obtain the following stronger result which
will be needed later.

Lemma 2.3.10. Let C be a ring of abelian groups and let f : X → B be a fibration
between path-connected spaces with path-connected fibre F such that π1(B) acts trivially
on H∗(F ). Let n ∈ N. Then

(a) If Hi(F ) ∈ C for 1 ≤ i ≤ n + 1 and Hi(X) ∈ C for 1 ≤ i ≤ n then Hi(B) ∈ C for
1 ≤ i ≤ n.

(b) If Hi(B) ∈ C for 1 ≤ i ≤ n + 1 and Hi(X) ∈ C for 1 ≤ i ≤ n then Hi(F ) ∈ C for
1 ≤ i ≤ n.

(c) If Hi(F ) ∈ C for 1 ≤ i ≤ n and Hi(B) ∈ C for 1 ≤ i ≤ n then Hi(X) ∈ C for
1 ≤ i ≤ n.

One of the key ingredients needed for the proof of the generalized version of Hurewicz
Theorem is that Eilenberg - MacLane spaces of type (G,n) are C -acyclic.

Definition 2.3.11. Let C be a Serre class. We say that C is acyclic if for all G ∈ C ,
Eilenberg - MacLane spaces of type (G, 1) are C -acyclic.

Note that if C is an acyclic ring of abelian groups (i.e. a ring of abelian groups and
an acyclic Serre class) and G ∈ C then, for all n ∈ N, any Eilenberg - MacLane space of
type (G,n) is C -acyclic. Indeed, if Z is an Eilenberg - MacLane space of type (G,n) with
n ≥ 2 then its loop space is an Eilenberg - MacLane space of type (G,n− 1). Hence, if we
consider the path-space fibration ΩZ → PZ → Z, since PZ is contractible, by the above
lemma we obtain that Z is C -acyclic if and only if ΩZ is C -acyclic. Since any Eilenberg
- MacLane space of type (G, 1) is C -acyclic, it follows that for all n ∈ N, any Eilenberg -
MacLane space of type (G,n) is C -acyclic.

An important result is that the examples of Serre classes given above are also acyclic
rings of abelian groups. This will allow us to apply the generalized version of Hurewicz
Theorem to that classes.

Before stating the theorem, we recall the definition of abelian spaces.

Definition 2.3.12. Let X be a path-connected topological space. We say that X is
abelian (or simple) if π1(X) acts trivially on πn(X) for all n ∈ N.

For example, simply-connected spaces are abelian. Note also that if X is an abelian
topological space then π1(X) acts trivially on π1(X) and hence it is an abelian group.

Theorem 2.3.13 (Generalized Hurewicz’s theorem). Let X be an abelian topological space
and let C be an acyclic ring of abelian groups. Then the following are equivalent:
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(a) πi(X) ∈ C for 1 ≤ i ≤ n− 1.

(b) Hi(X) ∈ C for 1 ≤ i ≤ n− 1.

Moreover, any of them imply that the Hurewicz morphism h : πn(X) → Hn(X) is a
C -isomorphism.

Proof. By CW-approximation, we may suppose that X is a CW-complex. Moreover,
we may suppose that X has only one 0-cell since any path-connected CW-complex is
homotopy equivalent to a CW-complex with only one 0-cell. Let this 0-cell be the base
point of X and let

...

��
X3

p3

��
X2

p2

��
X

f1

//
f2

>>}}}}}}}}

f3

FF���������������
X1

be a Postnikov tower of principal fibrations for X where, for all j ∈ N, Xj is a CW-complex
built by attaching cells of dimension greater than j + 1 to X.

Suppose first that πi(X) ∈ C for 1 ≤ i ≤ n − 1. Then πi(Xk) ∈ C for k ≤ n − 1
and for all i ∈ N. Since X1 is a K(π1(X), 1) and π1(X) ∈ C , it follows that Hi(X1) ∈ C
for all i ∈ N. From the fibration sequences Fk → Xk → Xk−1, since Fk is an Eilenberg
- MacLane space of type (πk(X), k), by the previous lemma we obtain inductively that
Hi(Xj) ∈ C for j ≤ n− 1 and for all i ∈ N.

In particular, Hi(Xn−1) ∈ C for all i ∈ N. Since Xn−1 is built by attaching cells of
dimension greater than n to X, Hi(Xn−1) = Hi(X) for i ≤ n − 1 and hence Hi(X) ∈ C
for 1 ≤ i ≤ n− 1.

Conversely, suppose that Hi(X) ∈ C for 1 ≤ i ≤ n− 1. Since Xj is built by attaching
cells of dimension greater than j + 1 to X, then Hi(Xj) ' Hi(X) for 1 ≤ i ≤ j and there
is an epimorphism Hj+1(X) → Hj+1(Xj). Thus, Hi(Xj) ∈ C for 1 ≤ i ≤ j ≤ n − 1. We
will prove inductively that πi(X) ∈ C and Xi is C -acyclic for 1 ≤ i ≤ n− 1.

Since X is abelian, π1(X) = H1(X) ∈ C and hence X1 is C -acyclic because it is an
Eilenberg - MacLane space of type (π1(X), 1).

Suppose that πi(X) ∈ C and Xi is C -acyclic for 1 ≤ i ≤ k − 1 ≤ n − 2. Consider
the fibration sequence Fk → Xk → Xk−1. Since Xk−1 is C -acyclic and Hi(Xk) ∈ C for
1 ≤ i ≤ k, by the previous lemma Hi(Fk) ∈ C for 1 ≤ i ≤ k. In particular Hk(Fk) ∈ C ,
but by the Hurewicz theorem Hk(Fk) = πk(Fk) = πk(X), hence πk(X) ∈ C . Thus,
Fk is C -acyclic. Then, applying again the previous lemma to the fibration sequence
Fk → Xk → Xk−1 we obtain that Xk is C -acyclic. Therefore, we have proved that
πi(X) ∈ C for 1 ≤ i ≤ n− 1.
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To prove the last statement it suffices to show that the hurewicz map h : πn(Xn) →
Hn(Xn) is a C -isomorphism. Let (Er, dr)r≥1 be the spectral sequence associated to the fi-
bration Xn → Xn−1. Since its fibre Fn is an Eilenberg - MacLane space of type (πn(X), n),
E2
p,q = 0 for 1 ≤ q ≤ n− 1. Hence, En+1

0,n = Hn(Fn) and En+1
n+1,0 = Hn+1(Xn−1).

Since (Er, dr)r≥1 converges to H∗(X) there exists a filtration 0 = F−1 ⊆ F0 ⊆ F1 ⊆
. . . ⊆ Fn = Hn(X) of Hn(X) with Fi/Fi−1 ' E∞i,n−i for 0 ≤ i ≤ n. Since E∞i,n−i = 0 for
0 < i < n we obtain that E∞0,n = F0 = F1 = . . . = Fn−1. Hence, there is a short exact
sequence

0 // F0
// Fn

q // Fn/F0
// 0

Recall that Fn = Hn(X) and Fn/F0 = E∞n,0. Moreover, by 2.2.10 and by the proof of
2.3.1 we know that F0 is the image of the map Hn(X0

n) → Hn(Xn), where (Xi
n)i∈N0 is

the filtration of Xn obtained by taking preimages of the skeletons of Xn−1. But since the
0-skeleton of Xn−1 is the base point, it follows that X0

n = Fn. Hence, F0 is the image of
the map in∗ : Hn(Fn)→ Hn(Xn) induced by the inclusion.

It is clear that E∞0,n = En+2
0,n = coker dn+1

n+1,0 and that En+1
0,n = Hn(Fn), therefore there

is a short exact sequence

0 // Hn+1(Xn−1)
dn+1
n+1,0 // Hn(Fn) // E∞0,n // 0

Combining this short exact sequence with the previous one we obtain an exact sequence

Hn+1(Xn−1)
dn+1
n+1,0 // Hn(Fn)

inc∗ // Hn(X)
q // E∞n,0 // 0

(note that ker q = F0 = Im (inc∗)).
Consider the commutative square

πn(Fn)
inc∗ //

h
��

πn(Xn)

h
��

Hn(Fn)
inc∗
// Hn(Xn)

Since πn+1(Xn−1) = 0 and πn(Xn−1) = 0, from the long exact sequence of homotopy
groups associated to the fibration Xn → Xn−1 we obtain that the upper map is an iso-
morphism. Also, the left-hand vertical map is an isomorphism by the Hurewicz theorem.

Now, if we assume that πi(X) ∈ C for 1 ≤ i ≤ n − 1 then πi(Xn−1) ∈ C for all i ∈ N
and hence, by the first part of this theorem Hi(Xn−1) ∈ C for all i ∈ N. Thus, the first
and fourth terms of the exact sequence above belong to the class C and hence the map
inc∗ : Hn(Fn)→ Hn(Xn) is a C -isomorphism.

Therefore, the Hurewicz map h : πn(X)→ Hn(X) is a C -isomorphism.

As a first example of application when C is the class of finitely generated abelian groups
we obtain that all the homotopy groups of spheres are finitely generated. However, we
shall prove later a much stronger result.
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Note also that if C is the class of trivial groups, then we obtain the classical version of
Hurewicz Theorem.

Now we turn to the cohomological version of Serre spectral sequence. In this case we
require that π1(B) acts trivially on Hn(F ;G) for all n ∈ N, where this action is defined
in a similar way as its homological counterpart.

Theorem 2.3.14. Let f : X → B a Serre fibration with fibre F , where B is a path-
connected CW-complex and let G be an abelian group. If π1(B) acts trivially on Hn(F ;G)
for all n ∈ N then there exists a cohomological spectral sequence {Ep,qr , dr} which converges
to H∗(X;G) and such that Ep,q2 ' Hp(B;Hq(F ;G)).

The proof is similar to the homological one, thus we will omit it.
A big advantage of this cohomogical version is that cohomology can be given a ring

structure by means of cup product and this product behaves wonderfully with respect to
(cohomological) Serre spectral sequence, as is shown by the following theorem.

Theorem 2.3.15. Let f : X → B a Serre fibration with fibre F , where B is a path-
connected CW-complex and let R be a ring. Suppose that π1(B) acts trivially on Hn(F ;R)
for all n ∈ N and let {Ep,qr , dr} be the (cohomological) Serre spectral sequence associated to
the fibration f . Then there exists bilinear products Ep,qr ×Es,tr → Ep+s,q+tr for r ∈ N∪{∞}
such that:

(a) The differentials dr are derivations, i.e. dr(xy) = d(x)y + (−1)p+qx(dy) for all
x ∈ Ep,qr , y ∈ Es,tr , r ∈ N.

(b) The product in Er+1 is the product induced by the product in Er (note that since the
differential dr is a derivation, the product in Er induces one in cohomology).

(c) The product in E∞ is induced by the product in the faces Er for finite r.

(d) The product in E2 is induced by the composition

Ep,q2 × Es,t2 = Hp(B;Hq(F ;R))×Hs(B;Ht(F ;R))

��
Hp(B;H∗(F ;R))×Hs(B;H∗(F ;R))

`′

��
Hp+s(B;H∗(F ;R))

where the product in H∗(F ;R) is the standard cup product and where the second
arrow is defined by α `′ β = (−1)qsα ` β with ` denoting cup product.

(e) If for n ≥ 0, {Fnp = F pHn(X)}p∈Z (with Fnp+1 ⊆ Fnp for all p) denotes the filtration
of Hn(X) given by the definition of convergence of {Ep,qr , dr}, then the cup product in
H∗(X;R) restricts to maps Fnp × Fms → Fn+m

p+s . Moreover, these maps induce maps
Fnp /F

n
p+1 × Fms /Fms+1 → Fn+m

p+s /Fn+m
p+s+1 which coincide with the products Ep,n−p∞ ×

Es,m−s∞ → Ep+s,n+m−p−s
∞ .



Section 2.3: Serre spectral sequence 83

The proof of this theorem con be found in [9].
We will give first an easy example of application and then we will show how this results

con be applied for instance to obtain interesting information about homotopy groups of
spheres.

Example 2.3.16 (Computation of H∗(K(Z, 2)),Z). Let B be an Eilenberg - MacLane
space of type (Z, 2). Consider the pathspace fibration f : PB → B. Its fibre F is ΩZ, and
hence an Eilenberg - MacLane space of type (Z, 1). Thus F is homotopy equivalent to S1.
Let (Ep,qr , dr)r∈Z be the cohomological Serre spectral sequence associated to the fibration
f . Since B is simply-connected, Ep,q2 ' Hp(B;Hq(S1; Z)).

Hence, the E2 page has at most two nonzero rows:

. . . 0 0 0 0 0 0 . . .

. . . 0 Z
++VVVVVVVVVVVVV H1(B)

++WWWWWWWWWWWW H2(B)
++WWWWWWWWWWWW H3(B) H4(B) . . .

. . . 0 Z H1(B) H2(B) H3(B) H4(B) . . .

. . . 0 0 0 0 0 0 . . .

In a similar way as in 2.3.2, we obtain that

Hn(B; Z) =
{

Z if n is even
0 if n is odd

Let a denote a generator of E0,1
2 ' Z and for even i, let xi denote a generator of Ei,02 '

Z. Since we consider homology with coefficients in Z which is a unital ring, the ring
H∗(B; Z) has also an identity element which is 1 ∈ Z ' H0(B; Z). Therefore, the product
E0,q

2 × Es,t2 → Es,q+t2 is just multiplication of coefficients. Hence, axi is a generator of
Ei,12 ' Z.

. . . 0 0 0 0 0 0 0 0 . . .

. . . 0 Za
))SSSSSSSS 0 Zax2

**UUUUUUUU 0 Zax4

**UUUUUUUU 0 Zax6
. . .

. . . 0 Z 0 Zx2 0 Zx4 0 Zx6
. . .

. . . 0 0 0 0 0 0 0 0 . . .

Since the arrows shown above are isomorphisms, d2a is a generator of Zx2. Thus, we may
suppose that x2 = d2a. Then,

d2(ax2i) = d2(a)x2i − ad2(x2i) = d2(a)x2i = x2x2i.

Now, since d2(ax2i) is a generator of Zx2i we may assume that x2x2i = x2i+2.
Thus, H∗(B; Z) is the polynomial ring Z[x], where x = x2.

We give now the first application of the cohomological Serre spectral sequence to com-
putation of homotopy groups of spheres.

Proposition 2.3.17. Let p be a prime number. Then, the p-torsion subgroup of πi(S3)
is 0 for i < 2p and Zp for i = 2p.
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Proof. Note that if we apply the generalized Hurewicz theorem directly to S3, we will not
be able to see beyond π3 since π3(S3) = Z is not a p-torsion group. Hence, the idea is to
construct a space F which has the same homotopy groups as S3, except for π3(F ) which
will be trivial and then apply the generalized Hurewicz theorem to F .

Let Y be an Eilenberg - MacLane space of type (Z, 3) and let g : S3 → Y be a
continuous map such that g∗ : π3(S3) → π3(Y ) is an isomorphism. Let S3 i−→ Z

p−→ Y
be a factorization of g into a homotopy equivalence followed by a fibration and let F be
the fibre of p. Note that p induces an isomorphism in π3. Hence, from the homotopy exact
sequence associated to the fibration p it follows that the inclusion inc : F → S3 induces
isomorphisms inc∗ : πi(F )→ πi(S3) for i > 3 and that F is 3-connected.

Let F i′−→ X
p′−→ S3 be a factorization of inc : F → S3 into a homotopy equivalence

followed by a fibration and let F ′ be the fibre of p′. It follows that (p′)∗ : πi(X)→ πi(S3) is
an isomorphism for i > 3 and that X is 3-connected. From the homotopy exact sequence
associated to the fibration p′ it follows that F ′ is an Eilenberg - MacLane space of type
(Z, 2).

Let (Er, dr)r≥1 be the cohomological Serre spectral sequence associated to the fibration
p′. By the example above we know that H∗(F ′) is isomorphic to the polynomial ring Z[x],
with x corresponding to an element a ∈ H2(F ′). Hence, page E2 looks like

0 Z
d0,6

3

&&MMMMMMMMMMMMM 0 0 Z 0 . . .

0 0 0 0 0 0 . . .

0 Z
d0,4

3

&&MMMMMMMMMMMMM 0 0 Z 0 . . .

0 0 0 0 0 0 . . .

0 Z
d0,2

3

&&MMMMMMMMMMMMM 0 0 Z 0 . . .

0 0 0 0 0 0 . . .

0 Z 0 0 Z 0 . . .

Note that E3 = E2. Let z = d3(a). Since X is 3-connected, the differential d0,2
3 : Z → Z

must be an isomorphism. Then z is a generator of E3,0
3 ' Z. Thus, as in the previous

example, aiz is a generator of E3,2i
3 ' Z for all i ∈ N.

It follows that d3(a2) = d3(a)a+ad3(a) = 2ax, and by an inductive argument we obtain
that d3(an) = nan−1x. Therefore, E0,q

4 = 0 for q ∈ N and E3,2k
4 = Zk+1 for k ∈ N. Since

E4 = E∞ we obtain that

H i(X; Z) =


0 if i = 1 or i = 3
Zk+1 if i = 2k + 3 for some k ∈ N
0 if i is even

Hence, by the universal coefficient theorem for cohomology groups we get

Hi(X; Z) =


0 if i = 2
Zk if i = 2k for some k ∈ N, k ≥ 2
0 if i is odd
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Applying the generalized version of Hurewicz’s theorem with C the class of p-torsion
abelian groups gives the desired result.

Corollary 2.3.18.

(a) π4(S3) = Z2.

(b) The groups πi(S3) are nonzero for infinitely many values of i.

For the proof of the last theorem of this section we need the following lemma. Its proof
involves the cohomological Serre spectral sequence and similar arguments to those in the
example and proposition above, but we will not give the details here. A sketch of the
proof can be found in [9].

Lemma 2.3.19. Let n ∈ N and let X be an Eilenberg - MacLane space of type (Z, n). Then
H∗(X; Q) ' Q[x] for n even and H∗(X; Q) ' Q[x]/〈x2〉 for n odd, where x corresponds
to an element of Hn(X; Q).

Now we state the last theorem of this section, which is a strong result about homotopy
groups of spheres. To prove it, we will work with rational coefficients, so as kill torsion in
homology groups and retain nontorsion information. The idea of the proof is analogous to
that of the previous proposition: we will kill certain homotopy groups leaving the others
unchanged and then we will apply the generalized version of Hurewicz’s theorem.

Theorem 2.3.20. The groups πi(Sn) are finite for i > n, except for π4n−1(S2n) which is
the direct sum of Z with a finite group.

Proof. We may assume that n ≥ 2, since the result clearly holds for n = 1.
Let B be an Eilenberg - MacLane space of type (Z, n) and let g : Sn → B be a contin-

uous map which induces an isomorphism on πn. Let Sn i−→ X
f−→ B be a factorization

of g into a homotopy equivalence followed by a fibration and let F be the fibre of f . From
the homotopy exact sequence associated to the fibration f it follows that F is n-connected
and πi(F ) ' πi(Sn) for i > n.

Let (Er, dr)r∈N be the cohomological Serre spectral sequence with coefficients in Q
associated to the fibration f .

We suppose first that n is odd. Since by the previous lemma H∗(B; Q) ' Q[x]/〈x2〉
(where x corresponds to an element of Hn(X; Q)), then the E2 page has at most two
nonzero columns, namely columns p = 0 and p = n. Moreover, E0,q

2 ' En,q2 for all q ∈ Z
and E0,0

2 ' En,02 ' Q. Since F is n-connected, E0,q
2 ' 0 for 1 ≤ q ≤ n. Suppose there

exists k ∈ N such that E0,k
2 is not a trivial group and let m be the minimum of such k’s.

Then m ≥ n + 1 and hence E0,m
2 ' E0,m

∞ . Thus, Hm(X) ' E0,m
∞ and therefore it is not

trivial, which entails a contradiction since X is homotopy equivalent to Sn.
Therefore, E0,k

2 ' 0 for all k ∈ N. Hence, Hk(F ; Q) ' 0 for all k ∈ N. From the
universal coefficient theorem for cohomology it follows that Hom(Hk(F ; Z); Q) = 0 for all
k ∈ N. Then Hk(F ; Z) is a torsion group for all k ∈ N. Now since F is n-connected and
πi(F ) ' πi(Sn) for i > n, it follows that πi(F ) is finitely generated for all i ∈ N. Hence,
by the generalized Hurewicz theorem Hi(F ; Z) is finitely generated for all i ∈ N. But since
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Hi(F ; Z), i ∈ N are torsion groups we get that Hi(F ; Z) is a finite group for all i ∈ N.
Applying the generalized Hurewicz theorem again we obtain that πi(F ; Z) is a finite group
for all i ∈ N and hence πi(Sn) is a finite group for i > n.

Now suppose that n is even. Then, by the previous lemma H∗(B; Q) ' Q[x], where x
corresponds to an element z ∈ Hn(X; Q). Thus,

Ep,02 =
{

Q if p = kn for some k ∈ N0

0 otherwise

Since F is n-connected, E0,q
2 ' 0 for 1 ≤ q ≤ n. Suppose that E0,q

2 is not trivial for
some q < 2n − 1 and let m be the minimum q with this property. Then m > n and
E0,m
∞ ' E0,m

2 . Hence Hm(X; Q) is not trivial, but X is homotopy equivalent to Sn, which
entails a contradiction. Hence, Hq(F ; Q) ' E0,q

2 ' 0 for 1 ≤ q < 2n − 1. Then Ep,q2 ' 0
for 1 ≤ q < 2n− 1 and for all p ∈ N.

In consequence, E0,2n−1
n ' E0,2n−1

2 , E2n,0
n ' E2n,0

2 ' Q and the differential d0,2n−1
2n :

E0,2n−1
n → E2n,0

n ' Q must be an isomorphism because otherwise either E0,2n−1
∞ or E2n,0

∞
would be nontrivial. Hence we have that H2n−1(F ; Q) ' Q and Hq(F ; Q) ' 0 for 1 ≤ q <
2n − 1. From the universal coefficient theorem for cohomology, since Hi(F ; Z) is finitely
generated for all i ∈ N, by an inductive argument and proceeding as in the case above it
is not difficult to prove that Hi(F ; Z) is a finite group for 1 ≤ i < 2n− 1 and H2n−1(F ; Z)
is the direct sum of Z with a finite group. Applying the generalized Hurewicz theorem
with C the class of finite groups we obtain that the same holds for the groups πi(F ),
1 ≤ i ≤ 2n− 1. Therefore, πi(Sn) is a finite group for 1 ≤ i < 2n− 1 and π2n−1(F ; Z) is
the direct sum of Z with a finite group.

Now, let a ∈ E0,2n−1
n be such that dn(a) = z2 ∈ E2n,0

n ' H2n(X; Q). Thus, by the
derivation property dni,2n−1

n (azi) = zi+2 for i ∈ N. Then dni,2n−1
n is an isomorphism for

all i ∈ N. With a similar argument as in the previous case we obtain that E0,k
2 ' 0 for all

k ≥ 2n, since the first nontrivial entry would survive to E∞. Thus, H∗(F ; Q) ' Q[x]/〈x2〉,
where x corresponds to an element of H2n−1(X; Q).

Let F ′ be obtained from F by attaching cells of dimension greater than 2n − 1 and
such that πi(F ′) = 0 for i ≥ 2n − 1. Let inc : F → F ′ denote the inclusion map and

let F i′−→ X ′
f ′−→ F ′ be a factorization of inc into a homotopy equivalence followed by a

fibration. Let F ′′ be the fibre of f ′. From the homotopy exact sequence for the fibration
f ′ it follows that πi(F ′′) ' πi(F ) ' πi(Sn) for i ≥ 2n− 1.

Since F ′ has finite homotopy groups, the same holds for its reduced homology groups
and hence Hn(F ′,Q) ' 0 for n ∈ N. From the cohomological Serre spectral sequence for
the fibration f ′ we obtain that H∗(F ′′; Q) ' H∗(X ′; Q) ' H∗(F ; Q) ' Q[x]/〈x2〉, where
x corresponds to an element of H2n−1(F ′′; Q).

Let Y be an Eilenberg - MacLane space of type (Z, 2n− 1) and let F ′′ → Y be a map
inducing an isomorphism on the nontorsion in π2n−1. Now, we consider factorization of
this map into a homotopy equivalence followed by a fibration and with a similar argument
as in the case n odd we obtain that πi(F ′′) ' πi(Sn) is finite for i > 2n− 1.
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2.4 Localization of CW-complexes

In this section we will study localization of CW-complexes. We begin by recalling some
basic facts about algebraic localization of rings and modules.

For the whole section, P will denote a subset of the set of prime numbers. If G is an
abelian group and a ∈ Z, we denote by µa : G→ G the group homomorphism defined by
µa(g) = ag.

We denote
ZP =

{a
b
∈ Q / (b : p) = 1 for all p ∈ P

}
Note that ZP is torsionfree and that Z∅ = Q. If the subset P consists of just one prime
number p we write ZP = Z(p).

If G is an abelian group, its localization at P is defined as G ⊗ ZP . The induced
morphism G→ G⊗ ZP is called localization map. Clearly, given a map f : G→ H, there
is an induced map f ⊗ ZP : G⊗ ZP → H ⊗ ZP and a commutative diagram

G
f //

��

H

��
G⊗ ZP f⊗ZP

// H ⊗ ZP

where the vertical arrows are the localization maps.
We know that G⊗ ZP is the abelian group generated by {g ⊗ r / g ∈ G and r ∈ ZP}.

Note that a finite sum g1 ⊗ r1 + . . . + gn ⊗ rn can be written in the form g ⊗ 1
m , with m

not divisible by primes in P. Indeed, we proceed by taking m the least common multiple
of the denominators of r1, . . . , rn and we write gi ⊗ ri = g′i ⊗ 1

m .
Note also that the map G→ G⊗ZP is an isomorphism if and only if G can be given a

(compatible) ZP -module structure. The following lemma states an equivalent condition.

Lemma 2.4.1. Let G be an abelian group and let P be a subset of the set of prime
numbers. Then G can be given a (compatible) ZP-module structure if and only if for all
prime numbers p such that p /∈ P the map µp : G→ G is an isomorphism.

Proof. For the first implication, note that if p /∈ P then 1
p ∈ ZP . Hence, the map νp : G→

G defined by νp(g) = 1
pg is the inverse of µp.

Conversely, suppose that for all prime numbers p such that p /∈ P the map µp : G→ G
is an isomorphism. Thus, if b ∈ {m ∈ Z / (m : p) = 1 for all p ∈ P}, the map µb is an
isomorphism. Hence, for g ∈ G and a

b ∈ ZP (with b not divisible by prime numbers in P),
we define a

b .g = µ−1
b µag. It is easy to prove that this defines a ZP -module structure on

G.

For example, Z3 can be given a compatible Z(3)-module structure and can not be given
a (compatible) Z(2)-module structure. In general, given a prime number p and n ∈ N, Zpn
can be given a (compatible) ZP -module structure if and only if p ∈ P.

In the following proposition we give some results that will be needed later.

Proposition 2.4.2. Let P be a subset of the set of prime numbers.
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(a) If A
f→ B

g→ C
h→ D

k→ E is an exact sequence of abelian groups and A, B, D and
E can be given compatible ZP-module structures then the same holds for C.

(b) The P-localization functor is exact, that is, it takes exact sequences to exact se-
quences.

Proof. (a) Let p be a prime number such that p /∈ P and consider the following commu-
tative diagram

A
f //

µAp
��

B
g //

µBp
��

C
h //

µCp
��

D
k //

µDp
��

E

µEp
��

A
f
// B g

// C
h
// D

k
// E

where the vertical arrows are the maps induced by multiplication by p. By the previous
lemma, the maps µAp , µBp , µDp and µEp are isomorphisms. Since the rows are exact, by
the five lemma the map µCp is also an isomorphism. Hence, C can be given a compatible
ZP -module structure.

(b) Let A
f→ B

g→ C be an exact sequence of abelian groups. We want to prove that the

sequence A⊗ZP
f⊗ZP−→ B⊗ZP

g⊗ZP−→ C ⊗ZP is exact. It is clear that g⊗ZP ◦ f ⊗ZP = 0.
Suppose that b ⊗ 1

m ∈ ker(g ⊗ ZP), i.e. g(b) ⊗ 1
m = 0 in C ⊗ ZP . Thus, g(b) has finite

order k not divisible by primes in P. Hence, kb ∈ ker(g) = Im (f). Then, kb = f(a) for
some a ∈ A and (f ⊗ ZP)(a⊗ 1

km) = b⊗ 1
m .

Now we turn to the topological setting.

Definition 2.4.3. Let X be an abelian space. We say that X is P-local if πn(X) is a
ZP -module for all n ∈ N.

For example, if 3 ∈ P and n ∈ N, an Eilenberg-MacLane space of type (Z3, n) is P-local.

Definition 2.4.4. Let X and Y be abelian spaces and let f : X → Y be a continuous
map. We say that f is a P-localization map if Y is P-local and for all n ∈ N, the induced
map f∗ ⊗ ZP : πn(X)⊗ ZP → πn(Y )⊗ ZP is an isomorphism.

A P-localization of X consists of a P-local space Y together with a P-localization map
f : X → Y .

Note that since ZP is torsion-free, from the universal coefficient theorem (A.3) we
obtain that πn(X)⊗ ZP ' πn(X; ZP).

The following lemma will be used to prove an equivalent homological definition of
P-localization.

Lemma 2.4.5. Let F → E → B be a fibration sequence of path-connected spaces such that
π1(B) acts trivially on H∗(F,Zp) for all p /∈ P. Then, any two of the following statements
imply the third.

(a) H̃n(F ) is a ZP-module for all n ∈ N.

(b) H̃n(E) is a ZP-module for all n ∈ N.
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(c) H̃n(B) is a ZP-module for all n ∈ N.

Proof. Consider the short exact sequence 0 → Z → Z → Zp → 0, where the second
arrow is multiplication by p. For any space X, taking tensor product with Cn(X), where
(C∗(X), d) is the singular chain complex of X, we obtain a short exact sequence of chain
complexes, which induces a long exact sequence

. . . // H̃n(X,Z)
µp // H̃n(X,Z) // H̃n(X,Zp) // H̃n−1(X,Z)

µp // H̃n−1(X,Z) // . . .

Hence, applying 2.4.1 we obtain that H̃n(X) is a ZP -module for all n ∈ N if and only if
H̃n(X,Zp) = 0 for all n ∈ N and for all prime numbers p /∈ P.

The result then follows from the Serre spectral sequence.

Proposition 2.4.6. Let X and Y be abelian spaces and let f : X → Y be a P-localization
map. Then for all n ∈ N, H̃n(Y ) can be given a compatible ZP-module structure and the
induced map f∗ ⊗ ZP : H̃n(X)⊗ ZP → H̃n(Y )⊗ ZP is an isomorphism.

Proof. We consider first the particular case in which X is an Eilenberg - MacLane space
of type (G,n). Hence, Y is an Eilenberg - MacLane space of type (G⊗ ZP , n).

We proceed by induction on n, starting with the case n = 1. If G = Z then Y is an
Eilenberg - MacLane space of type (ZP , 1). But a Moore space of type (ZP , 1) can be
constructed as a mapping telescope of a sequence of maps S2 → S2 of appropiate degrees,
as in [8], p. 312. From this construction it is not difficult to verify that a Moore space of
type (ZP , 1) is also an Eilenberg - MacLane space of type (ZP , 1). Hence, Y is a Moore
space of type (ZP , 1) and thus, for all n ∈ N, H̃n(Y ) can be given a compatible ZP -module
structure.

The naturality of the Hurewicz map gives us a commutative square

π1(X)⊗ ZP
f∗⊗ZP //

h⊗ZP
��

π1(Y )⊗ ZP
h⊗ZP
��

H1(X)⊗ ZP
f∗⊗ZP

// H1(Y )⊗ ZP

The vertical arrows are the abelianization maps, and hence isomorphisms in this case.
The upper arrow is also an isomorphism since f : X → Y is a P-localization map. Thus,
f∗ ⊗ ZP : H̃n(X)⊗ ZP → H̃n(Y )⊗ ZP is an isomorphism.

If G = Zpm with p /∈ P and m ∈ N then G ⊗ ZP = G. Since f : X → Y induces an
isomorphism on π1 and X and Y are Eilenberg - MacLane space of type (G,n) it follows
that f is a homotopy equivalence. Hence, the result holds in this case.

If G = Zpm with p ∈ P and m ∈ N then G⊗ ZP = 0. Hence, Y is contractible and the
result follows.

If G is finitely generated, the result follows from the cases above applying the Künneth
formula (A.11).

For an arbitrary group G, we know that G is the direct limit of its finitely generated
subgroups. Hence, the result holds since homology commutes with direct limits.
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Now suppose that n ≥ 2 and that the statement holds for n− 1. Consider the commu-
tative diagram

ΩX //

��

PX //

��

X

��
ΩY // PY // Y

where the rows are the path-space fibration sequences for X and Y and where the vertical
arrows are induced by the morphism G→ G⊗ZP . Note that ΩX and ΩY are Eilenberg-
MacLane spaces of type (G,n− 1) and (G⊗ ZP , n− 1) respectively.

By 2.4.5 and the inductive hypothesis it follows that Hi(Y ) can be given a compatible
ZP -module structure for all i ∈ N. Moreover, the commutative diagram above induces a
map between the Serre spectral sequences associated to both fibration sequences. Since
the induced maps Hi(ΩX,ZP) → Hi(ΩY,ZP) and Hi(PX,ZP) → Hi(PY,ZP) are iso-
morphisms for all i ∈ N, then by proposition 1.12 of [9], the induced map Hi(X,ZP) →
Hi(Y,ZP) is an isomorphism for all i ∈ N.

Hence, the statement is proved in case X is an Eilenberg-MacLane space.
For the general case, the P-localization f : X → Y induces a map of Postnikov towers.

For n ∈ N, let Xn and Yn denote the n-th stage of the Postnikoy towers of X and Y
respectively. Then, there is a commutative diagram

Fn //

��

Xn
//

��

Xn−1

��
F ′n

// Yn // Yn−1

where Fn and F ′n are the fibres of Xn → Xn−1 and Yn → Yn−1 respectively. Hence Fn is an
Eilenberg - MacLane space of type (πn(X), n) and F ′n is an Eilenberg - MacLane space of
type (πn(Y ), n). Since X and Y are abelian, it is not difficult to prove that π1(Xn−1) acts
trivially on Hr(Fn) for all r and that a similar statement holds for the fibration sequence
F ′n → Yn → Yn−1.

By induction on n and applying naturality of spectral sequences (cf. [9]) it follows that
Hn(Y ) can be given a compatible ZP -module structure and the induced map f∗ ⊗ ZP :
H̃n(X)⊗ ZP → H̃n(Y )⊗ ZP is an isomorphism for all n ∈ N.

Theorem 2.4.7. Let X be an abelian space. Then there exists a P-localization X → Y .

Proof. By 2.1.13, X admits a Postnikov tower of principal fibrations. For n ∈ N let Xn

denote the n-th stage of this Postnikov tower. Let X ′1 be an Eilenberg - MacLane space
of type (π1(X) ⊗ ZP , 1). Since X1 is an Eilenberg - MacLane space of type (π1(X), 1),
the natural morphism π1(X) → π1(X) ⊗ ZP induces a continuous map i1 : X1 → X ′1
which turns out to be a P-localization. Moreover, replacing X ′1 by Zi1 and applying
CW-approximation we may suppose that i1 is an inclusion map of CW-complexes.

Since X2 → X1 is a principal fibration with fibre an Eilenberg - MacLane space of type
(π2(X), 2), we may suppose that there exists an Eilenberg - MacLane space Z of type
(π2(X), 3) and a fibration k1 : X1 → Z.
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Let Z ′ be an Eilenberg - MacLane space of type (π2(X)⊗ZP , 3) and let j : Z → Z ′ be
the induced map which, as before, is a P-localization.

Since i1 : X1 → X ′1 is a P-localization, the induced map (i1)∗ : Hn(X1; ZP) →
Hn(X ′1; ZP) is an isomorphism for all n ∈ N by 2.4.6. Applying the universal coefficient
theorem over ZP we obtain that (i1)∗ : Hn(X ′1;A) → Hn(X1;A) is also an isomorphism
for any ZP -module A and for all n ∈ N. Hence Hn(X ′1, X1;A) = 0 for all n ∈ N. Thus, by
obstruction theory, the composition jk1 : X1 → Z ′ can be extended to a continuous map
k′1 : X ′1 → Z ′.

We may suppose that k′1 is a fibration by writing it as a composition of a homotopy
equivalence with a fibration. Let X ′2 be the fibre of k′1 and let i2 : X2 → X ′2 be the
induced map. Note that π1(X ′2) is abelian and that X ′2 admits a Postnikov tower of
principal fibrations by construction. Hence, by 2.1.13 we obtain that X ′2 is abelian. Also,
from the long exact sequence of homotopy groups associated to the fibration k′1 : X ′1 → Z ′

and applying 2.4.2 we conclude that X ′2 is P-local. Also, from the five-lemma and item
(b) of 2.4.2 it follows that i2 : X2 → X ′2 is a P-localization.

Hence, we may construct inductively a Postnikov tower of principal fibrations X ′n →
X ′n−1 together with P-localizations in : Xn → X ′n. Let X ′ be a CW-approximation to
lim
←−

X ′n. Since by 2.1.14 there is a weak equivalence X → lim
←−

X ′n, we obtain the desired

P-localization X → lim
←−

X ′n → X ′.

Now we can complete the equivalent homological definition of localization with the
following theorem. Note that it aids us in checking that a map is a P-isomorphism, since
it is often easier to work with homology groups than with homotopy groups.

Theorem 2.4.8. Let X and Y be abelian spaces and let f : X → Y be a continuous
map. Then f is a P-localization map if and only if for all n ∈ N, H̃n(Y ) can be given a
compatible ZP-module structure and the induced map f∗⊗ZP : H̃n(X)⊗ZP → H̃n(Y )⊗ZP
is an isomorphism.

Proof. The first implication is proposition 2.4.6. For the converse, let X → X ′ be a
P-localization of X. We may suppose that (Y,X) is a CW-pair, replacing Y by Zf
and then taking a CW-approximation. Hence, Hn(Y,X,ZP) = 0 for all n ∈ N, and
thus Hn(Y,X,ZP) = 0 for all n ∈ N by the universal coefficient theorem over ZP . By
obstruction theory, the P-localization map X → X ′ can be extended to g : Y → X ′.

By the first implication, H̃n(X ′) can be given a compatible ZP -module structure and
the induced map H̃n(X; ZP) → H̃n(X ′;ZP) is an isomorphism. Hence, the induced map
g∗ : H̃n(Y ; ZP) → H̃n(X ′;ZP) is also an isomorphism. But since H̃n(Y ; ZP) ' H̃n(Y )
and H̃n(X ′; ZP) ' H̃n(X ′) for all n ∈ N we obtain that g∗ : H̃n(Y ) → H̃n(X ′) is an
isomorphism for all n ∈ N.

Since Y and X are abelian, applying 1.4.36 we get that g : Y → X ′ is a homotopy
equivalence. Thus, X → Y is a P-localization map.

Proposition 2.4.9. Let f : X → Y and f ′ : X ′ → Y ′ be P-localizations and let g :
X → X ′ be a continuous map. Then, there exists a continuous map h : Y → Y ′ such
that hf = f ′g. Moreover, if g′ : X → X ′ and h′ : Y → Y ′ are continuous maps such that
h′f = f ′g′ and g ' g′ then h ' h′.
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The proof of this proposition involves obstruction theory and similar arguments as those
above and will not be given here. From it we obtain the following important corollary.

Corollary 2.4.10. Let X be an abelian space. Then the P-localization of X is unique
up to homotopy equivalence, i.e. given P-localizations f : X → Y and f ′ : X → Y ′ there
exists a homotopy equivalence h : Y → Y ′ such that hf = f ′.

As a corollary of 2.4.7 and 2.4.9 we obtain a homological caracterization of P-local
spaces.

Corollary 2.4.11. Let X be an abelian space. Then X is P-local if and only if for all
n ∈ N, H̃n(Y ) can be given a compatible ZP-module structure.

2.5 Federer spectral sequence

In this section we will recall the Federer spectral sequence [6] and exhibit an alternative
proof of his result. It is worth mentioning that our approach differs from Federer’s since we
are interested in A-homotopy groups of spaces rather than in homotopy groups of function
spaces. Of course they are isomorphic if, for example, A is a locally compact CW-complex.

Definition 2.5.1. Let A and X be pointed topological spaces and let n ∈ N0. We define
the n-th A-homotopy group of X as πAn (X) = [ΣnA,X]. These are groups for n ≥ 1 and
abelian groups if n ≥ 2.

For example, πS
m

n (X) = πn+m(X) and πD
m

n (X) = 0 for all n,m ∈ N0 and for all
topological spaces X.

Definition 2.5.2. Let i : A → B be a cofibration. The cofibre of i is the space B/A
defined by the pushout diagram

A //

i

��
push

∗

��
B // B/A

The sequence A→ B → B/A is called a cofibration sequence.

Note that this notion is dual to that of the fibre of a fibration.
Dual to the long exact sequence of homotopy groups associated the fibration, there is

a long exact sequence associated to a cofibration sequence.
Let A i→ B

q→ B/A be a cofibration sequence and let X be a topological space. Then
there is a long exact sequence

. . . // π
B/A
n (X)

q∗ // πBn (X) i∗ // πAn (X) ∂ // π
B/A
n−1 (X) // . . . // π

B/A
0 (X)

q∗ // πB0 (X) i∗ // πA0 (X)

Let Y be a topological space with abelian fundamental group and let A be a finite
dimensional CW-complex. Suppose, in addition that A has only one 0-cell. Note that
this is not a homotopical restriction since any path-connected CW-complex is homotopy
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equivalent to a CW-complex (of the same dimension) with only one 0-cell. We define
Ar = ∗ for r ≤ −1.

For r ∈ N, let Jr be an index set for the r-cells of A. For α ∈ Jr let grα be the attaching
map of the cell erα.

The cofiber sequences Ar−1 → Ar →
∨
Jr

Sr induce the corresponding long exact se-

quences which may be extended as follows

. . . // πAr−1

1 (Y )
∂r // π

W
Sr

0 (Y )
q // π

W
Sr

0 (Y )/Im ∂r
0 // π

W
Sr−1

0 (Y )/Im ∂r−1

id // π
W

Sr−1

0 (Y )/Im ∂r−1
// 0

where q is the quotient map.
These extended exact sequences yield an exact couple (A0, E0, i, j, k) where the bigraded

groups A0 =
⊕
p,q∈Z

Ap,q and E0 =
⊕
p,q∈Z

E1
p,q are defined by

Ap,q =


πA
−p−1

p+q+1(Y ) if p+ q ≥ 0

π
W
S−p−1

0 (Y )/Im ∂ if p+ q = −1
0 if p+ q ≤ −2

and

E1
p,q =


π
W
S−p

p+q (Y ) if p+ q ≥ 0

π
W
S−p−1

0 (Y )/Im ∂ if p+ q = −1
0 if p+ q ≤ −2

Note that all these groups are abelian, except perhaps for πA
r

1 (Y ), r ∈ N. We will
prove now that πA

r

1 (Y ) is also an abelian group for all r ∈ N. We know that πA
r

1 (Y ) =
[ΣAr, Y ] ' [Ar,ΩY ] and that ΩY is an H-group, where the multiplication map is given
by standard path composition. Since π1(Y ) is abelian, it follows that this multiplication
is commutative and hence ΩY is an abelian H-group. Therefore, πA

r

1 (Y ) is an abelian
group for all r ∈ N.

Hence, the exact couple (A0, E0, i, j, k) induces a spectral sequence which, since A is
finite dimensional, converges to πAn (Y ) for n ≥ 1 by 2.2.10.

Note that
E1
p,q = π

W
S−p

p+q (Y ) =
∏
J−p

πq(Y ) ' C−p(A;πq(Y ))

for p + q ≥ 0 and p ≤ −1, where C∗(A;πq(Y )) denotes the cellular cohomology complex
associated to A with coefficients in πq(Y ).

The isomorphism γ : E1
p,q = π

W
S−p

p+q (Y )→ C−p(A;πq(Y )) is given by

γ([f ])(e−pα ) = [fΣp+qiα]

where iα : S−p →
∨
S−p denotes the inclusion in the α-th copy. Note also that E2

p,q = 0
if p+ q ≤ −1 or p ≥ 0.

We wish to prove now that E2
p,q ' H−p(A;πq(Y )) for p + q ≥ 1 and p ≤ −1. We will

need the following lemma.
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Lemma 2.5.3. Let X be a CW-complex, let r ≥ 2 and let g : Sr → Xr be a continuous
map. For r ∈ N, let Jr be an index set for the r-cells of X and for each β ∈ Jr let
iβ : Sr →

∨
Jr

Sr be the inclusion in the β-th copy and let qβ : Xr → Sr be the quotient map

which collapses Xr −
◦
erβ to a point. Let q : Xr → Xr/Xr−1 =

∨
Jr

Sr be the quotient map.

Then
[qg] =

∑
β∈Jr

[iβqβg]

in πr(
∨
Jr

Sr).

Proof. For each β ∈ Jr let q′β :
∨
γ∈Jr

Srγ → Srβ be the quotient map which collapses all

but the β-th copy of Sr to a point. It is easy to see that
⊕
β∈Jr

(q′β)∗ is the inverse of the

isomorphism
⊕
β∈Jr

(iβ)∗ :
⊕
β∈Jr

πr(Sr)→ πr(
∨
Jr

Sr).

Thus,

[qg] =
⊕
β∈Jr

(iβ)∗(
⊕
β∈Jr

(q′β)∗([qg])) =
⊕
β∈Jr

(iβ)∗({[qβg]}β) =
∑
β∈Jr

[iβqβg].

Now we consider δ : E1
p,q ' C−p(A;πq(Y ))→ E1

p−1,q ' C−p+1(A;πq(Y )) induced from
the spectral sequence. We will prove that δ = d∗ for n = p + q ≥ 1 and p ≤ −1, where
d is the cellular boundary map. This is equivalent to saying that the following diagram
commutes

π
W
Sp
′

n (Y )
q∗ //

'γ

��

πA
p′

n (Y )

( +
Jp′

gp
′+1
β )∗

// π
W
Sp
′+1

n−1 (Y )

'γ

��
Cp
′
(A;πn+p′(Y )) d∗ // Cp

′+1(A;πn+p′(Y ))

Here p′ = −p.
If [h] ∈ π

W
Sp
′

n (Y ) and ep
′+1
α is a (p′ + 1)-cell of A, thenγ(

∨
β

gp
′+1
β )∗q∗(h)

 (ep
′+1
α ) = γ(hΣnq

∨
β

Σngp
′+1
β )(ep

′+1
α ) = [hΣnqΣngp

′+1
α ].

On the other hand,

d∗(γ([h]))(ep
′+1
α ) = (γ([h]))(d(ep

′+1
α )) =

∑
β∈Jp′

deg(qβgp
′+1
α )(γ([h]))(ep

′

β ) =

=
∑
β∈Jp′

deg(qβgp
′+1
α )[hΣniβ].
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Applying 2.5.3 we get

[hΣnqΣngp
′+1
α ] = h∗([Σnqgp

′+1
α ]) = h∗(Σn(

∑
β∈Jp′

[iβqβgp
′+1
α ])) =

∑
β∈Jp′

[hΣn(iβqβgp
′+1
α )] =

=
∑
β∈Jp′

deg(Σn(qβgp
′+1
α ))[hΣniβ] =

∑
β∈Jp′

deg(qβgp
′+1
α )[hiβ].

It follows that E2
p,q ' H−p(A;πq(Y )) for p+ q ≥ 1 and p ≤ −1.

Hence, we have proved

Theorem 2.5.4. Let Y be a topological space with abelian fundamental group and let A
be a finite dimensional CW-complex. Then there exists a homological spectral sequence
{Eap,q}a≥1, with E2

p,q satisfying

• E2
p,q ' H−p(A;πq(Y )) for p+ q ≥ 1 and p ≤ −1.

• E2
p,q = 0 if p+ q < 0 or p ≥ 0.

which converges to πAp+q(Y ) for p+ q ≥ 1.

We will call {Eap,q}a≥1 the Federer spectral sequence associated to A and Y .

Example 2.5.5. If A is a Moore space of type (G,m) (with G finitely generated) and X
is a path-connected abelian topological space, in the Federer spectral sequence we get

E2
−p,q =


Hom(G, πq(X)) if p = m
Ext(G, πq(X)) if p = m+ 1

0 otherwise
for −p+ q ≥ 1.

Hence, from the corresponding filtrations, we deduce that, for n ≥ 1, there are short
exact sequences of groups

0 // Ext(G, πn+m+1(X)) // πAn (X) // Hom(G, πn+m(X)) // 0

As a corollary, if G is a finite group of exponent r then α2r = 0 for every α ∈ πAn (X).
For example, if X is a path-connected and abelian topological space, then every element
in πP2

n (X) (n ≥ 1) has order 1, 2 or 4.

Now, we will apply the previous theorem to give an extension to the Hopf-Whitney
theorem, which is not only interesting for its own sake but also will be useful for us later.

Theorem 2.5.6. Let K be a path-connected CW-complex of dimension n ≥ 2 and let Y
be (n− 1)-connected. Then there exists a bijection [K,Y ]↔ Hn(K;πn(Y )).

In addition, if K is the suspension of a path-connected CW-complex (or if Y is a loop
space), then the groups [K,Y ] and Hn(K;πn(Y )) are isomorphic.
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The first part is the Hopf-Whitney theorem [16]. The second part can be proved easily
by means of the Federer spectral sequence. Concretely, suppose that K = ΣK ′ with K ′

path-connected. Let {Eap,q} denote the Federer spectral sequence associated to K ′ and Y .
Then E2

p,q = 0 for q ≤ n− 1 since Y is (n− 1)-connected, and E2
p,q = 0 for p ≤ −n since

dimK ′ = n − 1. Hence, E2
−(n−1),n = Hn−1(K ′;πn(Y )) survives to E∞. As it is the only

nonzero entry in the diagonal p+ q = 1 of E2 it follows that

[K,Y ] = πK
′

1 (Y ) = E2
−(n−1),n = Hn−1(K ′;πn(Y )) = Hn(K;πn(Y )).



Chapter 3

Definition of CW(A)-complexes
and first results

In this chapter, we introduce CW-complexes of type A, or CW(A)-complexes for short,
generalizing CW-complexes, which turn out to be CW(S0)-complexes. As mentioned in
the introduction, there exist other generalizations of CW-complexes in the literature, but
our approach is quite different from them and keeps the geometric and combinatorial
nature of Whitehead’s original theory. Thus, it also gives us a deeper insight onto the
classical theory of CW-complexes.

We also mention that many results given in this chapter are completely new, while
others are generalization of well-known properties of CW-complexes. Among these latter
ones, we find that some proofs can be generalized without difficulty, while others need a
different argument.

In the first section of this chapter, we give the constructive definition of CW(A)-
complexes, analyse some of their topological properties and generalize known results for
CW-complexes. We study basic constructions such as cylinders, cones and suspensions of
CW(A)-complexes which are useful when dealing with homotopy and homology of these
spaces.

Of course, some classical results are no longer true for general cores A. For example,
the notion of dimension of a space (as a CW(A)-complex) is not always well defined.
Recall that in the classical case, the good definition of dimension is deduced from the
famous invariance of dimension theorem. By a similar argument, we can prove that in
particular cases (for example when the core A is itself a finite dimensional CW-complex)
the dimension of a CW(A)-complex is well defined. We study this and other invariants
and exhibit many examples and counterexamples to clarify the main concepts.

Although our definition of CW(A)-complexes is constructive, we also give a descriptive
definition and compare them. In the classical theory of CW-complexes it is well known
that both definitions coincide, but for an arbitrary chosen core A they may differ, as we
shall see.

We also study the relationship between different decompositions and analyse the change
from a core A to a core B via a map α : A→ B.

From now on we will work in the category of pointed topological spaces. Hence, maps

97
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will be pointed and cylinders, cones and suspensions will always be reduced.

3.1 The constructive approach

Let A be a fixed pointed topological space.

Definition 3.1.1. We say that a (pointed) space X is obtained from a (pointed) space B
by attaching an n-cell of type A (or simply, an A-n-cell) if there exists a pushout diagram

Σn−1A
g //

i
��

push

B

��
CΣn−1A f

// X

The A-cell is the image of f . The map g is the attaching map of the cell, and f is its
characteristic map.

We say that X is obtained from B by attaching a 0-cell of type A if X = B ∨A.

Note that attaching an S0-n-cell is the same as attaching an n-cell in the usual sense,
and that attaching an Sm-n-cell means attaching an (m+ n)-cell in the usual sense.

The reduced cone CA of A is obtained from A by attaching an A-1-cell. In particular,
D2 is obtained from D1 by attaching a D1-1-cell. Also, the reduced suspension ΣA can
be obtained from the singleton ∗ by attaching an A-1-cell.

Of course, we can attach many n-cells at the same time by taking various copies of
Σn−1A and CΣn−1A. ∨

α∈J
Σn−1A

+
α∈J

gα
//

i
��

push

B

��∨
α∈J

CΣn−1A
+
α∈J

fα
// X

Definition 3.1.2. A CW-structure with base A on a space X, or simply a CW(A)-
structure on X, is a sequence of spaces ∗ = X−1, X0, X1, . . . , Xn, . . . such that, for n ∈ N0,
Xn is obtained from Xn−1 by attaching n-cells of type A, and X is the colimit of the di-
agram

∗ = X−1 → X0 → X1 → . . .→ Xn → . . .

We call Xn the n-skeleton of X. The base point ∗ will be regarded as a (−1)-cell.
We say that the space X is a CW(A)-complex (or simply a CW(A)), if it admits some

CW(A)-structure. In this case, the space A will be called the core or the base space of the
structure.

Note that a CW(A)-complex may admit many different CW(A)-structures.



Section 3.1: The constructive approach 99

Examples 3.1.3.
(1) A CW(S0)-complex is just a CW-complex and a CW(Sn)-complex is a CW-complex

with no cells of dimension less than n, apart from the base point. Moreover, any path-
connected CW-complex is homotopy equivalent to a CW(S0)-complex. Indeed, if X is a
path-connected CW-complex, then X is homotopy equivalent to a CW-complex with only
one 0-cell and any attaching map is homotopic to a base-point preserving map. Hence,
the result follows applying 1.1.19 and 1.1.22.

(2) The spaceDn admits several different CW(D1)-structures. For instance, we can take
Xr = Dr+1 for 0 ≤ r ≤ n− 1 since CDr = Dr+1. We may also take X0 = . . . = Xn−2 = ∗
and Xn−1 = Dn since there is a pushout

Σn−2D1 = Dn−1 //

i
��

push

∗

��
CΣn−2D1 = CDn−1 // ΣDn−1 = Dn

As in the classical case, instead of starting attaching cells from a base point ∗, we can
start attaching cells on a pointed space B.

Definition 3.1.4. A relative CW(A)-complex is a pair (X,B) such that X is the colimit
of a diagram

B = X−1
B → X0

B → X1
B → . . .→ Xn

B → . . .

where Xn
B is obtained from Xn−1

B by attaching n-cells of type A.

One can also build a space X by attaching cells (of some type A) without requiring
them to be attached in such a way that their dimensions form an increasing sequence.
That means, for example, that a 2-cell may be attached on a 5-cell.

In general, those spaces might not admit a CW(A)-structure and they will be called
generalized CW(A)-complexes (see 3.1.6). If the core A is itself a CW-complex, then a
generalized CW(A)-complex has the homotopy type of a CW-complex. This generalizes
the well-known fact that a generalized CW-complex has the homotopy type of a CW-
complex.

Before giving the formal definition we show an example of a generalized CW-complex
which is not a CW-complex.

Example 3.1.5. We build X as follows. We start with a 0-cell and we attach a 1-cell by
the identity map obtaining the interval [−1; 1]. We regard 1 as the base point. Now, for
each n ∈ N we define gn : S0 → [−1, 1] by gn(1) = 1, gn(−1) = 1/n. We attach 1-cells by
the maps gn. This space X is an example of a generalized CW-complex (with core S0).

It is not hard to verify that it is not a CW-complex. To prove it, suppose that X admits
a CW-complex structure. We will prove that the points 1/n must be 0-cells, but they have
a cluster point which is not possible for 0-cells of a CW-complex. Fix n and call p = 1/n.
The point p must be in the interior of some cell. By a dimension argument it is easy to
see that p can’t belong to the interior of an r-cell for r ≥ 1 because the neighbourhoods
of p are not homeomorphic to the r-disk. Thus, p must belong to the interior of a 0-cell,
and hence it is a 0-cell.
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We shall see that if A is a CW-complex then a generalized CW(A)-complex has the
homotopy type of a CW-complex. In particular, a generalized CW-complex (that is, a
generalized CW(S0)) has the homotopy type of a CW-complex.

Definition 3.1.6. We say that X is obtained from B by attaching cells (of different
dimensions) of type A if there is a pushout

∨
α∈J

Σnα−1A
+
α∈J

gα
//

i
��

push

B

��(
∨
α∈J0

A) ∨ (
∨
α∈J

CΣnα−1A)
+
α∈J

fα
// X

where nα ∈ N for all α ∈ J . We say that X is a generalized CW(A)-complex if X is the
colimit of a diagram

∗ = X0 → X1 → X2 → . . .→ Xn → . . .

where Xn is obtained from Xn−1 by attaching cells (of different dimensions) of type A.
We call Xn the n-th layer of X.
One can also define generalized relative CW(A)-complexes in the obvious way.

For standard CW-complexes, by the classical Invariance of Dimension Theorem, one
can prove that the notion of dimension is well defined. Any two different structures of a
CW-complex must have the same dimension.

For a general core A this is no longer true. However, we shall prove later that for
particular cases (for example when A is a finite dimensional CW-complex) the notion of
dimension of a CW(A)-complex is well defined.

Definition 3.1.7. Let X be a CW(A)-complex. We consider X endowed with a particular
CW(A)-structure K. We say that the dimension of K is n if Xn = X and Xn−1 6= X, and
we write dim(K) = n. We say that K is finite dimensional if dim(K) = n for some n ∈ N0.

Important remark 3.1.8. A CW(A)-complex may admit CW(A)-structures of different
dimensions. For example, let A =

∨
n∈N

Sn and let X =
∨
j∈N

A. Then X has a zero-

dimensional CW(A)-structure. But we can see that X = (
∨
j∈N

A) ∨ ΣA, which induces

a 1-dimensional structure. Note that
∨
j∈N

A = (
∨
j∈N

A) ∨ ΣA since both spaces consist of

countably many copies of Sn for each n ∈ N.

Another example is the following. It is easy to see that if B is a topological space
with the indiscrete topology then its reduced cone and suspension also have the indiscrete
topology. So, let A be an indiscrete topological space with 1 ≤ #A ≤ c. If A is just a
point then its reduced cone and suspension are also singletons, so ∗ can be given a CW(∗)
structure of any dimension. If #A ≥ 2 then #(ΣnA) = c for all n, and ΣnA are all
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indiscrete spaces. Since they have all the same cardinality and they are indiscrete then all
of them are homeomorphic. But each ΣnA has an obvious CW(A)-structure of dimension
n. Thus, the homeomorphisms between ΣnA and ΣmA, for all m, allow us to give ΣnA a
CW(A)-structure of any dimension (greater than zero).

Given a CW(A)-complex X, we define the boundary of an n-cell en by
•
en = en ∩Xn−1

and the interior of en by
◦
en = en −

•
en.

A cell emβ is called an immediate face of enα if
◦
emβ ∩ enα 6= ∅, and a cell emβ is called a face

of enα if there exists a finite sequence of cells

emβ = em0
β0
, em1
β1
, em2
β2
, . . . , emkβk = enα

such that emjβj is an immediate face of emj+1

βj+1
for 0 ≤ j < k.

Finally, we call a cell principal if it is not a face of any other cell.

Remark 3.1.9. Note that
◦
enα ∩

◦
emβ 6= ∅ if and only if n = m, α = β. Thus, if emβ is a face

of enα and emβ 6= enα then m < n.

As in the classical case, we can define subcomplexes and A-cellular maps in the obvious
way. A-cellular maps will often be called simply cellular when there is no risk of ambiguity.

Remark 3.1.10. If X is a CW(A), then X =
⋃
n,α

◦
enα.

Proof. Let x ∈ X. Then there exist m,β such that x ∈ emβ , and we may choose a cell with

minimum m. If x ∈
◦
emβ we are done. If not, x ∈

•
emβ ⊆ Xm−1, then x belongs to a cell with

dimension less than m, a contradiction.

Proposition 3.1.11. Let X be a CW(A)-complex and suppose that the base point of A
is closed in A. Then the interiors of the n-cells are open in the n-skeleton. In particular,
Xn−1 is a closed subspace of Xn.

Proof. For n = −1 and n = 0, the statement is clear. Let n ≥ 1. There is a pushout
diagram ∨

α∈J
Σn−1A

+
α∈J

gα
//

i
��

push

Xn−1

��∨
α∈J

CΣn−1A
+
α∈J

fα
// Xn = Xn−1 ∪

⋃
α
enα

Consider a cell enβ. In order to verify that
◦
enβ is open in Xn we have to prove that

(+fβ)−1(
◦
enβ) is open in

∨
α∈J

CΣn−1A. Since (+fβ)−1(
◦
enβ) = CΣn−1A − Σn−1A is open in

CΣn−1A, then
◦
enβ is open in Xn.



Section 3.1: The constructive approach 102

The previous proposition does not hold if the base point is not closed in A. For example,
let A be an indiscrete space with #A ≥ 2 and X = CA, obtained by attaching an A-1-cell
to A by the identity map. Then X has also the indiscrete topology and hence, the interior
of the A-1-cell is not open in X.

Recall that a topological space Y is T1 if the points are closed in X.

Proposition 3.1.12. Let A be a pointed T1 topological space, let X be a CW(A)-complex
and let K ⊆ X be a compact subspace. Then K meets only a finite number of interiors of
cells.

Proof. Let Λ = {α/ K ∩
◦
enαα 6= ∅}. For each α ∈ Λ choose xα ∈ K ∩

◦
enαα . We want to

show that for any α ∈ Λ there exists an open subspace Uα ⊆ X such that Uα ⊇
◦
enαα and

xβ /∈ Uα for any β 6= α.
For each n, let Jn be the index set of the n-cells. We denote by gnα the attaching map

of enα and by fnα its characteristic map.

Fix β ∈ Λ. Take U1 =
◦
e
nβ
β , which is open in Xnβ . If nβ = −1, we take U2 =

(
∨

α∈J0∩Λ

A− {xα}) ∨ (
∨

α∈J0−Λ

A), which is open in the 0-skeleton.

Now, for nβ + n− 1 ≥ 1 we construct inductively open subspaces Un of Xnβ+n−1 with
Un−1 ⊆ Un, Un ∩Xnβ+n−2 = Un−1 and such that xα /∈ Un if α 6= β.

If the base point a0 /∈ Un−1, we take

Un = Un−1 ∪
⋃

α∈Jnβ+n−1

fnαα ((gnαα )−1(Un−1)× (1− εα, 1])

with 0 < εα < 1 chosen in such a way that xα /∈ Un if α 6= β. Note that Un is open in
Xnβ+n−1.

If a0 ∈ Un−1 we take

Un = Un−1∪
⋃

α∈Jnβ+n−1

fnαα (((gnαα )−1(Un−1)×(1−εα, 1])∪(Wxα×I)∪(Σnβ+n−1A× [0, ε′α)))

with Wxα = Vxα ∩ (gnαα )−1(Un−1), where Vxα ⊆ Σnβ+n−1A is an open neighbourhood of
the base point not containing x′α (where xα = fnαα (x′α, tα)), and 0 < εα < 1, 0 < ε′α < 1,
chosen in such a way that xα /∈ Un if α 6= β. Note that Un is open in Xnβ+n−1.

We set Uβ =
⋃
n∈N

Un. Thus K ⊆
⋃
α∈Λ

◦
enαα ⊆

⋃
α∈Λ

Uα, and xα /∈ Uβ if α 6= β. Since {Uα}α∈Λ

is an open covering of K which does not admit a proper subcovering, Λ must be finite.

Lemma 3.1.13. Let A and B be Hausdorff spaces and suppose X is obtained from B by
attaching cells of type A. Then X is Hausdorff.

Proof. Let x, y ∈ X. If x, y lie in the interior of some cell, then it is easy to choose
the open neighbourhoods. If one of them belongs to B and the other to the interior of
a cell, let us say x ∈ enαα , we work as in the previous proof. Explicitly, if x = fα(a, t)
with a ∈ Σnα−1A, t ∈ I then we take U ′ ⊆ Σnα−1A open set such that a ∈ U ′ and
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a0 /∈ U ′, where a0 is the basepoint of Σnα−1A. We define U = fα(U ′ × (t/2, (1 + t)/2)),
and V = X − fα(U ′ × [t/2, (1 + t)/2]).

If x, y ∈ B, since B is Hausdorff there exist U ′, V ′ ⊆ B open disjoint sets such that
x ∈ U ′ and y ∈ V ′. However, U ′ and V ′ need not be open in X. Suppose first that x, y
are both different from the base point. So we may suppose that neither U ′ nor V ′ contain
the base point. We take

U = U ′ ∪
⋃
α∈J

fα((gα)−1(U ′)× (1/2; 1])

V = V ′ ∪
⋃
α∈J

fα((gα)−1(V ′)× (1/2; 1])

If x is the base point then we take

U = U ′ ∪
⋃
α∈J

fα(((gα)−1(U ′)× I) ∪ (Σnα−1A× [0; 1/2)))

Proposition 3.1.14. Let A be a Hausdorff space and let X be a CW(A)-complex. Then
X is a Hausdorff space.

Proof. By the previous lemma and induction we have that Xn is a Hausdorff space for all
n ≥ −1. Given x, y ∈ X, choose m ∈ N such that x, y ∈ Xm. As Xm is a Hausdorff space,
there exist disjoint sets U0 and V0, which are open in Xm, such that x ∈ U0 and y ∈ V0.
Proceeding in a similar way as we did in the previous results we construct inductively sets
Uk, Vk for k ∈ N such that Uk, Vk ⊆ Xm+k are open sets, Uk∩Vk = ∅, Uk∩Xm+k−1 = Uk−1

and Vk ∩Xm+k−1 = Vk−1 for all k ∈ N. We take U =
⋃
Uk, V =

⋃
Vk.

Remark 3.1.15. Let X be a CW(A)-complex and S ⊆ X a subspace. Then S is closed in
X if and only if S ∩ enα is closed in enα for all n, α.

Proposition 3.1.16. Let A be a finite dimensional CW-complex, A 6= ∗, and let X be
a CW(A)-complex. Let K and K′ be CW(A)-structures in X and let n,m ∈ N0 ∪ {∞}
denote their dimensions. Then n = m.

Proof. We suppose first that K and K′ are finite dimensional and n ≥ m.

Let k = dim(A) and let enα be an n-cell of K. There is a homeomorphism
◦
enα '

CΣn−1A − Σn−1A, and
◦
enα is open in X. Let e be a cell of maximum dimension of the

CW-complex CΣn−1A and let U =
◦
e. Thus U is open in X and homeomorphic to

◦
Dn+k.

Now, U intersects some interiors of cells of type A of K′. Let e0 be one of those cells
with maximum dimension. Suppose e0 is an m′-cell, with m′ ≤ m. Then

◦
e0 is open in the

m′-skeleton of X with the K′ structure. It is not hard to see that V = U ∩ ◦e0 is open in U ,
extending

◦
e0 to an open subset of X as in the proof of 3.1.12. Indeed, let U0 be an open

subset of X such that U0∩Xm′ =
◦
e0. Note that U ⊆ Xm′ . Hence, U0∩U ⊆ U0∩Xm′ =

◦
e0.
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Then, U0 ∩ U ⊆
◦
e0 ∩ U . On the other hand,

◦
e0 ⊆ U0 and hence

◦
e0 ∩ U ⊆ U0 ∩ U . Thus,

V =
◦
e0 ∩ U ⊆ U0 ∩ U and therefore V is open in U .

In a similar way,
◦
e0 ' CΣm′−1A − Σm′−1A, and V meets some interiors of cells of

the CW-complex CΣm′−1A. We take e1 a cell (of type S0) of maximum dimension among

those cells and we denote k′ = dim(e1). Then
◦
e1 is homeomorphic to

◦
Dk′ . Let W = V ∩ ◦e1.

One can check that W is open in
◦
e1 '

◦
Dk′ and that it is also open in U '

◦
Dn+k.

Indeed, let W = V ∩ ◦e1. Again, W is open in
◦
e1 and since

◦
e1 is open in the k′-th skeleton

of e0, there exists U2 ⊆
◦
e0 open subset with U2 ∩ (e0)k

′
=
◦
e1. Then W = V ∩ ◦e1 = V ∩U2.

Now, V ⊆ ◦
e0, so W is open in V . Thus W is open in

◦
e1 and in V and hence in U . So, W

is open in
◦
e1 '

◦
Dk′ and W is open in U '

◦
Dn+k.

Hence, by the invariance of dimension theorem, n+k = k′, but also k′ ≤ m+k ≤ n+k.
Thus n = m.

It remains to be shown that if m =∞ then n =∞. Suppose that m =∞ and n 6=∞.

Let k = dim(A). We choose el an l-cell of K′ with l > n + k. Then
◦
el is open in the

l-skeleton (K′)l. As in the proof of 3.1.12, we can extend
◦
el to an open subset U of X

with U ∩ (K′)l−1 = ∅. Now we take a cell e1 of K such that
◦
e1 ∩ U 6= ∅ and with the

property of being of maximum dimension among the cells of K whose interior meets U .
Let r = dim(e1). We have that U ⊆ Kr. As before, we extend

◦
e1 to an open subset V of

X with V ∩Kr−1 = ∅, V ∩Kr =
◦
e1. So U ∩ ◦e1 = U ∩V is open in X. Proceeding similarly,

since
◦
e1 ' CΣr−1A − Σr−1A, we can choose a cell e2 of e1 (of type S0) with maximum

dimension such that W =
◦
e2 ∩ (U ∩ ◦e1) 6= ∅. Again, W is open in X. Let s = dim e2. So

W is open in
◦
e2 '

◦
Ds and s ≤ r + k ≤ n + k < l. On the other hand, W must meet the

interior of some cell of type S0 belonging to one of the cells of K′ with dimension greater
than or equal to l (since U ∩ (K′)l−1 = ∅). So, a subset of W is homeomorphic to an open

set of
◦
Dq with q ≥ l, a contradiction.

Lemma 3.1.17. Let X and Y be CW(A)-complexes, let B ⊆ X be a subcomplex, and let
f : B → Y be an A-cellular map. Then the pushout

B
f //

i

��

Y

��

X //

push

X ∪
B
Y

is a CW(A)-complex.

Proof. We denote by {enX,α}α∈Jn the n-cells (of type A) of the relative CW(A)-complex
(X,B) and by {enY,α}α∈J ′n the n-cells of Y . We will construct X ∪

B
Y attaching the cells of

Y with the same attaching maps and at the same time we will attach the cells of (X,B)
using the map f : B → Y .
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Let J ′′0 = J0 ∪ J ′0 and Z0 =
∨

α∈J ′′0
A. We define f0 : X0 → Z0 by f0|B0 = f |B0 and

f0| S
α∈J0

e0X,α
the inclusion.

Suppose that Zn−1 and fn−1 : Xn−1 → Zn−1 with fn−1|Bn−1 = f are defined. We
define Zn by the following pushout.

∨
α∈J ′′n

Σn−1A
+

α∈J′′n
g′′α

//

i
��

push

Zn−1

in−1

��∨
α∈J ′′n

CΣn−1A
+

α∈J′′n
f ′′α

// Zn

where J ′′n = Jn ∪ J ′n and

g′′α =
{
fn−1 ◦ gα if α ∈ Jn
g′α if α ∈ J ′n

where gα and g′α are the attaching maps. We define fn : Xn → Zn by fn|Bn = f |Bn ,
fn|Xn−1 = fn−1 and fn| S

α∈Jn
enX,α

= f ′′α (i.e. fn(fα(x)) = f ′′α(x)). Note that fn is well

defined.
Let Z be the colimit of the Zn. By construction it is not difficult to verify that Z

satisfies the universal property of the pushout.

Corollary 3.1.18. Let X be a CW(A)-complex and B ⊆ X a subcomplex. Then X/B is
a CW(A)-complex.

Theorem 3.1.19. Let X be a CW(A)-complex. Then the reduced cone CX and the
reduced suspension ΣX are CW(A)-complexes. Moreover, X is a subcomplex of both of
them.

Proof. By the previous lemma, it suffices to prove the result for CX.
Let enα be the n-cells of X and, for each n, let Jn be the index set of the n-cells. We

denote by gnα the attaching maps and by fnα the characteristic maps. Let in−1 : Xn−1 → Xn

be the inclusions. We construct Y = CX as follows.
Let Y 0 =

∨
α∈J0

A = X0.

We construct Y 1 from Y 0 and from the 0-cells and the 1-cells of X by the pushout

∨
α∈J ′1

A
+

α∈J′1

g′α

//

i
��

push

Y 0

i′0

��∨
α∈J ′1

CA
+

α∈J′1

f ′α

// Y 1
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where J ′1 = J0 t J1. The maps g′α, for α ∈ J ′1, are defined as

g′α =
{
iα if α ∈ J0

gα if α ∈ J1

and iα : A→
∨
α∈J0

A is the inclusion of A in the α-th copy. Note that X1 is a subcomplex

of Y 1.
Note also that the 1-cells of Y are divided into two sets. The ones with α ∈ J1 are the

1-cells of X, and the others are the cone of the 0-cells of X.
Inductively, suppose we have constructed Y n−1. We define Y n as the pushout

∨
α∈J ′n

Σn−1A
+

α∈J′n
g′α

//

i
��

push

Y n−1

i′n−1

��∨
α∈J ′n

CΣn−1A
+

α∈J′n
f ′α

// Y n

where J ′n = Jn−1 t Jn and

g′α =
{
gα for α ∈ Jn
fα ∪ Cgα for α ∈ Jn−1 .

We prove now that Y n = CXn−1 ∪
⋃
α
enα. We have the following commutative diagram.

∨
α∈J ′n

Σn−1A
( +
α∈Jn−1

g′α)∨Id

//

W
α∈J′n

i

��

Y n−1 ∨
∨

α∈Jn
Σn−1A

in−1∨
W

α∈Jn
i

��

Id+( +
α∈Jn

g′α)

//

push

Y n−1

��∨
α∈J ′n

CΣn−1A
( +
α∈Jn−1

f ′α)∨Id
// CXn−1 ∨

∨
α∈Jn

CΣn−1A
Id+( +

α∈Jn
f ′α)
// CXn−1 ∪

⋃
α
enα

The right square is clearly a pushout. To prove that the left square is also a pushout it
suffices to verify that the following is also a pushout.

∨
α∈Jn−1

Σn−1A
+

α∈Jn−1

g′α

//

W
α∈Jn−1

i

��

Y n−1 = CXn−2 ∪
⋃

α∈Jn−1

en−1
α

inc

��∨
α∈Jn−1

CΣn−1A
+

α∈Jn−1

f ′α

// CXn−1
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For simplicity, we will prove this in the case that there is only one A-(n− 1)-cell. Let

j : Σn−1A→ CΣn−1A
i1 : C(Σn−1A)× {1} → CCΣn−1A
i2 : (Σn−1A)× {1} × I/ ∼→ CCΣn−1A
i : ΣnA = CΣn−1A ∪

A
CΣn−1A→ CΣnA

be the corresponding inclusions.
Let ϕ : CC(Σn−1A) → CΣ(Σn−1A) be a homeomorphism, such that ϕ−1i = i1 + i2.

Note that Cj = i2. There are pushout diagrams

Σn−1A
g //

j

��
push

Xn−1

inc
��

CΣn−1A f
// Xn = Xn−1 ∪ en

CΣn−1A
Cg //

Cj=i2
��

push

CXn−1

Cinc

��
CCΣn−1A Cf

// CXn

It is not hard to check that the diagram

ΣnA = CΣn−1A ∪
A

CΣn−1A f+Cg //

i

��

CXn−1 ∪ en

inc

��
CΣnA

(Cf)ϕ−1
// CXn

satisfies the universal property of pushouts. Indeed, Cfϕ−1i = Cf(i1 + i2) = f + Cg,
so the diagram commutes. Suppose we have α : CXn−1 ∪ en → Z and β : CΣnA → Z
such that βi = α(f + Cg). Then βϕi1 = αinf and βϕi2 = αinCg = α|CXn−1 . We have a
commutative diagram

CΣn−1A
Cg //

Cj=i2
��

push

CXn−1

�� α|CXn−1

��

CCΣn−1A Cf
//

βϕ 00

CXn

γ

##
Z

Then, there exists a (unique) map γ such that γin = α|CXn−1 and γCf = βϕ. So,
γCfϕ−1 = β. We must see that γin = α, so it remains to be proved that this holds in en.
But γCf = βϕ, then γCfi1 = βϕi1 = αinf . Thus γinf = αinf , and since f is surjective
this implies that γ = α in en. The uniqueness of γ is clear. We have proved that the
diagram at the beginning is a pushout.

Now we take Y to be the colimit of Y n, which satisfies the desired properties.

Remark 3.1.20.
(1) The standard proof of the previous theorem for a CW-complex X uses the fact that

the reduced cylinder IX is also a CW-complex. For general cores A, it is not always true
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that IX is a CW(A)-complex when X is. For example, take A = X = S0. The reduced
cylinder IX has two path-connected components: the base point and the unit interval.
But in any CW(S0), each of the path connected components which do not contain the
base point consists of only one point. Thus, IX is not a CW(S0).

However, we will see below that if A is the suspension of a locally compact and Hausdorff
space then the reduced cylinder of a CW(A)-complex is also a CW(A)-complex.

(2) It is easy to see that if X is a CW(A), then ΣX is a CW(A)-complex. Just apply
the Σ functor to each of the pushout diagrams used to construct X. In this way we give
ΣX a CW(A)-structure in which each of the cells is the reduced suspension of a cell of X.
This is a simple and useful structure. However, it does not have the property of having X
as a subcomplex.

Note that (IX) ∧ A = I(X ∧ A) for any spaces A and X since IZ = (I t ∗) ∧ Z for
every topological space Z (here t denotes disjoint union).

Lemma 3.1.21. Let A be a loccaly compact and Hausdorff space and let X be a topological
space. Then (CX) ∧ A = C(X ∧ A), (X ∨ Y ) ∧ A = (X ∧ A) ∨ (Y ∧ A) and (ΣX) ∧ A =
Σ(X ∧A).

Proof. Since A is locally compact and Hausdorff, by the exponential law we get that the
functor –∧A is left adjoint to the functor Hom(A, –). Hence –∧A commutes with colimits.
The result follows applying the – ∧A functor to the pushouts

X //

��
push

IX

��
∗ // CX

∗ //

��
push

X

��
Y // X ∨ Y

X ∨X //

��
push

IX

��
∗ // ΣX

Proposition 3.1.22. Let A be a locally compact and Hausdorff space and let X be a
CW-complex. Then X ∧A is a CW(A)-complex. Moreover, the CW(A)-complex structure
of X ∧A is induced by the CW-complex structure of X.

Proof. As it was said in the proof of the previous lemma, the functor – ∧ A commutes
with colimits. The result follows using the previous lemma and applying – ∧ A functor
to the pushouts which define the A-skeletons by attaching cells and to the colimit of the
A-skeletons.

Lemma 3.1.23. Let ν : S1 → S1 ∨ S1 be the usual map inducing the comultiplication in
S1. Then there is a pushout

S1 ν //

��
push

S1 ∨ S1

��
CS1 // IS1
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Proof. Note that the pushout of the diagram

S1 ν //

��

S1 ∨ S1

CS1

is D2/{(−1, 0), (1, 0)}. There are homeomorphisms

IS1 = S1 × I/({(1, 0)} × I) ' I × I/({0, 1} × I) ' D2/{(−1, 0), (1, 0)}

and hence, the result follows.

Proposition 3.1.24. Let A′ be a locally compact and Hausdorff space and let A = ΣA′.
Let X be a CW(A)-complex. Then the reduced cylinder IX is a CW(A)-complex. More-
over, i0(X) and i1(X) are CW(A)-subcomplexes of IX.

Proof. For n ∈ N let Jn be an index set for the A-n-cells of X. We proceed by induction in
the A-skeletons of X. For the initial case we have that X0 =

∨
α∈J0

A. Then IX0 =
∨
α∈J0

IA.

But IA is a CW(A)-complex since applying – ∧A′ to the pushout of the previous lemma
gives a pushout

ΣA′ = A //

��
push

ΣA′ ∨ ΣA′ = A ∨A

��
CΣA′ = CA // IΣA′ = IA

Now suppose that IXn−1 is a CW(A)-complex with i0(Xn−1) and i1(Xn−1) are CW(A)-
subcomplexes. We consider∨

α∈Jn−1tJn−1

Σn−1A g //

��
push

IXn−1

��∨
α∈Jn−1tJn−1

CΣn−1A
+
α
fnα

// Yn

∨
α∈Jn

ΣnA
+
α
Gnα
//

��
push

Yn

��∨
α∈Jn

CΣnA // Zn

where g = +
α∈Jn−1

i0g
n
α+ +

α∈Jn−1

i1g
n
α with (gnα)α the adjunction maps of the A-n-cells of X, and

where the maps Gα are defined as the composition

Σ(Σn−1A) // C(Σn−1A)
⋃

Σn−1A

I(Σn−1A)
⋃

Σn−1A

C(Σn−1A) fnα∪Fα∪fnα // Yn

where the first map is a homeomorphism and Fα is the composition

I(Σn−1A)
Ignα // IXn−1 inc // Yn

We wish to prove that Zn is homeomorphic to IXn. Note that Yn = Xn
⋃

Xn−1

IXn−1
⋃

Xn−1

Xn.
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We have that ∨
α∈Jn−1tJn−1

Σn−1A g //

��
push

Xn−1 × {0} ∨Xn−1 × {1} inc //

��

push

IXn−1

��∨
α∈Jn−1tJn−1

CΣn−1A
+
α
fnα

//Wn
// Yn

and clearly Wn = Xn × {0} ∨Xn × {1}.
Now, the homeomorphism Σ(Σn−1A) −→ C(Σn−1A)

⋃
Σn−1A

I(Σn−1A)
⋃

Σn−1A

C(Σn−1A)

extends to a homeomorphism C(Σn−1A) −→ IC(Σn−1A). Indeed, this follows applying
– ∧ A to the homeomorphism of topological pairs ψ : (Dn+1, Sn) → (IDn,CSn−1 ∪

Sn−1

ISn−1 ∪
Sn−1

CSn−1)

Then, we have

∨
α∈Jn

(CΣn−1A
⋃

Σn−1A

IΣn−1A
⋃

Σn−1A

CΣn−1A) //

��
push

∨
α∈Jn

ΣnA
+
α
Gnα

//

��
push

Yn

��∨
α∈Jn

ICΣn−1A //
∨

α∈Jn
CΣnA // Zn

where the first square is a pushout since it commutes and its two horizontal arrows are
homeomorphisms.

Note now that the top horizontal composition is fnα ∪Fα∪fnα and that Zn = IXn since
Fα = inc ◦ Ignα. The result follows.

Lemma 3.1.25. Let A be a topological space and let (X,B) be a relative CW(A)-complex
(resp. a generalized relative CW(A)-complex). Let Y be a topological space, and let f :
B → Y be a continuous map. We consider the pushout diagram

B
f //

i

��

Y

��

X //

push

X ∪
B
Y

Then (X ∪
B
Y, Y ) is a relative CW(A)-complex (resp. a generalized relative CW(A)-

complex).
Moreover, if (X,B) has a CW(A)-stucture of dimension n ∈ N0 (resp. a CW(A)-

structure with a finite number of layers) then (X ∪
B
Y, Y ) can also be given a CW(A)-

stucture of dimension n (resp. a CW(A)-structure with a finite number of layers).

The proof is easy and we omit it.
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Theorem 3.1.26. Let A be a CW(B)-complex of finite dimension and let X be a gener-
alized CW(A)-complex. Then X is a generalized CW(B)-complex. In particular, if A is a
CW-complex of finite dimension then X is a generalized CW-complex.

Proof. Let
∗ = X0 → X1 → . . .→ Xn → . . .

be a generalized CW(A)-structure on X. Then, for each n ∈ N we have a pushout diagram

Cn =
∨
α∈J

Σnα−1A
+
α∈J

gα
//

i
��

push

Xn−1

��Dn = (
∨
α∈J0

A) ∨ (
∨
α∈J

CΣnα−1A)
+
α∈J

fα
// Xn

where nα ∈ N for all α ∈ J .
We have that (Dn, Cn) is a relative CW(B)-complex by 3.1.19, and it has finite di-

mension since A does. So, by 3.1.25, (Xn, Xn−1) is a relative CW(B)-complex of finite
dimension. Then, for each n ∈ N, there exist spaces Y j

n for 0 ≤ j ≤ mn, with mn ∈ N
such that Y j

n is obtained from Y j−1
n by attaching cells of type B of dimension j and

Y −1
n = Xn−1, Y mn

n = Xn. Thus, there exists a diagram

∗ = X0 = Y −1
1 → Y 0

1 → Y 1
1 → . . .→ Y m1

1 = X1 = Y −1
2 → . . .→ Y m2

2 = X2 = Y −1
3 → . . .

where each space is obtained from the previous one by attaching cells of type B. It is clear
that X, the colimit of this diagram, is a generalized CW(B)-complex.

In the following example we exhibit a space X which is not a CW-complex but is a
CW(A), with A a CW-complex.

Example 3.1.27. Let A = [0, 1] ∪ {2}, with 0 as the base point. We build X as follows.
We attach two 0-cells to get A ∨ A. We will denote the points in A ∨ A as (a, j), where
a ∈ A and j = 1, 2. We define now, for each n ∈ N, maps gn : A→ A ∨A in the following
way. We set gn(a) = (a, 1) if a ∈ [0, 1] and gn(2) = (1/n, 2). We attach 1-cells of type A
by means of the maps gn. By a similar argument to the one in 3.1.5, the space X obtained
in this way is not a CW-complex.

If A is a finite dimensional CW-complex and X is a generalized CW(A), the previous
theorem says that X is a generalized CW-complex, and so it has the homotopy type of
a CW-complex. The following result asserts that the last statement is also true for any
CW-complex A.

Proposition 3.1.28. If A is a CW-complex and X is a generalized CW(A)-complex then
X has the homotopy type of a CW-complex.
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Proof. Let
∗ ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn ⊆ . . .

be a generalized CW(A)-structure on X. We may suppose that all the 0-cells are attached
in the first step, that is,

X1 =
∨
β

A ∨
∨
α

ΣnαA

with nα ∈ N. It is clear that X1 is a CW complex.
We will construct inductively a sequence of CW-complexes Yn for n ∈ N with Yn−1 ⊆ Yn

subcomplex and homotopy equivalences φn : Xn → Yn such that φn|Xn−1 = φn−1.
We take Y1 = X1 and φ1 the identity map. Suppose we have already constructed

Y1, . . . , Yk and φ1, . . . , φk satisfying the conditions mentioned above. We consider the
following pushout diagram.

∨
α

Σnα−1A
+
α
gα

//

W
α
i

��
push

Xk

ik

��

φk //

push

Yk

γ′k

��∨
α

CΣnα−1A
+
α
fα
// Xk+1

β
// Y ′k+1

Note that β is a homotopy equivalence since ik is a closed cofibration and φk is a
homotopy equivalence.

We deform φk ◦ (+
α
gα) to a cellular map ψ and we define Yk+1 as the pushout∨

α
Σnα−1A ψ //

W
α
i

��
push

Yk

γk

��∨
α

CΣnα−1A // Yk+1

There exists a homotopy equivalence k : Y ′k+1 → Yk+1 with k|Yk = Id. Let ik : Xk →
Xk+1 be the inclusion. Then kβik = kγ′kφk and kγ′k = γk is the inclusion. Let φk+1 = kβ.
Then, φk+1 is a homotopy equivalence and φk+1|Xk = φk.

We take Y to be the colimit of the Yn’s. Then Y is a CW-complex. As the inclusions
ik, γk are closed cofibrations, by 1.1.22, it follows that X is homotopy equivalent to Y .

We prove now a variant of theorem 3.1.26.

Theorem 3.1.29. Let A be a generalized CW(B)-complex with B compact, and let X be a
generalized CW(A)-complex. If A and B are T1 then X is a generalized CW(B)-complex.

Proof. Let
∗ = X0 → X1 → . . .→ Xn → . . .

be a generalized CW(A)-structure on X. Let Cn, Dn be as in the proof of 3.1.26.



Section 3.2: The descriptive approach 113

We have that (Dn, Cn) is a relative CW(B)-complex by 3.1.19. By 3.1.25, (Xn, Xn−1)
is also a relative CW(B)-complex, but it need not be finite dimensional, so we can not
continue with the same argument as in the proof of 3.1.26. But using the compactness
of B, we will show that the cells of type B may be attached in a certain order to obtain
spaces Zn for n ∈ N such that X is the colimit of the Zn’s.

Let J denote the set of all cells of type B belonging to some of the relative CW(B)-
complexes (Xn, Xn−1) for n ∈ N. We associate an ordered pair (a, b) ∈ (N0)2 to each cell
in J in the following way. Note that each cell of type B is included in exactly one cell of
type A. The number a will be the smallest number of layer in which that A-cell lies. In a
similar way, if we regard that A-cell as a relative CW(B)-complex (CΣn−1A,Σn−1A) (or
more precisely, the image of this by the characteristic map), we set b to be the smallest
number of layer (in (CΣn−1A,Σn−1A)) in which the B-cell lies. If e is the cell, we denote
ϕ(e) = (a, b).

We will consider in (N0)2 the lexicographical order with the first coordinate greater
than the second one.

Now we set the order in which the B-cells are attached. Let J1 be the set of all the
cells whose attaching map is the constant. We define inductively Jn for n ∈ N to be the
set of all the B-cells whose attaching map has image contained in the union of all the cells
in Jn−1. Clearly Jn−1 ⊆ Jn. We wish to attach first the cells of J1, then those of J2 − J1,
etc. This can be done because of the construction of the Jn. We must verify that there
are no cells missing, i.e. that J =

⋃
n∈N

Jn.

Suppose there exists one cell in J , which we call e1, which is not in any of the Jn. The
image of its attaching map, denoted K, is compact, since B is compact and therefore it
meets only a finite number of interiors of A-cells. For each of these cells eA we consider
the relative CW(B)-complex (eA, eA −

◦
eA), where eA is the cell of type A.

Then K ∩ eA is closed in K and hence compact, so it meets only a finite number of
interiors of B-cells of the relative CW(B)-complex (eA, eA −

◦
eA).

Thus K meets only a finite number of interiors of B-cells in J .
This implies that K, which is the image of the attaching map of e1, meets the interior

of some cell e2 which does not belong to any of the Jn, because of the finiteness condition.
Recall that e2 is an immediate face of e1, which easily implies that ϕ(e2) < ϕ(e1).
Applying the same argument inductively we get a sequence of cells (en)n∈N such that

ϕ(en+1) < ϕ(en) for all n.
But this induces an infinite decreasing sequence for the lexicographical order, which is

impossible. Hence, J =
⋃
n∈N

Jn.

Let Zn =
⋃
e∈Jn

e. It is clear that (Zn, Zn−1) is a relative CW(B)-complex.

Since colimits commute, we prove that X = colim Zn is a generalized CW(B)-complex.

3.2 The descriptive approach

In this section we introduce the descriptive definition of CW(A)-complexes, which will
be used to prove some results. It also gives a different approach to CW(A)-complexes
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and generalizes the usual definition of CW-complexes. We will compare the constructive
definition of CW(A)-complexes given in the previous section with the descriptive one
giving conditions for each of them to imply the other, providing counterexamples if these
conditions do not hold. This shows once more which intrinsic properties of S0 are used in
the usual theory of CW-complexes giving us the chance to study it in depth.

As before, let A be a fixed pointed topological space.

Definition 3.2.1. Let X be a pointed topological space (with base point x0). A cellular
complex structure of type A on X is a collection K = {enα : n ∈ N0, α ∈ Jn} of subsets of
X, which are called the cells (of type A), such that x0 ∈ enα for all n and α, and satisfying
conditions (1), (2) and (3) below.

Let Kn = {erα, r ≤ n, α ∈ Jr} for n ∈ N0, K−1 = {{x0}}. Kn is called the n-skeleton of
K. Let |Kn| =

⋃
r≤n
α∈Jr

erα, |Kn| ⊆ X a subspace.

We call
•
enα = enα ∩ |Kn−1| the boundary of the cell enα and

◦
enα = enα −

•
enα the interior of

the cell enα.
The collection K must satisfy the following properties.

(1) X =
⋃
n,α
enα = |K|

(2)
◦
enα ∩

◦
emβ 6= ∅⇒ m = n, α = β

(3) For every cell enα with n ≥ 1 there exists a continuous map

fnα : (CΣn−1A,Σn−1A, a0)→ (enα,
•
enα, x0)

such that fnα is surjective and fnα : CΣn−1A − Σn−1A →
◦
enα is a homeomorphism.

For n = 0, there is a homeomorphism f0
α : (A, a0)→ (e0

α, x0).

The dimension of K is defined as dimK = sup{n : Jn 6= ∅}.

Definition 3.2.2. Let K be a cellular complex structure of type A in a topological space
X. We say that K is a cellular CW-complex with base A if it satisfies the following
conditions.

(C) Every compact subspace of X intersects only a finite number of interiors of cells.

(W) X has the weak (final) topology with respect to the cells.

In this case we will say that X is a descriptive CW(A).

We study now the relationship between both approaches.

Theorem 3.2.3. Let A be a T1 space. If X is a constructive CW(A)-complex, then it is
a descriptive CW(A)-complex.
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Proof. Let K = {enα}n,α ∪ {{x0}}. It is not difficult to verify that K defines a cellular
complex structure on X.

It remains to prove that it satisfies conditions (C) and (W). Note that condition (C)
follows from 3.1.12, while (W) follows from 3.1.15.

Note that the hypothesis of T1 on A is necessary. For example, take A = {0, 1} with
the indiscrete topology and 0 as base point. Let X =

∨
j∈N

A. The space X also has

the indiscrete topology and it is a constructive CW(A)-complex. If it were a descriptive
CW(A), it could only have cells of dimension 0 since X is countable. But X is not finite,
then it must have infinite many cells, but it is a compact space. This implies that (C)
does not hold, thus X is not a descriptive CW(A)-complex.

Theorem 3.2.4. Let A be a compact space and let X be a descriptive CW(A)-complex.
If X is Hausdorff then it is a constructive CW(A)-complex.

Proof. We will prove that |Kn| can be obtained from |Kn−1| by attaching A-n-cells. For
n = 0 this is clear since we have a homeomorphism

∨
α∈J0

f0
α :

∨
α∈J0

A→ |K0|.

For any n ∈ N, there is a pushout

∨
α∈Jn

Σn−1A
+

α∈Jn
fnα |Σn−1A

//

i
��

push

|Kn−1|

��∨
α∈Jn

CΣn−1A
+

α∈Jn
fnα

// |Kn|

The topology of |Kn| coincides with the pushout topology since X is Hausdorff and A
is compact. Indeed, suppose F ⊆ |Kn| is closed in the pushout topology. Then F ∩ |Kn−1|
is closed in |Kn−1|, and so F ∩ emβ is closed in emβ for all m < n. Since (fnα )−1(F ∩ enα) is
closed in CΣn−1A, then (fnα )−1(F ∩ enα) is compact. This implies that F ∩ enα is compact
and, since |Kn| is Hausdorff, it is closed in enα. Therefore, F is closed in |Kn| with the
subspace topology.

It is interesting to see that 3.2.4 need not be true if X is not Hausdorff. For example,
take A = S0 with the usual topology, and X = [−1, 1] with the following topology.
The proper open sets are [−1, 1), (−1, 1] and the subsets U ⊆ (−1, 1) which are open
in (−1, 1) with the usual topology. It is easy to see that X is a descriptive CW(A)-
complex. We denote D1 = [−1, 1] with the usual topology. Take e0 = {−1, 1}, e1 = X.
Let f0 : A → {−1, 1} and f1 : CA = D1 → e1 be the identity maps on the underlying

sets. Both maps are continuous and surjective. The maps f0 and f1| ◦
D1

:
◦
D1 →

◦
e1 are

homeomorphisms. So conditions (1), (2) and (3) of the definition of cellular complex are
satisfied. Condition (C) is obvious, and (W) follows from the fact that e1 = X. So X is
a descriptive CW(A)-complex. But it is not a constructive CW(A)-complex because it is
not Hausdorff.
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In a similar way one can define the notion of descriptive generalized CW(A)-complex.
The relationship between the constructive and descriptive approachs of generalized CW(A)-
complexes is analogous to the previous one.

3.3 Changing cores

Suppose we have two spaces A and B and maps α : A → B and β : B → A. Let X be
a CW(A)-complex. We want to construct a CW(B)-complex out of X, using the maps α
and β.

We shall consider two special cases. First, we consider the case βα = IdA, that is, A is
a retract of B. In this case, we construct a CW(B)-complex Y such that X is a retract of
Y .

Let Jn be an index set for the A-n-cells of X. For α ∈ Jn let gnγ be the attaching map
of the cell enα and let fnγ be its characteristic map. Let Y 0 =

∨
γ∈J0

B and let ϕ0 : X0 → Y 0

be the map ∨α and let ψ0 : Y 0 → X0 be the map ∨β. Clearly ψ0ϕ0 = IdX0 .
By induction suppose we have constructed Y n−1 and maps ϕn−1 : Xn−1 → Y n−1 and

ψn−1 : Y n−1 → Xn−1 such that ψn−1ϕn−1 = IdXn−1 and such that ϕk, ψk extend ϕk−1,
ψk−1 for all k ≤ n− 1. We define Y n by the following pushout.

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn
gnγΣn−1β)

//

∨i
��

push

Y n−1

j

��∨
γ∈Jn

CΣn−1B
+

γ∈Jn
hnγ

// Y n

Since

( +
γ∈Jn

fnγ CΣn−1β)(∨i) = +
γ∈Jn

(fnγ CΣn−1βi) = +
γ∈Jn

(fnγ iΣ
n−1β) = +

γ∈Jn
(incgnγΣn−1β) =

= incψn−1 +
γ∈Jn

(ϕn−1g
n
γΣn−1β)

there exists a map ψn : Y n → Xn extending ψn−1 such that ψn +
γ∈Jn

hnγ = +
γ∈Jn

(fnγ CΣn−1β)

and ψnj = incψn−1.
On the other hand we have the following commutative diagram
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∨
γ∈Jn

Σn−1A
+

γ∈Jn
gnγ

//

∨i

��

∨Σn−1α

&&MMMMMMMMM
Xn−1

inc

��

ϕn−1

  BBBBBBBBBB

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn
gnγΣn−1β)

//

∨i

��

Y n−1

j

��

∨
γ∈Jn

CΣn−1A
+

γ∈Jn
fnγ

//

∨CΣn−1α

&&MMMMMMMMM
Xn

ϕn

  ∨
γ∈Jn

CΣn−1B
+

γ∈Jn
hnγ

// Y n

where the front and back faces are pushouts. Then the dotted arrow exists and we have
ϕn = jϕn−1 + ( +

γ∈Jn
hnγCΣn−1α). Also, ψnϕn = IdXn , since

ψnϕn = ψnjϕn−1 + ( +
γ∈Jn

ψnh
n
γCΣn−1α) = incψn−1ϕn−1 + ( +

γ∈Jn
fnγ CΣn−1βCΣn−1α) =

= inc + ( +
γ∈Jn

fnγ ) = IdXn

Let Y = colim Y n. Then there exist maps ϕ : X → Y and ψ : Y → X induced by the
ψn’s and ϕn’s and they satisfy ψϕ = IdX . So, X is a retract of Y .

The second special case we consider is the following. Suppose A and B have the same
homotopy type, that is, there exists a homotopy equivalence β : B → A with homotopy
inverse α. Suppose, in addition, that the base points of A and B are closed. Let X be a
CW(A)-complex. We will construct a CW(B)-complex which is homotopy equivalent to
X.

Again we take Y 0 =
∨
γ∈J0

B. Let ϕ0 : X0 → Y 0 be the map ∨α. So, ϕ0 is a homotopy

equivalence.
Now, let n ∈ N and suppose we have constructed Y n−1 and a homotopy equivalence

ϕn−1 : Xn−1 → Y n−1. We define Y n as in the first case. Consider the commutative
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diagrams ∨
γ∈Jn

Σn−1B
+

γ∈Jn
gnγΣn−1β

//

iB

��

Id

''NNNNNNN
Xn−1

inc

��

ϕn−1

##HHHHHHHHHH

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn
gnγΣn−1β)

//

iB

��

Y n−1

j

��

∨
γ∈Jn

CΣn−1B //

Id

''NNNNNNN
Xn−1 ∪ enB

p1

##∨
γ∈Jn

CΣn−1B
+

γ∈Jn
hnγ

// Y n

∨
γ∈Jn

Σn−1B
+

γ∈Jn
gnγΣn−1β

//

iB

��

∨Σn−1β

''NNNNNNN
Xn−1

inc

��

Id

$$HHHHHHHHHH

∨
γ∈Jn

Σn−1A
+

γ∈Jn
gnγ

//

iA

��

Xn−1

inc

��

∨
γ∈Jn

CΣn−1B //

∨CΣn−1β ''NNNNNNN
Xn−1 ∪ enB

p2

$$∨
γ∈Jn

CΣn−1A
+

γ∈Jn
fnγ

// Xn

Since the front and rear faces of both cubical diagrams are pushouts, the dotted arrows
p1 and p2 exist. Now ϕn−1, ∨Σn−1β and ∨CΣn−1β are homotopy equivalences and iA and
iB are closed cofibrations. Then, by 1.1.20, p1 and p2 are homotopy equivalences. We
have the following commutative diagram.

Y n−1

i

��

Xn−1
ϕn−1oo Id //

j
��

Xn−1

k

��
Y n Xn−1 ∪ enB

p1oo p2 // Xn

where i, j and k are the inclusions. Let p−1
2 be a homotopy inverse of p2. Then p1p

−1
2 k =

p1p
−1
2 p2j ' p1j = iϕn−1. Since k : Xn−1 → Xn is a cofibration, ϕn−1 extends to some

ϕn : Xn → Y n and ϕn is homotopic to p1p
−1
2 , and thus, it is a homotopy equivalence.

Again, we take Y = colim Y n. Then the maps ϕn for n ∈ N induce a map ϕ : X → Y
which is a homotopy equivalence by 1.1.22.

We summarize the previous results in the following theorem.

Theorem 3.3.1. Let A and B be pointed topological spaces. Let X be a CW(A)-complex,
and let α : A→ B and β : B → A be continuous maps.
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i. If βα = IdA, then there exists a CW(B)-complex Y and maps ϕ : X → Y and
ψ : Y → X such that ψϕ = IdX .

ii. Suppose A and B have closed base points. If β is a homotopy equivalence, then there
exists a CW(B)-complex Y and a homotopy equivalence ϕ : X → Y .

iii. Suppose A and B have closed base points. If βα = IdA and αβ ' IdA then there
exists a CW(B)-complex Y and maps ϕ : X → Y and ψ : Y → X such that
ψϕ = IdX and ϕψ ' IdY .

Note that item (iii) follows by a similiar argument.

The previous theorem has an easy but interesting corollary.

Corollary 3.3.2. Let A be a contractible space (with closed base point) and let X be a
CW(A)-complex. Then X is contractible.

This corollary also follows from a result analogous to Whitehead’s Theorem which we
prove in the next chapter.

3.4 Localization

In this section the core A will be assumed to be an abelian CW-complex.

Remark 3.4.1. Let γ : A → AP be a P-localization map. Note that Cγ : CA → CAP is
also a P-localization since (CA)P and C(AP) are contractible.

Moreover, Σ(AP) is a P-local space since AP is. By theorem 2.4.8 applied to γ, we
deduce that Σγ : ΣA→ Σ(AP) induces isomorphisms H∗(ΣA)⊗ZP → H∗(Σ(AP))⊗ZP '
H∗(Σ(AP)). Hence, by the mentioned theorem we obtain that Σγ is a P-localization.

Theorem 3.4.2. Let A be a simply connected CW-complex and let X be an abelian
CW(A)-complex. Let P be a set of prime numbers. Given a P-localization A→ AP there
exists a P-localization X → XP with XP a CW(AP)-complex. Moreover, the CW(AP)-
complex structure of XP is obtained by localizing the adjunction maps of the CW(A)-
complex structure of X.

Proof. We proceed by induction in the A-n-skeletons of X. For X0 the result follows
immediately from 2.4.8. Suppose now that the result holds for Xn−1. Consider the
following diagram ∨

α∈J
Σn−1A

g= +
α∈J

gα
//

i
��

Xn−1

∨
α∈J

CΣn−1A
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By P-localizing it we obtain a diagram

∨
α∈J

Σn−1A
g= +

α∈J
gα

//

i

��

γ1

&&LLLLLLLLLL
Xn−1

γ2

""DDDDDDDDDDD

∨
α∈J

Σn−1AP gP //

iP

��

(Xn−1)P

∨
α∈J

CΣn−1A

γ3

&&LLLLLLLLLL

∨
α∈J

CΣn−1AP

where γ1, γ2 and γ3 are the localization maps. We consider the pushouts of the original
and localized diagrams and obtain a commutative cube

∨
α∈J

Σn−1A
g= +

α∈J
gα

//

i

��

γ1

&&LLLLLLLLLL
Xn−1

γ2

""DDDDDDDDDDD

��

∨
α∈J

Σn−1AP gP //

iP

��

(Xn−1)P

��

∨
α∈J

CΣn−1A

γ3

&&LLLLLLLLLL

// Xn

γ

""DDDDDDDDDDDD

∨
α∈J

CΣn−1AP // Z

We will prove that γ : Xn → Z is a P-localization map. By 2.4.8, it suffices to prove that Z
is a P-local space and that γ induces isomorphisms H∗(Xn)⊗ZP → H∗(Z)⊗ZP ' H∗(Z).

It is clear that Z is a P-local space since we have a cofibration sequence (Xn−1)P →
Z → Z/(Xn−1)P =

∨
α∈J

ΣnAP and (Xn−1)P and
∨
α∈J

ΣnAP are P-local spaces.

Now, considering the exact sequences in homology associated to the topological pairs
(Xn, Xn−1) and (Z, (Xn−1)P) and tensoring them with ZP , by the naturality of localiza-
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tion we obtain a commutative diagram

. . .

��

. . .

��
Hr+1(Xn, Xn−1)⊗ ZP

��

' // Hr+1(Z, (Xn−1)P)⊗ ZP

��
Hr(Xn−1)⊗ ZP

��

' // Hr((Xn−1)P)⊗ ZP

��
Hr(Xn)⊗ ZP

��

// Hr(Z)⊗ ZP

��
Hr(Xn, Xn−1)⊗ ZP

��

' // Hr(Z, (Xn−1)P)⊗ ZP

��
Hr−1(Xn−1)⊗ ZP

��

' // Hr−1((Xn−1)P)⊗ ZP

��. . . . . .

Note that the second and fifth horizontal arrows are isomorphisms by inductive hypoth-
esis. Also, the first and fourth horizontal arrows are isomorphisms by the previous
remark since Hj(Xn, Xn−1) ' Hj(Xn/Xn−1) ' Hj(

∨
α∈J

ΣnA) and Hj(Z, (Xn−1)P) '

Hj(Z/(Xn−1)P) ' Hj(
∨
α∈J

ΣnAP) for all j.

Hence, the inductive step is finished and the theorem is proved in case X is a finite
dimensional CW(A)-complex.

For the general case note that Hn(X) ' Hn(Xn) and that by the above construction
(XP)n is a P-localization of Xn. The theorem follows from commutativity of the square

Hn(Xn)⊗ ZP
'
��

' // Hr((XP)n)⊗ ZP
'
��

Hn(X)⊗ ZP // Hn((X)P)⊗ ZP

where the vertical arrows are induced by the inclusion maps.



Chapter 4

Homotopy theory of
CW(A)-complexes

In this chapter we start to develop the homotopy theory of CW(A)-complexes. We de-
fine degrees of A-connectedness, A-n-equivalences and A-weak equivalences, all of them
related to A-homotopy groups of spaces. Then we study degrees of connectedness and
A-connectedness of CW(A)-complexes.

The main result of this chapter is theorem 4.2.4 which generalizes the famous Whitehead
Theorem.

4.1 A-connectedness and A-homotopy groups

In this section we prove various homotopical results concerning CW(A)-complexes which
will be needed later and are also interesting for their own sake.

Let X be a (pointed) topological space and let r ∈ N0. Recall that the sets πAr (X) are
defined by πAr (X) = [ΣrA,X], the homotopy classes of maps from ΣrA to X. It is well
known that these are groups for r ≥ 1 and abelian for r ≥ 2.

Similarly, for B ⊆ X one defines πAr (X,B) = [(CΣr−1A,Σr−1A), (X,B)] for r ∈ N,
which are groups for r ≥ 2 and abelian for r ≥ 3.

Note that πS
0

r (X) = πr(X) and πS
n

r (X) = πr+n(X). Note also that πAr (X) are trivial
if A is contractible.

Definition 4.1.1. Let (X,B) be a pointed topological pair. The pair (X,B) is called A-
0-connected if for any given continuous function f : A→ X there exists a map g : A→ B
such that ig ' f , where i : B → X is the inclusion.

∗ //

�� '

B

i
��

A
f
//

g
>>~~~~~~~
X

Definition 4.1.2. Let n ∈ N. The pointed topological pair (X,B) is called A-n-connected
if it is A-0-connected and πAr (X,B) = 0 for 1 ≤ r ≤ n.

122
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Definition 4.1.3. Let f : X → Y be a continuous map, and let A be a topological space.
The map f is called an A-0-equivalence if for any given continuous function g : A → Y ,
there exists a map h : A→ X such that fh ' g.

∗ //

�� '

X

f

��
A g

//

h
>>~~~~~~~
Y

Given n ∈ N, the map f is called an A-n-equivalence if it induces isomorphisms f∗ :
πAr (X,x0)→ πAr (Y, f(x0)) for 0 ≤ r < n and an epimorphism for r = n.
Also, f is called an A-weak equivalence if it is an A-n-equivalence for all n ∈ N.

Remark 4.1.4. Let f : X → Y be map and let n ∈ N. We denote by Zf the mapping
cylinder of f . Then f is an A-n-equivalence if and only if the topological pair (Zf , X) is
A-n-connected.

Lemma 4.1.5. Let X, S, B be pointed topological spaces, S ⊆ X a subspace, x0 ∈ S
and b0 ∈ B the base points. Let f : (CB,B) → (X,S) be a continuous map. Then the
following are equivalent.

i) There exists a base point preserving homotopy H : (CB × I,B × I) → (X,S) such
that Hi0 = f , Hi1(x) = x0 ∀x ∈ CB.

ii) There exists a (base point preserving) homotopy G : CB × I → X, relative to B,
such that Gi0 = f , Gi1(CB) ⊆ S.

iii) There exists a (base point preserving) homotopy G : CB×I → X, such that Gi0 = f ,
Gi1(CB) ⊆ S.

Proof. i)⇒ ii) Define G as follows.

G([x, s], t) =
{
H([x, 2s

2−t ], t) if 0 ≤ s ≤ 1− t
2

H([x, 1], 2− 2s) if 1− t
2 ≤ s ≤ 1

It is clear that G is well defined and continuous. Note that

Gi0([x, s]) = H([x, 2s
2 ], 0) = H([x, s], 0) = f(x, s)

Gi1([x, s]) = H([x, 2s], 1) = x0 ∈ S if s ≤ 1
2

Gi1([x, s]) = H([x, 1], 2− 2s) ∈ S if s ≥ 1
2

since H(B × I) ⊆ S.
ii)⇒ iii) Obvious.
iii)⇒ i) We define H by

H([x, s], t) =
{
G([x, s], 2t) if 0 ≤ t ≤ 1

2
Gi1([x, s(2− 2t)]) if 1

2 ≤ t ≤ 1
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Lemma 4.1.6. Let X, Y be pointed topological spaces and let f : X → Y be an A-n-
equivalence. Let r ∈ N, r ≤ n and let iA : Σr−1A → CΣr−1A be the inclusion. Suppose
that g : Σr−1A→ X and h : CΣr−1A→ Y are continuous maps such that hiA = fg. Then,
there exists a continuous map k : CΣr−1A→ X such that kiA = g and fk ' h rel Σr−1A.

Σr−1A
g //

iA
�� '
|‖

X

f

��
CΣr−1A h

//

k
::vvvvvvvvv
Y

Proof. Consider the inclusions i : X → Zf and j : Y → Zf . Let r : Zf → Y be the usual
retraction. Note that there is a homotopy commutative diagram

Σr−1A
g //

iA
��

X

i
��

CΣr−1A jh
// Zf

Let H : Σr−1A × I → Zf be the homotopy from jhiA to ig defined by H(a, t) = [g(a), t]
for a ∈ Σr−1A, t ∈ I. Consider the commutative diagram of solid arrows

Σr−1A
i0 //

iA
��

Σr−1A× I

�� H

��

CΣr−1A i0
//

jh

00

CΣr−1A× I
H′

%%
Zf

Since iA is a cofibration there exists a map H ′ such that the whole diagram commutes,
which induces a commutative diagram

Σr−1A
g //

iA
��

X

i
��

CΣr−1A
H′i1

// Zf

The pair (Zf , X) is A-n-connected, so by lemma 4.1.5 there exists a continuous function
k : CΣr−1A→ X such that kiA = g, ik ' H ′i1 rel Σr−1A. Then

fk = rik ' rH ′i1 ' rH ′i0 = rjh = h

Note that the homotopy is relative to Σr−1A, thus fk ' h rel Σr−1A.

Lemma 4.1.7. Let A be an l-connected CW-complex, let B be a topological space, and
suppose X is obtained from B by attaching a 1-cell of type A. Then (X,B) is (l + 1)-
connected.
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Proof. Let g be the attaching map of the cell and f its characteristic map. Since A is an
l-connected CW-complex, (CA,A) is a relative CW-complex which is (l + 1)-connected.
Then there exists a relative CW-complex (Z,A′) such that A is a strong deformation
retract of A′, CA is a strong deformation retract of Z and (ZA′)l+1 = A′. Let r : A′ → A
be the retraction and let iX : B → X be the inclusion. Consider the pushout

A′
gr //

iA′
��
push

B

iY
��

Z
f ′
// Y

Then (Y,B) is a relative CW-complex with (YB)l+1 = B, and hence it is (l + 1)-
connected. The inclusions i : A→ A′ and j : CA→ Z and the identity map of B induce a
map ϕ : X → Y with ϕiX = iY IdB. Now, iA, iA′ are closed cofibrations and i, j and IdB
are homotopy equivalences, then by 1.1.20, ϕ is a homotopy equivalence. Thus, (X,B) is
(l + 1)-connected.

Note that the previous lemma can be applied when attaching a cell of any positive
dimension, since attaching an A-n-cell is the same as attaching a (Σn−1A)-1-cell. The
following lemma deals with the case in which we attach an A-0-cell. The proof is similar
to the previous one.

Lemma 4.1.8. Let A be an l-connected CW-complex, B a topological space, and suppose
X is obtained from B by attaching a 0-cell of type A (i.e. X = B ∨ A). Then (X,B) is
l-connected.

Now, using both lemmas we are able to prove the following proposition.

Proposition 4.1.9. Let A be an l-connected CW-complex, and let X be a CW(A)-complex.
Then the pair (X,Xn) is (n+ l + 1)-connected. In particular, X is l-connected.

Proof. Let r ≤ n + l + 1 and f : (Dr, Sr−1) → (Xn+1, Xn). We want to construct a
map f ′ : (Dr, Sr−1) → (Xn+1, Xn) such that f ′(Dr) ⊆ Xn, and f ' f ′ rel Sr−1. Since
f(Dr) is compact, it intersects only a finite number of interiors of (n+ 1)-cells (note that
A is T1). By an inductive argument, we may suppose that we are attaching just one
(n + 1)-cell of type A, which is equivalent to attaching a 1-cell of type ΣnA. Since ΣnA
is (n + l)-connected, (Xn+1, Xn) is (n + l + 1)-connected. The result of the proposition
follows.

Proposition 4.1.10. Let A be an l-connected CW-complex, with dim(A) = k ∈ N0, and
let X be a CW(A)-complex. Then the pair (X,Xn) is A-(n− k + l + 1)-connected.

Proof. We prove first the A-0-connectedness in case k ≤ n + l + 1. We have to find a
dotted arrow in a diagram

∗ //

�� '
|‖

Xn

i
��

A
f
//

==

X
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This map exists because A is a CW-complex with dim(A) = k and (X,Xn) is (n+ l+ 1)-
connected.

Now we prove the A-r-connectedness in case 1 ≤ r ≤ n− k+ l+ 1. By lemma 4.1.5, it
suffices to find a dotted arrow in a diagram

Σr−1A //

�� '
|‖

Xn

i

��
CΣr−1A f

//

::

X

This map exists because (CΣr−1A,Σr−1A) is a CW-complex of dimension r + k, (X,Xn)
is (n+ l + 1)-connected, and r + k ≤ n+ l + 1.

Corollary 4.1.11. Let A be an l-connected CW-complex, with dim(A) = k ∈ N0, and
let X be a CW(A)-complex. Let i : Xn → X denote the inclusion of the A-n-skeleton.
Then i∗ : πAr (Xn)→ πAr (X) is an isomorphism for r ≤ n− k + l and an epimorphism for
r = n− k+ l+ 1. In consequence, πAr (X) depends only on the A-(r+ k− l)-skeleton of X.

Proposition 4.1.12. Let A be a CW-complex of dimension k. Let X be an n-connected
CW-complex and Y be an m-connected CW-complex and let iX : X → X∨Y and iY : Y →
X ∨ Y denote the inclusions. Suppose either X or Y is locally compact. Then the map
((iX)∗, (iY )∗) : πAr (X)

⊕
πAr (Y )→ πAr (X ∨ Y ) is an isomorphism for 2 ≤ r ≤ n+m− k.

Proof. We know that the topological pair (X × Y,X ∨ Y ) is (n+m+ 1)-connected since
(X×Y,X∨Y )(n+m+1) = X∨Y . Then (X×Y,X∨Y ) is A-(n+m+1−k)-connected. Hence,
from the long exact sequence of A-homotopy groups for the topological pair (X×Y,X∨Y )
it follows that the inclusion i : X ∨ Y → X × Y induces isomorphisms i∗ : πAr (X ∨ Y )→
πAr (X × Y ) for 1 ≤ r ≤ n+m− k.

Let pX : X × Y → X and pY : X × Y → Y be the projections. It is clear that the map
((pX)∗, (pY )∗) : πAr (X × Y )→ πAr (X)× πAr (Y ) is an isomorphism for all r ∈ N.

Corollary 4.1.13. Let A be an l-connected CW-complex of dimension k with k ≤ 2l + 2

and let m ∈ N≥2. For 1 ≤ α ≤ m we denote by iα : ΣrA →
m∨
α=1

ΣrA the inclusion in the

α-th copy. Then the map

m⊕
α=1

(iα)∗ :
m⊕
α=1

πAr (ΣrA)→ πAr (
m∨
α=1

ΣrA)

is an isomorphism.

Proof. We proceed by induction in m. For m = 2, since ΣrA is an r + l-connected
CW-complex of dimension k + r, by the previous proposition we get an isomorphism
((i1)∗, (i2)∗) : πAr (ΣrA)

⊕
πAr (ΣrA) → πAr (ΣrA ∨ ΣrA) for 2 ≤ r ≤ (l + r) + (l + r) − k,

which is equivalent to r ≥ 2 and k ≤ 2l + r, that holds by hypothesis.
The inductive step is similar.
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The following corollary shows that the same result holds for an infinite wedge if A is
compact. The proof is formally identical to that of corollary 6.37 of [20].

Corollary 4.1.14. Let A be an l-connected and compact CW-complex of dimension k

with k ≤ 2l + 2 and let J be an index set. For α ∈ J we denote by iα : ΣrA →
∨
α∈J

ΣrA

the inclusion in the α-th copy. Then the map⊕
α∈J

(iα)∗ :
⊕
α∈J

πAr (ΣrA)→ πAr (
∨
α∈J

ΣrA)

is an isomorphism for r ≥ 2.

Proof. Note that every map f : ΣrA→
∨
α∈J

ΣrA has compact image. Then there is a finite

set L = {α1, α2, . . . , αm} such that Im f ⊆
∨
α∈L

iα(ΣrA). From the commutative square

⊕
α∈L

πAr (ΣrA) //⊕
α∈L

(iα)∗ '
��

⊕
α∈J

πAr (ΣrA)⊕
α∈J

(iα)∗
��

πAr (
∨
α∈L

ΣrA)
in∗
// π
A
r (
∨
α∈J

ΣrA)

we get that f ∈ Im
⊕
α∈J

(iα)∗. Hence
⊕
α∈J

(iα)∗ is surjective.

Similarly, any homotopy H : ΣrA × I →
∨
α∈J

ΣrA has compact image, so
⊕
α∈J

(iα)∗ is

injective.

Lemma 4.1.15. Let A be a finite dimensional CW-complex, let X be a CW(A)-complex
and let B be a CW(A)-subcomplex of X. Then there exists a CW-pair (X ′, B′) homotopy
equivalent to (X,B).

Its proof is not difficult and is analogous to that of 3.1.28.

Proposition 4.1.16. Let A be an l-connected CW-complex of dimension k. Let X be a
CW(A)-complex and let B be a CW(A)-subcomplex of X such that B is m-connected and
(X,B) is n-connected, with n ≥ 1. Let p : (X,B) → (X/B, ∗) be the projection. Then
p∗ : πAr (X,B)→ πAr (X/B) is an isomorphism for 2 ≤ r ≤ m+n− k and an epimorphism
for r = m+ n− k + 1.

Proof. We proceed inductively in the skeletons of A. As usual we may suppose that A has
only one 0-cell (the base point) since any connected CW-complex has the homotopy type
of a CW-complex with just a single 0-cell. Hence for A0 the result trivially holds.

Now suppose the result holds for Aj−1 and consider the following commutative diagram
made up by two long exact sequences associated to the cofibration sequence Aj−1 ↪→ Aj →
Aj/Aj−1 =

∨
Sj .
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. . . // πA
j−1

r+1 (X,B) //

��

π
W
Sj

r (X,B) //

��

πA
j

r (X,B) //

��

πA
j−1

r (X,B) //

��

π
W
Sj

r−1 (X,B) //

��

. . .

. . . // πA
j−1

r+1 (X/B) // π
W
Sj

r (X/B) // πA
j

r (X/B) // πA
j−1

r (X/B) // π
W
Sj

r−1 (X/B) // . . .

Now observe that the first and second vertical arrows are isomorphisms for 2 ≤ r ≤
m + n − j − 1 and an epimorphism for r = m + n − j by inductive hypothesis and 6.22
of [20] respectively (since (X,B) has the homotopy type of a CW-pair). Similarly, the
fourth and fifth vertical arrows are isomorphisms for 2 ≤ r ≤ m + n − j. Hence, by the
five lemma the third vertical arrow is an 2 ≤ r ≤ m + n− j − 1 and an epimorphism for
r = m+ n− j. The result follows.

Now, we turn our attention to stable homotopy groups.

Definition 4.1.17. Let A and X be pointed topological spaces. We define the stable
A-homotopy groups of X by πA,stn (X) = colim

j
πAn+j(Σ

jX).

Proposition 4.1.18. Let A be a CW-complex of dimension k. Let X be a CW(A)-complex
and let B be a CW(A)-subcomplex of X. Then there are exact sequences πA,stn (B) →
πA,stn (X)→ πA,stn (X/B) for all n ∈ Z.

Proof. Fix n ∈ Z. For each j ∈ N there are exact sequences

πAn+j(Σ
jB)→ πAn+j(Σ

jX)→ πAn+j(Σ
jX,ΣjB)

which are natural in j since CΣY is homeomorphic to ΣCY for every Y .
It is clear that the CW-pair (ΣjX,ΣjB) is j-connected. Then the quotient map

(ΣjX,ΣjB)→ (ΣjX/ΣjB) induces an isomorphism πAn+j(Σ
jX,ΣjB)→ πAn+j(Σ

jX/ΣjB)
if 2 ≤ n+ j ≤ j + j − k, or equivalently j ≥ max{2, n+ k}.

Hence there are exact sequences

πAn+j(Σ
jB)→ πAn+j(Σ

jX)→ πAn+j(Σ
j(X/B))

for j ≥ max{2, n+ k}.
Taking colimit in j, by proposition 7.50 of [20], we obtain a short exact sequence

πA,stn (B)→ πA,stn (X)→ πA,stn (X/B).

4.2 Whitehead’s theorem

In this section we prove a generalization of Whitehead’s theorem. It is interesting to
comment that the proof of Whitehead’s theorem given in [20] can be generalized to our
setting with almost no difficulties. This is the proof we give here. We also point out that
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in proposition 4.2.3 the standard proof of injectivity of the induced map f∗ uses the fact
that the cylinder of a CW-complex is a CW-complex, which does not hold for CW(A)-
complexes. However, surjectivity of f∗ suffices for the proof of Whitehead’s theorem, as
we shall see.

Theorem 4.2.1. Let f : X → Y be an A-n-equivalence (n =∞ is allowed) and let (Z,B)
be a relative CW(A)-complex which admits a CW(A)-structure of dimension less than or
equal to n. Let g : B → X and h : Z → Y be continuous functions such that h|B = fg.
Then there exists a continuous map k : Z → X such that k|B = g and fk ' h rel B.

B
g //

i
�� '
|‖

X

f
��

Z
h
//

k

>>

Y

Proof. Let

S = {(Z ′, k′,K ′)/B ⊆ Z ′ ⊆ Z A− subcomplex , k′ : Z ′ → Z with k′|B = g and
K ′ : Z ′ × I → Y,K ′ : fk′ ' h|Z′ rel B}

It is clear that S 6= ∅. We define a partial order in S in the following way.

(Z ′, k′,K ′) ≤ (Z ′′, k′′,K ′′) if and only if Z ′ ⊆ Z ′′, k′′|Z′ = k′ K′′|Z′×I = K′

It is clear that every chain has an upper bound since Z has the weak topology. Then, by
Zorn’s lemma, there exists a maximal element (Z ′, k′,K ′). We want to prove that Z ′ = Z.
Suppose Z ′ 6= Z, then there exist some A-cells in Z which are not in Z ′. Choose e an
A-cell with minimum dimension. We want to extend the maps k′ and K ′ to Z ′ ∪ e. If e is
an A-0-cell this is easy to do since f is an A-0-equivalence and all homotopies are relative
to the base point. Suppose then that dim e ≥ 1. Let φ : (CΣr−1A,Σr−1A) → (Z,Z ′) be
the characteristic map of e, let ψ = φ|Σr−1A, and let Z ′′ = Z ′ ∪ e. We have the following
diagram.

Σr−1A
ψ //

iA
��

Z ′
k′ //

iZ′

��

X

f

��
CΣr−1A φ

//

|‖

Z ′′
h|Z′′

//

'

Y

Here, the homotopy of the right square is relative to B. Let α : I → I be defined by
α(t) = 1− t. Since iZ′ is a cofibration we can extend K ′(Id×α) to some H : Z ′′× I → Y ,
and then we obtain a commutative diagram

Σr−1A
ψ //

iA
��

Z ′
k′ //

iZ′

��

X

f

��
CΣr−1A φ

//

|‖

Z ′′
Hi1

//

|‖

Y
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By the previous lemma, there exists l : CΣr−1A→ X such that liA = k′ψ and fl ' Hi1φ
rel Σr−1A. Let G denote this homotopy.

Now, since the left square is a pushout, there is a map γ : Z ′′ → X ′ such that γφ = l,
γiZ′ = k′. So γ extends k′. We want now to define a homotopy K ′′ : fγ ' h|Z′′ extending
K ′. We consider CΣr−1A × [0, 2]/ ∼ where we identify (b, t) ∼ (b, t′) for b ∈ Σr−1A,
t, t′ ∈ [1, 2]. There is a homeomorphism β : CΣr−1A× [0, 2]/ ∼→ CΣr−1A× I defined by

β([a, s], t) =
{

([a, s], t
2−s) if 0 ≤ t ≤ 1

([a, s], 1−s
2−s t+ s

2−s) if 1 ≤ t ≤ 2

We have the following commutative diagram.

Σr−1A× I
ψ×IdI //

iA×IdI
��

Z ′ × I
iZ′×IdI
�� K′(Id×α)

��

CΣr−1A× I
φ×IdI

//

push

(H(φ×IdI)+G(Id×α))β−1 00

Z ′′ × I

∼
K ##

Y

Note that

(H(φ× IdI) +G(Id× α))β−1(iA × IdI) = H(φ× IdI)(iA × IdI) =
= H(iZ′ × IdI)(ψ × IdI) = K ′(Id× α)(ψ × IdI)

Then, the map
∼
K exists. We take K ′′ =

∼
K(Id× α).

Remark 4.2.2. If (Y,B) is a relative CW(A)-complex which is A-n-connected for all n ∈ N
then i : B → Y is an A-n-equivalence for all n ∈ N and we have

B
IdB //

i
�� '
|‖

B

i
��

Y
IdY
//

r

>>

Y

Thus B is a strong deformation retract of Y . In particular, if X is a CW(A)-complex with
πAn (X) = 0 for all n ∈ N0, then X is contractible.

The following proposition follows immediately from 4.2.1.

Proposition 4.2.3. Let f : Z → Y be an A-n-equivalence (n =∞ is allowed) and let X
be a CW(A)-complex which admits a CW(A)-structure of dimension less than or equal to
n. Then, the map f∗ : [X,Z]→ [X,Y ] is surjective.

Finally we obtain a generalization of Whitehead’s theorem.

Theorem 4.2.4. Let X and Y be CW(A)-complexes and let f : X → Y be a continuous
map. Then f is a homotopy equivalence if and only if it is an A-weak equivalence.
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Proof. Suppose f is an A-weak equivalence. We consider f∗ : [Y,X] → [Y, Y ]. By the
previous proposition, f∗ is surjective, then there exists g : Y → X such that fg ' IdY .
Then g is also an A-weak equivalence, so applying the above argument, there exists an
h : X → Y such that gh ' IdX . Then f ' fgh ' h, and so, gf ' gh ' IdX . Thus f is a
homotopy equivalence.



Chapter 5

Homology of CW(A)-complexes

In this chapter we start investigating the homology theory of CW(A)-complexes. Our main
goal is to develop tools and techniques which allow us to compute the singular homology
of these spaces out of the homology of the core A and the CW(A)-structure of the space.
The tools we work with in this chapter are generalizations of classical cellular homology.

Note that the (reduced) homology of S0 (with coefficients in Z) has two significant
properties: it is concentrated in one degree (degree zero) and it is free (as an abelian
group). Keeping this in mind, we study two cases: when the reduced homology of A is
concentrated in a certain degree and when the homology groups of A are free.

When the homology of the core A is neither concentrated nor free, the homology of
X is more difficult to compute. Example 5.2.8 of Section 3 shows that, in that case, the
homology of X cannot be computed from an A-cellular complex as in the other cases.
However, in next chapter, we will study the general case by means of spectral sequences.

In the last section of this chapter we define and investigate the A-Euler characteristic χA
of CW(A)-complexes, which is a homotopy invariant if A is a CW-complex with χ(A) 6= 0.
We also define the multiplicative Euler characteristic when the core A has finite homology
(see Theorem 5.3.8 below).

Throughout this chapter, homology will mean reduced homology with coefficients in Z.

5.1 Easy computations

As we claimed in the introduction, our aim is to compute the singular homology groups
of CW(A)-complexes out of the homology of A and the CW(A)-structure of the space.

Remark 5.1.1. Recall that if A and X are (pointed) CW-complexes and g : A → X is a
continuous (cellular) map there is a long exact sequence

. . . // Hn(A, ∗) g∗ // Hn(X, ∗) i∗ // Hn(Cg, ∗) q∗ // Hn−1(A, ∗) g∗ // . . .

which induces short exact sequences

0 // Coker g∗
i∗ // Hn(Cg, ∗) q∗ // Ker g∗ // 0

132
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Here, Cg denotes the mapping cone of g. This has an evident analogy with the chain
complex Cg∗, where g∗ is the induced map in the singular chain complexes.

In case all these short exact sequences split, the homology of Cg can be computed in the
following way. The map g induces a morphism of chain complexes g∗ : H∗(A) → H∗(X).
The homology of the cone of this morphism

. . . // Hn+1(X)⊕Hn(A)

0@ 0 g∗
0 0

1A
// Hn(X)⊕Hn−1(A)

0@ 0 g∗
0 0

1A
// Hn−1(X)⊕Hn−2(A) // . . .

is clearly the homology of Cg.

The well-known remark above will be our starting point to compute the singular ho-
mology of finite CW(A)-complexes. Consider the following example. Define D2

4 as the
pushout

S1
g4 //

��
push

S1

��

D2 // D2
4

where g4 is a map of degree 4. Let the core A be D2
4 and let g : D2 ⊆ C → D2 be the

map g(z) = z2. The map g induces a well defined cellular map g′ : A→ A. Let X be the
CW(A)-complex of dimension one defined by the following pushout

A
g′ //

��
push

A

��
CA // X

Note that H1(A) = Z4 and Hr(A) = 0 for r 6= 1. Also, the induced map
g′∗ : H1(A)→ H1(A) is given by multiplication by 2. The cone of g′ is in this case

. . . // 0 // Z4
g′∗ //// Z4

// 0

where the group Z4 appears in degrees 1 and 2. Note that in the short exact sequences
as above one gets ker g∗ = 0 or coker g∗ = 0. It follows that Hr(X) = Z2 for r = 1, 2 and
Hr(X) = 0 for r 6= 1, 2.

The previous idea can also be applied to prove the following.

Proposition 5.1.2. Let A be a CW-complex and let n ∈ N. Let X be a CW(A)-complex
with the property that, for every r ∈ N0, Hn−r(A) = 0 whenever X has at least one
A-r-cell. Then Hn(X) = 0.

Proof. Since A is a CW-complex, by cellular approximation we may suppose that X is
also a standard CW-complex.

Since all (standard) cells of dimension less than or equal to n+ 1 lie in the A-(n+ 1)-
skeleton Xn+1, it suffices to prove that Hn(Xn+1) = 0.
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We proceed by induction in the A-skeletons Xk.
For k = 0 the result is clear. Suppose it holds for Xk−1 and X has A-k-cells. We

denote by gα : Σk−1A → Xk−1, α ∈ Λ, the corresponding attaching maps. Consider the
long exact sequence

. . . // Hn(Xk−1)
i∗ // Hn(Xk, ∗)

q∗ //
⊕
α∈Λ

Hn−1(Σk−1A) =
⊕
α∈Λ

Hn−k(A)+(gα)∗ // . . .

By hypothesis, Hn(Xk−1) = 0 and since Xk has an A-k-cell, Hn−k(A) = 0. Hence,
Hn(Xk, ∗) = 0.

As an easy consequence we obtain the following.

Corollary 5.1.3. Let A be a CW-complex with homology concentrated in degree r and let
X be a CW(A)-complex. If X does not have any A-n-cells, then Hn+r(X) = 0.

5.2 A-cellular chain complex

Given a CW(A)-complex X, our aim is to construct a suitable chain complex whose
homology coincides with the homology of X. We investigate two particular cases: when
the homology of the core A is concentrated in one degree and when the homology groups
of A are all free. The constructions and results that we obtain in both cases generalize
the standard results on cellular homology of CW-complexes.

We begin with the first case. Suppose Hn(A) = 0 for n 6= r, i.e. the (reduced) homology
of A is concentrated in degree r.

In this case, given a CW(A)-complex X, we define the A-cellular chain complex (C∗, d∗)
of X as follows. Take

Cn =
⊕

A-(n− r)-cells

Hr(A)

and define dn+r : Cn+r → Cn+r−1 in the following way. Given enα and en−1
β A-cells of

dimensions n and n − 1 respectively we consider gα : Σn−1A → Xn−1 the attaching map
of enα (where Xn−1 denotes the A-n-skeleton of X) and the quotient map

qβ : Xn−1 → Xn−1/(Xn−1 −
◦

en−1
β ) = Σn−1A.

The map qβgα : Σn−1A→ Σn−1A induces

(qβgα)∗ : Hn+r−1(Σn−1A) = Hr(A)→ Hn+r−1(Σn−1A) = Hr(A).

Finally, dn is induced by the maps dα,βn = (qβgα)∗ from the α-th copy of Hr(A) to the
β-th copy of Hr(A) (recall that Hk(A) = 0 if k 6= r).

Note that this chain complex is very similar to the standard (cellular) one. In fact,
to prove that (C∗, d∗) is actually a chain complex one may proceed as in the classical



Section 5.2: A-cellular chain complex 135

case, but replacing Sn−1 by Σn−1A and Dn by CΣn−1A. Explicitly, consider the following
commutative diagram

Hn+1(CΣn−rA,Σn−rA) ' //

(fα)∗
��

Hn(Σn−rA) = Hr(A)
dα,βn //

(gα)∗
��

Hn(Σn−rA) = Hr(A)

Hn+1(Xn+1−r, Xn−r) ∂ //

d′ ))TTTTTTTTTTTTTTT
Hn(Xn−r)

q∗ //

j

��

(qβ)∗
33hhhhhhhhhhhhhhhhhhhh

Hn(Xn−r/Xn−r−1)

(q′β)∗

OO

'
��

Hn(Xn−r, Xn−r−1) ' //

ϕn

'

33hhhhhhhhhhhhhhhhhhh
Hn(Xn−r/Xn−r−1, Xn−r−1/Xn−r−1)

(compare with the analogous diagram in [8] page 141) and let Jn and Jn−1 be index sets
for the A-(n− r)-cells and A-(n− r − 1)-cells of X respectively.

Since the map (fα)∗ corresponds to the inclusion Hr(A) →
⊕
Jn−r

Hr(A) into the α-th

coordinate and the map (qβ)′∗ corresponds to the projection
⊕

Jn−r−1

Hr(A) → Hr(A) onto

the β-th copy, it follows that dn = j∂ up to isomorphisms. Therefore dndn+1 = 0 since
the maps j and ∂ come from exact sequences as the diagram below shows.

Hn(Xn−r)
j

%%KKKKKKKKKK

Hn+1(Xn−r+1, Xn−r)

∂
88rrrrrrrrrr
d′ // Hn(Xn−r, Xn−r−1) d′ //

∂ &&NNNNNNNNNNN
Hn−1(Xn−r−1, Xn−r−2)

Hn−1(Xn−r−1)

j
77nnnnnnnnnnnn

More precisely, let jα : Σn−rA → Xn−r/Xn−r−1 =
∨
Jn−r

Σn−rA be the inclusion in the

α-th copy and let q′ : CΣn−rA→ Σn−r+1A be the quotient map. Consider the boundary
map ∂′ : Hn+1(CΣn−r+1A,Σn−r+1A) → Hn(Σn−rA), which is an isomorphism in this
case. Let ε′ : Hn+1(Σn−r+1A)→ Hn(Σn−rA) be the isomorphism given by ε′ = ∂′(q′∗)

−1.

Hn+1(CΣn−r+1A,Σn−r+1A) ∂′

'
//

q′∗ '
��

Hn(Σn−rA)

Hn+1(Σn−r+1A)

ε′

'

44jjjjjjjjjjjjjjjj

Let εn−r : Hn(Σn−rA) → Hr(A) be the isomorphism given by εn−r = (ε′)n−r. The
inclusion maps jα induce isomorphisms

⊕
Jn−r

(jα)∗ :
⊕
Jn−r

Hn(Σn−rA) → Hn(
∨
Jn−r

A) and⊕
Jn−r

(jα)∗ε−1
n−r :

⊕
Jn−r

Hr(A)→ Hn(
∨
Jn−r

A) = Hn(Xn−r/Xn−r−1).

For each n ∈ N0, let

φn : Hn(Xn−r, Xn−r−1) −→
⊕

A-(n− r)-cells

Hr(A)
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be the isomorphism defined by φn = (
⊕

α∈Jn−r
(jα)∗ε−1

n−r)
−1ϕn. Then, there is a commutative

diagram

Hn(Xn−r, Xn−r−1)
φn

'
//

'
ϕn

))SSSSSSSSSSSSSSSSS

⊕
A-(n− r)-cells

Hr(A) pβ //

'
L
Jn−r

(jα)∗ε
−1
n−r

��

Hr(A)

Hn(Xn−r/Xn−r−1)
(qβ)∗

// Hn(Σn−rA)

εn−r'

OO

Note that the right square commutes since for a in the α-th copy of Hr(A) in
⊕
Jn−r

Hr(A)

we have

(qβ)∗(
⊕

γ∈Jn−r

(jγ)∗ε−1
n−r)(a) = (qβ)∗(jα)∗ε−1

n−r(a) =
{
ε−1
n−r(a) if β = α

0 if β 6= α

thus, εn−r(qβ)∗(
⊕

γ∈Jn−r
(jγ)∗ε−1

n−r) = pβ.

Hence εn−r(qβ)∗ϕn = pβφn.
We want to prove now that φn+1(fα)∗ = iαεn−r∂

′ in the following diagram

Hn+1(CΣn−rA,Σn−rA) ∂′

'
//

(fα)∗

��

Hn(Σn−rA)

iαεn−r
��

(ε′)−1

'
// Hn+1(Σn−r+1A)

(jα)∗

��

Hn+1(Xn−r+1, Xn−r)
φn+1

' //

ϕn+1=q∗ ..

⊕
A-(n− r + 1)-cells

Hr(A) L
γ∈Jn−r+1

(jγ)∗ε
−1
n−r+1

'
))TTTTTTTTTTTTTTT

|||

|||

Hn+1(Xn−r+1/Xn−r)

Since the triangle and the right square commute and
⊕

γ∈Jn−r+1

(jγ)∗ε−1
n−r+1 is an iso-

morphism it suffices to prove that q∗(fα)∗ = (jα)∗(ε′)−1∂′. But there is a commutative
diagram

(CΣn−rA,Σn−rA)
fα //

q′

��

(Xn−r+1, Xn−r)

q
��

Σn−r+1A jα
// X

n−r+1/Xn−r =
∨

Jn−r+1

Σn−r+1A

Hence, q∗(fα)∗ = (jα)∗(q′)∗ = (jα)∗(ε′)−1∂′ as we wanted to prove.
Summing up, we have shown that εn−r(qβ)∗ϕn = pβφn and φn+1(fα)∗ = iαεn−r∂

′. We
consider now the following diagram
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Hn+1(Xn−r+1, Xn−r)
d′=j∂ //

φn+1 ��

Hn(Xn−r, Xn−r−1)

φn ��

(qβ)∗ϕn

yy

⊕
A-(n− r + 1)-cells

Hr(A) d //
⊕

A-(n− r)-cells

Hr(A)

pβ

��
Hr(A) dα,β //

(fα)∗(∂′)−1(εn−r)−1

99

iα

OO

Hr(A)

The lower square commutes by definition and the two triangles commute because of
what we proved previously. Also, dα,β = (qβ)∗ϕnd′(fα)∗(∂′)−1(εn−r)−1 as we have proved
at the beginning. But φn and φn+1 are isomorphisms, hence d = φnd

′(φn+1)−1 and
d2 = 0 follows. Note that to prove that d = φnd

′(φn+1)−1 it suffices to check that
pβdiα = pβφnd

′(φn+1)−1iα for all α, β, and this follows from the last diagram.

Theorem 5.2.1. Let A be a CW-complex with homology concentrated in degree r and let
X be a CW(A)-complex. Then, the homology of the A-cellular chain complex defined as
above coincides with the singular homology of X.

Proof. We proceed by induction in the A-n-skeleton Xn. For n = 0 the result is clear.
Suppose the result holds for Xn−1. For simplicity, we assume that X is obtained from

Xn−1 by attaching only one A-n-cell. The general case is similar.
Let (C ′∗, d

′
∗) be the A-cellular chain complex of Xn−1. By hypothesis, the homology

of (C ′∗, d
′
∗) coincides with the singular homology of Xn−1. Hence, by 5.1.1, the singular

homology of Xn can be computed as the homology of the chain complex

. . . // Hn+1(C ′∗)
⊕
Hn(Σn−1A)

0@ 0 g∗
0 0

1A
// Hn(C ′∗)

⊕
Hn−1(Σn−1A) // . . .

where g : Σn−1A→ Xn−1 is the attaching map of the A-n-cell.
We want to prove that this complex has the same homology as the A-cellular complex

of X, namely

. . . // 0 // Hn+r−1(Σn−1A)
+(qβg)∗// C ′n+r−1

d′n+r−1// . . .

By the long exact sequence of the homology of the cone, it suffices to prove that +qβg∗
induces the map g∗ in homology. But this follows from the commutativity of the diagram

Hn+r−1(Σn−1A)
g∗ // Hn+r−1(Xn−1)

+(qβ)∗
��

'

uukkkkkkkkkkkkkk

ker d′n+r−1 inc
//⊕Hn+r−1(Σn−1A)

where the isomorphism Hn+r−1(Xn−1)→ ker d′n+r−1 is induced by the map +(qβ)∗.
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Remark 5.2.2. The previous construction generalizes the classical one for cellular homology
of CW-complexes. Note that the S0-cellular chain complex of X is the standard cellular
chain complex.

Remark 5.2.3. Note that Cn+r =
⊕
n-cells

Hr(A) = Hn+r(Xn/Xn−1). As in the classical

cellular setting, we could have obtained a chain complex as above in the following way.
Consider the following commutative diagram made up of pieces of the long exact sequences
associated to the topological pairs (Xk, Xk−1), k ∈ N.

0

$$JJJJJJJJJJJ Hn+r−1(Xn) . . .

Hn+r−1(Xn−1)
q∗

%%KKKKKKKKKK

99ssssssssss
Hn+r−3(Xn−3)

q∗

��1
111111

FF

Hn+r(Xn/Xn−1, ∗) //

∂
::ttttttttt

Hn+r(Xn−1/Xn−2, ∗) //

∂

%%KKKKKKKKKK
Hn+r(Xn−2/Xn−3, ∗) //

∂
99ssssssssss

. . .

Hn+r−2(Xn−2)

q∗
99ssssssssss

&&LLLLLLLLLLL

0

88rrrrrrrrrrr . . .

Define the differentials as q∗∂. It can be proved that the chain complex that we obtain
in this way has the same homology groups as X (cf. [8] pages 137-140). Note that, with
this construction, the differentials are not explicitly computed.

The following corollary is an example of one possible application of theorem 5.2.1.

Corollary 5.2.4. Let G and H be finite abelian groups with relatively prime orders. Let
A and B be CW-complexes with homology concentrated in certain degrees n and m re-
spectively, and with Hn(A) = G and Hm(B) = H. Let X be a simply connected CW(A)-
complex and let Y be a simply connected CW(B)-complex. Then X and Y have the same
homotopy type if and only if both of them are contractible.

Proof. By the hypothesis on the order of the elements, a quotient of
⊕
G different from 0

cannot be isomorphic to any quotient of
⊕
H. It follows that if X and Y have the same

homotopy type, then all their singular homology groups must vanish.

We investigate now the second case, i.e. when the homology groups Hn(A) are free
for all n. The following lemma plays a key role in the proof of 5.2.6. Since its proof is
standard, we only sketch the main ideas.

Lemma 5.2.5. Let (C∗, d∗) and (D∗, d′∗) be chain complexes of Z-modules, with Cn free
for every n. Given morphisms fn : Hn(C∗)→ Hn(D∗), n ∈ N, there exists a morphism of
chain complexes g : (C∗, d∗)→ (D∗, d′∗) which induces the maps fn in homology.
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Proof. Since C0 is projective, there exists a map g0 : C0 → D0 inducing f0 in homology.
Suppose that we have already defined g0, . . . , gn−1 and they commute with the differentials
and induce f0, . . . , fn−1 in homology. Since ker dn is projective there exists a map β in a
commutative diagram

ker dn
qCn //

β

��

ker dn/Im dn+1

fn
��

ker d′n
qDn // ker d′n/Im d′n+1

Note that Cn ' ker dn ⊕ Im dn. We define gn = β in ker dn. Since Im dn is projective, we
can define gn in Im dn such that gn−1(y) = d′ngn(y) for all y ∈ Im dn. It is easy to check
that d′ngn = gn−1dn and that gn induces the map fn.

Theorem 5.2.6. Let A be a CW-complex with free homology groups and let X be a finite
dimensional CW(A)-complex. Then there exists a chain complex of Z-modules (C∗, d)
whose homology is the singular homology of X, where

Cn =
⊕
r

Hn−r(A)#r−cells.

Proof. We proceed by induction in the dimension of X. If X has dimension zero, the result
is trivial. If X has dimension one, the result follows from remark 5.1.1. Suppose that the
proposition is true for X ′ and that X is obtained from X ′ by attaching A-n-cells. For
simplicity, we will suppose that only one A-n-cell is attached, and we call g its attaching
map. We denote by H∗(Σn−1A) and H∗(X ′) the chain complexes of the homology of
Σn−1A and X ′ respectively with all differentials equal to zero, and by C(X ′) the chain
complex of X ′ of the inductive step. By remark 5.1.1, the homology of X can be computed
as the homology of the chain complex

Cg∗ H∗(Σn−1A)
g∗ // H∗(X ′).

By lemma 5.2.5, there exists a morphism ϕ : H∗(Σn−1A) → C(X ′) inducing g∗ in ho-
mology. It is easy to prove that the homology of Cϕ coincides with the homology of Cg∗
which is the homology of X.

Example 5.2.7. Let A be a CW-complex such that Hr(A) = Z for r = 1, 4 and 0
otherwise. Let X be a CW(A)-complex having n A-0-cells and m A-2-cells. Note that all
the maps in the chain complex of the previous theorem are 0 and hence

Hr(X) =


Zn for r = 1, 4
Zm for r = 3, 6
0 otherwise

We can generalize this situation in the following way.
Let A be a CW-complex such that Hr(A) = Z for r = 1, 4 and 0 otherwise. Let X be a

CW(A)-complex satisfying the following condition: ‘For all r ∈ N0, if #{A-r-cells of X} 6=
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0 then #{A-(r + 1)-cells of X} = 0 and #{A-(r + 4)-cells of X} = 0’. Then all the maps
in the chain complex of the previous theorem are 0 and therefore

Hn(X) = (
⊕

A-(n− 1)-cells

Z)
⊕

(
⊕

A-(n− 4)-cells

Z)

Important example 5.2.8. This example shows that theorem 5.2.6 may not hold if the
hypothesis are not satisfied. Concretely, for the core A = D2

4 ∨ ΣD2
4 (see page 133) we

exhibit a CW(A)-complex X whose homology cannot be computed with a chain complex
as in 5.2.6. Note that the homology of A is not concentrated in any degree and that its
homology groups are not free.

The space X will consist of 3 A-cells, one of each dimension 0, 1 and 2. It will be also
a CW-complex because the attaching maps will be cellular maps. The attaching maps are
defined as follows.

For each n ∈ Z, let g′n : D2 ⊆ C→ D2 be the map g′n(z) = zn. The map g′n induces a
well defined cellular map gn : D2

4 → D2
4. We also denote g′n = g′n|S1 : S1 → S1.

Let X1 be the CW(A)-complex of dimension one defined by attaching an A-1-cell to
A by the map ∗ ∨ Σg2. We obtain X by attaching an A-2-cell to X1 by the map β ∨ ∗,
where β : ΣD2

4 → X1 is the unique map induced by γ and δ in the following pushout

S2
Σg′4 //

inc

��
push

S2

in1

�� γ

��

D3
in2

//

δ //

ΣD2
4

β

!!DDDDDDDD

X1

The map γ is defined as the composition

S2
Σg′−2 // S2

in1 // ΣD2
4

in3 // X1

(where in3 is the canonical inclusion in the pushout) and δ = (δ1∨ δ2)◦q, where δ1, δ2 and
q are defined as follows. The map q : D2 → D2 ∨D2 is the quotient map that collapses
the equator to a point. The map δ1 is the composition

D3
CΣg′−1// D3

in2 // ΣD2
4

in3 // X1

and the map δ2 is the composition

D3
CΣg′−2// D3

Cin1 // CΣD2
4

in4 // X1

The map in4 is the canonical map induced in the pushout

A = D2
4 ∨ ΣD2

4

∗∨Σg2 //

��
push

A = D2
4 ∨ ΣD2

4

in′3∨in3

��
CA = CD2

4 ∨ CΣD2
4 in′4∨in4

// X1
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Let ν : S2 → S2 ∨ S2 be the suspension of the quotient map S1 → S1/S0 ' S1 ∨ S1. We

obtain that

δinc = (δ1 ∨ δ2)qinc = ((δ1inc) ∨ (δ2inc)) ◦ ν = (in3in2incΣg′−1 ∨ in4in1Σg′−2) ◦ ν =
= (in3in1Σg′4Σg′−1 ∨ in3Σg2in1Σg′−2) ◦ ν = (in3in1Σg′−4 ∨ in3in1Σg′2Σg′−2) ◦ ν =
= (in3in1Σg′−4 ∨ in3in1Σg′−4) ◦ ν = in3in1Σg′−8 = in3in1Σg′−2Σg′4 = γΣg′4.

Hence, δinc = γΣg′4.
Since the attaching maps are cellular, it follows that X is a CW-complex. We will show

that H3(X) = Z8 ⊕ Z4. Hence, its homology cannot be computed with a chain complex
as in 5.2.6 because H3(X) has an element of order 8.

Note that X, as a standard CW-complex, has 1 0-cell, 1 1-cell, 3 2-cells, 4 3-cells, 3
4-cells and 1 5-cell. Moreover, by construction, the rightmost part of its cellullar chain
complex is the following:

Z

0BB@
0
0
4

1CCA
// Z3

0BBBBB@
−2 1 0
0 0 0
4 2 0
0 4 0

1CCCCCA
// Z4

0BB@
0 0 0 0
4 0 2 −2
0 4 0 0

1CCA
// Z3

“
4 0 0

”
// Z 0 // Z

It follows that H3(X) = Z8 ⊕ Z4 with an element of order 8 being the class of (0, 0, 1, 1).
The key fact about this example is the following: a 3-dimensional cell belonging to the

A-2-cell is attached onto a 2-dimensional cell which belongs to an A-0-cell. This attaching
map must be taken into account when computing cellular homology groups, but will not
be considered at all in an A-cellular chain complex as above. This is the reason why an
A-cellular chain complex might not work in the general case.

To sum up, while for cellular homology groups the way that an n-cell is attached to an
(n− 2)-cell is irrelevant, in CW(A)-complexes this is not so, because A-cells might not be
‘dimensionally homogeneous’.

Important remark 5.2.9. Note that X is a generalized CW(D4
2)-complex which does

not have the homotopy type of a CW(D4
2)-complex. Indeed, if there existed a CW(D4

2)-
complex Z, homotopy equivalent to X, then by theorem 5.2.1, Z8 = H3(X) = H3(Z)
would be a subquotient of

⊕
Z4, which is impossible.

5.3 A-Euler characteristic and multiplicative characteristic

Let X be a pointed finite CW-complex. Recall that the reduced Euler characteristic of X
is defined by

χ(X) =
∑
j≥0

(−1)jαj

where αj is the number of j-cells and where the base point does not count as a 0-cell. In
this way the reduced Euler characteristic differs in 1 from the standard (unreduced) one.
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Definition 5.3.1. Let A be a CW-complex and let X be a CW(A)-complex with a finite
number of A-cells. We define the A-Euler characteristic of X by

χA(X) =
∑
j≥0

(−1)jαAj

where αAj is the number of A-j-cells of X.

Note that if A = S0 then the A-Euler characteristic of X is the reduced Euler char-
acteristic in the usual sense. Also, if A = Sn then χA(X) = (−1)nχ(X). Recall that a
CW(Sn)-complex is a CW-complex with no cells of dimension less than n, apart from the
base point.

The A-Euler characteristic gives useful information about the space. For example,
proposition 5.3.2 will show that if the core A is a finite CW-complex and X is a finite
CW(A)-complex then χ(X) can be computed from χ(A) and χA(X). Note that χ(X) is
well defined since X has the homotopy type of a finite CW-complex. When χ(A) 6= 0,
the A-Euler characteristic is a homotopical invariant. In case χ(A) = 0, it might not be
invariant by homotopy equivalences or even homeomorphisms, as the following example
shows.

Take the core A as D1 (with 1 as base point). The disk D2 is homeomorphic to CA and
ΣA. We know that CA is obtained from A by attaching an A-1-cell, hence χA(CA) = 0.
On the other hand, ΣA is obtained from ∗ by attaching a A-1-cell, so χA(ΣA) = −1.
Note that there are A-cellular approximations to the identity map of D2 between these
two different A-cellular structures, and that the homology of D2 can be computed from
the A-cellular complex by 5.2.1. But in this case the A-Euler characteristic cannot be
computed from the A-cellular complex since, in contrast to the classical situation where
the cellular complex has a copy of Z for each cell, the A-cellular complex has a trivial
group for each A-cell of D2.

Nevertheless the A-Euler characteristic gives us very useful information about the space.
The following proposition shows that if the core A is a finite CW-complex and X is a finite
CW(A)-complex then χ(X) can be computed from χ(A) and χA(X). Note that χ(X) is
well defined since X has the homotopy type of a finite CW-complex.

Proposition 5.3.2. Let A be a finite CW-complex and let X be a finite CW(A)-complex.
Then χ(X) = χA(X)χ(A).

Proof. The proposition follows from the fact that, for all n ∈ N0 the relative CW-complexes
(CΣnA,ΣnA) have exactly the same cells as A but shifted in dimension. Note also that
X has the homotopy type of a CW-complex X ′ which is obtained by approximating the
attaching maps of X by cellular maps.

Corollary 5.3.3. If χ(A) 6= 0 and χA(X) 6= 0 then X is not contractible.

Note that in case A = Sn the corollary does not say anything new. But, for example,
if A is a torus (χ(A) = −1) and X is a CW(A)-complex with an odd number of cells, then
X is not contractible. Also, in this case, if X has any number of cells but only in even
dimensions, it cannot be contractible.
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We study now another interesting case: when the homology of A is a finite graded
group.

We say that graded group (Gn)n∈N0 is finite if only a finite number of groups are non
trivial and all of them are finite. In a similar way we say that a chain complex of abelian
groups is finite if the underlying graded group is finite.

Definition 5.3.4. Let G = (Gn)n∈N0 be a finite graded group. We define the multiplicative
Euler characteristic of G as

χm(G) =
∏
n≥0

#(Gn)(−1)n

Let C = (C∗, d∗) be a chain complex of abelian groups whose underlying graded group
is finite. Since Hn(C) = ker dn/Im dn+1 and Cn/ ker dn = Im dn, then

#Hn(C) = # ker dn/#Im dn+1 and #Cn = # ker dn.#Im dn.

It follows that∏
n≥0

#(Hn(C))(−1)n =
∏
n even

# ker dn.#Im dn/
∏
n odd

# ker dn.#Im dn =
∏
n≥0

#(Cn)(−1)n

Therefore, the multiplicative Euler characteristic of C coincides with the multiplicative
Euler characteristic of the graded group H∗(C). In particular, the multiplicative Euler
characteristic is invariant by quasi isomorphisms.

Example 5.3.5. Let (C∗, d∗) be a chain complex with Cn =
⊕
i∈In

Z4 for all n (where In

is any index set). Let (D∗, d′∗) be a chain complex with Hk(D) = Z2 for some k and
Hr(D) = 0 for r 6= k. Then C and D are not quasi isomorphic, because χm(C) = 4m for
some m ∈ Z, while χm(D) = 2 or χm(D) = 1

2 .

We may also ask whether the converse is true. Namely, given finite abelian groups
G1, . . . , Gk with

∏
n≥0 #(Gn)(−1)n = 4m for some m, can we find a chain complex of

abelian groups (C∗, d∗) with Cn =
⊕
i∈In

Z4 for all n such that Hn(C) = Gn for n = 1, . . . , k

and Hn(C) = 0 in other case? For example, given m ∈ N, can we construct a chain
complex (C∗, d∗) with Cn =

⊕
j∈Jn

Z4 for all n such that Hk(C) = Z4m for some k and

Hr(C) = 0 for r 6= k?

The answer to this question is negative. For instance, if Hk(C) = Z16, then it contains
an element of order 16 which cannot be obtained by taking a quotient of a subspace of⊕
j∈Jn

Z4.

Remark 5.3.6. Let C = (Cn)n∈N0 , D = (Dn)n∈N0 and E = (En)n∈N0 be finite graded
groups. Suppose that for each n ∈ N0 there exists a short exact sequence

0→ Cn → Dn → En → 0.

Then, #Dn = #Cn.#En. Hence, χm(D) = χm(C)χm(E).



Section 5.3: A-Euler characteristic and multiplicative characteristic 144

The same holds in case there is an exact sequence

. . .→ En+1 → Cn → Dn → En → Cn−1 → . . .

for if we call this complex B, we have χm(B) = χm(H∗(B)) = 1 and clearly χm(B) =
χm(C)χm(E)/χm(D).

Definition 5.3.7. Let X be a topological space with finite homology. We define the
multiplicative Euler characteristic of X as the multiplicative Euler characteristic of H∗(X).

Theorem 5.3.8. Let A be a CW-complex with finite homology and let X be a finite
CW(A)-complex. Then

χm(X) =
∏
n≥0

χm(A)(−1)n#A-n-cells = χm(A)χA(X)

Proof. We proceed by induction in the number of cells of X. If X has only one cell the
theorem trivially holds. Suppose the result is true for X ′ and suppose X is obtained from
X ′ by attaching an A-r-cell. There exists a long exact sequence

. . . // Hn(Σr−1A, ∗) // Hn(X ′, ∗) // Hn(X, ∗) // Hn−1(Σr−1A, ∗) // . . .

Then, by 5.3.6,

χm(X ′) = χm(H∗(X ′)) = χm(H∗(Σr−1A))χm(H∗(X)) =
= χm(H∗(A))(−1)r−1

χm(H∗(X)) = χm(A)(−1)r−1
χm(X)

So, χm(X) = χm(X ′)χm(A)(−1)r .

Example 5.3.9. Let A be a CW-complex with H1(A) = Z4 and Hr(A) = 0 for r 6= 1.
Let X be a topological space with Hk(A) = Z2 for some k and Hr(A) = 0 for r 6= k. Then
X does not have the homotopy type of a CW(A)-complex.

The next result follows immediately from 5.3.8.

Proposition 5.3.10. Let A and B be CW-complexes with finite homology. Let X be a
topological space with finite homology such that χm(X) 6= 1. Suppose, in addition, that X
can be given both CW(A) and CW(B) structures. Then there exist k, l ∈ Z − {0} such
that χm(A)k = χm(B)l.

Example 5.3.11 (Moore spaces). Fix a core A. Some questions that arise naturally are
the following. For which abelian groups G and n ∈ N does there exist a CW(A)-complex
X such that Hn(X) = G and Hr(X) = 0 if r 6= n? Or more generally, for which sequences
of abelian groups (Gn)n∈N0 does there exist a CW(A)-complex X such that Hn(X) = Gn
for all n?

For example, if the core A is a simply-connected CW-complex with Hr(A) = Z for
r = n and Hr(A) = 0 in other case, then A is homotopy equivalent to Sn. We know
that for any abelian group G and for any k ≥ n there exists a CW-complex Z such that
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Hk(Z) = G and Hr(Z) = 0 if r 6= k. Hence, by 3.3.1, there exists a CW(A)-complex X
such that X has the same homology groups as Z.

Therefore, in this particular case, for any sequence of abelian groups (Gj)j≥n there
exists a CW(A)-complex X such that Hj(X) = Gj for all j ≥ n.

If A is a CW-complex with finite homology, the results above provide necessary condi-
tions for the required CW(A)-complex X to exist. For instance, 5.3.8 settles an easy-to-
check necessary condition, as example 5.3.9 shows. In the case A = D2

4 (see page 133), we
cannot construct a CW(A)-complex X such that Hn(X) = Z5 for some n ∈ N since, by
5.2.1, Hn(X) must be a quotient of a subgroup of

⊕
Z4.

We will continue studying these questions in chapter 7, where we will give some very
interesting partial anwers to them.



Chapter 6

Applications of spectral sequences
to CW(A)-complexes

One basic and fundamental idea in topology is to study homotopical and homological
properties of a topological space by decomposing it into smaller parts. Since a CW(A)-
complex is built up out of A-cells, one expects that its homotopical properties will depend
heavily on the homotopy type of A. Our aim in this chapter is to develop methods to
compute homotopy and homology groups of a CW(A)-complex X from those of A and
the CW(A)-structure of X generalizing those in the previous chapter. It is evident that
the skeletal filtration plays an important role and it seems quite natural that spectral
sequences are the right tool to work with. For example, from the skeletal filtration of a
CW(A)-complex X we will construct a spectral sequence which converges to the singular
homology groups of X.

Moreover, as one might expect, the homotopy groups of a CW(A)-complex X are
strongly related to those of A, although in general explicit computation seems to be hard
work. However, we obtain results which show how the homotopy groups of X depend on
those of A.

In the first section, given a CW-complex A we define a reduced homology theory on
the category of CW-complexes, called A-homology, which coincides with classical singular
homology in case A = S0. One of the most interesting results is a generalization of the
Hurewicz theorem (6.1.5), which gives a relationship between A-homology groups and
A-homotopy groups.

In section 2 we study homotopy and homology of CW-complexes by means of spectral
sequences and Serre classes obtaining many interesting results. Moreover, we introduce a
generalization of Serre classes which is suitable for working with CW(A)-complexes.

Finally, in the last section we derive some applications to real projective spaces.

6.1 A-homology and A-homotopy

In this section we will define anA-shaped homology theory, which we callA-homology. This
is a reduced homology theory which not only generalizes the classical singular homology
theory, but also satisfies nice properties such as a Hurewicz-type theorem (6.1.5).

146
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Definition 6.1.1. Let p : (E, e0)→ (B, b0) be a continuous map and let F = p−1(b0). We
say that p is an A-quasi-fibration if it induces isomorphisms p∗ : πAi (E,F, e0)→ πAi (B, b0)
for all i ∈ N, where πAi (E,F, e0) = [(CΣi−1A,Σi−1A, a0), (E,F, e0)].

Let ce0 and cb0 denote the constant loops at e0 and b0 respectively. Recall that, for
any space A, πAi (B, b0) = πAi−1(ΩB, cb0) and πAi (E,F, e0) = πAi−1(P (E, e0, F ), ce0). Since
a weak equivalence is also an A-weak equivalence if A is a CW-complex, we deduce the
following.

Lemma 6.1.2. If p is a quasifibration and A is a CW-complex, then p is an A-quasi-
fibration.

We define the A-homology groups inspired by the Dold-Thom theorem.

Definition 6.1.3. Let A be a CW-complex and let X be a topological space. For n ∈ N0

we define the n-th A-homology group of X as

HA
n (X) = πAn (SP (X))

where SP (X) denotes the infinite symmetric product of X.

Theorem 6.1.4. The functor HA
∗ (–) defines a reduced homology theory on the category

of (path-connected) CW-complexes.

Proof. It is clear that HA
∗ (–) is a homotopy functor. If (X,B, x0) is a pointed CW-pair,

then by the Dold-Thom theorem, the quotient map q : X → X/B induces a quasifibration
q̂ : SP (X) → SP (X/B) whose fiber is homotopy equivalent to SP (B). Then there is a
long exact sequence

. . . // πAn (SP (B)) // πAn (SP (X)) // πAn (SP (X/B)) // πAn−1(SP (B)) // . . .

It remains to show that there is a natural isomorphism HA
n (X) ' HA

n+1(ΣX) and that
HA
n (X) are abelian groups for n = 0, 1. The natural isomorphism follows from the long

exact sequence above applied to the CW-pair (CX,X). Note that HA
n (CX) = 0 since CX

is contractible and HA
n is a homotopy functor. The second part follows immediately, since

HA
0 (X) ' HA

1 (ΣX) ' HA
2 (Σ2X). The group structure on HA

0 (X) is induced from the one
on HA

1 (X) by the corresponding natural isomorphism.

Theorem 6.1.5. Let A be a path-connected CW-complex of dimension k ≥ 1 and let X
be an n-connected topological space (with n ≥ k). Then HA

r (X) = 0 for r ≤ n − k and
πAn−k+1(X) ' HA

n−k+1(X).

Proof. By Hurewicz, Hr(X) = 0 for r ≤ n and Hn+1(X) ' πn+1(X). Hence SP (X)
is n-connected. Since dimA = k, it follows that SP (X) is A-(n − k)-connected. Thus,
HA
r (X) = 0 for r ≤ n− k. Also,

πAn−k+1(X) = [Σn−k+1A,X] ' Hn+1(Σn−k+1A, πn+1(X)) '
' Hn+1(Σn−k+1A,Hn+1(X)) ' Hn+1(Σn−k+1A, πn+1(SP (X))) '
' [Σn−k+1A,SP (X)] = πAn−k+1(SP (X)) = HA

n−k+1(X)

where the first and fourth isomorphisms hold by 2.5.6.
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Federer’s spectral sequence provides a first method of computation of A-homology
groups. Given CW-complexes A and X with A finite and H1(X) = 0, the associated
Federer spectral sequence {Eap,q} converges to the A-homotopy groups of SP (X) (note
that SP (X) is simply-connected). In this case we have E2

p,q = H−p(A, πq(SP (X))) =
H−p(A,Hq(X)) if p+ q ≥ 1 and p ≤ −1 .

We exhibit now some examples.

Example 6.1.6. If A is a finite CW-complex and X is a Moore space of type (G,n) then
SP (X) is an Eilenberg-MacLane space of the same type. Note that SP (X) is abelian.
Hence, by the Federer spectral sequence

HA
r (X) = πAr (SP (X)) = Hn−r(A, πn(SP (X))) = Hn−r(A,G) for r ≥ 1.

In particular, HA
r (Sn) = Hn−r(A,Z).

We also deduce that if X is a Moore space of type (G,n) and A is (n− 1)-connected,
then HA

r (X) = 0 for all r ≥ 1.

Example 6.1.7. Let A be a Moore space of type (G,m) (with G finitely generated) and
let X be a path-connected abelian topological space. As in example 2.5.5, for n ≥ 1, there
are short exact sequences of abelian groups

0 // Ext(G,Hn+m+1(X)) // HA
n (X) // Hom(G,Hn+m(X)) // 0

As a consequence, if G is a finite group of exponent r, α2r = 0 for every α ∈ HA
n (X).

Using 6.1.6 we will show now an explicit formula to compute A-homology groups.

Proposition 6.1.8. Let A be a finite CW-complex and let X be a connected CW-complex.
Then for every n ∈ N0, HA

n (X) =
⊕
j∈N

Hj−n(A,Hj(X)).

Proof. By corollary 4K.7 of [8], SP (X) has the weak homotopy type of
∏
n∈N

K(Hn(X), n).

Also, since A is a CW-complex, a weak equivalence is also an A-weak equivalence. Hence,

HA
n (X) = πAn (SP (X)) = πAn (

∏
j∈N

K(Hj(X), j)) =
∏
j∈N

πAn (K(Hj(X), j)) =

=
∏
j∈N

Hj−n(A,Hj(X)) =
⊕
j∈N

Hj−n(A,Hj(X))

where the first equality of the second line follows from 6.1.6 since for every group G and
m ∈ N, SP (M(G,m)) is a K(G,m).

Now we show that, in case A is compact, HA
∗ satisfies the wedge axiom. This can

be proved in two different ways: using the definition of A-homotopy groups or using the
above formula. We choose the first one.
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Proposition 6.1.9. Let A be a finite CW-complex, and let {Xi}i∈I be a collection of
CW-complexes. Then

HA
n

(∨
i∈I

Xi

)
=
⊕
i∈I

HA
n (Xi).

Proof. It is known that SP (
∨
i∈I
Xi) =

∏
i∈I

wSP (Xi) with the weak product topology, i.e. the

colimit of the products of finitely many factors. Since A is compact, πAn (
∏
i∈I

wSP (Xi)) =⊕
i∈I
πAn (SP (Xi)) and the result follows.

Henceforward, C will denote a Serre class of abelian groups unless specified otherwise.

Proposition 6.1.10. Let A be a finite CW-complex and let k ∈ N. Let X be a topological
space such that πn(X) ∈ C for all n ≥ k. Then πAn (X) ∈ C for all n ≥ k.

Proof. We proceed by induction in the number of cells of A. If A has only one cell, the
result trivially holds. Suppose A is obtained from A′ attaching an m-cell. The cofibration
A′ ↪→ A induces a long exact sequence

. . . // πS
m

n (X) // πAn (X) // πA
′

n (X) // πS
m

n−1(X) // . . .

By hypothesis, πS
m

i (X) ∈ C and πA
′

i (X) ∈ C for i ≥ k. Then πAi (X) ∈ C for i ≥ k.

6.2 Homology and homotopy of CW(A)-complexes

In this section we present a variety of results which give information about the homotopy
groups of a CW(A)-complex showing that they depend strongly on the homology and
homotopy groups of A.

Let A be a CW-complex. Let X be a (generalized) CW(A)-complex and let B ⊆ X be
a (generalized) A-subcomplex of X. Replacing (X,B) by a homotopy equivalent CW-pair
(X ′, B′) we obtain that Hn(X,B) ' Hn(X ′, B′) ' Hn(X ′/B′) ' Hn(X/B), where the last
isomorphism holds since a homotopy equivalence of pairs φ : (X,B)→ (X ′, B′) induces a
homotopy equivalence φ : X/B → X ′/B′ by 1.1.20.

Proposition 6.2.1. Let A be a C -acyclic CW-complex and let B be a topological space.
Suppose X is obtained from B by attaching a finite number of A-cells (in one step). Then
the inclusion i : B → X induces C -isomorphisms i∗ : Hn(B)→ Hn(X) for all n.

Proof. Let J be an index set for the A-cells attached, and for each j ∈ J let mj denote
the dimension of the j-th A-cell. Consider the long exact sequence

. . . ∂ // Hn(B)
i∗ // Hn(X) // Hn(X,B) ∂ // Hn−1(B) // . . .

Note that ker(i∗) ∈ C because it is isomorphic to a quotient of Hn+1(X,B). On the
other hand, ker ∂ = coker (i∗) ∈ C because it is a subgroup of Hn(X,B) = Hn(X/B) =
Hn(

∨
j∈J

ΣmjA) =
⊕
j∈J

Hn−mj (A). Then i∗ is a C -isomorphism.
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The following proposition gives a relation between the homology groups of a CW(A)-
complex X and those of A. Of course, we need X to have a finite number of A-cells.

Proposition 6.2.2. Let A be a C -acyclic CW-complex and let X be a finite generalized
CW(A)-complex. Then X is also C -acyclic.

Proof. We proceed by induction in the number of A-cells of X. If X has only one A-cell
the result follows. For the inductive step, suppose X is obtained from B by attaching only
one A-cell (say of dimension m). Consider the short exact sequences

0 // coker ∂ // Hn(X) // ker ∂ // 0

associated to the long exact sequence

. . . ∂ // Hn(B) // Hn(X) // Hn(X,B) ∂ // Hn−1(B) // . . .

Note that Hn(X,B) = Hn(X/B) = Hn(ΣmA) = Hn−m(A). Also, coker ∂ ∈ C because
it is a quotient of Hn(B) and ker ∂ ∈ C because it is a subgroup of Hn(X,B) = Hn−m(A).
Then Hn(X) ∈ C .

Using the generalized Hurewicz theorem (2.3.13) and the previous proposition we obtain
the following.

Corollary 6.2.3. Let A be a C -acyclic CW-complex and let X be a finite generalized
CW(A)-complex. Suppose, in addition, that X is simply connected and that C is an
acyclic ring of abelian groups. Then πn(X) ∈ C for all n ∈ N.

We turn now our attention to A-homotopy groups. From 6.2.3 and 6.1.10 we deduce

Corollary 6.2.4. Let A be a finite CW-complex and let X be a finite generalized CW(A)-
complex. Suppose that A is C -acyclic (with C an acyclic ring of abelian groups) and that
X is simply connected. Then πAn (X) ∈ C for all n ∈ N.

We propose now a slight modification of Serre classes and rings of abelian groups to
get rid of the finiteness hypothesis in the previous results.

Definition 6.2.5. Let C ′ be a nonempty class of abelian groups. We say that C ′ is a
special Serre class if the following conditions are satisfied

(i) For any three-term exact sequence of abelian groups A→ B → C if A,C ∈ C ′ then
B ∈ C ′.

(ii) For any collection of abelian groups {Ai}i∈I if Ai ∈ C ′ for all i, then
⊕
i∈I
Ai ∈ C ′.

(iii) If {Gi}i∈Λ is a direct system of abelian groups, all of which belong to C ′, then
colim
i∈Λ

Gi ∈ C ′
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Note that a special Serre class is, in particular, a Serre class.
An interesting example for our purposes is the following. Let P be a set of prime

numbers. Then, the class TP of torsion abelian groups whose elements have orders which
are divisible only by primes in P is a special Serre class.

If A is a CW-complex and X is a generalized CW(A)-complex, then every compact
subspace of X intersects only a finite number of interiors of A-cells (cf. 3.1.12). Hence, if
X l denotes the l-th layer of X, we have colim

l
Hn(X l) = Hn(X). From this we can deduce

the following result which is an interesting variation of 6.2.2, 6.2.3 and 6.2.4.

Proposition 6.2.6. Let C ′ be a special Serre class, let A be a C ′-acyclic CW-complex
and let X be a generalized CW(A)-complex. Then:

(a) X is C ′-acyclic.

(b) If, in addition, X is simply connected and C ′ is an acyclic ring of abelian groups,
then πn(X) ∈ C ′ for all n ∈ N.

(c) If A is finite and X is simply connected and C ′ is an acyclic ring of abelian groups,
then πAn (X) ∈ C ′ for all n ∈ N.

The next result provides a more concrete description of the singular homology of a
CW(A)-complex, in case that A is a finite dimensional CW-complex.

Given a CW(A)-complex X, for each n ∈ N0, let Jn be an index set for the A-n-cells
of X. For α ∈ Jn and β ∈ Jn−1 let gα and qβ be defined as in section 2.

Proposition 6.2.7. Let A be a finite dimensional CW-complex and let X be a CW(A)-
complex. Then there exists a spectral sequence {Eap,q}p,q∈Z with E1

p,q =
⊕

A−p−cells

Hq(A)

which converges to H∗(X).
Moreover, the differentials d1

p,q : E1
p,q → E1

p−1,q are given by d1
p,q =

⊕
α∈Jp
β∈Jp−1

(qβgα)∗.

Proof. Let E1
p,q = Hp+q(X

p
A, X

p−1
A ) and A1

p,q = Hp+q(X
p
A). From the long exact sequences

in homology associated to the pairs (Xm
A , X

m−1
A ), m ∈ N0, we obtain an exact couple

(E1, A1, i, j, k), which induces a spectral sequence {Eap,q}p,q∈Z. Since A is finite dimen-
sional, it follows that this spectral sequence converges to H∗(X).

Moreover, the differential d1
p,q is given by the composition

Hp+q(X
p
A, X

p−1
A ) ∂−→ Hp+q−1(Xp−1

A )
j−→ Hp+q−1(Xp−1

A , Xp−2
A )

where these maps come from the long exact sequences mentioned above. Under the isomor-
phismsHp+q(X

p
A, X

p−1
A ) '

⊕
A−p−cells

Hq(A) andHp+q−1(Xp−1
A , Xp−2

A ) '
⊕

A−(p−1)−cells

Hq(A),

the map ∂ corresponds to
⊕
α∈Jp

(gα)∗ and the map j corresponds to q∗, where q : Xp−1
A →

Xp−1
A /Xp−2

A is the quotient map.
Hence, the result follows.
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Remark 6.2.8. The previous proposition generalizes 5.2.1.
The following theorem generalizes theorem 6.2.7 above and its proof is formally iden-

tical.

Theorem 6.2.9. Let A and B be CW-complexes, with A finite and B such that Hr(B) 6=
0 only for a finite number of r’s (this holds, for example, if B is finite dimensional).
Let X be a CW(B)-complex. Then there exists a spectral sequence {Eap,q} with E1

p,q =⊕
A−p−cells

HA
p+q(Σ

pB) which converges to HA
∗ (X).

It is well known that if a CW-complex does not have cells of a certain dimension j, then
its j-th homology group vanishes. The following proposition heads towards that direction,
giving, in several cases, a range of dimensions outside of which the A-homology groups
are trivial.

Proposition 6.2.10. Let A be an l-connected CW-complex of dimension k and let X be
a topological space such that SP (X) is abelian (this holds, for example, if H1(X) = 0).

(a) If X is an abelian CW-complex of dimension m, then HA
r (X) = 0 for r ≥ m− l.

(b) If X is an abelian CW(A)-complex of dimension m, then HA
r (X) = 0 for

r ≥ m+ k − l.

(c) If X is an abelian CW(A)-complex without cells of dimension less than m′, then
HA
r (X) = 0 for r ≤ m′ + l − k.

The proof follows immediately from the Federer spectral sequence applied to the space
SP (X).

6.3 Examples on real projective spaces

We exhibit now some examples concerning real projective spaces.
It follows from 2.5.5 that if X is a path-connected abelian topological space, every

element in πP2

n (X) (n ≥ 1) has order 1, 2 or 4. This can be generalized to Pl (for any
dimension l) in the following way. By 2.5.4 we know that there is a spectral sequence
{Eap,q} which converges to πPl

p+q(X) for p + q ≥ 1. If l is even then, for p + q ≥ 1 and
p ≤ −1, we get

E2
p,q ' H−p(Pl;πq(X)) =

{
πq(X)/2πq(X) if p is even and −p ≤ l
{α ∈ πq(X)/ ord (α) = 1 or 2} if p is odd and −p ≤ l

It follows that if β ∈ πPl
n (X) (and n ≥ 1) then ord (β)|2l.

It is worth mentioning that if the homotopy groups of X are finite and do not contain
elements of order 2, then H−p(Pl;πq(X)) = 0 for p+ q ≥ 1 and p ≤ −1. Thus, πPl

n (X) = 0
for n ≥ 1.

On the other hand, if l is odd then, for p+ q ≥ 1 and p ≤ −1, we get

E2
p,q ' H−p(Pl;πq(X)) =


πq(X)/2πq(X) if p is even and −p ≤ l − 1
{α ∈ πq(X)/ ord (α) = 1 or 2} if p is odd and −p ≤ l − 1
πq(X) if p = −l



Section 6.3: Examples on real projective spaces 153

It follows that, for n ≥ 1, there exists a short exact sequence of groups

0 // πn+l(X) // πPl
n (X) // G // 0

where G is such that exp(G)|2l−1. Note that G turns out to be solvable if n = 1, and
abelian for n ≥ 2.

Now, we turn our attention to P2-homology. From example 6.1.6 we get

HP2

r (ΣP2) = H2−r(P2,Z2) =
{

Z2 if r = 1
0 if r ≥ 2

Also, from example 6.1.7 it follows that if X is a (path-connected) CW-complex, then
every element in HP2

n (X) (n ≥ 1) has order 1, 2 or 4.

From 6.2.6 we deduce the following relationship with Eilenberg-MacLane spaces.

Example 6.3.1. There is no generalized CW(P2)-complex X such that X is a K(Z, n)
for some n ≥ 2.

Example 6.3.2. For n ≥ 2, there does not exist any CW(P2)-complex which is a K(Z4, n).
Indeed, if X is a CW(P2)-complex and a K(Z4, n) then by Hurewicz, Hn(X) = Z4. But
by 5.2.1 Hn(X) must be a subquotient of

⊕
Z2, which entails a contradiction.

Given n ≥ 2, we construct now a generalized CW(P2)-complex which is a K(Z2, n).
We need first the following lemma.

Lemma 6.3.3. Let f : S1 → X be a continuous map. Then [f ]2 = 0 in π1(X) if and only
if f can be extended to P2.

This lemma can be proved easily considering the pushout

S1
g //

��
push

S1

��
D2 // P2

where g is a map of degree 2. This result can also be deduced from the cofibration sequence
S1 ↪→ P2 → S2. Clearly, this can be generalized for maps g of any degree.

Proposition 6.3.4. Given n ∈ N, n ≥ 2, there exists a generalized CW(P2)-complex
which is an Eilenberg-MacLane space of type (Z2, n).

Proof. We start with the singleton and attach a P2-(n−1)-cell to obtain Σn−1P2. Clearly,
πr(Σn−1P2) = 0 for r ≤ n − 1 and πn(Σn−1P2) = Z2. Moreover, by the generalized
Hurewicz theorem we know that the groups πr(Σn−1P2) must be finite and of 2-torsion
for all r ∈ N. Then, there exists l ∈ N such that exp(πn+1(Σn−1P2)) = 2l.

We attach now P2-(n+ 1)-cells to Σn−1P2 to kill πn+1. We proceed inductively in l. If
l ≥ 1, let J be a set of generators of the elements of order 2 in πn+1(Σn−1P2). For each
α ∈ J we will attach a P2-(n + 1)-cell in the following way. By the previous lemma, α
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can be extended to some α : ΣnP2 → Σn−1P2, which will be the attaching map of the
P2-(n+ 1)-cell.

Let Y be the space obtained in this way. It follows that exp(πn+1(Y )) ≤ 2l−1. Thus,
by induction, we construct a generalized CW(P2)-complex Xn+1 such that πn(Xn+1) = Z2

and πr(Xn+1) = 0 for r ≤ n+ 1, r 6= n. By 6.2.3, πr(Xn+1) must be finite and of 2-torsion
for all r ∈ N, so the previous argument may be applied again and the result follows.

Example 6.3.5. Let X be a CW (P3) with no cells in adjacent dimensions. By theorem
6.2.7 there exist short exact sequences

0 //
⊕
Jn−3

Z // Hn(X) //
⊕
Jn−1

Z2 // 0

where Jk is an index set for the A-k-cells of X. In the same way, if X is a CW (Pl) (with
l odd) with no cells in adjacent dimensions, we obtain short exact sequences

0 //
⊕
Jn−l

Z // Hn(X) // G // 0

where G is an abelian group such that exp(G) | 2
l−1
2 .



Chapter 7

CW(A)-approximations when A is
a Moore space

In this chapter we give CW(A)-approximation theorems for topological spaces in case A
is a Moore space. As corollaries, we obtain homotopy classification theorems for CW(A)-
complexes.

7.1 First case: A is a M(Zp, r) with p prime

Proposition 7.1.1. Let A be a Moore space of type (Zp, r) with p prime, and let X
be a simply-connected topological space. Then there exists a CW(A)-complex Z and a
weak equivalence f : Z → X if and only if Hi(X) = 0 for 1 ≤ i ≤ max{r − 1, 1} and
Hi(X) =

⊕
Ji

Zp for all i ≥ max{r, 2}.

Proof. Suppose first that there exists a CW(A)-complex Z and a weak equivalence f :
Z → X. By 5.2.1 we know that, for all n ∈ N, Hn(Z) is a subquotient of

⊕
A-(n− 1)-cells

Zp,

hence it is isomorphic to
⊕
Jn

Zp for some index set Jn. Note that Z is (r− 1)-connected by

4.1.9. Since f is a weak equivalence, it induces isomorphisms in all homology groups. Thus
Hi(X) = 0 for 1 ≤ i ≤ max{r − 1, 1} and Hi(X) = Hi(Z) =

⊕
Ji

Zp for all i ≥ max{r, 2}.

For the converse we will analyse first the case r = 1 for simplicity. So, suppose that
Hi(X) = 0 for 1 ≤ i ≤ 1 and Hi(X) =

⊕
Ji

Zp for all i ≥ 2. Let ϕ : X ′ → X be a CW-

approximation of X. Since
∨
Ji

ΣiA is a Moore space of type (
⊕
Ji

Zp, i + 1), we may take a

homology decomposition f ′ : Z → X ′ of X ′ such that Z = colim
n∈N

Zn, with Z1 = ∗ and Zn

the mapping cone of a map
∨
Jn

Σn−2A → Zn−1 for n ≥ 2. Hence, Z is a CW(A)-complex

and f = ϕ ◦ f ′ : Z → X is a weak equivalence.
Now we study the case r ≥ 2, which is similar to the previous one. Suppose that

Hi(X) = 0 for 1 ≤ i ≤ r − 1 and Hi(X) =
⊕
Ji

Zp for all i ≥ r. Let ϕ : X ′ → X be a

155
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CW-approximation of X. Since
∨
Ji

ΣiA is a Moore space of type (
⊕
Ji

Zp, r + i), we may

take a homology decomposition f ′ : Z → X ′ of X ′ such that Z = colim
n∈N

Zn, with Zn = ∗

for 1 ≤ n ≤ r − 1, Zr =
∨
Jr

A and Zn the mapping cone of a map
∨
Jn

Σn−r−1A → Zn−1 for

n ≥ r+1. Hence, Z is a CW(A)-complex and f = ϕ◦f ′ : Z → X is a weak equivalence.

Applying Whitehead’s theorem we get the following corollary.

Theorem 7.1.2. Let A be a Moore space of type (Zp, r) with p prime, and let X be
a simply-connected topological space having the homotopy type of a CW-complex. Then
X has the homotopy type of a CW(A)-complex if and only if Hi(X) = 0 for 1 ≤ i ≤
max{r − 1, 1} and Hi(X) =

⊕
Ji

Zp for all i ≥ max{r, 2}.

We want to obtain now a homotopy classification theorem for generalized CW(A)-
complexes. We will need the following proposition which states that, under certain hy-
potheses, given a chain complex (C∗, d∗) one can construct a CW-complex such that its
cellular chain complex is (C∗, d∗). Other results of this kind can be found in [23] (cf.
theorem 7.2.1 below).

Proposition 7.1.3. Let (C∗, d∗) be a chain complex such that C0 = C1 = Z, d1 : C1 → C0

is the trivial map, Cn = 0 for n ≥ 4 and Cn =
⊕
Jn

Z for 2 ≤ n ≤ 3, where J2 and J3 are

index sets. Then there exists a CW-complex X such that its cellular chain complex is
(C∗, d∗).

Proof. We fix the following notation. For α ∈ Jn let 1α ∈
⊕
Jn

Z be defined by (1α)β = 0

if β 6= α and (1α)α = 1.
For α ∈ J2 let g2

α : S1 → S1 be a map of degree d2(1α) in π1(X1). We define X2 by

∨
J2

S1
+

α∈J2

gα

//

i
��

push

S1

inc

��∨
J2

D2

f
// X2

Note that the cellular chain complex of X2 is

. . . // 0 // 0 // C2
d2 // C1

d1 // C0.

Now, for each m ∈ Z, let Fm : S1 → S1 be a map of degree m, and for β ∈ J2, let
incβ : S2 →

∨
J2

S2 denote the inclusion in the β-th copy of S2.

For α ∈ J3 we define gα : S2 → X2 as follows. Let Aα = {β ∈ J2 / (d3(1α))β 6= 0}. Note
that Aα is a finite set. We define Gα :

∨
β∈Aα

D2 →
∨

β∈Aα
D2 by Gα = +

β∈Aα
incβC(F(d3(1α))β ).
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Now let i :
∨

β∈Aα
D2 → S2 be a subspace map. Note that the boundary of i(

∨
β∈Aα

D2) ⊆ S2 is

homeomorphic to
∨

β∈Aα
S1. It is not difficult to prove that S2−i(

∨
β∈Aα

D2) is homeomorphic

to
◦
D2 and that its closure in S2 is homeomorphic to D2/Z, where Z ⊆ S1 ⊆ D2 is a finite

set with #Z = #Aα.
Thus, there exists a pushout diagram∨

β∈Aα
S1 j //

��
push

∨
β∈Aα

D2

i

��
D2/Z // S2

where j is the inclusion map.
Now let ν ′ : S1 →

∨
β∈Aα

S1 be the map induced by taking standard comultiplication

#(Aα)− 1 times. For β ∈ J2 let f2
β be the characteristic map of e2

β.
Note that the composition

∨
β∈Aα

S1 j //
∨

β∈Aα
D2 Gα //

∨
β∈Aα

D2
+

β∈Aα
f2
β

// X2

coincides with inc ◦
(

+
β∈Aα

g2
βF(d3(1α))β

)
. Hence,

[(
+

β∈Aα
f2
β

)
Gαjν

′
]

=
[
inc
(

+
β∈Aα

g2
βF(d3(1α))β

)
ν ′
]

= inc∗

∑
β∈Aα

[g2
βF(d3(1α))β ]

 =

= inc∗

∑
β∈Aα

[g2
β][F(d3(1α))β ]

 = 0

in π1(X2), since d2d3 = 0.

Thus, the map
(

+
β∈Aα

f2
β

)
Gαjν

′ : S1 → X2 can be extended to a map hα : D2 → X2.

Let q : D2 → D2/Z be the quotient map. By construction, it follows that there exists a
map hα : D2/Z → X2 such that hαq = hα.

Now, let gα be the dotted arrow defined by the commutative diagram∨
β∈Aα

S1 inc //

��
push

∨
β∈Aα

D2

i

��

„
+

β∈Aα
f2
β

«
Gα

��

D2/Z //

hα //

S2

gα

$$
X2.
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Let X be obtained by attaching 3-cells to X2 by the maps gα, α ∈ J3. By construction,
it follows that the cellular chain complex of X is (C∗, d∗).

Lemma 7.1.4. Let X be a topological space and let A be a Moore space of type (Zd, 1)
obtained by attaching a 2-cell to S1 by a map α of degree d. Let m ≥ 2 and suppose we
attach to X an m-cell and an (m+ 1)-cell by maps gm and gm+1 respectively

Sm−1
gm //

inc
��

push

X

i1
��

Dm
fm

// X ∪ em

Sm
gm+1

//

inc
��

push

X ∪ em

i2
��

Dm
fm+1

// X ∪ em ∪ em+1

where gm+1 in the northern hemisphere H+ ⊆ Sm is the map fm ◦CΣm−2α : Dm ' H+ →
X ∪ en and for the southern hemisphere H− we have gm+1(H−) ⊆ X.

Then X ∪ em ∪ em+1 is homeomorphic to a space X ∪ eA,m−1 obtained by attaching an
A-(m− 1)-cell to X.

Proof. Let gA : Σm−2A→ X be the map defined by

Sm−1 Σm−2α //

��
push

Sm−1

�� gm

��

Dm //

gm+1|H−
00

Σm−2A
gA

##HHHHHHHHH

X

and let X ∪ eA,m−1 be defined by the pushout

Σm−2A
gA //

��
push

X

��
CΣm−2A fA

// X ∪ eA,m−1

Using the universal properties of pushouts and colimits we will prove that X∪em∪em+1

and X ∪ eA,m−1 are colimits of the diagram

Sm−1 Σm−2α//

��

�������������������
Sm−1

gm

��������������������

Dm

�������������������

gm+1|H−
00CSm−1CΣm−2α//

��

CSm−1 X

CDm
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Let us define first arrows ψ1, ψ2, ψ3, φ1, φ2 and φ3 such that the following diagrams
commute

Sm−1 Σm−2α //

��

�������������������
Sm−1

gm

��~~}}}}}}}}}}}}}}}}}}}

Dm

�������������������

gm+1|H−
00CSm−1CΣm−2α//

��

CSm−1

ψ2 ''PPPPPPPPPPPP X
ψ1

xxqqqqqqqqqqqq

CDm
ψ3

// X ∪ em ∪ em+1

Sm−1 Σm−2α //

��

�������������������
Sm−1

gm

����������������������

Dm

�������������������

gm+1|H−
00CSm−1CΣm−2α//

��

CSm−1

φ2 ''NNNNNNNNNNN X
φ1

yyssssssssss

CDm
φ3

// X ∪ eA,m−1

We define the maps ψ1 : X → X ∪ em ∪ em+1 and φ1 : X → X ∪ eA,m−1 to be the
corresponding inclusions and ψ2 : CSm−1 ' Dm → X ∪ em ∪ em+1 by ψ2 = i2f

m, where
i2 : X ∪ em → X ∪ em ∪ em+1 is the inclusion. We also define ψ3 : CDm ' Dm+1 →
X ∪ em ∪ em+1 as the characteristic map of em+1, that is ψ3 = fm+1.

Now we define φ2 and φ3 in the following way. We consider the commutative cube

Sm−1 Σm−2α //

��
push

�������������������
Sm−1

ι

��

�������������������

Dm
j //

��������������������
Σm−2A

�������������������

CSm−1CΣm−2α//

��
push

CSm−1

Cι
��

CDm
Cj
// CΣm−2A

where the front and rear faces are pushout squares, and set φ2 = fACι, φ3 = fACj.
Now we will prove that both X∪em∪em+1 and X∪eA,m−1 satisfy the universal property

of the colimit. Suppose that Y is a topological space and that there are continuous maps
ϕ1 : X → Y , ϕ2 : CSm−1 → Y and ϕ3 : CDm → Y such that the following diagram
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commutes

Sm−1 Σm−2α//

��

�������������������
Sm−1

gm

��������������������

Dm

�������������������

gm+1|H−
00CSm−1CΣm−2α//

��

CSm−1

ϕ2
%%KKKKKKKKKK X

ϕ1

||yyyyyyyyy

CDm
ϕ3

// Y

Then there exist maps β1 : X ∪ em → Y , β2 : Sm → Y β : X ∪ em ∪ em+1 → Y ,
γ1 : CΣm−2A→ Y and γ : X ∪ eA,m−1 such that the following diagrams commute

Sm−1
gm //

��
push

X

�� ϕ1

��

CSm−1
fm //

ϕ2 00

X ∪ em
β1

##GGGGGGGGG

Y

Sm−1 //

��
push

Dm

�� β1◦fm◦CΣm−2α=β1◦gm+1|H+

��

Dm //

ϕ1◦gm+1|H−
00

Sm

β2

!!CCCCCCCC

Y

Sm
gm+1

//

��
push

X ∪ en

��
β1

��

CDm ' Dm+1
fm+1

//

ϕ3 00

X ∪ em ∪ em+1

β

&&NNNNNNNNNNNN

Y

CSm−1CΣm−2α//

��
push

CSm−1

Cι
�� ϕ2

��

CDm
Cj
//

ϕ3 00

CΣm−2A
γ1

$$IIIIIIIIII

Y

Σm−2A
gA //

��
push

X

φ1

�� ϕ1

��

CΣm−2A

γ1 00

fA
// X ∪ eA,m−1

γ

%%KKKKKKKKKK

Y

It is routine to check that βψi = ϕi and γφi = ϕi for i = 1, 2, 3. The uniqueness of the
maps β and γ satisfying this equalities follows easily from the universal properties of the
pushouts diagrams above.

Hence, X ∪ em ∪ em+1 and X ∪ eA,m−1 are homeomorphic.

Proposition 7.1.5. Let p be a prime number and let A be a Moore space of type (Zp, r).
Then for every m,n ∈ N with n ≥ r + 1 there exists a generalized CW(A)-complex X
which is a Moore space of type (Zpm , n). Moreover, X has a finite number of A-cells.
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Proof. We suppose first that r = 1. Note that it suffices to prove the case n = 2 since
suspensions of generalized CW(A)-complexes are also generalized CW(A)-complexes and
the suspension of a Moore space of type (G, r) (r ≥ 2) is a Moore space of type (G, r+ 1).

We will suppose that A is constructed by attaching a 2-cell to S1 by a map of degree
p and we will consider the general case later.

Consider the chain complex

. . . // 0 // Zm+1
d2 // Zm+2

d1 // Z

where d1 and d2 are the morphisms of Z-modules defined by left multiplication by the
matrices

M1 =
(
p pm −pm−1 . . . (−1)m−1p (−1)m

)
and

M2 =



−pm 0 0 . . . 0 0
p 1 0 . . . 0 0
0 p 1 . . . 0 0
0 0 p . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . p 1
0 0 0 . . . 0 p


respectively. Schematically, the chain complex above is represented by the diagram

Z
p //

⊕

Z

Z
p //

−pm
::uuuuuuuuuu

⊕

Z

pmwwww

;;wwww

⊕

Z
p //

1

::uuuuuuuuuu

⊕

Z

−pm−1

							

DD							

⊕

. . .

⊕

. . .

⊕

Z
p //

1

99ssssssssss
Z

(−1)m

II����������������������������

where an arrow labeled with k ∈ Z indicates multiplication by k.
It follows that the homology of this chain complex is 0 in degrees i 6= 2 and Zpm in

degree 2 with generator the class of (1, 0, 0, . . . , 0, (−1)m−1p).
By theorem 7.1.3, there exists a CW-complex Z such that its cellular complex is the

chain complex above. Applying the previous lemma, we obtain that Z is homeomorphic
to a generalized CW(A)-complex X with a finite number of A-cells.

Now, if A′ is any Moore space of type (Zp, 1) and A is as above then there is a homotopy
equivalence A → A′. Hence, by a similar argument as the one in the proof of 3.3.1 there
exists a generalized CW(A′)-complex X ′ homotopy equivalent to X. Thus X ′ is also a
Moore space of type (Zpm , 2). Note that X ′ has a finite number of A′-cells since X has
finite number of A-cells.
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It remains to prove the general case r ∈ N. By the same reasoning as above, we may
suppose that A = Σr−1B where B is a Moore space of type (Zp, 1). Hence, there exists a
generalized CW(B)-complex X which is a Moore space of type (Zpm , n− r+ 1). Since the
suspension functor commutes with colimits, it follows that Σr−1X is a CW(A)-complex
which is a Moore space of type (Zpm , n).

Corollary 7.1.6. Let p be a prime number and let A be a Moore space of type (Zp, r).
Let G be a finitely generated p-torsion abelian group and let n ∈ N, n ≥ r+ 1. Then there
exists a generalized CW(A)-complex X which is a Moore space of type (G,n). Moreover,
X has a finite number of A-cells.

Proof. Since G is a finitely generated p-torsion abelian group, we know that there exist
an index set I and natural numbers mi, i ∈ I, such that G =

⊕
i∈I

Zpmi . We take X to

be a wedge sum of Moore spaces M(Zpmi , n), i ∈ I, which might be taken to be CW(A)-
complexes by the previous proposition. The result follows applying the wedge axiom for
(reduced) homology.

As an example of an application, we will show now which Eilenberg-MacLane spaces
can be obtained as generalized CW(A)-complexes. We give a constructive proof at this
point. However, it will be also deduced later by a homotopy classification theorem for
generalized CW(A)-complexes.

We need the following lemma.

Lemma 7.1.7. Let m ∈ N and let A be the Moore space of type (Zm, 1) obtained by
attaching a 2-cell to S1 by a map g of degree m. Let f : S1 → X be a continuous map.
Then [f ]m = 0 in π1(X) if and only if f can be extended to A.

Proof. Note that [f ]m = [fg] in π1(X). Hence if [f ]m = 0 then fg ' 0 and thus it can
be extended to D2. The extension of f to A is obtained then by the universal property of
pushouts.

To prove the converse, let g : D2 → A be the characteristic map of the 2-cell of A
and let inc : S1 → D2 be the inclusion map. If f can be extended to f : A → X then
fg = fginc is nullhomotopic. Hence [f ]m = [fg] = 0.

Note that this result can also be deduced from the cofibration sequence S1 ↪→ A→ S2.

Proposition 7.1.8. Let p be a prime number and let A be a Moore space of type (Zp, r).
Let G be a finitely generated p-torsion abelian group and let n ∈ N with n ≥ r + 1. Then
there exists a generalized CW(A)-complex X which is an Eilenberg-MacLane space of type
(G,n).

Proof. Applying the same argument as in the proof of 7.1.5, we may suppose that A is
obtained by attaching a 2-cell to S1 by a map of degree p.

We will prove only the case r = 1, since the general case is completely analogous to it.
By the previous corollary we may build a finite generalized CW(A)-complex X0 which

is also a Moore space of type (G,n). By the Hurewicz theorem, πr(X0) = 0 for r ≤ n− 1
and πn(X0) = G. Moreover, by the generalized Hurewicz theorem (2.3.13) we know that



Section 7.1: First case: A is a M(Zp, r) with p prime 163

the groups πr(X0) must be finite and of p-torsion for all r ∈ N. Then, there exists l ∈ N
such that exp(πn+1(X0)) = pl.

We attach now A-(n+ 1)-cells to X0 to kill πn+1. We proceed inductively in l. If l ≥ 1,
let J be a set of generators of the elements of order p in πn+1(X0). For each α ∈ J we
will attach an A-(n+ 1)-cell in the following way. By lemma 7.1.7, α can be extended to
some α : ΣnA→ X0, which will be the attaching map of the A-(n+ 1)-cell.

Let Y be the space obtained in this way. It follows that exp(πn+1(Y )) ≤ pl−1. Thus,
by induction, we may construct a finite generalized CW(A)-complex Xn+1 such that
πn(Xn+1) = Zp and πr(Xn+1) = 0 for r ≤ n + 1, r 6= n. By 6.2.3, πr(Xn+1) must
be finite and of p-torsion for all r ∈ N, so the previous argument may be applied again
and the result follows.

Theorem 7.1.9. Let p be a prime number and let A be a Moore space of type (Zp, r). Let
X be an r-connected CW-complex such that Hn(X) is a finitely generated p-torsion abelian
group for all n ≥ r+ 1. Then X has the homotopy type of a generalized CW(A)-complex.

Proof. As in the proofs above, we will only analyse the case r = 1 since the general case
is very similar to that.

By 1.4.39 we know that X admits a homology decomposition. Then, there exist a CW-
complex Z, a homotopy equivalence f : Z → X, and a sequence (Zn)n∈N of subcomplexes
of Z such that

(a) Zn ⊆ Zn+1 for all n ∈ N.

(b) Z =
⋃
n∈N

Zn.

(c) Z1 is a Moore space of type (H1(X), 1).

(d) For all n ∈ N, Zn+1 is the mapping cone of a cellular map gn : Mn → Zn, where
Mn is a Moore space of type (Hn+1(X), n), and gn is such that the induced map
(gn)∗ : Hn(Mn)→ Hn(Zn) is trivial.

Now, by 7.1.6 we may suppose that Mn is a finite generalized CW(A)-complex for all
n ∈ N. By a similar argument as that of the proof of 3.1.26 it follows that Z is a
generalized CW(A)-complex.

Remark 7.1.10. Note that if A is a Moore space of type (Zp, r) and X is an r-connected
CW-complex which has the homotopy type of a generalized CW(A)-complex, then by
6.2.6, Hn(X) is a p-torsion abelian group for all n ≥ r + 1.

Hence, from this fact and the previous theorem we obtain a homotopy classification
theorem for r-connected generalized CW(A)-complexes which have finitely generated ho-
mology groups.

Note that from 7.1.9 and the generalized Hurewicz theorem (2.3.13) we may deduce
proposition 7.1.8.
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7.2 General case: A is a M(Zm, r)

To study the case where A is a Moore space of type (Zm, r), with m not necessarily prime,
we will make use of the following theorem, due to J.H.C. Whitehead [23].

Theorem 7.2.1. Let (C∗, d∗) be a chain complex such that C0 = Z, C1 = 0 and Cn =
⊕
Jn

Z

for each n ≥ 2, where Jn, n ≥ 2, are index sets. Then there exists a simply-connected
CW-complex X such that its cellular chain complex is (C∗, d∗).

Proof. For each n ∈ N, we will construct a CW-complex Xn of dimension n with cellular
chain complex (C(n)

∗ , d
(n)
∗ ) such that

• (Xn)n−1 = Xn−1

• C(n)
i = Ci if 0 ≤ i ≤ n

• C(n)
i = 0 if i > n

• d(n)
i = di if 1 ≤ i ≤ n

• d(n)
i = 0 if i > n

• If, for n ∈ N, jn : πn(Xn) → πn(Xn, Xn−1) and ∂n : πn(Xn, Xn−1) → πn−1(Xn−1)
are morphisms coming from the long exact sequence of homotopy groups associated
to the pair (Xn, Xn−1), then Im jn = ker(jn−1∂n).

We proceed by induction on n. For n = 1 we take X1 = ∗ and for n = 2 we take
X2 =

∨
J2

S2. We also define X0 = ∗. From the long exact sequence of homotopy groups

associated to the pair (X2, X1) it follows that Im j2 = π2(X2, X1) which coincides with
ker(j1∂2), since j1∂2 is the trivial map.

Suppose now that n ≥ 3 and that Xn−1 is constructed. Since (Xn−1, Xn−2) is (n− 2)-
connected, n−2 ≥ 1 and Xn−2 is simply-connected, by the relative version of the Hurewicz
theorem we obtain that πn−1(Xn−1, Xn−2) ' Hn−1(Xn−1, Xn−2) ' Cn−1. Similarly,
πn−2(Xn−2, Xn−3) ' Hn−2(Xn−2, Xn−3) ' Cn−2 (note that this holds trivially if n = 3).

Let φn−1 : Cn−1 → πn−1(Xn−1, Xn−2) and φn−2 : Cn−2 → πn−2(Xn−2, Xn−3) be the
inverse maps of the respective Hurewicz isomorphisms. Hence, from the naturality of the
Hurewicz morphisms it follows that there is a commutative diagram

Cn
dn // Cn−1

dn−1 //

φn−1 '
��

Cn−2

φn−2'
��

πn−1(Xn−1, Xn−2)
jn−2∂n−1 //

∂n−1

��

πn−2(Xn−2, Xn−3)

πn−1(Xn−1)
jn−1

55jjjjjjjjjjjjjjj
πn−2(Xn−2)

jn−2

44iiiiiiiiiiiiiiiii
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Let {zi : i ∈ J ′} be a basis of Imdn. For each i ∈ J ′ let ci ∈ Cn be such that dn(ci) = zi
and let Gn ⊆ Cn be the subgroup generated by {ci : i ∈ J ′}. Note that a relation between
the ci’s will imply the corresponding relation between the zi’s. Hence, {ci : i ∈ J ′} is a
basis of Gn. Therefore, Cn ' ker dn⊕Gn and dn|Gn : Gn → Im dn is an isomorphism. Let
{xi : i ∈ I} be a basis of ker dn.

Let B be the basis of Cn defined by B = {xi : i ∈ I} ∪ {ci : i ∈ J ′}. Note that there
exists a bijection B ' Jn and that jn−2∂n−1φn−1dn(a) = φn−2dn−1dn(a) = 0 for all a ∈ B.
Hence, φn−1dn(a) ∈ ker(jn−2∂n−1) = Im jn−1. Thus, there exists ba ∈ πn−1(Xn−1) such
that jn−1(ba) = φn−1dn(a). We take ba = 0 if a ∈ ker dn.

For a ∈ B, let ga : Sn−1 → Xn−1 be a continuous map such that [ga] = ba. If ba = 0
we take ga to be the constant map. Let Xn be obtained from Xn−1 by attaching n-cells
by the maps ga, a ∈ B ' Jn. Note that πn(Xn, Xn−1) '

⊕
Jn

Z ' Cn. As above, let

φn : Cn → πn(Xn, Xn−1) be induced by the inverse map of the Hurewicz isomorphism.
By construction, it is not hard to check that the following diagram commutes

Cn
dn //

φn '
��

Cn−1
dn−1 //

φn−1 '
��

Cn−2

φn−2'
��

πn(Xn, Xn−1)
jn−1∂n //

∂n
��

πn−1(Xn−1, Xn−2)
jn−2∂n−1 //

∂n−1

��

πn−2(Xn−2, Xn−3)

πn−1(Xn−1)
jn−1

44jjjjjjjjjjjjjjjj
πn−2(Xn−2)

jn−2

44iiiiiiiiiiiiiiiii

Thus, the first five conditions above are satisfied. It remains to prove that Im jn =
ker(jn−1∂n).

Note that Im jn = ker(∂n) ⊆ ker(jn−1∂n). On the other hand, let a ∈ ker dn ∩ B
and let ena be the cell with attaching map ga. Let fa : (Dn, Sn−1) → (Xn, Xn−1) be
the characteristic map of ena . Since by construction ga is the constant map, fa induces
a continuous map fa : Dn/Sn−1 ' Sn → Xn. Note that, jn(fa) = fa = φn(a). Hence,
ker(jn−1∂n) = φn(ker dn) ⊆ Im jn. It follows that Im jn = ker(jn−1∂n) as desired.

Finally, we take X = colim
n∈N

Xn.

The previous theorem allows us to obtain the following results.

Proposition 7.2.2. Let m, d ∈ N such that d|m and let A be a Moore space of type
(Zm, r). Then, for all n ≥ max{r, 2}, there exists a CW(A)-complex which is a M(Zd, n).

Proof. As in the proofs above, we will only analyse the case r = 1, n = 2, since the general
case is completely analogous to that.

Let (C∗, d∗) be the chain complex defined in the following way. The groups Cn, n ∈ N0

are defined by

Cn =


Z if n = 0 or n = 2
0 if n = 1
Z⊕ Z if n ≥ 3
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and the morphism dn : Cn → Cn−1 is trivial if n = 1 or n = 2 and is defined by left
multiplication by the matrix Dn if n ≥ 3, where

Dn =



(
m d

)
if n = 3(

−d −1
m m

d

)
if n ≥ 4 and n is even(

−m
d −1
m d

)
if n ≥ 4 and n is odd

It follows that H2(C∗, d∗) = Zd and Hn(C∗, d∗) = 0 if n 6= 2 and n 6= 0.
By the previous theorem, there exists a CW-complex X such that its cellular chain

complex is (C∗, d∗). Hence, X is a Moore space of type (Zd, 2).
Finally, with a similar argument to the one in the proof of 7.1.5 we conclude that X is

homotopy equivalent to a CW(A)-complex.

Now, proceeding as in the proof of 7.1.9, we obtain the following result. We mention
that we will generalize this result later on.

Proposition 7.2.3. Let m ∈ N and let A be a Moore space of type (Zm, r). Let X be an
r-connected CW-complex such that for all n ≥ r+ 1, Hn(X) =

⊕
j∈Jn

Zmj with mj |m for all

j ∈ Jn. Then X has the homotopy type of a generalized CW(A)-complex.

Remark 7.2.4. The converse of the previous proposition does not hold, since the space of
example 5.2.8 is a generalized CW(D2

4)-complex but its homology in degree 3 is Z8.

Proposition 7.2.5. Let m ∈ N and let A be a Moore space of type (Zm, r). Let k ∈ N,
k ≥ max{r + 1, 3}, and let G be a finite abelian group such that the prime divisors of
the orders of its elements also divide m. Then there exists a generalized CW(A)-complex
which is a Moore space of type (G, k).

Proof. As in the proof of 7.1.5, it suffices to prove the case k = max{r + 1, 3}. We know
that G is the direct sum of cyclic groups of order a power of a prime that divides m. Since
reduced singular homology groups satisfy the wedge axiom, it suffices to analyse the case
G = Zpl , where p|m and l ∈ N.

By 7.2.2, there exists a CW(A)-complex B which is a Moore space of type (Zp, k − 1).
By 7.1.5, there exists a generalized CW(B)-complex X which is a Moore space of type
(Zpl , k). Finally, X is a CW(A)-complex by 3.1.29.

Now we obtain another homotopy classification theorem.

Theorem 7.2.6. Let m ∈ N and let A be a Moore space of type (Zm, r), with r ≥ 2. Let
X be an (r − 1)-connected CW-complex satisfying the following conditions

(a) Hr(X) =
⊕
j∈J

Zmj with mj |m for all j ∈ J

(b) For all n ≥ r+ 1, Hn(X) is a finite abelian group such that the prime divisors of the
orders of its elements also divide m.
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Then X has the homotopy type of a generalized CW(A)-complex.

Its proof is analogous to that of 7.1.9. Clearly, there is a similar result for r = 1.
Note that by 6.2.6 if a topological space X has the homotopy type of a generalized

CW(A)-complex, where A is a Moore space of type (Zm, r), then X is (r − 1)-connected
and for all n ≥ r, Hn(X) is a torsion abelian group such that the prime divisors of the
orders of its elements also divide m. Thus, the previous theorem is a weak converse to
this statement.

As a corollary of 7.2.6 we obtain a sufficient condition for the existence of a homotopical
approximation by a generalized CW(A)-complex.

Theorem 7.2.7. Let m ∈ N and let A be a Moore space of type (Zm, r) with r ≥ 2.
Let X be an (r − 1)-connected topological space satisfying conditions (1) and (2) of the
previous theorem. Then there exists a generalized CW(A)-complex Z and a weak homotopy
equivalence f : Z → X.



Chapter 8

Obstruction theory

In this chapter we start developing an obstruction theory for CW(A)-complexes. However,
the A-cellular chain complex introduced in chapter 5 is not suitable for this purpose. Thus,
we define a new A-cellular chain complex which fulfils our requirements. It is interesting to
point out that although this new chain complex is completely different from the previous
one, it coincides with the classical cellular chain complex if A = S0.

We also define an obstruction cocycle and a difference cochain, which give the exact
obstructions to extension problems for maps, as we shall see. These are generalizations
of the classical ones. We emphasize that the crucial part is the definition of an adequate
A-cellular chain complex so that classical obstruction theory can be taken to our more
general setting.

This chapter is only an introduction to obstruction theory for CW(A)-complexes. Much
more work can be done.

8.1 A new A-cellular chain complex

Let A be an l-connected and compact CW-complex of dimension k with k ≤ 2l and l ≥ 1.
By theorem 11 of [19] p. 458 the map Σ : [ΣnA,ΣnA] = πAn (A) → [Σn+1A,Σn+1A] =
πAn+1(A) is a bijection for n ≥ 0 and hence an isomorphism of groups for n ≥ 1.

Let R = πA,st0 (X) = colim
n

πAn (ΣnX). Then R is isomorphic to πAr (ΣrA) for r ≥ 2.

We will denote by + the usual abelian group operation in πAr (ΣrA). We will also define
a product in πAr (ΣrA) as follows: [f ][g] = [g ◦ f ]. It is clear that this operation is well
defined and associative and has an identity element [Id].

Also, ([f ]+ [g])[h] = h∗([f ]+ [g]) = h∗([f ])+h∗([g]) = [f ][h]+ [g][h]. We will prove now
that [h]([f ] + [g]) = [h][f ] + [h][g]. If [h] ∈ πAr (ΣrA) by the isomorphism πAr−1(Σr−1A) '
πAr (ΣrA) we know that there exists [h′] ∈ πAr−1(Σr−1A) such that [h] = [Σh′]. We denote
by q : ΣrA→ ΣrA ∨ ΣrA the quotient map which induces the sum +. Then

[h]([f ] + [g]) = [h][(f + g) ◦ q] = [(f + g) ◦ q ◦ h] = [(f + g) ◦ q ◦ Σh′] =
= [(f + g) ◦ (Σh′ ∨ Σh′) ◦ q] = [(f ◦ Σh′ + g ◦ Σh′) ◦ q] =
= [f ◦ Σh′] + [g ◦ Σh′] = [f ◦ h] + [g ◦ h] = [h][f ] + [h][g].

Hence πAr (ΣrA) is a unital ring.

168
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Note that Σ : [ΣnA,ΣnA] = πAn (A) → [Σn+1A,Σn+1A] = πAn+1(A) is an isomorphism
of rings for n ≥ 2. Hence R is also a unital ring with the inherited structure and the
induced maps πAr (ΣrA)→ colim

r
πAr (ΣrX) = πA,st0 (X) = R are ring isomorphisms.

Note also that since Σ : [ΣA,ΣA] = πA1 (A)→ [Σ2A,Σ2A] = πA2 (A) is an isomorphism,
we get that [ΣA,ΣA] = πA1 (A) is an abelian group.

We will define now another A-cellular complex which will be used to develop the ob-
struction theory for CW(A)-complexes. For a CW(A)-complex X, let Cn be the free
R-module generated by the A-n-cells of X. We define the boundary map d : Cn → Cn−1

in the following way. Let enα be an A-n-cell of X, let gα be its attaching map and let
Jn−1 be an index set for the A-(n − 1)-cells. As usual, for β ∈ Jn−1, let qβ : Xn−1 →

Xn−1/(Xn−1−
◦

en−1
β ) = Σn−1A be the quotient map. We define d(enα) =

∑
β∈Jn−1

[qβgα]en−1
β .

Recall that this sum is finite since A is compact.
Now we wish to prove that (C∗, d) is a chain complex. We proceed as in [11] p. 95-98.

Note that applying 4.1.14 we get

Cn = R(Jn) =
⊕
Jn

R '
⊕
Jn

πAn (ΣnA) ' πAn (
∨
Jn

ΣnA) ' πAn (Xn/Xn−1)

Thus, up to isomorphisms, we may think d : πAn (Xn/Xn−1)→ πAn−1(Xn−1/Xn−2).
We will give another description of the boundary map d. We define ∂n : Xn/Xn−1 →

ΣXn−1/Xn−2 as the composition

Xn/Xn−1 ψ−1
// Xn ∪

Xn−1
CXn−1 q1 // ΣXn−1

Σq // Σ(Xn−1/Xn−2)

where q1 and q are quotient maps and ψ−1 is a homotopy inverse of the quotient map
ψ : Xn ∪

Xn−1
CXn−1 → Xn/Xn−1.

We will prove that the triangle

πAn (Xn/Xn−1) d //

(∂n)∗ ))SSSSSSSSSSSSSS
πAn−1(Xn−1/Xn−2)

πAn (Σ(Xn−1/Xn−2))
Σ−1

55jjjjjjjjjjjjjjj

commutes.
As usual, for each A-n-cell enα, α ∈ Jn, let gα be its attaching map and fα be its

characteristic map and consider the following commutative diagram

CΣn−1A/Σn−1A

qfα

��

CΣn−1A ∪
Σn−1

CΣn−1Aψ0oo q0 //

fα∪Cgα
��

Σ(Σn−1A)

Σgα

��
Xn/Xn−1 Xn ∪

Xn−1
CXn−1

ψ
oo

q1
// ΣXn−1
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where ψ0 and q0 are quotient maps and qfα is the map induced by fα∪Cgα in the quotient
spaces. Let (ψ0)−1 be a homotopy inverse of ψ0. It follows that q1ψ

−1qfα ' Σgαq0(ψ0)−1.
It is easy to prove that, up to the standard homeomorphisms CΣn−1A/Σn−1A =

Σn−1A ∪
Σn−1

CΣn−1A = Σ(Σn−1A) = ΣnA, the maps q0 and ψ0 are both homotopic to

the identity map. Note also that the isomorphism Cn ' πAn (Xn/Xn−1) takes the basis
{enα : α ∈ Jn} to {qfα : α ∈ Jn}. Hence, up to this isomorphism,

Σ−1(∂n)∗(enα) = Σ−1[∂nqfα] = Σ−1[Σqq1ψ
−1qfα] ' Σ−1[ΣqΣgαq0(ψ0)−1] '

' Σ−1[ΣqΣgα] = Σ−1[Σ(qgα)] = [qgα].

Thus, Σ−1(∂n)∗(enα) = [qgα] ∈ πAn−1(Xn−1/Xn−2) ' Cn−1.
We need now the following lemma. Its proof is formally identical to that of lemma

2.5.3.

Lemma 8.1.1. Let A be an l-connected and compact CW-complex of dimension k with
k ≤ 2l+2 and let X be a CW(A)-complex. Let r ≥ 2 and let g : ΣrA→ Xr be a continuous
map. Let q : Xr → Xr/Xr−1 =

∨
r-cells

ΣrA be the quotient map. Let Jr be an index set

for the A-r-cells of X and for each β ∈ Jr let qβ : Xr → ΣrA be the quotient map which

collapses Xr −
◦
erβ to a point. Then

[qg] =
∑
β∈Jr

[iβqβg]

in πr(
∨
Jr

ΣrA).

Applying the previous lemma we obtain that [qgα] =
∑

β∈Jn−1

[iβqβgα] =
∑

β∈Jn−1

[qβgα][iβ]

which corresponds to
∑

β∈Jn−1

[qβgα]en−1
β under the isomorphism πAn−1(

∨
Jn−1

Σn−1A) '

Cn−1. Hence, d = Σ−1(∂n)∗.
Using this description of the boundary map d we will prove that d2 = 0. We consider

the following commutative diagram

Xn ∪
Xn−1

CXn−1 q1 //

ψ

��

ΣXn−1 Σi //

Σq

��

Σ(Xn−1 ∪
Xn−2

CXn−2) q′1 //

Σψ′

��

Σ2Xn−2

Σ2q′

��
Xn/Xn−1

∂n
// Σ(Xn−1/Xn−2)

Id
// Σ(Xn−1/Xn−2)

Σ∂n−1

// Σ2(Xn−2/Xn−3)

where q′1 and q′ are quotient maps and i is an inclusion.
Since Σq′1 ◦ Σi is the constant map and ψ is a homotopy equivalence we conclude that
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Σ∂n−1 ◦ ∂n ' ∗. Thus, from the commutative diagram

πAn (Xn/Xn−1) d //

(∂n)∗ %%KKKKKKKKKK
πAn−1(Xn−1/Xn−2) d //

(∂n−1)∗ ''PPPPPPPPPPPP
πAn−2(Xn−2/Xn−3)

πAn (Σ(Xn−1/Xn−2))
Σ−1

77ooooooooooo

(Σ∂n−1)∗ ''OOOOOOOOOOO
πAn−1(Σ(Xn−2/Xn−3))

Σ−1

77ppppppppppp

πAn (Σ2(Xn−2/Xn−3))
Σ−1

77nnnnnnnnnnnn

we deduce that d2 = 0.

Remark 8.1.2. Although S0 does not satisfy the required relation between dimension and
degree of connectedness (see p. 168), the suspension functor induces isomorphisms of
groups [ΣnS0,ΣnS0] ' [Σn+1S0,Σn+1S0] for n ≥ 1. Hence, the previous construction also
works for S0 if the CW-complex X has only one 0-cell (recall that this is not a homotopical
restriction). In this case, by [11] p. 95-98, the S0-cellular chain complex coincides with
the classical cellular chain complex.

The homology of this chain complex is not a topological invariant as the following
example shows.

Remark 8.1.3. The homology of this A-cellular chain complex is not invariant by home-
omorphisms. Indeed, take A = S3 ∨ S4. Let X = D4 ∨D5 ∨D6 ∨D7. We will give two
CW(A)-complex structures to X. The first one is defined by the following pushouts

A
Id //

��
push

X0 = A

��
CA // X1 = D4 ∨D5

ΣA
∗ //

��
push

X1

��
CΣA // X2 = D4 ∨D5 ∨ S5 ∨ S6

Σ2A = S5 ∨ S6 inc //

��
push

X2

��
CΣ2A // X

while the second one is defined by the pushouts

A = S3 ∨ S4
in1+∗ //

��
push

A = S3 ∨ S4

��
CA // X1 = D4 ∨ S4 ∨ S5

ΣA = S4 ∨ S5 ∗ //

��
push

X1 = D4 ∨ S4 ∨ S5

��
CΣA // X2 = D4 ∨D5 ∨ S5 ∨ S6

Σ2A = S5 ∨ S6 inc //

��
push

X2

��
CΣ2A // X
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Since A is 2-connected and has dimension 4, by theorem 11 of [19] p. 458 we get that
R ' πA0 (A). Applying proposition 6.36 of [20] we obtain that

R ' πA0 (A) = [S3 ∨ S4, S3 ∨ S4] = π3(S3 ∨ S4)⊕ π4(S3 ∨ S4) =
= π3(S3)⊕ π3(S4)⊕ π4(S3)⊕ π4(S4) = Z⊕ Z2 ⊕ Z.

Before analyzing the A-cellular chain complexes we need to study the ring structure in
R. Recall that we have defined the product in R as a composition in πA0 (A) ' R. More
precisely, if f, g : A → A are continuous maps then [f ].[g] = [g ◦ f ]. We wish to obtain a
concise description of this product under the isomorphism πA0 (A) ' Z⊕ Z2 ⊕ Z.

If α : A = S3∨S4 → A = S3∨S4 is a continuous map, we may decompose α = α1 +α2

with α1 : S3 → S3∨S4 and α2 : S4 → S3∨S4. Let i1 : S3 → S3∨S4 and i2 : S4 → S3∨S4

be the inclusions and let ρ1 : S3 ∨ S4 → S3 and ρ2 : S3 ∨ S4 → S4 be the standard
quotient maps. Note that, up to the isomorphism given by proposition 6.36 of [20] we
have that [α1] = ([q1α1], [q2α1]) and [α2] = ([q1α2], [q2α2]). Hence, the isomorphism
πA0 (A) ' Z⊕ Z2 ⊕ Z takes [α] to ([q1α1], [q1α2], [q2α2]) = ([q1αi1], [q1αi2], [q2αi2]).

Taking this into consideration we get that the product [f ].[g] = [g◦f ] can be translated
into

([q1fi1], [q1fi2], [q2fi2]).([q1gi1], [q1gi2], [q2gi2]) = ([q1(g ◦ f)i1], [q1(g ◦ f)i2], [q2(g ◦ f)i2])

As mentioned above, [f2] = ([q1f2], [q2f2]) under the isomorphism ((q1)∗, (q2)∗) which
is the inverse of ((i1)∗, (i2)∗) : π4(S3)⊕ π4(S4)→ π4(S3 ∨ S4). Hence,

[q2(g ◦ f)i2] = [q2gi1q1fi2] + [q2gi2q2fi2] = [q2gi2q2fi2]

since q2gi1 : S3 → S4 is nullhomotopic.
By a similar argument we get that

[q1(g ◦ f)i1] = [q1gi1q1fi1]

and
[q1(g ◦ f)i2] = [q1gi1q1fi2] + [q1gi2q2fi2].

From these equations it is easy to conclude that the product in πA0 (A) ' Z ⊕ Z2 ⊕ Z
is defined by (a1, a2, a3)(b1, b2, b3) = (b1a1, b1a2 + b2a3, b3a3). Indeed, we only have to
note that if γ : Sn → Sn and β : Sn → Sm are continuous maps and [γ] ∈ πn(Sn) is
represented by m ∈ Z then [β ◦ γ] = m[β], which follows from the identities [β ◦ γ] =
β∗([γ]) = β∗(m[Id]) = mβ∗([Id]) = m[β].

Now it is easy to prove that the A-cellular chain complex corresponding to the first
CW(A)-complex structure of X is

. . . // 0 // 0 // R
Id // R

0 // R
Id // R

whose homology is 0 in every degree.
On the other hand, we will prove now that the A-cellular chain complex corresponding

to the second CW(A)-complex structure of X is

. . . // 0 // 0 // R
d3 // R

0 // R
d1 // R
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where d3 and d1 are defined by d3(r1, r2, r3) = (0, 0, r3) and d1(r1, r2, r3) = (r1, r2, 0).
Hence its homology is Z in degrees 0 and 1 and Z⊕ Z2 in degrees 2 and 3.

The map d1 is defined by d1(e2) = [q(2)g(2)]e1, where q(2) : X1 → X1/(X1 −
◦
e1) = ΣA

is the quotient map and g(2) = in1 + ∗ is the attaching map of the A-cell e2. Note that
q(2) is the identity map and that g(2) = in1 + ∗ corresponds to [(1, 0, 0)] ∈ Z ⊕ Z2 ⊕
Z under the isomorphism mentioned before. Hence d1(r1, r2, r3) = (r1, r2, r3).d1(e2) =
(r1, r2, r3).(1, 0, 0) = (r1, r2, 0).

In a similar way, the map d3 is defined by d3(e4) = [q(4)g(4)]e3, where q(4) : X3 →

X3/(X3 −
◦
e3) = Σ3A is the quotient map and g(2) = inc is the attaching map of the

A-cell e2. Note that q(2)g(2) corresponds to [(0, 0, 1)] ∈ Z⊕ Z2 ⊕ Z. Hence d1(r1, r2, r3) =
(r1, r2, r3).d1(e2) = (r1, r2, r3).(0, 0, 1) = (0, 0, r3).

Note that, as it occurs with the A-cellular chain complex of chapter 5, this new A-
cellular chain complex does not take into consideration the way that A-n-cells are attached
to A-k-cells for k ≤ n−2. Hence, different CW(A)-decompositions of the same space may
lead to different results, as the example above shows. Again, the key fact here is including
in one of the structures an A-2-cell and an A-3-cell such that their attaching maps involve
in a non-trivial way the A-0-cell and the A-1-cell respectively.

Remark 8.1.4. Suppose that A is a finite l-connected CW-complex of dimension k with k ≤
2l and X is a finite CW(A)-complex. Let C = (C∗, d) be the A-cellular complex defined
above. Then χ(C) = χA(X).rg(R). But since χ(H∗(C)) = χ(C) and χA(X).χ(A) = χ(X)
we obtain

χ(H∗(C)).χ(A) = χ(X).rg(R).

Hence for fixed X and A with χ(A) 6= 0, χ(H∗(C)) is uniquely determined although
H∗(C) is not a topological invariant.

On the other hand, if A is fixed and we know H∗(C), not every CW(A)-complex X is

possible, since if rg(R) 6= 0 then χ(X) =
χ(H∗(C)).χ(A)

rg(R)
.

In a similar way, we consider now another case. Let A be finite CW-complex with finite
homology groups and let X be a finite CW(A)-complex. We have proved that χm(X) =
χm(A)χA(X). By 6.2.2 and 6.1.10 we obtain that the groups πAn (ΣnA) are finite for all
n ≥ 2. Hence R ' πA,st0 (A) is a finite group. Then, (#R)χA(X) = χm(C) = χm(H∗(C)).

8.2 Obstruction cocycle

Let f : Xn−1 → Y be a continuous map. If n ≥ 2, the abelian group πAn (Y ) has a
right πAn (ΣnA)-module structure defined by [α][g] = [α ◦ g] for α ∈ πAn (ΣnA), g ∈ πAn (Y ).
This structure induces a right R-module structure in πAn (Y ). We call Cn(X,πAn−1(Y )) =
HomR(Cn, πAn−1(Y )) and define c(f) ∈ Cn(X,πAn−1(Y )) by c(f)(enα) = [f ◦ gα] and extend
it linearly.

Note also that there is a bijection HomR(Cn, πAn−1(Y ))↔ HomSets(A-n-cells, πAn−1(Y )).
It is clear that c(f) = 0 if and only if f can be extended to Xn.

Theorem 8.2.1. c(f) is a cocycle.
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Proof. Recall the following commutative diagrams from earlier (pages 169 and 170), where
we have relabeled some of the arrows.

Xn/Xn−1
(ψXn )−1

//

∂n

44
Xn ∪

Xn−1
CXn−1 nqX1 // ΣXn−1

ΣqXn−1 // Σ(Xn−1/Xn−2)

Cn
d // Cn−1

πAn (Xn/Xn−1) d //

(∂n)∗ ))SSSSSSSSSSSSSS

φn '

OO

πAn−1(Xn−1/Xn−2)

φn−1'

OO

πAn (Σ(Xn−1/Xn−2))
Σ−1

55jjjjjjjjjjjjjjj

CΣn−1A/Σn−1A

qfα

��

CΣn−1A ∪
Σn−1

CΣn−1AψAnoo nqA1 //

fα∪Cgα
��

Σ(Σn−1A)

Σgα

��
Xn/Xn−1 Xn ∪

Xn−1
CXn−1

ψXn

oo
nqX1

// ΣXn−1

Xn ∪
Xn−1

CXn−1 nqX1 //

ψXn
��

ΣXn−1
Σin−1 //

ΣqXn−1

��

Σ(Xn−1 ∪
Xn−2

CXn−2) Σ(n−1qX1 )
//

ΣψXn−1

��

Σ2Xn−2

Σ2qXn−2

��
Xn/Xn−1

∂n
// Σ(Xn−1/Xn−2)

Id
// Σ(Xn−1/Xn−2)

Σ∂n−1

// Σ2(Xn−2/Xn−3)

Since the composition Σ(n−1q
X
1 ) ◦ Σin−1 is the constant map and ψXn is a homotopy

equivalence we get that Σ(n−1q
X
1 )Σ(ψXn−1)−1∂n ' ∗.

It easy to see that the isomorphism πAn (
∨
Jn

ΣnA) ' πAn (Xn/Xn−1) is an isomorphism
of πAn (ΣnA)-modules since the distributive properties hold by a similar argument to that
in page 168. Hence it is also an isomorphism of R-modules.

We will prove now that the isomorphisms φn are morphisms of R-modules for n ≥ 2. It
suffices to prove that φn : πAn (

∨
Jn

ΣnA)→
⊕
Jn

πAn (ΣnA) is a morphism of πAn (ΣnA)-modules.

But (φn)−1 =
⊕
α∈Jn

(iα)∗ is easily seen to be a morphism of πAn (ΣnA)-modules as for

[g] ∈ πAn (ΣnA) and {fα}α∈Jn ∈
⊕
Jn

πAn (ΣnA) we have that

⊕
α∈Jn

(iα)∗([g].{fα}α∈Jn) =
⊕
α∈Jn

(iα)∗({fα ◦ g}α∈Jn) =
∑
α∈Jn

[iαfαg] =
∑
α∈Jn

[g][iαfα] =

= [g]
∑
α∈Jn

[iαfα] = [g]
⊕
α∈Jn

(iα)∗({fα}α∈Jn).

Hence (φn) is an isomorphism of R-modules for n ≥ 2.
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Now,

∂nqfα = (∂n)∗(φ−1
n (enα)) = Σ(d(φ−1

n (enα))) = Σ(φ−1
n (denα)) =

= Σ(φ−1
n (

∑
β∈Jn−1

[qβgα]en−1
β )) = Σ(

∑
β∈Jn−1

[qβgα]iβ) = Σ(
∑

β∈Jn−1

[iβqβgα])

Thus, ∂nqfα = Σ(
∑

β∈Jn−1

[iβqβgα]).

Since we have proved that Σ(n−1q
X
1 )Σ(ψXn−1)−1∂n ' ∗, we get

∗ ' Σ(n−1q
X
1 )Σ(ψXn−1)−1∂nqfα = Σ(n−1q

X
1 (ψXn−1)−1(

∑
β∈Jn−1

[iβqβgα])) =

= Σ(
∑

β∈Jn−1

[n−1q
X
1 (ψXn−1)−1iβqβgα])) = Σ(

∑
β∈Jn−1

[n−1q
X
1 (ψXn−1)−1qfαqβgα])) =

= Σ(
∑

β∈Jn−1

[Σgα(nqA1 )(ψAn−1)−1qβgα])) = Σ(
∑

β∈Jn−1

[Σgαqβgα])

because (nqA1 )(ψAn−1)−1 ' Id. But Σ is an isomorphism, hence
∑

β∈Jn−1

[Σgαqβgα] = 0. Then

d∗(c(f))(en+2
β ) = c(f)(den+2

β ) = c(f)(
∑

α∈Jn+1

[qαgβ]en+1
α ) =

∑
α∈Jn+1

[qαgβ][fgα] =

=
∑

α∈Jn+1

[Σgαqαgβ][f ] = 0.

Hence c(f) is a cocycle.

8.3 Difference cochain

Definition 8.3.1. Let A be a CW-complex and let X be a CW(A)-complex. Let f, g :
Xn → Y be continuous maps such that f |Xn−1 ' g|Xn−1 and let H : IXn−1 → Y be a
homotopy between f |Xn−1 and g|Xn−1 . We define the difference cochain of f and g with
respect to H as the cochain d(f,H, g) ∈ HomR(Cn, πAn (Y )) defined by

d(f,H, g)(enα) = [(f ◦ fα) ∪ (H ◦ Igα) ∪ (g ◦ fα)]

with

(f ◦ fα) ∪ (H ◦ Igα) ∪ (g ◦ fα) : CΣn−1A ∪
Σn−1A

I(Σn−1A) ∪
Σn−1A

CΣn−1A = ΣnA→ Y

where gα the attaching map of the cell enα and fα is its characteristic map.

In the particular case that f |Xn−1 = g|Xn−1 and that H is stationary we will write
d(f,H, g) = d(f, g).

Remark 8.3.2. If A = ΣA′ with A′ a CW-complex and let X, f , g and H be as above. By
3.1.24 we know that IX is a CW(A)-complex if X is. Moreover, the CW(A)-complex struc-
ture of IX is induced by that of X as in the standard case. It follows that d(f,H, g)(enα) =
c(H)(Ienα).
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Remark 8.3.3. If f |Xn−1 = g|Xn−1 then d(f, g)(enα) = [(f ◦ fα) ∪ (g ◦ fα)] with

(f ◦ fα) ∪ (g ◦ fα) : CΣn−1A ∪
Σn−1A

CΣn−1A = ΣnA→ Y.

Theorem 8.3.4. Let A = ΣA′ with A′ a CW-complex and let δ = d∗. Let f, g be as above.
Then δ(d(f,H, g)) = c(f)− c(g).

Proof. By the remark above δ(d(f,H, g))(enα) = d(f,H, g)(denα) = c(H)(I(denα)), where
I(denα) =

∑
β∈Jn−1

aβIe
n−1
β if d(enα) =

∑
β∈Jn−1

aβe
n−1
β .

On the other hand, by theorem 8.2.1, c(H) is a cocycle. Hence,

0 = δ(c(H))(Ienα) = c(H)(d(Ienα)) = c(H)(enα × {1} − I(denα)− enα × {0}) =
= c(H)(enα × {1})− c(H)(I(denα))− c(H)(enα × {0})

But clearly c(H)(enα × {0}) = c(f)(enα) and c(H)(enα × {1}) = c(g)(enα) and the result
follows.

Theorem 8.3.5. Let A, X and f be as above and let d ∈ HomR(Cn, πAn (Y )). Then there
exists a continuous map g : Xn → Y such that g|Xn−1 = f |Xn−1 and d(f, g) = d.

Proof. We will define g in each A-n-cell of X extending f |Xn−1 . For each A-n-cell enα, let
gα be its attaching map and fα its characteristic map. Let γ = d(enα) ∈ πAn (Y ) and let
H : CΣn−1A× I → Y be a homotopy from γ|CΣn−1A to f ◦ fα.

Let j1, j2 : CΣn−1A → ΣnA be the inclusion maps defined by the following pushout
diagram

Σn−1A
inc //

inc
��

push

CΣn−1A

j1
��

CΣn−1A j2
// ΣnA

Note that j1 and j2 are analogous to the inclusions of the northern and southern hemi-
spheres in the sphere.

We consider the following commutative diagram of solid arrows

CΣn−1A
i0 //

j1

��

I(CΣn−1A)

Ij1
��

H

��

ΣnA
i0 //

γ
33

I(ΣnA)
H

%%
Y

Since j1 is a cofibration, the dotted arrow H exists. We extend g to enα in the following
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way

Σn−1A
gα //

inc
��

push

Xn−1

�� g|Xn−1=f |Xn−1

��

CΣn−1A fα
//

Hi1j2
22

Xn

g

""
Y

Note that Hi1j2inc = Hi1j1inc = HIj1i1inc = Hi1inc = ffαinc = fgα. Hence, the
extension exists.

Finally, H is a homotopy from γ to (f ◦ fα) ∪ (g ◦ fα). Thus, d(f, g)(enα) = [(f ◦ fα) ∪
(g ◦ fα)] = [γ] = d(enα).

Theorem 8.3.6. Let X be a CW(A)-complex and let f : Xn → Y be a continuous map.
Then there exists a continuous map g : Xn+1 → Y such that g|Xn−1 = f |Xn−1 if and only
if c(f) is a coboundary.

Proof. If such a map g exists then δ(d(f, g)) = c(f)− c(g) but since g : Xn → Y may be
extended to Xn+1 then c(g) = 0. Hence c(f) is a coboundary.

Conversely, if c(f) = δd we take g : Xn → Y such that g|Xn−1 = f |Xn−1 and d(f, g) = d.
Then c(f) = δd = δd(f, g) = c(f) − c(g). Hence c(g) = 0 and g can be extended to
Xn+1.

Theorem 8.3.7. Let A be the suspension of a CW-complex and let X be a CW(A)-
complex. Let f, g : Xn → Y be continuous maps. Then

(a) f ' g rel Xn−1 if and only if d(f, g) = 0.

(b) f ' g rel Xn−2 if and only if d(f, g) = 0 in Hn(C∗, δ).

Proof.
(a) We define H : IXn−1 ∪ (Xn × {0, 1})→ Y by

H(x, t) =
{
f(x) if t = 0 or x ∈ Xn−1

g(x) if t = 1

It is clear that f ' g rel Xn−1 if and only if H can be extended to IXn, which is equivalent
to c(H) = 0. By remark 8.3.2 this holds if and only if d(f, g) = 0.

(b) Define H as above. By (a relative version of) the previous theorem the map
H|IXn−2∪(Xn×{0,1}) can be extended to IXn if and only if c(H) is a coboundary, or equiv-
alently, if and only if d(f, g) = 0 in Hn(C∗, δ).

8.4 Stable A-homotopy

Theorem 8.4.1. Let A be a CW-complex. Then πA,st∗ (–) defines a reduced homology
theory on the category of CW(A)-complexes.

Moreover, πA,st∗ (–) satisfies the wedge axiom if A is compact.
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Proof. The graded functor πA,st∗ (–) is clearly homotopy invariant and the suspension axiom
holds trivially. The exact sequence axiom follows from 4.1.18.

Suppose now that A is compact. Let J be an index set and let Xα, α ∈ J be CW(A)-
complexes. We wish to prove that πA,stn (

∨
α∈J

Xα) =
⊕
α∈J

πA,stn (Xα).

Firstly, we prove the case #J = 2. From 4.1.12 we deduce that for fixed r ≥ 2
πAr+n(ΣnX ∨ΣnY ) = πAr+n(ΣnX)⊕πAr+n(ΣnY ) for n ≥ r+dim(A). Hence, taking colimits
we get πA,str (X ∨ Y ) = πA,str (X)⊕ πA,str (Y ).

If J is a finite set, the result follows from the case #J = 2 using an inductive argument.
For the general case, note that if K ⊆

∨
α∈J

Xα is a compact set there exists a finite

subset J ′ ⊆ J such that K ⊆
∨
α∈J ′

Xα. Here we are using that Xα is a T1 space for all

α ∈ J . The result follows by a similar argument as the one used in the proof of 4.1.14.

Remark 8.4.2. Let X be a CW(A)-complex and let B ⊆ X be an A-subcomplex. There
are long exact sequences

. . . // πA,stn (B) // πA,stn (X) // πA,stn (X/B) // πA,stn−1(B) // . . .

where the index n runs through the integers.

Thus, if A is a finite CW-complex and X is a CW(A)-complex there is a commutative
diagram

...

��

...

��
. . . // πA,stn+1(Xp

A) //

��

πA,stn+1(Xp
A/X

p−1
A ) // πA,stn (Xp−1

A ) //

��

. . .

. . . // πA,stn+1(Xp+1
A ) //

��

πA,stn+1(Xp+1
A /Xp

A) // πA,stn (Xp
A) //

��

. . .

. . . // πA,stn+1(Xp+2
A ) //

��

πA,stn+1(Xp+2
A /Xp+1

A ) // πA,stn (Xp+1
A ) //

��

. . .

...
...

where Xp
A = ∗ for p < 0. So, πA,stn (Xp

A) = 0 for p < 0.
On the other hand, πAn (Xp

A) = πAn (X) for p ≥ dim(A) + n + 1. Hence πA,stn (Xp
A) =

πA,stn (X) for p ≥ dim(A) + n+ 1.
Then there is an spectral sequence {Eap,q} with E1

p,q = πA,stp+q (Xp/Xp−1) which converges
to πA,stn (X). Note that, by the wedge axiom, we get

E1
p,q = πA,stp+q (Xp/Xp−1) = πA,stp+q (

∨
A-p-cells

ΣpA) =
⊕

A-p-cells

πA,stp+q (ΣpA) =
⊕

A-p-cells

πA,stq (A).

So, we have proved the following theorem
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Theorem 8.4.3. Let A be a finite CW-complex and let X be a CW(A)-complex. Then
there exists a spectral sequence {Eap,q} with E1

p,q =
⊕

A−p−cells

πA,stq (A) which converges to

πA,st∗ (X).

Note also that (for n ≥ 1) the map πAn (X)→ colim
j

πAn+j(Σ
jX) = πA,stn (X) is a kind of

Hurewicz morphism. Also, by theorem 11 of [19] p. 458 we get that if X is m-connected
and n+ dim(A) ≤ 2m then the previous map is an isomorphism.



Appendix A

Universal coefficient theorems and
Künneth formula

In this appendix we recall some useful formulas for computation of homology and coho-
mology groups: the universal coefficient theorems and the Künneth formula. The first
ones relate homology and cohomology groups with coefficients with homology groups with
integral coefficients. The latter helps to compute the homology groups of the product of
spaces from the homology groups of each one.

We begin by recalling some basic facts about Tor and Ext functors.

Proposition A.1. Let G, H and Gi, i ∈ I, be abelian groups.

(a) Tor(G,H) ' Tor(H,G).

(b) Tor(
⊕
i∈I

Gi, H) '
⊕
i∈I

Tor(Gi, H).

(c) Tor(G,H) = 0 if G or H is torsionfree.

(d) If T (G) is the torsion subgroup of G then Tor(G,H) ' Tor(T (G), H).

(e) If n ∈ N and µn : G→ G is defined by µn(g) = ng, then Tor(Zn, G) ' ker(µg).

(f) If 0→ A→ B → C → 0 is a short exact sequence, then there is an exact sequence

0 // Tor(G,A) // Tor(G,B) // Tor(G,C) // G⊗A // G⊗B // G⊗ C // 0

Proposition A.2. Let G, H and H ′ be abelian groups. Then

(a) Ext(H ⊕H ′, G) ' Ext(H,G)⊕ Ext(H ′, G).

(b) Ext(H,G) = 0 if H is free.

(c) Ext(Zn, G) ' G/nG.
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Theorem A.3 (Universal coefficient theorem for homology). Let (C∗, d∗) be a chain com-
plex of free abelian groups and let G be an abelian group. Then for each n ∈ N there are
natural short exact sequences

0 // Hn(C)⊗G // Hn(C;G) // Tor(Hn−1(C), G) // 0

Moreover, these exact sequences split (but not naturally).

Corollary A.4. Let X be a topological space and let A ⊆ X be a subspace. Then

(a) There exist natural short exact sequences

0 // Hn(X; Z)⊗G // Hn(X;G) // Tor(Hn−1(X; Z), G) // 0

for all n ∈ N, and these exact sequences split, but not naturally.

(b) There exist natural short exact sequences

0 // Hn(X,A; Z)⊗G // Hn(X,A;G) // Tor(Hn−1(X,A; Z), G) // 0

for all n ∈ N, and these exact sequences split, but not naturally.

Corollary A.5. Let X be a topological space and let n ∈ N.

(a) Hn(X; Q) ' Hn(X; Z)⊗Q.

(b) If Hn(X; Z) and Hn−1(X; Z) are finitely generated and p is a prime number then
Hn(X; Zp) consists of

• a Zp summand for each Z summand of Hn(X; Z).

• a Zp summand for each Zpk summand of Hn(X; Z) with k ≥ 1.

• a Zp summand for each Zpk summand of Hn−1(X; Z) with k ≥ 1.

Corollary A.6. (a) Let X be a topological space. Then H̃n(X; Z) = 0 for all n ≥ 0 if
and only if H̃n(X; Q) = 0 for all n ≥ 0 and H̃n(X; Zp) = 0 for all n ≥ 0 and for all
prime numbers p.

(b) A continuous map f : X → Y induces isomorphisms on integral homology groups if
and only if it induces isomorphisms on homology groups with Q and Zp coefficients
for all prime numbers p.

Theorem A.7 (Universal coefficient theorem for cohomology). Let (C∗, d∗) be a chain
complex of free abelian groups and let G be an abelian group. Then for each n ∈ N there
are split exact sequences

0 // Ext(Hn−1(C), G) // Hn(C;G) // Hom(Hn(C), G) // 0

Corollary A.8. Let X be a topological space and let G be an abelian group. Then for
each n ∈ N there are split exact sequences

0 // Ext(Hn−1(X; Z), G) // Hn(X;G) // Hom(Hn(X; Z), G) // 0
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Corollary A.9. Let (C∗, d∗) be a chain complex of free abelian groups and let G be an
abelian group. For n ∈ N let Tn be the torsion subgroup of Hn(C) and let k ∈ N. If Hk(C)
and Hk−1(C) are finitely generated then Hn(C; Z) ' (Hn(C)/Tn)⊕ Tn−1.

Corollary A.10. Let G be an abelian group and let f : X → Y be a continuous map such
that f induces isomorphisms in homology groups. Then f∗ : Hn(X;G)→ Hn(Y ;G) is an
isomorphism for all n ≥ 0.

We give now the topological Künneth formula which derives directly from its algebraic
version. However, we will not develop this one here.

Theorem A.11 (Topological Künneth formula). Let X and Y be CW-complexes and let
R be a principal ideal domain. Then, there are natural short exact sequences

0 //
⊕

0≤i≤n

(Hi(X)⊗
R
Hn−i(Y )) // Hn(X × Y ) //

⊕
0≤i≤n−1

TorR(Hi(X), Hn−1−i(Y )) // 0

for all n ∈ N, where homology means homology with coefficients in R. Moreover, these
short exact sequences split (but not naturally).

There exists also a relative version of this formula which can be found in [8]. From this
relative version we can deduce the reduced Künneth formula:

Theorem A.12 (Reduced Künneth formula). Let X and Y be CW-complexes with base
points x0 and y0 respectively and let R be a principal ideal domain. Then, there are natural
short exact sequences

0 //
⊕

0≤i≤n

(H̃i(X)⊗
R
H̃n−i(Y )) // H̃n(X ∧ Y ) //

⊕
0≤i≤n−1

TorR(H̃i(X), H̃n−1−i(Y )) // 0

for all n ∈ N, where (reduced) homology means (reduced) homology with coefficients in
R and where X ∧ Y denotes the smash product of X and Y , i.e. X ∧ Y = X × Y/(X ×
{y0} ∪ {x0} × Y ). Moreover, these short exact sequences split (but not naturally).

In particular, if Y = Sr, we obtain isomorphisms H̃n(X) ' H̃n+r(ΣrX).
Also, if Y is a Moore space we obtain the following corollary.

Corollary A.13. Let G be an abelian group, let r ∈ N and let Y be a Moore space of
type (G, r). Let X be a CW-complex and let n ∈ N. Then there are natural isomorphisms
H̃n(X;G) ' H̃n+r(X ∧ Y ; Z).
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