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DisTINTOS TIPOS DE ESTRUCTURAS CELULARES EN ESPACIOS
TOPOLOGICOS

Resumen

Introducimos y desarrollamos la teoria de CW(A)-complejos, que son espacios que se
construyen pegando celdas que se obtienen tomando conos de suspensiones iteradas de un
espacio base A. Estos espacios generalizan a los CW-complejos y nuestras construcciones,
aplicaciones y resultados mantienen la intuiciéon geométrica y la estructura combinatoria de
la teoria original de J.H.C. Whitehead. Investigamos a fondo las propiedades topologicas
y homotépicas de CW(A)-complejos, su localizacion y los cambios de espacios base.

Como primeras aplicaciones, obtenemos generalizaciones de los teoremas homotdpicos
clasicos de CW-complejos y del teorema fundamental de Whitehead.

También desarrollamos la teoria de homologia de los CW(A)-complejos, generalizando
la teoria de homologia celular clasica. En el caso de que la homologia del espacio base
A esté concentrada en cierto grado, definimos un complejo de cadenas A-celular que nos
permite calcular los grupos de homologia singular de un CW(A)-complejo X a partir de
la homologia de A y de la estructura A-celular de X. En el caso general, obtenemos una
sucesion espectral construida a partir de los grupos de homologia de A y de la estructura A-
celular de X que converge a la homologia de X. Ademads, utilizamos sucesiones espectrales
y una pequenia modificacion de las clases de Serre, para obtener informacién de los grupos
de homotopia de los CW(A)-complejos a partir de los grupos de homologia y homotopia
de A y la estructura A-celular de dichos espacios.

Como una variante de la homologia clasica, dado un CW-complejo A, definimos en
esta tesis una teoria de homologia llamada A-homologia, que coincide con la homologia
singular en el caso A = S°. Esta teorfa de homologia estd inspirada en el teorema de Dold-
Thom. Obtenemos de esta forma generalizaciones de resultados clasicos como el teorema
de Hurewicz, que relaciona los grupos de A-homologia con los grupos de A-homotopia.

Hacia el final de la tesis, damos dos teoremas de clasificacién homotépica para CW(A)-
complejos, estudiamos aproximacién de espacios por CW(A)-complejos y comenzamos el
desarrollo de la teoria de obstruccion para estos espacios.

Palabras clave: Estructuras celulares, CW-complejos, sucesiones espectrales, teorias de
homologia, grupos de homotopia, clases de Serre.



DIFFERENT TYPES OF CELLULAR STRUCTURES IN TOPOLOGICAL
SPACES

Abstract

We introduce and develop the theory of CW(A)-complexes, which are spaces built up
out of cells obtained by taking cones of iterated suspensions of a base space A. These
spaces generalize CW-complexes and our constructions, applications and results keep the
geometric intuition and the combinatorial structure of J.H.C. Whitehead’s original theory.
We delve deeply into the topological and homotopical properties of CW(A)-complexes,
their localizations and changes of the base spaces.

As first applications, we obtain generalizations of classical homotopical theorems for
CW-complexes and Whitehead’s fundamental theorem.

We also develop the homology theory of CW(A)-complexes, generalizing classical cellu-
lar homology theory. In case the homology of the base space A is concentrated in certain
degree, we define an A-cellular chain complex which allows us to compute singular homol-
ogy groups of a CW(A)-complex X out of the homology of A and the A-cellular structure
of X. In the general case, we obtain a spectral sequence constructed from the homology
groups of A and the A-cellular structure of X which converges to the homology of X.
Furthermore, we use spectral sequences and a slight modification of Serre classes to obtain
information about the homotopy groups of CW(A)-complexes out of the homology and
homotopy groups of A and the CW(A)-structure of those spaces.

As a variant of classical homology, given a CW-complex A, we define in this thesis
a homology theory, called A-homology, which coincides with singular homology in the
case A = S This homology theory is inspired by the Dold-Thom theorem. We obtain
generalizations of classical results such as Hurewicz’s theorem, relating A-homology groups
with A-homotopy groups.

Towards the end of the thesis, we give two homotopy classification theorems for CW(A)-
complexes, investigate approximation of spaces by CW (A)-complexes and start developing
the obstruction theory for these spaces.

Key words: Cell structures, CW-Complexes, spectral sequences, homology theories, ho-
motopy groups, Serre classes.



Agradecimientos

A Dios, por esta meta alcanzada, porque siempre me acompana, me guia y me ayuda.

A mi mam4, Aniela, que desde nifio tanto me incentivé a aprender, por su carifio, por
bancarme siempre y por estar cada vez que la necesité.

A Noelia, mi esposa, por su amor, comprension, por estar siempre conmigo y hacerme tan
feliz.

A Gabriel, por haber dirigido esta tesis y por todo lo que me ensend en estos anos.



A las dos mujeres mds importantes de mi vida:
mi mamd, Aniela,
y mi esposa, Noelia.



Contents

1 CW-complexes 22
1.1 Adjunction spaces . . . . . . . . .. e 22
1.2 Definition of CW-complexes . . . . . . . . .. .. ... 30

1.2.1  Constructive definition . . . . . . . . .. .. 0oL 30
1.2.2  Descriptive definition . . . . . . . . .. ..o Lo 33
1.2.3 Equivalence of the two definitions . . . . . . . ... ... ... .... 36
1.2.4  Subcomplexes and relative CW-complexes . . . . . . . .. ... ... 37
1.2.5 Product of cellular spaces . . . . . . ... ... ... ... ...... 38
1.3 Homology theory of CW-complexes . . . . . . .. ... ... ... ...... 39
1.3.1 Cellular homology . . . . . . ... .. ... ... ... 39
1.3.2 Moore spaces . . . . . . .o e e 42
1.4 Homotopy theory of CW-complexes . . . . . ... ... ... ........ 44
1.4.1 Basic properties . . . . . . . .. e 44
1.4.2  Cellular approximation . . . . . . . .. ... ... ... ... ..., 45
1.4.3 Whitehead’s theorem . . . . . . . .. ... . oo 47
1.4.4 CW-approximations . . . . . . . . . . ... .. ... ... 49
1.4.5 More homotopical properties . . . . .. . ... .. ... .. ..... 52
1.4.6 Eilenberg - MacLane spaces . . . . . . . . ... .. ... ..., 53
1.4.7 The Hurewicz theorem . . . . . . . . ... ... ... .. ....... 56
1.4.8 Homology decomposition . . . . ... ... ... oL, 58
2 Fibrations and spectral sequences 61
2.1 Fibrations . . . . . . . .. e 61
2.1.1 Postnikov towers . . . . . . ... Lo 65
2.2 Spectral sequences . . . . . . ... 68
2.2.1 Definition . . . . . .. L e 68
2.22 Exactcouples . . . . . .. 69
2.3 Serre spectral sequence . . . . . ... ... 73
2.4 Localization of CW-complexes. . . . . . . . . ... ... ... ... 87
2.5 Federer spectral sequence . . . . . . . .. .. ... 92

3 Definition of CW(A)-complexes and first results 97
3.1 The constructive approach . . . . . . .. . ... Lo 98
3.2 The descriptive approach . . . . . . ... Lo oo 113



3.3 Changing cores . . . . . . . . . 116
3.4 Localization . . . . . . .. .. e 119
4 Homotopy theory of CW(A)-complexes 122
4.1 A-connectedness and A-homotopy groups . . . . . . . ... ... ... ... 122
4.2 Whitehead’s theorem . . . . . . . . . ... oo 128
5 Homology of CW(A)-complexes 132
5.1 Easy computations . . . . . .. . ... L L 132
5.2  A-cellular chain complex . . . . . . . . ... ... o 134
5.3 A-Euler characteristic and multiplicative characteristic . . . . . . .. .. .. 141
6 Applications of spectral sequences to CW(A)-complexes 146
6.1 A-homology and A-homotopy . . . . . . . . . . . . ... ... 146
6.2 Homology and homotopy of CW(A)-complexes . . . . ... ... ... ... 149
6.3 Examples on real projective spaces . . . . . . . ... ... L. 152
7 CW(A)-approximations when A is a Moore space 155
7.1 First case: Aisa M(Zp,r) with p prime . . . . ... ... ... ... ..., 155
7.2 General case: Aisa M(Zy,T) - o o o o i oo 164
8 Obstruction theory 168
8.1 A new A-cellular chain complex . . . . . . . ... ... ... ... 168
8.2 Obstruction cocycle . . . . . .. .. L 173
8.3 Difference cochain . . . . . . ... o 175
8.4 Stable A-homotopy . . . . . . . ... 177

A TUniversal coefficient theorems and Kiinneth formula 180



Introduccion

Los CW-complejos son espacios que se construyen a partir de bloques simples o celdas. Los
discos son utilizados como modelos para las celdas y se adjuntan secuencialmente utilizando
funciones de adjuncion, que estan definidas en esferas, que son los bordes de los discos.
Desde su introduccién a finales de la década de los 40 por J.H.C. Whitehead [22], los CW-
complejos han jugado un rol esencial en geometria y topologia. Una de las razones de esta
importancia vital es el teorema de CW-aproximacién 1.4.18, que implica que en cuanto a
grupos de homotopia, homologia y cohomologia respecta, todo espacio es equivalente a un
CW-complejo. Ademads, la estructura combinatoria de estos espacios permite el desarrollo
de herramientas que simplifican considerablemente el célculo de grupos de homologia y
cohomologia (cf. p. 41) y también el célculo de grupos de homotopia (1.4.21). La teoria
de homotopia de CW-complejos es rica en resultados y su categoria homotdpica sirve de
modelo para otras categorias homotdpicas.

Las propiedades principales de los CW-complejos surgen de los siguientes dos hechos
basicos: El n-disco D™ es el cono topoldgico (reducido) de la (n — 1)-esfera S~ 1 y (2) la
n-esfera es la n-ésima suspensién (reducida) de la 0-esfera S°.

Por ejemplo, las propiedades de extension de homotopias de CW-complejos se siguen
de (1), porque la inclusién de la (n — 1)-esfera en el n-disco es una cofibracién cerrada.
El item (2) estd estrechamente relacionado con la definicién de los grupos de homotopia
clasicos y es usado para demostrar resultados como el teorema de Whitehead o el teorema
de escisién homotdpica y en la construccion de espacios de Eilenberg-MacLane. Estos dos
hechos bédsicos sugieren que uno puede reemplazar el nicleo original S° por otro espacio
cualquiera A y construir espacios a partir de celdas de diferentes formas o tipos utilizando
suspensiones y conos del espacio base A.

El propésito principal de esta tesis es introducir y desarrollar la teoria de esos espacios.
Definimos la nocién de CW-complejos de tipo A (o CW(A)-complejos, para abreviar)
generalizando la definicién de CW-complejos (los cuales constituyen un caso particular y
especial de CW(A)-complejos obtenido tomando A = S°).

Debemos mencionar que existen muchas generalizaciones de CW-complejos en la liter-
atura. Por ejemplo, la generalizacién de Baues de complejos en categorias de cofibraciones
[2] y la aproximacién categérica a complejos celulares de Minian [12]. La teoria de CW(A)-
complejos que desarrollamos en esta tesis esta también relacionada con trabajos de E. Dror
Farjoun [5] y W. Chachdlski [4]. Sin embargo, nuestro enfoque es muy diferente a ellos
y mantiene la intuicion geométrica y combinatoria de la teoria original de Whitehead.
Ademsds, nos da una vision mas profunda de la teoria cldsica de CW-complejos, como
veremos.



Al igual que en el caso clasico, damos una definicién constructiva y una descriptiva y
las comparamos, obteniendo los siguientes resultados

Proposicién 1. Sea A un espacio T1. Si X es un CW(A)-complejo constructivo, entonces
es un CW(A)-complejo descriptivo.

Proposicién 2. Sea A un espacio compacto y sea X un CW(A)-complejo descriptivo. Si
X es Hausdorff entonces es un CW(A)-complejo constructivo.

Ademas, damos contraejemplos si las hipotesis no se satisfacen.

En este contexto, también analizamos construcciones cldsicas, como conos, suspen-
siones, cilindros y productos smash y determinamos si estos funtores aplicados a CW(A)-
complejos dan como resultado CW(A)-complejos. Sorpresivamente, algunos de estos re-
sultados no son ciertos para todos los niicleos A y algunas hipdtesis son necesarias. Por
ejemplo, si el nicleo A es la suspension de un espacio localmente compacto y Hausdorff,
entonces el cilindro reducido de un CW(A)-complejo es también un CW (A)-complejo, pero
esto no vale para ntcleos arbitrarios A.

Mientras desarrollabamos esta teoria, nos encontramos naturalmente con espacios que
se construyen de una manera similar que los CW-complejos, pero en los cuales las celdas
no eran adjuntadas en orden de dimensién creciente. Es sabido que espacios de este
tipo pueden no ser CW-complejos aunque tiene el tipo homotépico de un CW-complejo.
Nosotros los llamamos CW-complejos generalizados e inmediatamente definimos la nocién
de CW(A)-complejos generalizados. Obtuvimos los siguientes resultados.

Proposicién 3. Si A es un CW-complejo y X es un CW(A)-complejo generalizado, en-
tonces X tiene el tipo homotopico de un CW-complejo.

Teorema 4. Sea A un CW(B )-complejo generalizado con B compacto y sea X un CW(A)-
complejo generalizado. Si A y B son T1 entonces X es un CW(B)-complejo generalizado.

Ademsds, damos un ejemplo de un CW(A)-complejo generalizado que no tiene el tipo
homotépico de un CW(A)-complejo (ver 5.2.9).

Otra pregunta que estudiamos es la siguiente. Supongamos que X es un CW(A)-
complejo, o en otras palabras, que X se puede construir con blogues de tipo A. Y su-
pongamos, ademds, que A es un CW(B)-complejo. Es natural preguntar si X se puede
construir con bloques de tipo B, es decir, si X es un CW(B)-complejo. En esta direccién
obtuvimos el siguiente resultado.

Teorema 5. Sean A y B espacios topoldgicos punteados. Sea X un CW(A)-complejo, y
sean a: A— B y [B: B — A funciones continuas.

i. Si pa = Idy, entonces existen un CW(B)-complejo Y y funciones continuas ¢ :
X =Y yy:Y — X tales que Yo = Idx.

1. Supongamos que A y B tienen puntos base cerrados. Si 3 es una equivalencia ho-

motdpica, entonces existe un CW(B)-complejo Y y una equivalencia homotdpica
p: X =Y.
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1. Supongamos que A y B tienen puntos base cerrados. Si fa = Idg y af ~ Ida
entonces eziste un CW(B)-complejo Y y funciones continuas ¢ : X —-Y y¢:Y —
X tales que Yo =Idx y ¢y ~1Idy.

Como corolario tenemos

Corolario 6. Sea A un espacio contrdactil (con punto base cerrado) y sea X un CW(A)-
complejo. Entonces X es contractil.

Finalizando con las propiedades topoldgicas de los CW(A)-complejos, analizamos la
localizacién en CW(A)-complejos. El resultado obtenido es el més bonito posible, ya que,
en cierta forma, para localizar un CW(A)-complejo uno puede simplemente localizar cada
celda.

Teorema 7. Sea A un CW-complejo simplemente conexo y sea X un CW(A)-complejo
abeliano. Sea P un conjunto de primos. Dada una P-localizacion A — Ap existe una P-
localizacion X — Xp con Xp un CW(Ap )-complejo. Ademds, la estructura de CW(Ap)-
complejo de Xp se obtiene localizando las funciones de adjuncion de la estructura de
CW(A)-complejo de X.

Luego, comenzamos a desarrollar la teoria de homotopia de CW(A)-complejos, obte-
niendo muchas generalizaciones de teoremas cldsicos (ver secciones 4.1 y 4.2). Uno de los
resultados mas notables es la generalizacién del teorema de Whitehead, que ya se sabia
valida en el enfoque de Dror Farjoun.

Teorema 8. Sean X, Y CW(A)-complejos y sea f : X — Y wuna funcién continua.
Entonces f es una equivalencia homotopica si y solo si es una A-equivalencia débil.

Después estudiamos la teorfa de homologia de CW(A)-complejos buscando una suerte
de complejo de cadenas celular que nos permitiera calcular los grupos de homologia singular
de estos espacios a partir de la homologia del nicleo A y de la estructura de CW(A)-
complejo del espacio, generalizando la homologia celular clasica. Notamos que un hecho
bastante significativo en el contexto clasico es que la homologia (reducida) de S° (con
coeficientes en 7Z) estd concentrada en un grado (grado cero) y es libre (como grupo
abeliano). Teniendo esto en mente, estudiamos dos casos: cuando la homologia reducida
de A estd concentrada en un cierto grado y cuando los grupos de homologia de A son
libres.

En el primer caso, dado un CW(A)-complejo X, pudimos construir un complejo de
cadenas A-celular, muy similar al cldsico, cuyos grupos de homologia coinciden con los
grupos de homologia singular de X. Dos propiedades notables de este complejo de cadenas
A-celular son que da una manera sencilla de calcular grupos de homologia singular de X y
que los diferenciales se describen explicitamente en términos de las funciones de adjuncion
de las celdas, en forma parecida a lo que ocurre en el caso cldsico.

En el segundo caso, también construimos un complejo de cadenas que permite el calculo
de los grupos de homologia singular de CW(A)-complejos finitos. Desafortunadamente,
los diferenciales no estan descriptos explicitamente.
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Damos también un ejemplo (5.2.8) que muestra que si la homologia del niicleo A no
esta concentrada en un grado ni es libre como grupo abeliano, entonces los grupos de
homologia de CW(A)-complejos no pueden calcularse mediante un complejo de cadenas
A-celular como antes. En este ejemplo tomamos el nicleo a como un cierto espacio cuya
homologia singular (reducida) es Z4 en grados 1 y 2 y el grupo trivial en otros grados y
construimos un CW(A)-complejo X tal que H3(X) tiene un elemento de orden 8. Entonces,
sus grupos de homologia no pueden calcularse mediante un complejo de cadenas A-celular,
porque este complejo de cadenas consiste de una suma directa de grupos ciclicos de orden
cuatro en cada grado.

Sin embargo, por medio de sucesiones espectrales pudimos estudiar también el caso
general y obtuvimos en siguiente resultado.

Teorema 9. Sea A un CW-complejo de dimension finita y sea X un CW(A)-complejo.

Entonces existe una sucesion espectral {E% .} con E} = @ Hy(A) que converge a
A—p—cells
H,.(X).

Ademads, damos una descripcién explicita de los diferenciales de la cara 1 de esta
sucesion espectral.

Aqui podemos pensar a las sucesiones espectrales como la generalizacién de los comple-
jos de cadena adecuada para CW(A)-complejos. Es interesante remarcar que en el caso en
que la homologia de A esta concentrada en un cierto grado, la sucesion espectral de arriba
tiene sélo una fila no nula, dando lugar al complejo de cadenas A-celular que mencionamos
antes.

Dentro de la teoria de homologia de CW(A)-complejos, también definimos la A-carac-
teristica de Euler y4 de CW(A)-complejos, que resulta ser un invariante homotépico si A
es un CW-complejo con x(A) # 0. Es facil demostrar que, para un CW(A)-complejo finito
X, x(X) = xa(X)x(A). También introducimos la caracteristica de Euler multiplicativa
Xm para CW(A)-complejos finitos con grupos de homologia finitos, que es una versién
multiplicativa de la caracteristica de Euler, y demostramos que si A es un CW-complejo
con homologfa finita y X es un CW(A)-complejo finito, entonces ym (X) = xum (A)X4A),

Pasando a un enfoque distinto para estudiar homologia, definimos una teoria de ho-
mologfa ‘con forma A’ por HA(X) = 74(SP(X)) donde SP(X) denota el producto
simétrico infinito de X. Un resultado interesante es la siguiente generalizacién del teorema
de Hurewicz

Teorema 10. Sea A un CW-complejo arcoconero de dimension k > 1 y sea X un espacio
topodgico n-conexo (con n > k). Entonces HA(X) =0 parar <n—k y 71'1‘?7]6+1(X) ~

H (X)),

Una de los capitulos mas importantes de esta tesis trata del estudio de grupos de
homologia, homotopia y A-homotopia de CW(A)-complejos a la luz de las clases de Serre
y de una generalizacion clasica del teorema de Hurewicz. Presentamos resultados variados
que dan informacién de los grupos de homotopia de un CW(A)-complejo mostrando que
depende fuertemente de los grupos de homotopia y homologia de A, como es de esperar.
Recordemos que una clase no vacia de grupos abelianos € se llama clase de Serre si para
toda sucesion exacta de tres términos A — B — C, si A,C € % entonces B € ¥. Una
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clase de Serre ¢ se llama anillo de grupos abelianos si A® By Tor(A, B) pertenecen a €
para todos A, B € €.

Un espacio topolégico X se llama € -aciclico si H,(X) € € para todon > 1. Si € es
una clase de Serre, decimos que € es aciclica si para todo G € €, los espacios de Eilenberg -
MacLane de tipo (G, 1) son -aciclicos. Finalmente, un anillo aciclico de grupos abelianos
es una clase de Serre aciclica que es también un anillo de grupos abelianos.

Ejemplos de anillos aciclicos de grupos abelianos son la clase de grupos abelianos finitos
y la clase de grupos abelianos de torsién. Otro ejemplo es la clase 7p de grupos abelianos
de torsion cuyos elementos tienen 6rdenes divisibles sélo por primos en un conjunto fijo P
de nimeros primos.

Obtuvimos los siguientes resultados.

Proposiciéon 11. Sea € una clase de Serre de grupos abelianos y sea A un CW-complejo
finito. Sea k € N y sea X un espacio topoldgico tal que m,(X) € € para todo n > k.
Entonces m2(X) € € para todo n > k.

Teorema 12. Sea € una clase de Serre de grupos abelianos. Sea A un CW-complejo
€ -aciclico y sea X un CW(A)-complejo generalizado finito. Entonces X es también
€ -aciclico. Si, ademds, X es simplemente-conexo y € es un anillo aciclico de grupos
abelianos, entonces mp(X) € € para todo n € N.

Corolario 13. Sea % un anillo aciclico de grupos abelianos. Sea A un CW-complejo finito
y sea X un CW(A)-complejo generalizado finito. Supongamos que A es € -aciclico y que
X es simplemente conexo. Entonces m/(X) € € para todo n € N.

Proponemos después una pequena modificacién de las clases de Serre y de los anillos
de grupos abelianos para eliminar la hipdtesis de finitud en los resultados previos e in-
troducimos la nocién de clase de Serre especial (6.2.5). Aunque este es un concepto mas
restrictivo, la clase de grupos abelianos de torsién y la clase 7p son clases de Serre espe-
ciales. Estas dan lugar a aplicaciones interesantes y concretas. Con este nuevo concepto
pudimos generalizar los resultados anteriores obteniendo la siguiente proposicion.

Proposicién 14. Sea €' una clase de Serre especial, sea A un CW-complejo €' -aciclico
y sea X un CW(A)-complejo generalizado. Entonces:

(a) X es €'-aciclico.

(b) Si, ademds, X es simplemente conexo y €' es un anillo aciclico de grupos abelianos,
entonces mp,(X) € €' para todo n € N.

(c) Si A es finito, X es simplemente conexo y €' es un anillo aciclico de grupos abelianos,
entonces 74(X) € €' para todo n € N.

n

Otra parte clave de esta tesis esta constituida por la clasificacién homotépica de CW(A)-
complejos y la CW(A)-aproximacion, estrechamente relacionadas entre si. El objetivo de
esta ultima es aproximar un espacio dado X por un CW(A)-complejo Z, donde una ‘apro-
ximacién’ en teoria de homotopia significa una equivalencia débil f: Z — X. Obtuvimos
el siguiente resultado:



13

Proposicién 15. Sea A un espacio de Moore de tipo (Zy,r) con p primo, y sea X un
espacio topoldgico simplemente conero. Entonces existen un CW(A)-complejo Z y una
equivalencia débil f : Z — X si y sdlo si Hi(X) = 0 para 1 < i < max{r — 1,1} y
H;(X) = @Z, para todo i > max{r,2}.

Ji

Y aplicando el teorema de Whitehead obtenemos un teorema de clasificacién homoto-
pica para CW(A)-complejos.

Teorema 16. Sea A un espacio de Moore de tipo (Zy,r) con p primo y sea X un espacio
topoldgico simplemente conexo que tiene el tipo homotdpico de un CW-complejo. Entonces
X tiene el tipo homotdpico de un CW(A)-complejo si y sdlo si Hi(X) =0 para 1 < i <
max{r — 1,1} y H;(X) = @Z, para todo i > max{r,2}.

Ji

También damos un teorema de clasificacién homotépica para CW(A)-complejos gene-
ralizados.

Teorema 17. Sea m € N y sea A un espacio de Moore de tipo (Zy,, 1), conr > 2. Sea X
un CW-complejo (r — 1)-conexo que satisface las siguientes condiciones

(a) H-(X) = @ij con mj|m para todo j € J
JeJ
(b) Para todo n > r+1, Hy(X) es un grupo abeliano finitamente generado tal que los
divisores primos de los ordenes de sus elementos también dividen a m.

Entonces X tiene el tipo homotdopico de un CW(A)-complejo generalizado.

Vale la pena mencionar que, por la proposiciéon 14 de antes, si un espacio topolégico
X tiene el tipo homotépico de un CW(A)-complejo generalizado, donde A es un espacio
de Moore de tipo (Z,,r), entonces X es (r — 1)-conexo y para todo n > r, Hy(X) es
un grupo abeliano de torsion tal que los divisores primos de los 6rdenes de sus elementos
también dividen a m. Asi, el teorema previo es una reciproca débil de este hecho.

En el ultimo capitulo de esta tesis, comenzamos a desarrollar la teoria de obstruccién
para CW(A)-complejos. Observamos que el complejo de cadenas A-celular no era satisfac-
torio para este propdsito. Entonces introdujimos un nuevo complejo de cadenas A-celular
adecuado para teoria de obstruccién. Su definicién se basa en los grupos de A-homotopia

estable que se definen por w,‘?’St(X) = colim Trfﬂ(ZjX).
J

Imponemos en A la restriccién de ser un CW-complejo I-conexo y compacto de di-
mensién k con k < 20 y I > 1. Esto es para que la funcién ¥ : [Z"A, Y7 A] = 1/H(A) —
[Entl A4, 5t Al = 72 | (A) sea biyectiva para n > 0 y entonces un isomorfismo de gru-
pos para n > 1. Notemos que la 0-esfera S° no cumple la hipétesis de ser por lo menos
l-conexa. Sin embargo, sabemos que en el caso A = S° también tenemos los isomorfismos
anteriores. Entonces, esta teorfa de obstruccién también funciona para A = S°, dando
lugar a la teoria de obstruccién clésica.

Tomamos R = 7r64 *'(X). Entonces R es isomorfo a 7/}(¥" A) para r > 2. Le damos a R
una estructura de anillo como sigue. La suma + estd inducida por la operacién usual de
grupo abeliano en 72 (X7 A) y el producto estd inducido por [f][g] = [g o f] en 72(X"A).
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Dado un CW(A)-complejo X, el nuevo complejo de cadenas A-celular se define como
sigue. C}, es el R-médulo libre generado por las A-n-celdas de X y el morfismo de borde
d: Cp, — Cp_1 se define de la siguiente manera. Sea e, una A-n-celda de X, sea g,
su funcién de adjuncién y sea J,_1 un conjunto que indexa las A-(n — 1)-celdas. Para

B € Jn-1,s€a qz: X" — XL/ (Xnl — eg_l) = Y"1 A la funcién cociente. Definimos

d(el) = Z [qgga}eg_l. Dada una funcién continua f : X" ! — Y, donde X es
IBGJnfl
un CW(A)-complejo, definimos el cociclo de obstruccién ¢(f) € Hompg(Cp, 74 | (Y)) que

satisface que ¢(f) = 0 si y s6lo si f se puede extender a X™. También, dado un CW(A)-
complejo X y funciones continuas f,g: X" — Y tales que f|xn-1 = g|xn-1 definimos la
cocadena diferencia de f y g d(f,g) € Homp(Ch, (Y)).

Finalmente, demostramos las siguientes generalizaciones de teoremas clasicos de teoria
de obstruccién.

Teorema 18. Sean A, X y f como antes y sea d € Homg(Cy,, 72(Y)). Entonces existe
una funcion continua g : X" —'Y tal que g|xn—1 = flxn—1 y d(f,g9) =d.

Teorema 19. Sea X un CW(A)-complejo y sea f : X™ — Y wuna funcion continua.
Entonces existe una funcion continua g : X"t — Y tal que g|xn-1 = f|xn-1 siy sdlo si
c(f) es un coborde.

Teorema 20. Sea A la suspension de un CW-complejo y sea X un CW(A)-complejo.
Sean f,g: X™ =Y funciones continuas. Entonces

(a) f=~g rel X" siy solo sid(f,g)=0.

(b) f=~grel X" 2 siysolosid(f,g) =0 en H*(C*,6).



Introduction

CW-complexes are spaces which are built up out of simple building blocks or cells. Balls are
used as models for the cells and these are attached step by step using attaching maps, which
are defined in the boundary spheres of the balls. Since their introduction in the late fourties
by J.H.C. Whitehead [22], CW-complexes have played an essential role in geometry and
topology. One of the reasons of this vital importance is the CW-approximation theorem
1.4.18, which implies that for the sake of homotopy, homology and cohomology groups,
every space is equivalent to a CW-complex. Moreover, the combinatorial structure of
these spaces allows the development of tools which considerably simplify the computation
of homology and cohomology groups (cf. p. 41) and also the computation of homotopy
groups (1.4.21). The homotopy theory of CW-complexes is pleasantly rich in results and
its homotopy category serves as a model for other homotopy categories.

The main properties of CW-complexes arise from the following two basic facts: (1) The
n-ball D™ is the topological (reduced) cone of the (n—1)-sphere S"~! and (2) The n-sphere
is the (reduced) n-th suspension of the O-sphere S°. For example, the homotopy extension
properties of CW-complexes follow from (1), since the inclusion of the (n — 1)-sphere in
the n-disk is a closed cofibration. Item (2) is closely related to the definition of classical
homotopy groups of spaces and it is used to prove results such as Whitehead’s theorem
or homotopy excision and in the construction of Eilenberg-MacLane spaces. These two
basic facts suggest that one might replace the original core S° by any other space A and
construct spaces from cells of different shapes or types using suspensions and cones of the
base space A.

The main purpose of this dissertation is to introduce and develop the theory of such
spaces. We define the notion of CW-complexes of type A (or CW(A)-spaces for short)
generalizing the definition of CW-complexes (which constitute the particular and special
case of CW(A)-complexes obtained by taking A = SY).

We ought to mention that there exist many generalizations of CW-complexes in the
literature. For instance, Baues’ generalization of complexes in cofibration categories [2] and
Minian’s categorical approach to cell complexes [12]. The theory of CW(A)-complexes that
we develop in this thesis is also related to works of E. Dror Farjoun [5] and W. Chachdlski
[4]. However, our approach is quite different from these and keeps the geometric and
combinatorial intuition of Whitehead’s original theory. Moreover, it gives us a deeper
insight in the classical theory of CW-complexes, as we shall see.

As in the classical case, we give a constructive and a descriptive definition and compare
them obtaining the following results

15
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Proposition 1. Let A be a T1 space. If X is a constructive CW(A)-complex, then it is
a descriptive CW(A)-complex.

Proposition 2. Let A be a compact space and let X be a descriptive CW(A)-complez. If
X is Hausdorff then it is a constructive CW(A)-complex.

Furthermore, we give counterexamples if the hypotheses are not satisfied.

In this context, we also analyse classical constructions such as cones, suspensions,
cylinders and smash products and determine whether those functors applied to CW(A)-
complexes give CW(A)-complexes as result. Quite surprisingly, some of these results are
not true for every core A and a couple of hypotheses are needed. For instance, if the core
A is the suspension of a locally compact and Hausdorff space, then the reduced cylinder
of a CW(A)-complex is also CW(A)-complex, but this does not hold for arbitrary cores
A.

While developing this theory, we naturally encounter spaces which were constructed
in a similar way as CW-complexes, but in which cells were not attached in a dimension-
increasing order. It is known that spaces of this kind may not be CW-complexes altough
they have the homotopy type of a CW-complex. We called them generalized CW-complezes
and promptly define the notion of generalized CW(A)-complexzes. The following results
were obtained.

Proposition 3. If A is a CW-complex and X is a generalized CW(A)-complez then X
has the homotopy type of a CW-complex.

Theorem 4. Let A be a generalized CW(B )-complex with B compact, and let X be a
generalized CW(A)-complex. If A and B are T1 then X is a generalized CW(B )-complex.

Furthermore, we give an example of a generalized CW(A)-complex which does not have
the homotopy type of a CW(A)-complex (see 5.2.9).

Another question that we studied is the following. Suppose X is a CW(A)-complex,
or in other words, X can be built with blocks of type A. And suppose in addition that A
is a CW(B)-complex. It seems natural to ask whether X can be built with blocks of type
B, that is whether X is a CW(B)-complex. In this direction we obtained the following
result.

Theorem 5. Let A and B be pointed topological spaces. Let X be a CW(A)-complez, and
leta: A— B and §: B — A be continuous maps.

i. If o = Ida, then there exists a CW(B)-complex Y and maps ¢ : X — Y and
Y — X such that Yp = Idx.

1. Suppose A and B have closed base points. If 3 is a homotopy equivalence, then there
exists a CW(B)-complex Y and a homotopy equivalence ¢ : X — Y.

1i. Suppose A and B have closed base points. If Ba = Ida and af ~ Ids then there
exists a CW(B)-complex Y and maps ¢ : X — Y and ¢ : Y — X such that

Y =Idx and py ~ 1dy.

As a corollary we have
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Corollary 6. Let A be a contractible space (with closed base point) and let X be a CW(A)-
complex. Then X is contractible.

Finishing with the topological properties of CW(A)-complexes, we analysed localization
in CW(A)-complexes. The result obtained is the nicest possible since, to a certain extent,
to localize a CW(A)-complex one may simply localize each cell.

Theorem 7. Let A be a simply-connected CW-complex and let X be an abelian CW(A)-
complex. Let P be a set of prime numbers. Given a P-localization A — Ap there exists
a P-localization X — Xp with Xp a CW(Ap )-complex. Moreover, the CW(Ap )-complex
structure of Xp is obtained by localizing the adjunction maps of the CW(A)-complex struc-
ture of X.

Afterwards, we started developing the homotopy theory of CW(A)-complexes, obtain-
ing many generalizations of classical theorems (see sections 4.1 and 4.2). One of the most
remarkable results is the generalization of Whitehead’s theorem, which was already known
to be valid in Dror Farjoun’s approach.

Theorem 8. Let X andY be CW(A)-complezes and let f : X — Y be a continuous map.
Then f is a homotopy equivalence if and only if it is an A-weak equivalence.

Then, we studied homology theory of CW(A)-complexes looking for a kind of cellular
chain complex which would allow us to compute the singular homology groups of these
spaces out of the homology of the core A and the CW(A)-structure of the space, gener-
alizing classical cellular homology. We noted that a quite significant fact in the classical
setting was that the (reduced) homology of S° (with coefficients in Z) is concentrated
in one degree (degree zero) and is free (as an abelian group). Keeping this in mind, we
studied two cases: when the reduced homology of A is concentrated in a certain degree
and when the homology groups of A are free.

In the first case, given a CW(A)-complex X, we were able to construct an A-cellular
chain complex, very similar to the classical one, whose homology groups coincide with
the singular homology groups of X. Two remarkable properties of this A-cellular chain
complex are that it gives an easy way to compute singular homology groups of X and
that the differentials are described explicitly in terms of attaching map of cells, much as
it occurs in the classical case.

In the second case, we also constructed a chain complex which permits computation of
singular homology groups of finite CW(A)-complexes. Unfortunately, the differentials are
not explicitly described.

We also give an example (5.2.8) which shows that if the homology of the core A is
neither concentrated in one degree nor free as an abelian group, then the homology groups
of CW(A)-complexes cannot be computed by an A-cellular chain complex as above. In this
example, we take the core A to be a certain space whose (reduced) singular homology is
Z4 in degrees 1 and 2 and the trivial group otherwise and we construct a CW(A)-complex
X such that H3(X) has an element of order 8. Thus, its homology groups cannot be
computed by an A-cellular chain complex, since this chain complex consists of a direct
sum of cyclic groups of order four in each degree.
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However, by means of spectral sequences, we could also study the general case and
obtain the following result.

Theorem 9. Let A be a finite dimensional CW-complex and let X be a CW(A)-complex.

Then there exists a spectral sequence {E},} with E} . = . Ly, ; H,(A) which converges
—p—cells

to H.(X).

Moreover, we give a explicit description of the differentials of the first page of this
spectral sequence.

Here, we may think of spectral sequences as the generalization of chain complexes
suitable for CW(A)-complexes. It is interesting to remark that in case the homology of
A is concentrated in a certain degree, the spectral sequence above has only one nontrivial
row, giving rise to the A-cellular chain complex that we mentioned before.

Regarding homology theory of CW(A)-complexes, we also define the A-Euler charac-
teristic x4 of CW(A)-complexes, which turns out to be a homotopy invariant if A is a
CW-complex with x(A) # 0. It is easy to prove that, for a finite CW(A)-complex X,
X(X) = xa(X)x(A). We also introduce the multiplicative Euler characteristic X, for
finite CW(A)-complexes with finite homology groups, which is a multiplicative version of
the Euler characteristic, and we prove that if A is a CW-complex with finite homology
and X is a finite CW(A)-complex, then Xy, (X) = xm (A)X4X),

Turning to a different approach towards homology, we define an ‘A-shaped’ homology
theory by HA(X) = m}(SP(X)) where SP(X) denotes the infinite symmetric product of
X. An interesting result is the following generalization of Hurewicz’s theorem

Theorem 10. Let A be a path-connected CW-complex of dimension k > 1 and let X
be an n-connected topological space (with n > k). Then HA(X) = 0 for r < n —k and
Wﬁ—k—i—l(X) = Hﬁ—kH(X)-

One of the most important chapters of the thesis deals with the study of homology,
homotopy and A-homotopy groups of CW(A)-complexes in the light of Serre classes and a
classical generalization of Hurewicz’s theorem. We present a variety of results which give
information about the homotopy groups of a CW(A)-complex showing that it depends
strongly on the homology and homotopy groups of A, as one would expect. Recall that
a nonempty class of abelian groups ¥ is called a Serre class if for any three term exact
sequence A — B — C, if A,C € ¥ then B € ¥. A Serre class % is called an ring of
abelian groups if A ® B and Tor(A, B) belong to ¢ whenever A, B € €.

A topological space X is called €-acyclic if Hy,(X) € € for all n > 1. If € is a Serre
class, we say that ¢ is acyclic if for all G € €, Eilenberg - MacLane spaces of type (G, 1)
are ¢-acyclic. Finally, an acyclic ring of abelian groups is an acyclic Serre class which is
also a ring of abelian groups.

Examples of acyclic rings of abelian groups are the class of finite abelian groups and the
class of torsion abelian groups. Another example is the class 7p of torsion abelian groups
whose elements have order divisible only by primes in a fixed set P of prime numbers.

We obtained the following results.

Proposition 11. Let € be a Serre class of abelian groups and let A be a finite CW-
complex. Let k € N and let X be a topological space such that m,(X) € € for all n > k.
Then w{(X) € € for all n > k.
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Theorem 12. Let € be a Serre class of abelian groups. Let A be a €-acyclic CW-
complex and let X be a finite generalized CW(A)-complex. Then X is also €-acyclic.

If, in addition, X is simply-connected and € is an acyclic ring of abelian groups, then
mn(X) € € for alln € N.

Corollary 13. Let € be an acyclic ring of abelian groups. Let A be a finite CW-complex
and let X be a finite generalized CW(A)-complex. Suppose that A is € -acyclic and that
X is simply connected. Then w/{(X) € € for all n € N.

We then propose a slight modification of Serre classes and rings of abelian groups to
get rid of the finiteness hypothesis in the previous results and introduce the notion of
special Serre class (6.2.5). Although this is a more restrictive concept, the class of torsion
abelian groups and the class 7p are special Serre classes. These yield interesting and
concrete applications. With this new concept we were able to generalize the above results
obtaining the following proposition.

Proposition 14. Let ¢’ be a special Serre class, let A be a €' -acyclic CW-complex and
let X be a generalized CW(A)-complex. Then:

(a) X is €' -acyclic.

(b) If, in addition, X is simply connected and €' is an acyclic ring of abelian groups,
then mp(X) € €' for all n € N.

(c) If A is finite, X is simply connected and €' is an acyclic ring of abelian groups, then
7A(X) € €' for all n € N.

Another key part of this thesis is constituted by the homotopy classification of CW(A)-
complexes and the CW(A)-approximation, closely related to each other. The aim of the
last one is to approximate a given space X by a CW(A)-complex Z, where an ‘approx-
imation’ in homotopy theory means a weak equivalence f : Z — X. We obtained the
following nice result:

Proposition 15. Let A be a Moore space of type (Zyp,r) with p prime, and let X be a
simply-connected topological space. Then there exists a CW(A)-complex Z and a weak
equivalence f : Z — X if and only if Hi(X) =0 for 1 <i < max{r — 1,1} and H;(X) =
Dz, for all i > max{r,2}.

Ji

And applying Whitehead’s theorem we obtain a homotopy classification theorem for
CW(A)-complexes.

Theorem 16. Let A be a Moore space of type (Zy,r) with p prime, and let X be a simply-
connected topological space having the homotopy type of a CW-complex. Then X has the
homotopy type of a CW(A)-complex if and only if H;(X) =0 for 1 < i < max{r — 1,1}
and H;(X) = @Z, for all i > max{r,2}.

Ji

We also give a homotopy classification theorem for generalized CW(A)-complexes.
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Theorem 17. Let m € N and let A be a Moore space of type (Zm, 1), with r > 2. Let X
be an (r — 1)-connected CW-complez satisfying the following conditions

(a) H.(X) = @ij with mj|m for all j € J
JjeJ
(b) For alln>r+1, Hy(X) is a finite abelian group such that the prime divisors of the
orders of its elements also divide m.

Then X has the homotopy type of a generalized CW(A )-complex.

It is worth mentioning that, by proposition 14 above, if a topological space X has
the homotopy type of a generalized CW(A)-complex, where A is a Moore space of type
(Zn, ), then X is (r — 1)-connected and for all n > r, H,(X) is a torsion abelian group
such that the prime divisors of the orders of its elements also divide m. Thus, the previous
theorem is a weak converse to this statement.

In the last chapter of this thesis, we started developing the obstruction theory for
CW(A)-complexes. We found out that the A-cellular chain complex was not satisfactory
for this purpose. Thus we introduced a new A-cellular chain complex suitable for obstruc-
tion theory. Its definition relies on the stable A-homotopy groups which are defined by
(X)) = colim 7r7‘?+j(EjX).

We imposej on A the restriction to be an I[-connected and compact CW-complex of
dimension k& with & < 20 and [ > 1. This is for the map ¥ : [E"4,X"A] = 714(A) —
(LA, 4] = 7T;?+1(A) to be a bijection for n > 0 and hence an isomorphism of
groups for n > 1. Note that the O-sphere S° does not satisfy the hypothesis of being
at least 1-connected. However, we know that in case A = S° we also have the previous
isomorphisms. Thus, this obstruction theory also works for A = S9, yielding classical
obstruction theory.

We take R = 7r64’St(X). Then R is isomorphic to 72 (X" A) for r > 2. We give R a
ring structure as follows. The sum + is induced by the usual abelian group operation in
74 (X7 A) and the product is induced by [f][g] = [g o f] in 72 (Z" A).

Given a CW(A)-complex X, the new A-cellular chain complex is defined as follows.
C,, is the free R-module generated by the A-n-cells of X and the boundary map d :
Cyp — Cj_1 is defined in the following way. Let e/, be an A-n-cell of X, let g, be its
attaching map and let J,_; be an index set for the A-(n — 1)-cells. For g € J,_1, let

qp : X" — Xt/ (Xt — eg_l) = Y"1 A4 be the quotient map. We define d(e”) =
Z [qgga]eg_l. Given a continuous map f: X" ! — Y, where X is a CW(A)-complex,

ﬁEJnfl

we define the obstruction cocycle ¢(f) € Hompg(Cy,, 7t {(Y)) satisfying that c(f) = 0 if

and only if f can be extended to X™. Also, given a CW(A)-complex X and continuous

maps f,g : X" — Y such that f|xn-1 = g|xn-1 we define difference cochain of f and g

d(f,g) € Hompg(Cp, w2 (Y)).
Finally, we prove the following generalizations of classical obstruction theory theorems

Theorem 18. Let A, X and f be as above and let d € Hompg(C,, w2 (Y)). Then there
exists a continuous map g : X" —'Y such that g|xn—1 = f|xn—1 and d(f,g) = d.
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Theorem 19. Let X be a CW(A)-complex and let f : X" — Y be a continuous map.
Then there exists a continuous map g : X" ™' — Y such that g|xn-—1 = f|xn-1 if and only
if ¢(f) is a coboundary.

Theorem 20. Let A be the suspension of a CW-complex and let X be a CW(A)-complex.
Let f,g: X™ — Y be continuous maps. Then

(a) f~g rel X" 1 if and only if d(f,g) = 0.

(b) f=~g rel X" 2 if and only if d(f,g) = 0 in H*(C*,6).



Chapter 1

CW-complexes

CW-complexes are spaces which are built in sequential process of attaching cells. They
were introduced by J.H.C. Whitehead [22] in the late fourties to meet the needs of homo-
topy theory. His idea was to work with a class of spaces which was broader than simplicial
complexes, and in consequence, more flexible, but which still retained a combinatorial
nature, so that computational considerations were not ignored.

In CW-complexes, cells are homeomorphic to disks, thus to simplices, and are attached
by their boundaries, in much the same way as simplicial complexes. The key point is that
in CW-complexes attaching maps are just continuous, which differs significantly from the
much more rigid structure of simplicial complexes.

For example, smooth finite-dimensional manifolds are CW-complexes. Also, every topo-
logical space can be approximated in a homotopical sense by a CW-complex. Moreover, the
homotopy category of CW-complexes is equivalent to the homotopy category of topolog-
ical spaces. However, the combinatorial structure of these spaces allows the development
of tools which simplify considerably computation of homology, cohomology and homotopy
groups.

In this chapter we will give an introduction to CW-complexes and their homotopy
theory. It is by no means exhaustive, though it includes a wide range of topics. Our aim
is that it serves as a basis for the rest of this thesis. The interested reader might also want
to consult [3, 7, 8, 20, 21]. Standard notation and terminology can be found in [20].

1.1 Adjunction spaces

In this section we recall some topological and homotopical properties of adjunction spaces
for later application to CW-complexes and to our work. The main reference for this section
is [3].

We begin with the definition of adjunction spaces.

Definition 1.1.1. Let X and B be topological spaces and let A C B be a closed subspace.
Let f: A — X be a continuous map. The adjunction space X L#B is defined by the pushout

22
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diagram
A ! X
] o
B L X Lf B

This is to say that X %cj B is obtained from the disjoint union X LI B by identifying each
point a € A with its image f(a) € X.

Remark 1.1.2. Let X L]_cJ B be as above and let ¢ : X U B — X L}J B be the quotient map.
From the quotient topology, we know that a subset U C X ij B is open (resp. closed) in
X ng B if and only if ¢~ 1(U) is open (resp. closed) in X LI B. And this last statement holds

if and only if ¢~} (U)N X is open (resp. closed) in X and ¢~ '(U)N B is open (resp. closed)
in B, or equivalently if and only if (iny)~(U) is open (resp. closed) in X and (ing) ~}(U)
is open (resp. closed) in B.

Examples 1.1.3.

(a) Let A and X be topological spaces and let f : A — X be a continuous map. The
cylinder of f, Z¢, is an adjunction space:

A ! X
iol push \L
AxI——Zy

(b) As in the previous example, if f: A — X is a continuous map then the cone of f,
Cy, is an adjunction space:

AT x

inci push J{

(c) As a particular case of the previous example we have the following. If A = S"~!
(n € N) and g : S" ! — X is a continuous map then the space Cy is called X with
an n-cell attached and denoted by X U e™:

Snfl f_) X
inci push \L
DP—— X Ue"

Usually, the space X will be a Hausdorff space. This example will be of utter
importance in next section.
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Proposition 1.1.4. Let X %”J B be the adjunction space defined above. Then iny : X —

X LJ_CJ B is a closed subspace and ing|p_4: B— A — X %J B is an open subspace.

Proof. For the first statement, we have to prove that in; is injective, initial and closed.
Since in; is continuous and injective, it suffices to prove that in; is closed. Let F C
X be a closed subspace. We have that (inj)~!(iny(F)) = F which is closed in X and
(ing)~1(iny (F)) = f~Y(F) which is closed in B. Hence, in;(F) is closed in X %CJ B.

In a similar way, for the second statement it suffices to prove that ing|g_4 is an open
map. Let U C B — A be an open subspace. Since B — A is open in B, U is also open in
B. Then (in;)~!(ina|p_a(U)) = @ and (inz)'(ing|p_a(U)) = U. Hence, ina|p_a(U) is
open in X LfJ B. ]

The following proposition establishes conditions which assure that the adjunction space
will be a Hausdorff space.

Proposition 1.1.5. Let X and B be Hausdorff topological spaces and let A C B be a closed
subspace. Let f: A — X be a continuous map. Suppose that the following conditions hold:

(a) For each b € B — A there exists a closed neighbourhood Cy, of b in B such that
CyNA=a.

(b) There exists an open subset U C B and a retraction r : U — A.

Then the adjunction space X ng B is Hausdorff.

Proof. Let iny : X — X ng Banding : B —» X ng B be as in the definition of adjuntion
spaces and let x1,z9 € X L}J B. We must find disjoint open subsets V7,V C X S”J B such

that z1 € V7 and xo € V5. We divide the proof in three cases.
(1) 1,29 € B — A. Since B — A is Hausdorff there exist open and disjoint subsets
Vi,Vo € B — A such that z1 € V4 and 292 € V5. But B — A is open in X?B by the

previous proposition, hence Vi and V5 are also open in X LfJ B.
(2) 1 € X and 29 € B— A. We take V) = X L}J B — Cy, and Vo = (C,,)°. Note

that (in1)~1(V1) = X, (in2) ' (V4) = B — Cy,, (in1)"}(V2) = @ and (ing) "} (V2) = (Cy,)°.
Hence Vi and V5 are open in X LfJ B.

(3) x1,z2 € X. Since X is Hausdorff there exist open and disjoint subsets Wy, Wy C X
such that z1 € Wi and xo € Wy, But Wy and W5 might not be open in X %cJ B. Using

the retraction r we will enlarge the subsets W; and Wy so that they are open in X %cJ B

and remain disjoint. We take V43 = Wi Ur~tf~L(Wy) and Vo = Wo U r~tf~1(Wy).
Note that V1 N Vo = @ and that V; and V, are open in X %cJ B since (in1)~Y(V;) = W;

(ing)~Y(Vi) = r L f~Y(W;) for i = 1, 2. O
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Important remark 1.1.6. If we take A = S"~! and B = D" then conditions (a) and
(b) of the previous proposition hold. The same happens if we take A = | |S"~! and

B |_| D el
el

We want now to find conditions for two adjunction spaces to be homotopy equivalent.
To this end, we will need to work with cofibrations.

Definition 1.1.7. Let i : A — X be a continuous map. We say that i is a cofibration if
given a continuous map f : X — Z and a homotopy H : A — Z such that Hig = fi
there exists a homotopy H : IX — Z such that Hig = f and HIi = H.

A—"14

A

. \ H
X s rXx \
AN L H ‘
\; !
f Z
This property is called the homotopy extension property.
Examples 1.1.8. Let X be a topological space. Then:
a) The inclusions ig,41 : X — IX are cofibrations.

¢) The inclusion 7 : X — CX 1is a cofibration.

(a)

(b) The inclusion i : X x {0,1} — IX is a cofibration.

(¢)

(d) If f: X =Y is a continuous map, the inclusion i : X — Z¢ is a cofibration.

Proposition 1.1.9. Leti: A — X be a continuous map. Then i is a cofibration if and
only if there exists a retraction r : X x I — Z;.

Proof. Suppose first that ¢ is a cofibration. Then there exists a map r in the diagram

A—"% AxT

RN

10 N\
X %X xI

T

N

The map r is the desired retraction.
Conversely, suppose that there exists a retraction r : X x I — Z; and continuous maps
f: X —- Zand H : IA — Z such that Hig = fi. Let F be the dotted arrow in the
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diagram

and let H = Fr. The map H is the desired homotopy extension. ]

The following proposition shows that it is not a coincidence that all the previous ex-
amples of cofibrations are inclusion maps.

Proposition 1.1.10. Let i : A — X be a cofibration. Then i is a subspace map.

Proof. Let h : A x I — A x I be defined by h(a,t) = (a,1 —t) and let inc: A x I — Z;
and j : X — Z; be the corresponding inclusion maps. We define H : A x I — Z; by
H = inc o h. Since i is a cofibration, there exists a continuous map H : X x I — Z; such
that the following diagram commutes.

Then Hig = H o (i x Idj) o ig = Higi. Since H and ip are injective, it follows that i is
injective. Also, Hig is initial because it is a subspace map, it is initial. But Hig = Higi
and since Hig and 4 are continuous maps, it follows that 7 is initial. Therefore, i is a
subspace map. O

Proposition 1.1.11. Let X be a topological space and let A C X be a subspace such that
the inclusion i : A — X is a cofibration. Then there exists a retraction v : X x [ —
X x{0}UAXI.

Proof. Since i is a cofibration there exists a map r in the diagram

A—" AxT

Z\L iiXId]
[

X—>XxI

RN
X x{0}UAXI

The map r is the desired retraction. O
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Proposition 1.1.12. Let X be a topological space and let A C X be a subspace such that
the inclusion i : A — X is a cofibration. Then i : X x {0} UA x I — X x I is a strong
deformation retract.
Proof. Let r be defined as in the proof of the previous proposition. We want to see that
ir ~ Idxxr rel X x {0} U A x I. We consider incor : X x I — X x I and write it as
(incor)(x,t) = (ri(x,t), ro(x, t)).

We define H : (X xI)xI — X x1I by H(z,s,t) = (ri(z,st),s(1—t)+tra(z,s)). Then
H is continuous and satisfies

o H(z,s,0)=(x,s)

O]

In a similar way we can prove that if i : A — X is a cofibration, theni : X x{1}UAXI —
X x 1 is a strong deformation retract.

It is quite interesting to note that the converse of propositions 1.1.11 and 1.1.12 hold
if i : A — X is a closed cofibration. More precisely, we have the following result

Proposition 1.1.13. Let A C X be a closed subspace. Then the following are equivalent:

(a) The inclusion i: A — X is a cofibration.
(b) X x {0} UA X I is a retract of X x I.

(c) X x{0}UAXTC X x1Iis a strong deformation retract.

Proof. The implication (a) = (c) holds by 1.1.12 while the implication (c¢) = (b) is trivial.
So it only remains to prove (b) = (a).

Suppose that r : X x I — X x {0} UA x I is a retraction and that there are continuous
maps f: X — Z and H : [A — Z such that Hig = fi. Since A C X is a closed subspace
then JA, X x {0} and A x {0} are closed in IX. Hence, by the pasting lemma, there is a
well-defined and continuous map F' : X x {0} UA x I — Z such that F(x,0) = f(z) for
all z € X and F(a,t) = H(a,t) for all a € A and t € I. Then the map H = Fr is the
desired homotopy extension. O

Remark 1.1.14. Note that if A C X is a closed subspace then there is a pushout diagram

inc

A X
10 push l

JA—— X x{0}UITA

since the space X x {0} U I A clearly satisfies the universal property of pushouts by the
pasting lemma. However, this might not be true if A is not a closed subspace of X and it
is easy to find counterexamples.
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The following proposition follows from the exponential law
Proposition 1.1.15. Ifi: A — X is a cofibration then Ii : IA — IX is also a cofibration.

Now we will give a series of results which under certain conditions will tell us when
two adjunction spaces are homotopy equivalent. We begin with the following proposition,
which will be used many times throughout this thesis.

Proposition 1.1.16. Leti: A — X be a cofibration and let f,g: A — Y be continuous
maps such that f is homotopic to g. Then X %cJ Y and X UY are homotopy equivalent
g

relative to Y.

Proof. Let H : A x I — Y be a homotopy between f and g. Consider the adjunction

space
H

AxT

Y

iXIdIi push i
X xIUY

Xx]—axly

Note that X x {0} U Y =XUY and X x{0} U Y C X xIUY is a strong
H|ax g0} ! H|ax {0y H

deformation retract since X x {0} UA x T — X x [ is.
Hence, X %cj YCXxI IL% Y is a strong deformation retract. In a similar way X UY C
g

X x1I lLLJI Y is a strong deformation retract.

Thus, X %cJ Y and X UY are homotopy equivalent relative to Y. O
g

The following proposition and its proof can be found in [3].

Proposition 1.1.17. Leti: A — X be an inclusion. If i is a cofibration and a homotopy
equivalence then i : A — X is a strong deformation retract.

As a corollary we obtain the following.

Corollary 1.1.18. Let f : X — Y be a continuous map. Then f is a homotopy equivalence
if and only if X is a strong deformation retract of Zy.

Proof. Leti: X — Z; be the inclusion and r : Zy — Y be the standard strong deformation
retraction. We have that f = ir. Hence, if f is a homotopy equivalence, then i is also
a homotopy equivalence. Since i is also a cofibration, by the previous proposition we
conclude that X is a strong deformation retract of Z;.

Conversely, if X is a strong deformation retract of Z, then ¢ is a homotopy equivalence.
Hence f = ri is also a homotopy equivalence. O

The previous corollary will be useful because it allows us to replace a given homotopy
equivalence by a strong deformation retract.

We give now some results of [3] regarding cofibrations and homotopy equivalences that
are needed for our work.
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Proposition 1.1.19. Let X and B be topological spaces and let A C B be a closed subspace
such that the inclusion i : A — B is a cofibration. Let f,g: A — X be continuous maps
such that f ~ g. ThenXL}JBzXUB rel X.

g

Theorem 1.1.20. Consider the commutative diagram

where the front and back faces are pushouts. If i and i’ are closed cofibrations and ¢ A, ¢x
and ¢p are homotopy equivalences, then ¢y is a homotopy equivalence.

As a corollary of the previous theorem we obtain another useful result for our work.

Corollary 1.1.21. Let
A= x
ii push l
B “i?‘%’ Y

be a pushout diagram. If i is a closed cofibration and g is a homotopy equivalence, then f
18 a homotopy equivalence.

We end this section with another result about cofibrations and homotopy equivalences
that will be needed later.

Proposition 1.1.22. Let

XO 20 Xl i1 X2 12

ifb lfl ljé
Yy — Y1 — Yo —
Jo J1 J2

be a commutative diagram such that for alln € Ny, the maps i, and jp, are closed inclusions
and cofibrations. Let X = colim X,, and Y = colimY,, and let f : X — Y be the induced
map. If fn is a homotopy equivalence for all n € Ny then f is a homotopy equivalence.

A proof can be found in [7] (proposition A.5.11).
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1.2 Definition of CW-complexes

In this section we recall the definition of CW-complexes and some standard examples
and basic properties. We analyse both the constructive and descriptive approachs and we
prove that they are equivalent. Finally, we give the definition of subcomplexes and relative
CW-complexes and we study product cellular structures.

1.2.1 Constructive definition

Definition 1.2.1. We say that a topological space X is obtained from a topological space
B by attaching an n-cell if X is the adjunction space B U D" for some continuous map
g

g:S" ! — X, ie. if there exists a pushout diagram

Sn—l g;) B

i push l

n
D4>fX

The cell is the image of f. The interior of the cell is f(D™ — S™ 1) and the boundary of
the cell is f(S™1). The map g is the attaching map of the cell, and f is its characteristic
map.

For example, S™ can be obtained from the singleton * attaching and n-cell. Also, the
disk D" can be obtained from S"~! attaching an n-cell by the identity map.

Remark 1.2.2.
(a) Attaching a 0-cell means adding a disjoint point.
(b) The interior of an n-cell is homeomorphic to (D")° = D™ — §"~1,

(¢) The space X of the definition above is the adjunction space X = B U D™. It can
g

also be seen as the mapping cone of the map g.

We can attach many n-cells at the same time by taking various copies of S"~! and D".

|_| Snfl alznga
- B

aed
zi push
Uor__
acJ Ll fo X

acJ

Definition 1.2.3. Let X be a topological space. A CW-complex structure on X is a
sequence @ = X1 X9 X1 ... X" ... of subspaces of X such that the following three
conditions are satisfied.

(a) For all n € Ny, X" is obtained from X"~! by attaching n-cells
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()
(¢)

X= X"
neN

The space X has the final topology with respect to the inclusions X” — X, n € N.

The space X" is called the n-skeleton of X.
We say that the space X is a CW-complex if it admits some CW-complex structure.

Clearly, if X is a CW-complex it will generally admit many different CW-complex
structures.

Important remark 1.2.4. Condition (c) says that a map f : X — Z is continuous if
and only if f|x» : X™ — Z is continuous for all n € Ny. Equivalently, U C X is open in
X if and only if U N X" is open in X" for all n € Ng.

Examples 1.2.5.

(a)

()

The n-sphere S™ is a CW-complex. We will consider two different structures:

1) The m-skeleton of S™ is % for all 0 < m < n and S™ for m > n. In this
structure we have 1 O-cell and 1 n-cell and the n-skeleton is obtained from the
(n — 1)-skeleton by attaching one n-cell:

S’nfl gH %

| l

D T>S
2) (S™)™ = S™ for all m < n. The (m — 1)-skeleton S™~! is the equator of the
m-skeleton S™ for all m < n and the last one is obtained from the first one by

attaching 2 m-cells which correspond to the northern and southern hemispheres
of S™.

The n-disk D" is a CW-complex. We will consider two different CW-complex struc-
tures on D", both of which satisfy that (D")"~! = S"~! and that the n-cell is
attached by the identity map. These two different structures are obtained giving
each of the structures of the previous example to the (n — 1)-skeleton S™~'. Hence
one of them has 1 0-cell, 1 n — 1-cell and 1 n-cell and the other has 2 k-cells for each
0 <k <n-—1 and one n-cell.

Polyhedra are CW-complexes with CW-complex structure induced by the simplicial
structure.

The torus is a CW-complex with 1 0-cell, 2 1-cells and one 2 cell. The 1-skeleton is
a wedge of 2 copies of S!.

The infinite dimensional sphere S is a CW-complex. Recall that S°° is defined as
follows. Let R™ be the set of sequences of real numbers of finite support. We give
R®M) the final topology with respect to the inclusions

RCR2CR3C...
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The infinite dimensional sphere is defined as S®° = {z € RN : ||z|y = 1}. We give
S the following CW-complex structure. Its n-skeleton is S™ for all n € Ny and it is

the equator of the (n + 1)-skeleton, as before. Hence S* = [J S™. The n-skeleton
neN
S™ is obtained from the (n — 1)-skeleton S™~! by attaching two n-cells as the second

structure of example (a).

(f) The real proyective plane P? is a CW-complex with 1 O-cell, 1 1-cell and 1 2-cell.
The 1-skeleton of this structure is S' and the 2-cell is attached by the map g : S* C
C — S C C defined by g(z) = 22

(g9) More generally, the n-dimensional real projective space P™ is a CW-complex with
one m-cell for each m < n. Moreover, the m-skeleton of this CW-complex structure
iIsP™ for all 2 < m < n.

Definition 1.2.6. Let X be a non-empty CW-complex. The dimension of X is defined
as dim X = sup{n € Ng/ X"~ # X"}. The dimension may be +oc.

We ought to mention that the dimension of a CW-complex is well defined, i.e. it
does not depend on the CW-complex structure given to it. This can be proved using the
invariance of domain theorem.

If X is a CW-complex then, by 1.1.4, we obtain that X" is a closed subspace of X for
all n, and if dim X = m, the interior of m-cells are open in X.

Proposition 1.2.7. If X is a CW-complex then X is a Hausdorff space.

Proof. By 1.1.5 and induction we get that the n-skeleton, X" is a Hausdorff space for all
n € N. So, if X is finite-dimensional we are done.

For the general case, let x and y be distinct points in X. There exists n € N such that
z,y € X™. Since X" is Hausdorff there exist open and disjoint subsets U,, V,, C X™ such
that x € Uy, y € V,,. However, U,, and V,, might not be open in X. Since we are under the
hypotheses of 1.1.5, we may proceed as in its proof to enlarge U, and V,, to open subsets
Up+1 and V41 of X1 such that U1 N X" =U,, Vo1 NX" =V, and Upy1 NV = 9.
Repeating this process inductively we obtain sequences (U;);>p and (V});>, satisfying

e U; and Vj; are open in X

e U1 NXI =Uj and Vi N XI =V

° UjﬂVjZ@
for all j > n.
Let U = UUj and V = UVJ Then x €e U,y € V and UNV = &. Since for all
jzn jzn

m>n, UNX™ =U,, is open in X" then U is open in X. In the same way V is open in
X. O
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1.2.2 Descriptive definition

We will give now the descriptive definition of CW-complexes and study some of its prop-
erties. In the next subsection we will prove that it is equivalent to the constructive
definition given above. This equivalence is useful not only because it gives more insight
into the definition and theory of CW-complexes, but also because it provides one with two
different ways to work with CW-complexes. The constructive definition is needed to build
CW-complexes step by step, while the descriptive one is more suitable for proving that a
given space is a CW-complex by just decomposing it into cells and then checking that the
conditions are satisfied.

Definition 1.2.8. Let X be a Hausdorff space. A cell complex on a space X is a collection
K ={ell :n € Ny,a € J,} of subsets of X, called cells, which satisfy the properties below.
The cell el is called a cell of dimension n or n-cell and the set J,, n € N is an index set
for the n-cells.

For n > 0, we define the n-skeleton of K as K" = {e], : v < n,a € J,.}. We also define

K'=@. Let |[K"| = | e, CX.

r<n
acJ,
L]
For each cell e? we define the boundary of e as e? = e? N |K" 1| and the interior of
[¢] °
n n _ ,n n
er as ey =el —ep.

The collection K must satisfy
= Ueg
n,o

(b) exNey =@ if e # eff

(¢) For each n € Ny and a € J, there exists a continuous and surJectlve map [} :
(D", 8" 1) — (en o ") such that f"(D”) - e and f”\ . D" e is a homeomor-

) o

phism.

The map f7 is called the characteristic map of el.

Note that, by condition (c), cells are compact subspaces of X and hence closed, since
X is Hausdorff.

Now, fix a cell e and consider the equivalence relation in D" defined by x ~ y if and
only if f?(x) = f?(y). Then f” induces a well defined map f7 : D"/ ~— e? which is
continuous and bijective. Since D"/ ~ is compact and e? is Hausdorff it follows that fm
is a homeomorphism. Thus, the cell €/} is homeomorphic to D"/ ~ and A C e is closed
(resp. open) in e} if and only if ( f”) 1(A) is closed (resp. open) in D™.

Note also that X = Ue and €2 = €l.

n,x

Definition 1.2.9. Let X be a Hausdorff space and let K be a cell complex on X. We
define the dimension of K as dim K = sup{n € Ny/ J, # @}. The dimension may be
+00.
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Definition 1.2.10. Let K be a cell complex on X and let e, ey be cells of K. We say

that e is an immediate face of ey’ if ei’;ﬁegl # . It e # efy' this implies that ecq)géﬂeén #+ O.
Note that if e is an immediate face of €ff' and ey # ejf' then n <m.

Definition 1.2.11. We will say that the cell e is a face of e’g if there exists a finite

sequence of cells ey = e, e1,...,e, = ej such that e; is an immediate face of e;q1 for

1< <r—1.
A cell e is called principal if it is not a face of any other cell.

Note that the faces of a cell e are exactly those cells which we must attach first in
order to be able to attach the cell e]. This intuitive statement will become clearer after
introducing the notion of subcomplexes in subsection 1.2.4.

Remark 1.2.12. A cell complex K on X does not give much information on the topology
of X. For example, we may take K = X, that is every point of X is a 0-cell. This is a cell
complex which does not give any data on the topology of X.

This is certainly not among the sort of things one would like to accept. So we will
impose two extra conditions on a cell complex to call it a CW-complex.

Definition 1.2.13. Let X be a Hausdorff space. A CW-complex structure on X is a cell
complex K such that the following conditions are satisfied:

(C) Each cell of K has only a finite number of faces.

(W) The space X has the weak topology induced by the cells of K, that is, A C X is
closed if and only if ANe} is closed in e for all n € N, a € J,,.

A space X is called a CW-complez if it admits some CW-complex structure.
The following propositions follow easily from the definition of cell complex and condition
(W).

o
Proposition 1.2.14. If X is a CW-complex and €], is a principal cell, then e} is open in
X.

Condition (W) can also be stated in a couple of other ways, which allow us to understand
topology of CW-complexes better.

Proposition 1.2.15. Let X be a CW-complex with CW-structure K. The following are
equivalent:

(a) A C X is closed (resp. open).

(b) Anel is closed (resp. open) in el for all n,c.

(c) (fM)~Y(A) C D" is closed (resp. open) for all n,a.
(d) AN |K™| is closed (resp. open) in |K"| for all n.

These equivalent statements can be reformulated in terms of continuous maps as next
proposition shows.



Section 1.2: Definition of CW-complexes 35

Proposition 1.2.16. Let X be a CW-complex with CW-structure K, let'Y be a topological
space and let f : X —'Y be a map. Then the following are equivalent:

(a) f: X —Y is continuous.
(b) flen = ep — Y is continuous for all n,c.
(c) fofll: D™ —=Y is continuous for all n,c.

(d) flikn is continuous for all n.

This proposition will be useful when defining maps with domain a CW-complex. Usu-
ally, we will define maps skeleton by skeleton, continuous at each stage, and by the equiv-
alences above we will conclude that they are continuous.

The same argument will be used when defining homotopies from CW-complexes. The
following is the analogous of the previous proposition and follows from it applying the
exponential law.

Proposition 1.2.17. Let X be a CW-complex with CW-structure K, let'Y be a topological
space and let H : X X I —'Y be a map. Then the following are equivalent:

(a) H: X xI—Y is continuous.
(b) Hlenxg ey x I —Y is continuous for all n,c.
(¢) Ho (fl xIdy): D" x I —Y is continuous for all n, .

(d) H||gn|x1 is continuous for all n.

The next proposition shows a key point in the theory of CW-complexes, as will be
evident later on.

Proposition 1.2.18. Let X be a CW-complex and let K C X be a compact subset. Then
K intersects only a finite number of interiors of cells.
In particular, X is compact if and only if it is finite (i.e. has a finite number of cells).

Proof. For each n and « such that K N ec’:}é # @ we choose 2], € C'N eog. Let T'={z} :n¢€
No, € J,}. Then T C K. We shall prove that T is finite.

We will show that 7" C K is closed (hence compact) and discrete. It suffices to prove
that every T C T is closed in X.

By (W), TV C X is closed if and only if 7/ N el is closed in el for all n,a. But by
(C), each cell has a finite number of faces, hence T N e’ is finite. Since X is Hausdorff it
follows that 7" N el is closed in X. Thus, 7" is closed in X for all 7/ C T. O

The following remark will be very important for our descriptive definition of CW(A)-
complexes (cf. 3.2.2) since it gives us the right way to generalize the descriptive definition
of CW-complexes.

Important remark 1.2.19. Conditions (C) and (W) are equivalent to (C’) and (W)
where

(C") Every compact subspace intersects only a finite number of interiors of cells.

Indeed, (C) and (W) imply (C’) and (W) by the previous proposition. Conversely, (C’)
implies (C) because cells are compact subspaces.
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1.2.3 Equivalence of the two definitions

We will show now that the two definitions are equivalent. The first implication is stated
in the following proposition, which is easy to prove.

Proposition 1.2.20. Let X be a Hausdorff topological space and let K be a CW-complex
structure on X. Then X is a constructive CW-complex (i.e. according to definition 1.2.3)
where the skeletons X" coincide with |K™| and where the characteristic maps of the cells
are the same in the two structures.

For the converse we need the following lemma.

Lemma 1.2.21. Let X be a descriptive CW-complex of dimension n — 1 with cellular
structure K = {e}}r.q. Suppose that 'Y is obtained from X attaching n-cells {el}ac., -
Then K' = K U{el}aey, is a CW-complex structure for Y.

Proof. Tt is clear that Y = J €/,. From the pushout

r<n

1 gn1 alaljnga

- > X
OlEJn

zl push

L p"
OéEJn |_| fa
acdn

Y

[¢] o
we deduce that eg Ney = @ if e # €fy'.
o
Note that e? = ¢g?(S™"~!). For each a € J,, we define the characteristic map of the cell
L]
et as f: (D", S" 1) — (e, e?). From the previous pushout it is easily deduced that f7
o [¢] [¢]
is surjective, f(D™) C el and f7|
From proposition 1.1.5 it follows that Y is Hausdorff. Thus K’ is a cell complex on Y.
It remains to prove that it satisfies (C) and (W).
L]

(C) Let a € J,,. Since e = g,(S™ 1) C X is compact and X is a CW-complex, then

[¢]
: D" — el is a homeomorphism.

o
n

°
en intersects a finite number of interiors of cells. Thus el has a finite number of faces.
(W) The space Y has the final topology with respect to {el, }r<, because it has the

final topology (the pushout topology) with respect to X and {el}qc,- O

As a corollary we obtain that the constructive definition implies the descriptive one.
More precisely,

Proposition 1.2.22. Let X be a constructive CW-complex. Then there exists a CW-
complex structure K on X (i.e. X is a descriptive CW-complex) such that X™ = |K"| for
all n € Ng and where the characteristic maps of the cells in the two structures coincide.

Proof. By the previous lemma and induction, each X™ is a descriptive CW-complex of
dimension n. Hence items (a), (b) and (c) of definition 1.2.8 and conditions (C) and (W) of
1.2.13 hold. By 1.2.7, X is a Hausdorff space. Hence, X is a descriptive CW-complex. [
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1.2.4 Subcomplexes and relative CW-complexes

We give first a quick glance at subcomplexes. As mentioned before, given a cell e, its
faces can be interpreted as the cells that need to be pasted first so that the cell e/ can be
attached. For if any of the immediate faces of e}, is not attached first then the adjunction
map of e will not be well defined. A similar argument applies for the immediate faces of
elr, and repeating this process we get the statement.

Definition 1.2.23. Let K be a cell complex on X. Let L C K. We say that L is a
subcomplex of K if for each cell e € L all its faces also belong to L.

The following proposition enlights and justifies the definition above.

Proposition 1.2.24. Let X be a topological space, K a cell complex on X and L C K a

subcomplex. Let |L| = |J el C X with the subspace topology. Then
enelL

(a) L is a cell complex on |L| with structure inherited from K (i.e. the characteristic
maps are the same).

(b) If K is a CW-complex structure on X then L is a CW-complex structure on |L|.

(¢) |L| is closed in X .

Definition 1.2.25. A CW-pair is a topological pair (X, A) where X is a CW-complex
and A C X is a subcomplex.

In the constructive definition of CW-complexes we begin with the empty set and start
attaching cells of different dimensions. If instead we begin with a Hausdorff topological
space A, the space obtained is called relative CW-complex.

Definition 1.2.26. A relative CW-complex is a pair (X, A), where A and X are topolog-
ical spaces such that A C X, A is Hausdorfl and there exists a sequence of subspaces of
X

A=X'cXx{Ccx,C...CcXiC...
satisfying that, for all n € Np, X} is obtained from Xz_l by attaching n-cells, X = U X%

neN
and X has the final topology with respect to {X"},>_1.

As in the absolute case, the subspace X} is called the n-skeleton of (X, A).

Remark 1.2.27.

(a) Let (X, A) be a relative CW-complex. Then X is Hausdorff and A C X is a closed
subspace.

(b) If (X, A) is a CW-pair, then it is a relative CW-complex.

Definition 1.2.28. Let X and Y be CW-complexes. A continuous map f : X — Y is
called cellular if f(X™) CY™ for all n > 0.

Proposition 1.2.29. Let X and Y be CW-complexes and let f : X — Y be a cellular
map. Then the cylinder of f, Zy, is a CW-complex and X C Zy is subcomplex.
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1.2.5 Product of cellular spaces

We want to give a CW-complex structure to the cartesian product of CW-complexes. Note
that D™ x D™ is homeomorphic to D™, Hence, if X is a CW-complex with structure
K and Y is a CW-complex with structure K’, it is reasonable that cells of the cartesian
product X x Y would be products of one cell of K with one cell of K’'. However, the
product topology in X X Y is not always the right one, as we shall see.

If K = {el},.q is a cellular structure in a Hausdorff space X and K’ = {e’ﬁ”}mﬁ is a
cellular structure in another Hausdorff space Y, we define the product cellular structure
in X xY by K x K' = {el! x eg}n,m,aﬁ. It is easy to prove that K x K’ is a cellular
structure in X x Y.

It is clear that if the cellular structures K and K’ satisfy condition (C) then K x K’
also satisfies (C). However, this is not always true for condition (W). Hence we define the
following.

Definition 1.2.30. Let X and Y be CW-complexes with cellular structures K and K’
respectively. We define the CW-complex X x Y as the space X x Y with cellular structure
w

K x K’ and with the final topology with respect to the cells of K x K',i.e. FC X xY
is closed if and only if F'N (eg X e}f') is closed in ey x eff’ for all cells efy x e € K x K ‘.

Note that the weak topology in X x Y (that is, the final topology with respect to the
cells) has fewer open sets than the product topology. Nevertheless, the subspace topology
in ey X e is the same for the two topologies.

The next proposition is not difficult to prove and stablishes a relation between the two
topologies.

Proposition 1.2.31. Let X and Y be CW-complexes. If X orY is locally compact then
XxY=XxY.
w

In particular, if we take Y = I with cellular structure {3 = {0},¢} = {1},e! = I}
and X is a CW-complex with cellular structure K, then X x I is also a CW-complex

and its cellular structure is {e? x e, e x €{,e? x el : e? € K}. Note that e? x e} and

e x €Y are n-cells and e? x e! is a (n + 1)-cell. Hence, if X is finite dimensional then

dim(X x I) = dim(X) + 1.
The following proposition sums up several properties of CW-complexes.

Proposition 1.2.32.

(a) Let (X, A) be a relative CW-complex. Then X/A is a CW-complex with cellular
structure inherited from (X, A).

(b) If X is obtained from A by attaching n-cells then X/A = \/ S™ (where J,, is the
aEdy
set that indexes the n-cells).

Moreover, there is a homeomorphism between X/A and \/ S™ such that the follow-
a€dn
ing diagram commutes for all o € J,,.
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n Qn—1 g n o (\/S”a*)
(D7, 5771 L (57, 0) 2= LV

T i~

where fo, is the characteristic map of the cell, i, is the inclusion and q and q' are
the respective quotient maps.

(c) If (X, A) is a relative CW-complex (X, A) then X% /X7 1= \/ S™ for all n € Ny,
GfEJn
where Jy, is the set that indexes the n-cells of (X, A).

In particular, if A= @ we obtain that X"/X" ' = \/ S™.
acJy

Another basic construction in homotopy theory is the smash product. Recall that if
(X, z0) and (Y, 79) are pointed topological spaces, then the smash product of X andY is
defined as X AY = (X xY)/(X x {yo} U{xo} x Y).

Since X x {yo} U{zo} x Y is homeomorphic to X VY, the definition above is usually
writtenas X AY = (X xY)/(X VY).

In case (X, z¢) and (Y, yo) are pointed CW-complexes such that either X or Y is locally
compact, we know that X xY is a CW-complex. It is easy to verify that X x{yo}U{zo} xY
is a subcomplex of X x Y. Hence, X AY is a CW-complex.

1.3 Homology theory of CW-complexes

In this section we recall the homology theory of CW-complexes. The combinatorial struc-
ture of these spaces allows one to compute homology in a quite simple way.

1.3.1 Cellular homology

Definition 1.3.1. Let (X, A) be a topological pair. We say that (X, A) is a good pair if
A is a closed subspace of X and there exists an open subset U C X such that U O A and
the inclusion i : A — U is a strong deformation retract.

Important example 1.3.2. If X is a CW-complex and A C X is a subcomplex then
(X, A) is a good pair.

Using excision for homology groups we can prove the following proposition which is
essential for computing homology of CW-complexes and developing cellular homology
theory.

Proposition 1.3.3. Let (X, A) be a topological pair and let q : (X, A) — (X/A,x) be
the quotient map. If (X, A) is a good pair then q induces isomorphisms q. : Hp (X, A) —
H,(X/A, %) ~ Hy,(X/A).

The proof is not difficult and will be omitted.
The definition and properties of cellular homology are based on the following lemma.
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Lemma 1.3.4. Let X be a CW-complex. Then:

(a) Ho(X™", X" Y =0 ifk #n and Hy (X", X" ) ~ @Z, where J, is an index set
i€y
for the n-cells of X.

(b) Hp(X™) =0 if k > n.
(¢) The inclusion i : X™ — X induces isomorphisms iy : Hp(X™) — Hp(X) for k < n.

Proof.
(a) Since (X", X"71) is a good pair, Hy(X", X"™1) ~ Hy(X"/X"1) ~ Hy(\/ 5™

1€Jp
and the result follows.

(b) Consider the long exact sequence in homology of the pair (X", X*~1):
= Hp 1 (X7, X7 — Hp (X)) — Hp(X") —= Hp (X", X" ——

If &k > n, Hep (X" X" ) = 0 and Hp(X", X" 1) = 0 by (a). Hence Hp(X")
Hy, (X" 1) for k > n. Repeating this argument we obtain Hy(X") ~ Hp(X" 1) ~ ...
Hi(X%) = 0.

(c) Proceeding as in (b), we get Hp(X") ~ Hi(X™) if k < n < m. Hence (c) is proved
if X is finite dimensional. For the general case, let [a] € Hy(X). Hence a is a singular
k-chain such that di(a) = 0. Since the image of each singular simplex is compact, a is
also a singular k-chain in some skeleton X™ for a sufficiently large value of m. It follows
that the map i, : Hi(X"™) — Hy(X) is surjective.

Now suppose that [a] € Hp(X"™) is such that [a] = 0 in Hg(X). Hence the singular
k-chain a is the image of a singular (k + 1)-chain b by dj1. As above, b is also a singular
k-chain in some skeleton X™ for sufficiently large m. It follows that [a] = 0in Hi(X™). O

1

To define the cellular chain complex of a CW-complex X we consider the long exact
sequences in homology of the pairs (X", X"~ 1) for n € N and arrange them in the following
diagram

H,(X™)
N
d iy dl,
. Hn+1(Xn+1,Xn) Hn(Xn,Xn_l) Hn—l(X"_l, Xn—Q) >...
k jn—l
Hn_1<Xn71)

where dy, is defined as d], = j,,—10, for all n € N. Since 9,,j, = 0, we obtain that d;,d;, ., =
0. The horizontal row is the cellular chain compler of X and the group H, (X", X" 1)
corresponds to degree n. Note that, by the previous lemma, this group is EB Z, where J,

i€Jn
is an index set for the n-cells of X.
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The cellular homology groups of X are defined as the homology groups of the cellular
chain complex of X. As we shall see shortly, cellular homology coincides with singular
homology and the differentials d), can be calculated in terms of the attaching maps of
the cells. Hence, singular homology of CW-complexes can be computed directly from the
combinatorial structure of CW-complexes by means of cellular homology. Moreover, it is
clear that the cellular chain complex is far more simple that the singular one.

Before going on, we will prove that cellular homology groups coincide with singular
homology ones. Consider the long exact sequence

mn

10)
v — Hp g (X X™) - H,(X™) — Hp (X" — H, (X" X7) — ...
By the previous lemma, H,(X"*!) ~ H,(X) and H,(X""!, X") = 0. In consequence,
Hp(X) ~ Hp(X™)/Tm 041
On the other hand, given n € N we consider the exact sequence

n

e H (X1 — Hp (X)) 2 Hy (X, X1 -2 (X —

By the previous lemma, H, (X" 1) = 0. Hence, j, is injective. Thus, the maps j,|im Oyt
Im Opy1 — Im (§n0py1) = Im (d),, ) and j, : Hy(X") — Im j, = kerd, are isomor-
phisms. Now, kerd,, = kerd), since j,_1 is injective. Then j, induces an isomorphism
Hp(X")/Im Opy1 ~ kerd,/Im (d;, ;). Hence, cellular homology groups coincide with
singular homology ones.

As mentioned before, the differentials d], can be computed in terms of the attaching

maps of the cells as stated by the following proposition.

Proposition 1.3.5. Let X be a CW-complex. For each n € N, let J, be an indexr set
for the n-cells. We consider the cells e, o € J,, as generators of the free abelian group
H, (X", X" 1) ~ @ Z. Then the differential d}, is defined by

= > deg(qf om)es !
BeJn 1

where g7 is the attaching map of e and qgfl : Xt 871 s the quotient map which
collapses X"~ 1 — eg_l to a point.

Note that the sum above has finite support since the image of g/} is compact and hence
it intersects only a finite number of cells.

The proof of this proposition will not be given here. However, a generalization of this
result will be proved in chapter 5.

We will give now some examples of application of the above results which will show the
usefulness of cellular homology.

Examples 1.3.6.
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(a)

The real projective plane P? has a CW-complex structure consisting of one 0-cell,
one 1-cell and one 2-cell attached by a map of degree 2. Hence its cellular chain

complex is

0 7—2-7-2s7

It follows that Ho(P?) = Z, H1(P?) = Zs and H,(P?) =0 for n > 2.

In a similar way, the real n-dimensional projective space has a CW-complex structure
consisting of one i-cell for all 0 < i < n. It is not hard to see that its cellular chain
complex is

d d,_
0 7—"s7 s 7—2-7-2-7

where, for 1 <i < n, the map d} is multiplication by 2 if i is even and trivial if i is
odd. Hence, if n is even,

ifi=0
ifiisoddand 1 <i<n
if7isevenand 1 <i<n
ifi>n

Hy(P") =

N

and, if n is odd,

ifi=0

9 ifiisoddand 1 <i<n
if7isevenand 1 <i<n
ifi=n
ifi >n

=
G
=
[
O NSO NN

The torus S' x S! has a CW-complex structure consisting of one 0-cell, two 1-cells
and one 2-cell attached by the map induced by aba='b~! where a and b are the
generators of m1(S' Vv S1) given by the inclusions iy,is : S' — S' Vv S'. Hence its
cellular chain complex is

0 7—-7072-">7

It follows that Ho(S* x SY) = Z, H1(S* x SY) = Z @& Z, Hy(S* x S') = Z and
H,(S' x S1) =0 for n > 3.

1.3.2 Moore spaces

Definition 1.3.7. Let G be an abelian group and let n € N. A Moore space of type
(G,n) is a CW-complex X such that H,(X) ~ G, H;(X) =0 if i # n and such that X is

simply-connected if n > 1.
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For example, the projective plane P? is a Moore space of type (Zs,1) and its (n — 1)th
suspension is a Moore space of type (Zg,n). Also, if we attach an (n + 1)-cell to S™ by a
map S™ — S™ of degree m we obtain a Moore space of type (Z,,n).

Note that if X is a Moore space of type (G,n) and Y is a Moore space of type (H,n)
then X VY is a Moore space of type (G @ H,n). Thus, if G is a finitely generated abelian
group, it is easy to construct a Moore space of type (G, n) by taking wedge sums of Moore
spaces of type (H;,n), with H; a cyclic group.

The following proposition states that this can be done for every abelian group G.

Proposition 1.3.8. Let G be an abelian group and let n € N. Then there exists a Moore
space of type (G,n).

Proof. Let A C G be a set of generators of G and let F' be a free abelian group with basis
A. Let ¢ : ' — G be the induced group homomorphism. Then ker ¢ is also a free abelian
group. Let {h, : @ € J} be a basis of ker . We will construct a Moore space of type

(G,n) attaching (n + 1)-cells to \/ S,

i€A
For i € A let ¢; : \/ S™ — 8" be the quotient map which collapses everything except
€A
the i-th copy of S™ to a point. We write h, = Z di ot (with d;o € Z) for o € J. Note

€A
that for each «, d; o, = 0 except for a finite number of indexes i. For each a € J let
ot S — \/ S™ be a continuous map such that ¢;g, is a map of degree d; . This map
€A
can be constructed in the following way.

Let m = #{i ;dj o # 0} and let Dy, Ds,..., Dy, be m disjoint subsets of S™, all of
which are homeomorphic to D™. Let 0D; denote the border of D;, i.e. 0D; is the subset
of D; which corresponds to S"! C D" by the homeomorphism ¢; : D; — D". Let
q: D" — 8" ~ D"/S""! be the quotient map and let in; : S™ — \/ S™ be the inclusion

€A
in the i-th copy. We define g, : S™ — \/ S™ by
€A

Vd; o 4pi(T) if ¥ € D;
) - m
6=1 e ()n
i=1

where 4, , : " — S™ is a map of degree d; o. It is easy to prove that the map g, satisfies
the required conditions.
Let X be defined by the pushout

U ga
|| Sm ocs \/ Sn
acJ icA
zl push l

I—l Dn+1

- > X
acJ
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It follows that the cellular chain complex of X is

dn
-——>(0)——=kero i F 0

where the map d,,41 is the inclusion. Hence, X is a Moore space of type (G, n). ]

As a corollary we obtain that we can build CW-complexes with arbitrary homology
groups.

Corollary 1.3.9. Let (Gyn)nen be a sequence of abelian groups. Then there exists a con-
nected CW-complex X such that Hn(X) = Gy, for alln € N.

Proof. Take X = \/ X, where X, is a Moore space of type (G, n). O
neN

1.4 Homotopy theory of CW-complexes

In this section we will study the homotopy theory of CW-complexes, which is rich in
results. Among them we ought to mention Whitehead’s Theorem, which is one of the most
important theorems of homotopy theory and asserts that a map between CW-complexes
which induces isomorphisms in all homotopy groups is a homotopy equivalence (1.4.14).
Another key result which will be given in this section is that every topological space can
be homotopically approximated by a CW-complex (1.4.18).

We will also recall the excision theorem for computing homotopy groups of CW-
complexes and some corollaries of it. We also mention the cellular approximation theorem
which says that every continuous map between CW-complexes is homotopic to a cellular
one. This is of much importance in the homotopy theory of CW-complexes as we shall
see.

We also study Eilenberg - MacLane spaces, which are the homotopical counterpart of
Moore spaces.

We then recall Hurewicz’s theorem, which is another key theorem in homotopy theory
and relates homotopy and homology groups of topological spaces. In chapter 2 we will
give an important and useful generalization of it, due to Serre [18].

In the last subsection we recall homology decomposition of spaces.

1.4.1 Basic properties

The following remark is one of the key properties of CW-complexes and is essential when
developing their homotopy theory.

Important remark 1.4.1. If X is obtained from A by attaching n-cells then the inclusion
A — X is a cofibration. In particular, if (X, A) is a relative CW-complex, then the
inclusion Xz_l — X'} is a cofibration.

The following proposition generalizes the previous remark.

Proposition 1.4.2. If (X, A) is a relative CW-complez then the inclusion i : A — X is
a cofibration.
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Proof. Given a topological space Y and continuous maps f: X - Y and H: AxI —=Y
such that Hig = fi we need to find a homotopy G : X x I — Y extending H and such
that Gio = f

Since Xﬁfl — X' is a cofibration for all n, we may construct inductively a sequence
of continuous maps {Gy, }n>—1 with G, : X’} x I — Y such that

(a) Gfl =H
(B) Galyn-tys = Gt
(¢) Gnio = flxn

We define G : X x I =Y by G(z,t) = Gn(x,t) if © € X’}. The map G is well defined
by (b) and continuous because X has the final topology with respect to the cells. By
construction it is clear that the map G is the required extension. O

From the above proposition we get the following corollary.

Corollary 1.4.3. If (X, A) is a relative CW-complex and A is contractible then the quo-
tient map q : X — X/A is a homotopy equivalence.

Its proof is not difficult and can be found in [20] (proposition 6.6 p.75). It can also be
deduced from the previous proposition and 1.1.21.

As an example of an application consider the following. Let G be a graph, i.e. a
CW-complex of dimension 1. Let ' C G be a maximal tree. Then (G,T) is a relative
CW-complex and thus the inclusion T' — G is a cofibration. If J indexes the edges of G

that do not belong to T' we have that ¢ : G — G/T ~ \/ S! is a homotopy equivalence.
acJ

1.4.2 Cellular approximation

The cellular approximation theorem says that every continuous map between CW-com-
plexes can be approximated by a cellular one.

Theorem 1.4.4 (Cellular approximation theorem). Let X and Y be CW-complexes and
let f: X —Y be a continuous map. Then there exists a cellular map f' : X — Y such
that f' ~ f.

Moreover, if A C X is a subcomplex such that f|a is cellular, then we may take a
cellular approximation map f" satisfying f'|a = fla and ' ~ f rel A.
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Its proof can be found in [20].
We will see now some important applications of this theorem. For the first of them we
need the following classical lemma about relative homotopy groups.

Lemma 1.4.5. Let (X, xg) be a pointed topological space and let A C X be a subspace
such that xg € A. Let f: (D", 8" 1) — (X, A) be a continuous map. Then the following
are equivalent.

i) There exists a base point preserving homotopy H : (D" x I, S" 1 x I) — (X, A) such
that Hig = f, Hii(x) = z¢ Yo € D™.

ii) There exists a (base point preserving) homotopy G : D" x I — X, relative to S™ 1,
such that Gig = f, Giy(D™) C A.

i11) There exists a (base point preserving) homotopy G : D" x I — X, such that Gig = f,
Gi (D™) C A.

We omit the proof which is not difficult. Besides, we will give later a generalization of
this result (4.1.5). As an immediate application we obtain the following corollary.

Corollary 1.4.6. Let (X, A, zg) be a pointed topological pair (i.e. (X,xo) is a pointed
topological space and A C X is a subspace such that xo € A) and let f: (D", 8", 59) —
(X, A, x0) be a continuous map. Then [f] = 0 in m,(X, A) if and only if f is homotopic
relative to S~ to a map g such that g(D") C A.

With this results at hand, we are able to give the first application of the cellular
approximation theorem.

Corollary 1.4.7. If X is a CW-complezx, then the topological pair (X, X™) is n-connected,
i.e, T (X, X") = 0 for all v < n, or equivalently, the morphism iy : 7 (X") — m.(X),
induced by the inclusion, is an isomorphism for r < n and an epimorphism for r =n.

Proof. Let r < n and let [f] € m(X,X"™). We can take any 0-cell as base point for
(X, X™) since every point can be joined to a 0-cell by a continuous path. Hence, we
may suppose that f sends the base point of D" to a 0-cell.

We consider in S™~! the cellular structure which consists of one 0-cell and one (r — 1)-
cell. Note that f|g--1 is cellular. Thus, by the cellular approximation theorem there exists
a cellular map f’: D" — X such that f/|gr—1 = f|gr—1 and f’ ~ f rel S"7L.

Since f’ is celular and 7 < n then Im f/ C X™. Hence f is homotopic (relative to S"~1)
to a map f’ with Im f/ C X™. Thus, [f] =0 in 7,.(X, X™) by the corollary above. O

Corollary 1.4.8. 7,.(S") =0 forr <n.

Proof. Let r < n. We consider in S" the cellular structure which consists of one 0-cell
and one r-cell, and in S™ the analogous structure. Let [f] € m(S™). By the cellular
approximation theorem, there exists a cellular map f' : S” — S™, such that f’ ~ f rel x
(where * is the 0-cell). But then f/(S") C (S™)" = %, i. e. f’ is constant.

Thus, [f] = 0. O
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We give now two variations of the cellular approximation theorem: for CW-pairs and
for relative CW-complexes.

Proposition 1.4.9 (Cellular approximation theorem for CW-pairs). Let f : (X, A) —
(Y,B) be a continuous map between CW-pairs. Then there exists a cellular map g :
(X, A) — (Y, B) such that f ~ g as maps between topological pairs.

Proposition 1.4.10 (Cellular approximation theorem for relative CW-complexes). Let
f i (X,A) — (Y,B) be a continuous map between relative CW-complezes. Then there
exists a cellular map g : (X, A) — (Y, B) (i.e. g(X7}) C Yy for all n) such that f ~ g
relative to A.

As a corollary we get the following theorem, which is analogous to 1.4.7.

Corollary 1.4.11. Let (X, A) be a relative CW-complex and let n € Ny. If (X, A) has no
cells of dimension less than or equal to n, then the topological pair (X, A) is n-connected.

1.4.3 Whitehead’s theorem

Whitehead’s theorem is one of the most important theorems of the homotopy theory of
classical CW-complexes. The proof we will give here will use the cellular approximation
theorem. A bit more elementary proof, without using the cellular approximation theorem
can be found in [20] and a generalization of this proof is given in chapter 4 of this thesis,
in our generalization of Whitehead’s theorem (4.2.4).

For the proof of Whitehead’s theorem we will need the following lemma, interesting for
its own sake.

Lemma 1.4.12. Let (X, A) be a relative CW-complex and let (Y,B) be a topological
pair with B # &. Suppose that for all n € Ny such that there exists at least one n-cell
in X — A we have that ©,(Y,B,by) = 0 for all by € B. Then every continuous map
f:(X,A) — (Y, B) is homotopic relative to A to a map g such that g(X) C B.

Note that this lemma generalizes 1.4.6.
In particular if dim(X, A) = n (resp. dim(X, A) = co0) and (Y, B) is n-connected (resp.
(Y, B) = 0 for all n € N) then the hypothesis of the lemma are satisfied.

Proof. By induction, suppose h : X — Y is a continuous map such that h(Xfl_l) C B.
Let e € X% and let o : (D", S" 1) — (X%, X~ 1) be the characteristic map of e”. Then
he : (D", S" 1) — (Y, B). Since 7, (Y, B) = 0 then there exists a map 1 such that hep =~ 1
rel S"~1 and ¢(D") C B.
Hence, there exists a continuous map 2’ : X3~ ' Ue™ — Y such that h/(X’; 'Ue”) C B
and h|yn-1,,. = h' rel X371
A

Doing this for all cells of dimension n we obtain a continuous map h X — Y with
h(X7}) C B and a homotopy H : h|xn ~ h rel X1, Since the inclusion i : X7 — X is a
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cofibration, we extend H to X x I:

Xn O Xn ]

zl \Lixlb\

. H
X —">Xx1 \\
G

Note that the homotopy G is relative to Xz_l since H is.
Hence, we may construct a sequence of continuous maps and homotopies

f:fflmfof?lflm--'

with f,(X%) C B and H,, relative to X',
Finally, we define H : X x I — Y by

H(z,t) = Hy(z, 20T (t—(1— ) iftel— 41— 5]
: fn(z) ift—1andze X"
It is easy to verify that H is continuous and Hig = f. We take g = Hi;. =

From this lemma, we obtain the following result.

Corollary 1.4.13. Let (X, A) be a relative CW-complex of dimension n (resp. of dimen-
sion 00) such that (X, A) is n-connected (resp. mp(X,A) =0 for allk € N). Then A C X
1 a strong deformation retract.

Proof. By the previous lemma we obtain the retraction r in the following diagram

Id s
—

A
Zi r 4

_—
Idx

N

i

-~

=

where the upper left triangle commutes, while the lower right one commutes homotopically
relative to A (that is, there exists a homotopy ir ~ Idx relative to A). O

Now we state Whitehead’s theorem. Recall that a continuous map f : X — Y is called
a weak equivalence if it induces isomorphisms fy : 7, (X, z9) — 7, (Y, f(x)) for all zy € X
and for all n € N.

Theorem 1.4.14 (Whitehead’s theorem). A continuous map f : X — Y between CW-
complezes is a homotopy equivalence if and only if it is a weak equivalence.
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Proof. The first implication holds for every topological space (see [19]).

For the converse note that if f is the inclusion of a subcomplex in a CW-complex, the
result follows from the previous corollary.

For the general case, let f : X — Y be any continuous map. By the cellular approxi-
mation theorem there exists a cellular map f': X — Y such that f’ ~ f. Note that f’ is
a weak equivalence since f is.

By 1.2.29, Z is a CW-complex and X C Z;s is subcomplex. We have a commutative
diagram

XL>Y

| 7

Zf/

where j and 7 are inclusion maps and where r : Zy — Y is the standard strong deformation
retraction.

Since f': X — Y is a weak equivalence, then j : X — Zp is a weak equivalence. By
the previous case, j is a homotopy equivalence. Then f’ = rj is a homotopy equivalence
and since f ~ f’, then f is a homotopy equivalence. O

1.4.4 CW-approximations

We will now take study CW-approximations, that is, given a topological space X we want
to find a CW-complex which ‘homotopically approximates’ the space X. More precisely,

Definition 1.4.15. Let X be a topological space. A CW-approzximation of X is a CW-
complex Z together with a weak equivalence f : Z — X.

We will prove that every topological space X admits a CW-approximation as a corollary
of a stronger result, for which we need the following definition.

Definition 1.4.16. Let (X, A) be a topological pair where A C X is a non-empty CW-
complex and let n € Ny. An n-connected CW-model of (X, A) (or simply an n-model of
(X, A)) isa CW-pair (Z, A) together with a continuous map f : Z — X such that f|4 = Id
and such that

(a) The pair (Z, A) is n-connected.

(b) For every zg € Z the morphism f, : 7(Z, z0) — m (X, f(20)) is an isomorphism for
all r > n and a monomorphism for r = n.

Note that an n-model (Z, A) of (X, A) is a kind of ‘homotopic mixture’ between A and
X. Ifi:A— Zand j: A— X are the inclusion maps and f : Z — X is as in the previous
definition, then i, : m.(A) — m(Z) is a isomorphism for all r < n and fy : 7.(Z) — 7, (X)
is a isomorphism for all r > n.

Moreover, iy : m,(A) — m,(Z) is an epimorphism and f, : m,(Z) — mp(X) is a
monomorphism and since fi = j, then f.i, = j.. Hence, in some way 7,(Z) can be
thought as the image of m,(A) in 7, (X).
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Note also that if A consists of a point in each path-connected component of X, then a
0-model of (X, A) is a CW-approximation of X.

We give now the theorem of n-models from which we will deduce that every topological
space admits a CW-approximation.

Theorem 1.4.17. Let n € Ny and let (X, A) be a topological pair where A is a non-empty
CW-complex. Then there exists an n-model f : (Z,A) — (X, A).

Moreover, the n-model (Z,A) can be taken in such a way that Z is built from A by
attaching cells of dimension greater than n.

Proof. We build inductively CW-complexes Z,, for m > n together with maps f,, : Z,,, —
X such that
A:anZn-l—l an+2g

Zm is obtained from Z,,_; attaching m-cells, fi,|z,. , = fm—1, fml|a is the inclusion of A
in X and (fm)« : 7 (Zm) — 7 (X) is @ monomorphism for n < r < m and an epimorphism
forn<r<m.

Suppose we have constructed Zj, and fj, : Zr, — X such that (fg)« : 7(Zg) — 7 (X) is
monomorphism for n < r < k and epimorphism for n < r < k. We will build Zx4; and
extend fi to fri1: Zpy1 — X.

Henceforward, we will work in each path-connected component of A.

For each element o € ker(fx)s C mx(Zx) we choose a continuous map @, : S* — Z,
which may be supposed cellular, such that [p,] = a. For each « we attach a (k + 1)-cell
elgfl to Zy with adjunction map . Let Yy = Zx U U elgfl.

acker(fy)-

Since [pa] € ker(fi)« then fo g, : S¥ — X is nullhomotopic. Thus, it can be extended

to D*+1. There is a commutative diagram

SkLZk

| [N

N fr

N\

AN

.. f(a)
EN

Pasting all the extensions f,ga) we extend the map fr to Yii1 as i Yi+1 — X. Note
that (Yk+1)k = Z.

We will prove that (fx)« : mr(Yss1) — m-(X) is a monomorphism for n < r < k + 1.
Since (Yiy1)® = Zg, then (f)« is a monomorphism for n < r < k. Let ¢ : S¥ — Vi
be a continuous map such that (fi)«[¢] = 0. We may suppose that ¢ is cellular. Then
#(S*) C (Yiy1)* = Zp.. Hence [¢] € ker((f1)«). Thus, [¢] = [@a] for some a € ker(fy)s.
Let j : Zj, — Yj4q be the inclusion map. Since jp, : S* — Y41 can be extended to the
disk D**1! it follows that [¢] = [¢a] = 0 in T (Vi)

Thus (fi)s : 7 (Yer1) — m-(X) is a monomorphism for n < r < k + 1. Note also that
(fx)s : m(Yia1) — m-(X) is an epimorphism for n < r < k since fy, o j = f. However,
(fi)s : Ter1(Yer1) — mra1(X) may not be an epimorphism.
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For each 3 € m41(X) we take a continuous map ¢s : S¥1 — X such that [pg] = 3.

Let Zk+1 = Yk+1 \Y \/ Sk+1 and fk+1 : Zk+1 — X be defined by fk+1
ﬂEWk+1(X)

= fk and

|Yk+1

fistlgior = o3

Note that (Zp11)* = (Yir1)* = Zy. Hence 7, (Yiy1) = 7p(Ziy1) = 7p(Zg) for n < r <
k. Thus (fx+1)« : 7 (Zm) — 7 (X) is a monomorphism for n < r < k and an epimorphism
forn <r <k.

By construction, (fri1)s @ Tre1(Zrsr1) — 7re1(X) is an epimorphism. Indeed, if
ig : S**1 — Z;.1 denotes the inclusion in the B-th copy of S*¥! then (fri1)«([ig]) =
[fr1ig] = [ps]-

We will see now that (fx41)s @ m(Zg+1) — mx(X) is an isomorphism. Since Yi 1 C
Zy41 is a retract (with retraction r : Z 1 — Yiy1 sending \/  S¥T! to a point) then

Bemp41(X)
ri = Idy, ,, where i : Ypy1 — Zgy1 is the inclusion. Then, ryi, = Id, and it follows

that i, : (Y1) — 7r(Zk41) is a monomorphism. Moreover, by cellular approximation,
is : T(Yir1) — mk(Zky1) is an epimorphism. Then, it is an isomorphism. Since fry17 = fi
it follows that (fx41)« : mk(Zky1) — mx(X) is an isomorphism.

We take Z = |J Zy and f: Z — X defined by f|z, = fi. It follows that f: (Z,A) —
k>n
(X, A) is an n-model of (X, A). O

As said before, we obtain as a corollary the following theorem.

Theorem 1.4.18. Let X be a topological space. Then there exists a CW-approzimation
for X.

Proof. We take A consisting of a point in each path-connected component of X. Let
f:(Z,A) — (X,A) be a 0-connected model of (X, A). The map f:Z — X is a CW-
approximation for X. ]

There is also a CW-approximation theorem for topological pairs.

Theorem 1.4.19. Let (X, A) be a topological pair. Then there exists a CW-pair (Z, B)
and a continuous map f : (Z,B) — (X, A) such that f. : 7, (B) — mp(4), f«:m(Z) —
(X)) and f.: mp(Z, B) — m(X, A) are isomorphisms for all n.

Proof. Let g : B — A be a CW-approximation for A. Let in : A — X be the inclusion
map and let o : (Z,B) — (Zinog, B) be a 0-connected CW-model for (Zinog, B). Let
T Zinog — B be the standard strong deformation retraction and let f = ra. It follows
that f|p = g and that f, : m,(B) — m(A) and fi : 1,(Z) — 7, (X) are isomorphisms for
all n € Nyg. Thus, from the five-lemma, f, : m,(Z, B) — m,(X, A) is also an isomorphism
for all n. O

Another important consequence of 1.4.17 is the following proposition.

Proposition 1.4.20. If (X, A) is an n-connected relative CW-complex, then there exists
a relative CW-complex (Z,A) such that (X, A) is homotopy equivalent to (Z,A) relative
to A and (Z,A) has no cells of dimension less than n + 1.
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1.4.5 More homotopical properties

In a similar way as in homology, for homotopy groups of CW-complexes there is an excision
theorem. However, it has a dimensional restriction.

Theorem 1.4.21 (Homotopy excision theorem). Let X be a topological space and let A
and B be subspaces of X such that X = AU B, (A, AN B) is an n-connected relative
CW-complex with n > 1 and (B, AN B) is an m-connected relative CW-complex. Let
j: (A, AN B) — (X,B) be the inclusion. Then j. : m(A, AN B) — m(X,B) is an
isomorphism for 1 <r <n4m and an epimorphism for r =m + n.

We will not give the proof here as it is quite technical and the ideas do not shed any
light on our work. However, it is an important result and shows the difference in difficulty
between dealing with homology groups and with homotopy groups.

As a corollary, we obtain the following proposition which is a refined version of 1.4.3.

Proposition 1.4.22. Let (X, A) be a CW-pair such that A is m-connected and (X, A) is
n-connected with n > 1. Let q: (X, A) — (X/A, *) be the quotient map. Then the induced
map qs : (X, A) — 7. (X/A) is an isomorphism for 2 <r < m+n and an epimorphism
forr=m+n+1.

Another important theorem concerning the homotopy theory of CW-complexes is the
Freudhental suspension theorem. Recall that for homology groups one always has an
isomorphism H,,(X) ~ H,+1(XX). This is not the case for homotopy groups, where some
conditions must be imposed.

Theorem 1.4.23 (Freudhental suspension theorem). Let X be an n-connected CW-
complex, withm > 0. Then ¥ : 7.(X) — m41(XX) is an isomorphism for 1 < r < 2n and
an epimorphism for r = 2n + 1.

Using that 7m2(S?) = Z and Freudhental suspension theorem we obtain the following.
Corollary 1.4.24. 7, (S™) =Z for all n € N.

Proof. Since S™ is (n — 1)-connected, Freudhental suspension theorem gives an isomor-
phism ¥ : 7, (S") — mp1(S™TH) if 1 < n < 2n —2 (ie. if n > 2) and an epimorphism if
n=2n-1 (ie. if n=1). O

The fact that mo(S?) = Z will be proved in next chapter (p. 65) as an application of
the exact sequence of homotopy groups associated to a fibration.
We define now the stable homotopy groups of a space X.

Definition 1.4.25. Let X be a topological space and let n € Nyg. We define the n-th
stable homotopy group of X as w5/ (X) = colgm Tk (2P X).

If X is a CW-complex then ¥ X is (k—1)-connected. From the Freudhental suspension
theorem it follows that 7, x(3*X) ~ 7, 1 (EFF1X) if n + k < 2(k — 1) or equivalently
if K > n + 2. Then the groups m,,x(X*X), k € N, stabilize for k sufficiently large and
X)) ~ 741 (BFX) for all k> n + 2.
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Continuing with our comparison between homology and homotopy properties, we will
analyse now the analogue for the homotopy groups of the wedge axiom for homology. As
before, some hypothesis on the degrees of connectedness of the spaces are needed so that
the wedge axiom holds.

Proposition 1.4.26. Let X be an n-connected CW-complex and let Y be an m-connected
CW-complex. Letix : X - X VY andiy : Y — X VY be the inclusion maps. Suppose
that X or'Y is locally compact. Then the induced map (ix)s ® (iy )« : 7 (X) & (V) —
(X VYY) is an isomorphism for 2 <r <mn+m.

Proof. Since X or Y is locally compact the space X x Y with the product topology is a
CW-complex with the product CW-structure. Let zg and yg be the base points of X and
Y respectively. We know that X VY is homeomorphic to X x {yo} U{zo} xY C X x Y.
Hence we will consider X VY as a subspace of X x Y.

Since X is an n-connected CW-complex we may suppose that X™ = {z¢}. In a similar
way, we may suppose that Y™ = {yg}. Then (X x Y, X vY)"™+l — X VY. Let
j: XVY — X xY be the inclusion map. From the long exact sequence of homotopy
groups associated to the pair (X x Y, X VY') we obtain that j, : m (X VY) — 7,.(X x Y)
is an isomorphism for 1 < r <n + m.

Let px : X XY — X and py : X XY — Y be the projections. Clearly, the induced map
((px)s, (Py)s) : T (X XY) — 7 (X) X7, (Y) is an isomorphism for all r. But (X)) x7m,.(Y)
is isomorphic to 7. (X) & 7.(Y) for r > 2, so we consider ((px)«, (py)«) : 7 (X xY) —
7 (X) & mp (V) for r > 2.

Since ((px)«, (Py)«) © jx 0 ((ix)« @ (iy)«) is the identity map of m,(X) @& m.(Y), the
result follows. ]

As a corollary we obtain the following

Corollary 1.4.27. Let I be an index set. For a € I, let i : S™ — \/5’" denote the
i€l
inclusion in the a-th copy of S™. Then the induced morphism @(za)* : @wn(sn) —
acl aecl

wn(\/ S™) is an isomorphism for n > 2.

el

The proof follows easily from the previous proposition if I is a finite set. For the general
case the result is proved by a standard compactness argument.

Recall that 7'('1(\/ S™) is the free group generated by {[io] : o € I}.

acl

1.4.6 Eilenberg - MacLane spaces

Definition 1.4.28. Let n € N and let G be a group, which we require to be abelian if
n > 2. An Filenberg - MacLane space of type (G,n) is a path-connected CW-complex X
such that 7, (X) ~ G and m;(X) =0 if i # n.

For example, the circle S! is an Eilenberg - MacLane space of type (Z, 1). Despite this
simple example, Filenberg - MacLane spaces are in general much more complicated than
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Moore spaces. We will show now how to construct arbitrary Eilenberg - MacLane spaces.
In contrast to the construction of Moore spaces, we will need to attach an infinite number
of cells of different dimensions.

In order to make the key idea more explicit, we prove first the following lemma.

Lemma 1.4.29. Let X be a path-connected CW-complex and let n € N, n > 2. Then
there exists a CW-complex X' such that 7;(X) ~ my(X') fori <n, m,(X') =0 and X' is
obtained from X by attaching (n + 1)-cells.

Proof. Let {¢qo : @ € J} be a set of generators of m,(X). For each o € J let g, : S — X
be a continuous map such that [g,] = ¢o. By cellular approximation, we may suppose
that g, is a cellular map. Let X’ be the CW-complex obtained by attaching (n + 1)-cells
to X by the maps g,, a € J.

Now we will see that X’ satisfies the required conditions. Consider the long exact
sequence in homotopy groups associated to the pair (X', X):

(X)) — X)) — (X, X)) —— 1 (X)) —— -

Note that 7.(X’, X) = 0 for r < n. Indeed, let [a] € (X', X). Then o : (D", S"71) —
(X', X). By the cellular approximation theorem for CW-pairs « is homotopic (as maps
between pairs) to a cellular map . But since r < n, the image of § must be contained in
X. Thus, by 1.4.6, [a] = 0.

Hence, from the long exact sequence above it follows that the inclusion i, induces
isomorphisms iy : m.(X) — m.(X’) for r < n and an epimorphism i, : m,(X) — 7, (X’).
Now, note that i+([gq]) = 0 in 7, (X’) since g, can be extended to D™ (the extension is the
characteristic map of the (n + 1)-cell attached). Since generators of 7, (X ) are mapped to
0 by the epimorphism i, : m,(X) — m,(X’), it follows that 7, (X’) = 0. O

Proposition 1.4.30. Let n € N and let G be a group if n = 1 and an abelian group if
n > 2. Then there exists an Eilenberg - MacLane space of type (G,n).

Proof. We prove the case n > 2. The case n = 1 is similar and can be found in [§]
(corollary 1.28).

Let {g; : ¢ € I} C G be a set of generators of G and let F' be a free abelian group with
basis {g; : i € I'}. Let ¢ : FF — G be the induced group homomorphism. Then ker ¢ is also
a free abelian group. Let {h,, : @ € J} be a basis of ker ¢. We will construct an Eilenberg -
MacLane space of type (G, n) attaching cells to \/ S™. Note that Wn(\/ S = @ Z=F.

il icl icl
For each o € J let g, : S™ — \/ S™ be a continuous map such that [g,] € 7Tn(\/ S™)
icl iel
corresponds to h, € F.



Section 1.4: Homotopy theory of CW-complexes 55

Let X" = \/ S™ and let X" ! be defined by the pushout
i€l

|| S" e \/ 5"

acJ icl

+1
ac

Consider the following diagram

7rn+1(Xn+17Xn) 2 T (X™) s ”n(XnJrl) - Wn(Xn+17Xn) =0

b

ker ¢ , F G 0

mc

where the isomorphism ¢ is given by the composition

Tt (XL X™) 7 g (X /X g () S™) ~ ker 6.
acJ

Hence, the characteristic maps {f, : @ € J} form a basis of 7, 11(X"*!, X™) since they
correspond to the inclusions i, : S™ — \/ S™. Note that the above square commutes since

acJ
a([fa]) = [ga] = /B_l(hoz)'

Thus, m,(X" ™) ~ G. And m,.(X""1) ~ 7m,.(X™) = 0 for r < n, since X" is obtained
from X" by attaching (n + 1)-cells.

Applying the previous lemma, we build inductively a sequence of CW-complexes
(X™)m>n+2 such that 7, (X™) ~ G, 7 (X™) = 0for r < m—1, r # n and X™ is
obtained from X™~! by attaching m-cells.

We take X = colim X™. Since 7,(X) ~ m.(X"*1) for all » € N, it follows that X is an
Eilenberg - MacLane space of type (G, n). O

Corollary 1.4.31. Let (Gp)nen be a sequence of abelian groups. Then there exists a
path-connected CW-complex X such that m,(X) = G, for alln € N.

Proof. Take X = H X, where X, is an Eilenberg - MacLane space of type (Gp,n). O
neN

An important result is that, for fixed G and n, Eilenberg - MacLane spaces of type
(G,n) are unique up to homotopy equivalence.

Proposition 1.4.32. The homotopy type of an FEilenberg - MacLane space of type (G,n)
s uniquely determined by G and n.

The proof is not difficult but technical and we omit it.
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1.4.7 The Hurewicz theorem

As it was mentioned earlier, Hurewicz’s theorem is one of the most important theorems of
homotopy theory. It connects homotopy theory with homology theory via a map known
as the Hurewicz map, which we recall right now.

Let X be a topological space and let 1 € H,,(S™) ~ Z be a fixed generator of H,,(S™).
We define the Hurewicz map h : mp,(X) — Hyp(X) by h([a]) = ax(1).

A relative version of the Hurewicz map can also be defined and this is done as follows.
Let (X, A) be a topological pair and let 1 € H,(D",S" 1) ~ Z be a fixed generator of
H, (D", S"1). We define h : 7,(X) — H,(X) by h([a]) = a.(1).

Before stating Hurewicz’s theorem we give a technical lemma which will be needed for
the proof of the theorem.

Lemma 1.4.33. Let n € N and let X be a space obtained by attaching (n + 1)-cells to

\/ S™. Let'Y be a path connected topological space and let ¢ : m,(X) — m,(Y) be a group

acl
homomorphism. Then there exists a continuous map f : X — Y such that the induced

map fy: mp(X) — m,(Y) coincides with o.

Proof. Let i, : S™ — X denote the composition of the inclusions S™ — \/S” and
i€l
\/ S™ — X, where the first one is the inclusion in the a-th copy, and let 7, : S™ — Y be
i€l
a continuous map such that [n,] = ¢([ia]).
We define 7+ \/ §" =¥ by 5= + o Then ne([ia]) = 0] = I1a] = ([ia) for al
ac

acl
a € I. Since {i, : @ € I} is a set of generators of 7rn(\/ S™) we obtain that n(vy) = ¢(v)
i€l
for all v € TI'n(\/ S™).
el
Let J be an index set for the (n 4 1)-cells of X. For each 3 € J let gg : S" — \/ S™

aecl
be the attaching map of the cell egﬂ. Note that gg is nullhomotopic in X since the

corresponding characteristic map is an extension of gg : S — X to the cone CS™.

Thus, [ o gg] = 1+([98]) = ¥([gg]) = 0 since [gg] = 0 in m,(X). Hence, there exists
continuous maps g : D™ — Y such that bplsn =mno gs.

We define f: X — Y as the dotted arrow in the diagram

Ll g5
|_| Sno BeJ \/ qn
peJ a€cl
zl push linc
U Dn+1
peJ Ll fs X
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Since the inclusion inc : X™ — X induces an epimorphism inc, : m,(X") — m,(X) b
1.4.5, then {inc.([ia]) : @ € I} is a set of generators of 7,(X). Note that f.(inc.([ia])) =
N«([ia]) = ¢([ia]). Hence, fi = . -

Theorem 1.4.34 (Hurewicz’s theorem). Let n € N, n > 2 and let X be an (n —1)-
connected topological space. Then H;(X) = 0 fori < n and the Hurewicz map h : m,(X) —
H,(X) is an isomorphism.

<

Proof. By CW-approximation we may suppose that X is a CW-complex. Since X is (n—1)-
connected, by 1.4.20 we may also suppose that X"~ = x. Finally, since m;(X) = m;( X" *1)
for i < n and H;(X) = H;(X"™) for i < n, we may suppose that X = X!, Thus, X is
in the hypothesis of the previous lemma and clearly ﬁz(X ) =0 for i < n.

We consider the long exact sequence of homotopy groups associated to the pair (X, X™):

On
o Hﬂn-f-l(X?Xn) i>7‘—77'(Xvn) Hﬂ—n(X) *)Wn(XvXn) —
Since (X, X™) is n-connected, m,(X) ~ coker 0, +1. By 1.4.22,

M1 (X, X™) = Tt (X/ X" =moa () ST = P Z
BEJ’VLJrl BEJn+1

It is not hard to prove that the following diagram commutes

On,
.. 4>7Tn+1(X,Xn) ;1>7rn(Xn) 4>7rn(X) —_— () — -

| P

On
o Hp (X, X™) =5 H (X)) —— Hpy(X) —> 0 —> - - -

and that the maps h : m,41(X, X") @ 7 — Hp (X, X") @ Z and h :
BETn+1 BETn+1
T (X™) @ Z — Hp(X") ~ @ Z are isomorphisms.
acn acdn
Since the rows are exact, the map h : m,(X) — H,(X) is also an isomorphism. O
We give now the relative version of Hurewicz’s theorem.

Theorem 1.4.35 (Relative version of Hurewicz’s theorem). Let n € N, n > 2 and let
(X, A) be an (n — 1)-connected topological pair such that A is simply-connected and non-
empty. Then H;(X,A) =0 fori<mn and m,(X,A) ~ H,(X,A).

Proof. By 1.4.19, we may suppose that (X, A) is a CW-pair. Let ¢ : (X, A) — (X/A,*)
be the quotient map and consider the following diagram

(X, A) — 2> 71, (X/A)

| |
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It is not difficult to prove that this diagram commutes. We have that ¢, : m,(X, A) —
mn(X/A) is an isomorphism by 1.4.22 and that ¢, : H,(X,A) — H,(X/A) is an isomor-
phism. Also h : 7, (X/A) — H,(X/A) is an isomorphism by the previous version of the
Hurewicz theorem. Hence, h : m,(X, A) — H,(X, A) is an isomorphism. O

From the relative Hurewicz theorem we obtain the homological version of Whitehead’s
theorem.

Theorem 1.4.36. Let X and Y be simply connected CW-complezes and let f : X — Y
be a continuous map such that f. : Hy(X) — H,(Y) is an isomorphism for all n € Ny.
Then f is a homotopy equivalence.

Proof. We may suppose that f is a cellular map. From the hypotheses of the theorem
and from the long exact sequences of homotopy and homology groups associated to the
pair (Zy, X) we obtain that 7 (Z;, X) = 0 and H,(Zf,X) = 0 for all n € N. Hence,
m™(Z¢, X) = 0 for all n € N by the relative version of Hurewicz’s theorem. Then the
inclusion i : X — Z; is a weak equivalence. Since X and Z; are CW-complexes, i is a
homotopy equivalence by Whitehead’s theorem. But f = 74, where r : Z; — Y is the
standard strong deformation retraction. Hence, f is a homotopy equivalence. O

1.4.8 Homology decomposition
We study now homology decomposition of spaces, which will prove useful for our work.

Definition 1.4.37. Let Y be a topological space. A homology decomposition of Y is a
CW-complex X together with a homotopy equivalence f : X — Y and a sequence (X,,)nen
of subcomplexes of X satisfying

(a) X, € Xpq1 for all m € N.

() X = X

neN
(¢) Xi is a Moore space of type (H1(Y),1).

(d) For all n € N, X, is the mapping cone of a cellular map g, : M,, — X,,, where
M, is a Moore space of type (H,+1(Y),n), and g, is such that the induced map
(gn)« : Hp(My) — Hp(X,,) is trivial.

Remark 1.4.38. The CW-complexes X, satisfy H;(X,,) = H;(Y) for i < n and H;(X,) =0
for i > n. Indeed, for n = 1 this holds by (c¢). Suppose that the statement is true for X,.
Consider the long exact sequence of homology associated to the pair (X1, X,):

0;
o —— Hi(X,) — Hi(Xp41) — Hi( X1, Xp) — Hi1 (X)) —— -+

Since (Xn+1,Xn) isa CW—pair, Hi(XnJrl,Xn) >~ Hl(Xn+1/Xn) ~ Hl(ZMn) >~ Hlfl(Mn)
It is easy to prove that under this isomorphism the boundary map 0,41 coincides with
(gn)« which is trivial. Since H,11(X,) = 0 we obtain that H,1(Xp+1) ~ H,(M,) =
H,+1(Y). Since Hi(Xp41,Xn) ~ Hi—1(M,) = 0 for i # n+ 1 and 0,41 = 0 we obtain
that H;(X,) ~ Hj(Xp41) for i #n+ 1.
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Theorem 1.4.39. Every simply-connected CW-complex admits a homology decomposi-
tion.

Proof. Let Y be a simply-connected CW-complex. We will build the CW-complexes X, of
the above definition inductively, together with maps f,, : X,, — Y inducing isomorphisms
in H; for ¢ < n. Since Y is simply-connected we take X; = % and f; : X1 — Y any map.

Suppose we have constructed CW-complexes X; and maps f; : X; — Y for j < n
such that the spaces X; satisfy the conditions of the previous definition and f; induces
isomorphisms in H; for i < j. Let Zy, be the mapping cylinder of f,, let i : X;, — Z;, be
the inclusion and let r : Z; — Y be the standard strong deformation retraction.

Note that by the long exact sequence in homology associated to the pair (Zy,, X,,) we
have that H;(Zy,,X,) = 0 for i < n since f,, induces isomorphisms in H; for ¢ < n. By
the Hurewicz theorem and the long exact sequence mentioned previously we obtain that
7Tn+1(an,Xn) ~ Hn+1(an,Xn) ~ Hn—i—l(an) ~ Hn+1(Y).

As we have seen before, we can build a Moore space of type (Hp4+1(Y),n), M,, as
follows. We take a wedge of spheres ST corresponding to a set {gy : A € A} of generators

of H,4+1(Y) and we attach (n + 1)-cells according to certain relations {r, = Z m&a) gy =
AEA
0 : a € J} such that the group H,11(Y) is the abelian group generated by elements
{gx : A € A} satisfying the relations {r, = Z mg\a)g)\ =0:a€J}.
AEA

Under the isomorphism 7,41(Zf,, Xn) ~ H,41(Y), each generator gy corresponds to
a map fy : (D"T1,8") — (Z;,,X,) which may be supposed cellular. Hence, from the
relations above we get Z mg\a) (fa] =0in mp1(Zy,, Xp) for all € J. The corresponding

AEA

homotopy H, may be considered as a map H, : (CD"™!,CS") — (Zy,,X,) such that
H,inc = Z mf\a)fA, where inc : (D", S7) — (CD™*1 CS") is the inclusion map and it

AEA
also might be taken cellular.

For A € A, let iy : S — \/ S™ be the inclusion in the A-th copy. We consider the
€A
following commutative diagram of solid arrows

()

Uz mi :

|_| S aEJ XEA v S
acJ €A
\L push l

I_l Dn+1
aed

m(a [3
|_| csm C(alglJ()\ze:A »)) \/ csn

aeJ €A

e /h |

aeJ \W//

acJ
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and define the dotted arrows g, and ¢, such that the whole diagram commutes. Note
that g, and ¢, are also cellular maps. Let X,;; be the cone of the map g, and let
fri1: Xny1 — Zy, be defined so as to make commutative the following diagram

M, g X,
Lo ]S
push

CM EE—— Xn+1

\ inc

’
n+1

an

By construction, it is not hard to prove that f/., induces an isomorphism (f} )«

Hp1(Xng1, Xn) = Hyp1(Zy,, Xy). Then, by the five-lemma we obtain that f;,_ ; induces
isomorphisms (f}, 1)« : Hi(Xny1) — Hi(Zy,) for i < n. We take frp1 =7f) 1 Xnp1 —
Y which also induces isomorphisms in H; for ¢ < n since r is a homotopy equivalence. Let
X = U X, and f : X — Y be defined by f(z) = fu(z) if z € X,,. It is clear that f

neN
is well defined and continuous and that f induces isomorphisms in all homology groups.

Since X and Y are simply connected CW-complexes it follows that f is a homotopy
equivalence. ]



Chapter 2

Fibrations and spectral sequences

Spectral sequences constitute a powerful computational tool whose areas of application
include algebra, topology and geometry. They where introduced by Leray in 1946 to
compute sheaf cohomology, but some years later other mathematicians noticed that his
idea could be applied to other settings. One of them was J.-P. Serre, who introduces a
spectral sequence associated to fibration of topological spaces [17]. The Serre spectral
sequence is a key tool in algebraic topology which has many applications including, for
example, computations regarding homotopy groups of spheres and a generalization of
Hurewicz’s theorem.

In the mid fifties, Federer also applies the machinery of spectral sequences to study
homotopy groups of spaces of maps and develops the spectral sequence named after him.

In this chapter we begin by recalling the definition of fibrations and some basic prop-
erties, such as the long exact homotopy sequence associated to a fibration. Then, we give
the definition and construction of Postnikov towers, which can be thought as a kind of
homotopy decomposition.

In the third section we give an algebraic approach to spectral sequences with some
examples and results. We then introduce Serre spectral sequence in section 4, using in its
proof the algebraic results given before. We also include important applications of it, such
as the generalized version of Hurewicz’s theorem and some others about homotopy group
of spheres.

Section 5 deals with localization of topological spaces. The key theorem of this section
is proved with the aid of Serre spectral sequence.

In the last section we give an alternative construction of Federer’s spectral sequence [6]
which is useful to obtain information about A-homotopy groups of spaces. We also use it
to prove a generalization of Hopf-Whitney theorem (2.5.6).

2.1 Fibrations

Fibrations constitute a class of continuous maps of great importance in algebraic topology.
Together with cofibrations and weak equivalences they form the basis of the classical
homotopy theory and serve as models for abstract homotopy theories.

Before starting to work with fibrations we will define lifting properties so as to have

61



Section 2.1: Fibrations 62

language for later use.

Definition 2.1.1. Let f : W — X and g : Y — Z be continuous maps between topological
spaces. We say that f has the left lifting property with respect to g or that g has the right
lifting property with respect to f if for every continuous maps h : W — Y and k: X — Z
such that gh = kf there exists a map ¢ : X — Y such that ¢f = h and g¢p = k.

wW—"sy
® 7

XT>Z

g

<~

Definition 2.1.2. Let f : X — Y be a continuous map and let .% be a class of continuous
maps between topological spaces. We say that f has the left (resp. right) lifting property
with respect to F if f has the left (resp. right) lifting property with respect to g for all
ge Z.

Definition 2.1.3. Let f: Y — Z be a continuous map and let X be a topological space.
We say that f has the homotopy lifting property with respect to X if f has the right lifting
property with respect to ig : X — IX, i.e. if for every continuous map g : X — Y and
every homotopy H : IX — Z such that Hig = fg there exists a homotopy H : [ X — Y
such that Hig =g and fH = H.
x>y
— 7

IX T A
Now we are ready to define fibrations.

Definition 2.1.4. Let p : E — B be a continuous map. We say that p is a fibration if it
has the homotopy lifting property with respect to every space X.

In this case, B is called the base space of the firbation p and E is called the total space
of p. If by € B, the space F,, = p~1(bp) is called the fibre over by.

Examples 2.1.5.

(a) If B and F are topological spaces, the projection p : B x F' — B is a fibration with
fibre F'.

(b) Fibre bundles over paracompact spaces are fibrations.

(c) The Hopf map n : S — S? is defined in the following way. We interpret S3 =
{(z,w) € C? / |22+ |w|* = 1} and §% = {(2,2) e Cx R / |2]? + |z|? = 1} and we
define n(z,w) = (22w, |2|?> — |w|?). Then n: 3 — 52 is a fibration with fibre S*.

(d) Let X be a topological space and let 29 € X. Let PX = {y:[0,1] - X | v(0) = zo}
and let p : PX — X be defined by p(y) = 7(1). Then p is a fibration and Fy, = QX.
The fibration p is called the path-space fibration.
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(e) Related to the previous example is the following construction. Let f: A — B be a
continuous map and let Ey C A x B! be defined by Ef = {(a,v) € A x B | 4(0) =
f(a)}. Note that E can also be defined by the pullback diagram

Ef pry A

przi pull lf

BI evo B

Then the map p : Ey — B defined by p(a,y) = v(1) is a fibration.

The construction of the last example above is very important since it gives us a way to
write any map as a composition of a fibration and a homotopy equivalence. Hence, if we
are only interested in homotopy types, any map can be converted into a fibration.

Proposition 2.1.6. Let f : A — B be a continuous map. Then there exists a factorization
f = pi with p a fibration and i a homotopy equivalence.

Proof. Let Ef and p : Ef — B be defined as above and define i : A — E; by i(a) =
(a,cg(a)), where cg(q) is the constant path at f(a). It is easy to prove that i is a strong
deformation retract, hence a homotopy equivalence. Clearly, pi = f. O

Definition 2.1.7. Let p: E — B be a continuous map. We say that p is a Serre fibration
if it has the homotopy lifting property with respect to D™ for all n > 0.

Note that any fibration is a Serre fibration.

From the fact that there is a homeomorphism of topological pairs (I"T! I"™ x {0}) ~
(ID™, D™ x {0}) it follows that a continuous map p is a Serre fibration if and only if it has
the homotopy lifting property with respect to I™ for all n > 0.

We will now derive the long exact homotopy sequence associated to a Serre fibration
p: E — B. This is a very useful tool and constitutes one of the key homotopy properties
of fibrations. It relates the homotopy groups of the base space, the total space and the
fibre of a Serre fibration p : E — B and it is obtained in the following way.

Fix by € B and eg € p~*(by). Let F = p~1(bg). We consider the long exact sequence of
homotopy groups associated to the topological pair (E, F):

o *>7Tn(F,€0) Lﬂ-n(Eaeo) H77-77,(E‘?F’;€0) L>7Tn,1(F,60) —

We shall prove that 7, (E, F,eq) ~ mp(B,byg). More precisely, we will prove that the
Serre fibration p induces an isomorphism p, : 7, (E, F,eq) — 7, (B, {bo},bo) ~ 7, (B, bg)
for all n > 1.

In order to do this more easily, we will work with an alternative description of the
homotopy groups. Let X be a topological space and let xg € X and A C X such that
zo € A. When needed, for n > 2, we regard 1"~ ! as the subspace I"~! x {0} C I". Let

n—1

T = (21, an) €1 Jwi=0o0r w; =1} U{(21,...,2,) € I" [ 2, =1}
=1
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Note that I"~ 1 U J"! = 9I™.

It is known that m,(X,zo) can also be defined as [(I",0I"),(X,x0)] and that
(X, A, 29) can also be defined as [(I", I"™!, J" 1) (X, A, x0)]. And it is easy to prove
that we can make a slight modification in this last alternative definition to obtain that
(X, A, z0) is in bijection with [(I™, J*~1 ") (X, A, x¢)].

We will see now that p, : mp(E, F,ep) — mn(B,{bo},bo) =~ mn(B,bp) is surjective. Let
l9] € mn(B,by) with g : (I",0I") — (B,bo) and let ¢ : I" — I"/I""! be the quotient
map. Let v : (I"/I"1 0I"/1"1 ) — (I",0I", %) be a homeomorphism. There is a
commutative diagram

c
In—l 640) E

!
n
I 9¥q B

Since the topological pair (I",I""1) is homeomorphic to (ID"~! D"~ x {0}) and p is
a Serre fibration, there exists a continuous map ¢’ : I — FE such that pg’ = gyq and
g'ip = cey- Thus, there exists a continuous map g¢” : (I"/I"1,0I" /1" ) — (E, F, eq)
such that ¢"q = ¢’. Let g = ¢”"¢~!. Note that g : (I",J""1,I") — (E,F,ep) and that
pgvq = pg"v~"q = pg"q = pg’ = gibq.

q ()

mn s In/[nfl > [n

N

E B

But since ¢ is surjective and v is a homeomorphism we conclude that pg = ¢g. Thus p, is
surjective.

We prove now that p, : m,(E, F,eq) — m(B,{bo},bo) =~ mp(B,bp) is injective. Let
a,B: (I, J 1 1) — (B, F,{eg}) be continuous maps such that poa ~ po 3 and let
H :I" x I — B be a homotopy between p o a and p o § relative to 91"

We define v : I" x {0,1} U I ! x {0} x I — E by

a(xy,...,x,) ift=0
Y(z1, T2y o X1, Ty t) = PBlar, ..oy zy) ft=1
€o ifx, =0

To prove injectivity, we must demonstrate that there exists a lift
" x{0,1} Ul x {0} x [ —=E

inc e V4

I" <1 I B

since if such a lift exists, then H(OI™ x [) C F and H(I" ! x {0} x I) = {eo}.
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Note that the topological pair (1%, I x {0,1}U{0} x I) is homeomorphic to (12, I x {0}).
Taking product with I"~! gives a homeomorphism ("1, 1"~1 x {0,1} U {0} x I""1) ~
(It 1 x {0}).

Since the inclusion i : I — I™T! has the left lifting property with respect to p, so does
the inclusion I"~! x {0,1} U {0} x I"! — I"*!. Hence, the desired lifting exists. Thus,
P« 18 injective.

In consequence, py : m,(E, F,eg) — m,(B,by) is a bijection for n > 1 and we obtain a
long exact sequence

e o (F ) —m (B, €0) —om 7 (B, by) — 2= w1 (F) ) —> -+ -

which is called the exact homotopy sequence of the Serre fibration p: E — B.
As an example of an application, consider the exact homotopy sequence of the Hopf
fibration 7 : 3 — S2.

s my(S1) g (59) g (87) E ma(ST) E ma(53) B ma(52) S i (S1) (88 B
Since 71(5%) and 72(S®) are trivial by corollary 1.4.8, we obtain that m2(5?) ~ 71 (S!) ~ Z.

Note that from the homology of S™ and the Hurewicz theorem we can also deduce that
T (S™) ~ Z for all n > 2.

On the other hand, m2(S') = 0 and 73(S!) = 0 because the universal covering of S! is
contractible. Hence, from the exact sequence above we obtain that 73(S?) ~ m3(S%) ~ Z.

Another important homotopy property of fibrations is that changing the base point
in the base space we obtain homotopy equivalent fibers provided that the base space is
path-connected.

Proposition 2.1.8. Let p: E — B be a Serre fibration and let bg,by € B. Letv:1 — B
be a continuous map such that v(0) = by and v(1) = by. Then ~ induces a homotopy
equivalence ¢~ = Fyy — Fp, .

The proof can be found, for example, in [§].

2.1.1 Postnikov towers

In this subsection we recall the definition and construction of Postnikov towers.

Definition 2.1.9. Let X be a path-connected topological space. A Postnikov tower for
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X is a commutative diagram

such that
(a) For all j > 2, the map p; : X; — X;_; is a fibration.
(b) The induced map (fp)« : m(X) — m(X,,) is an isomorphism for ¢ < n.
(¢) mi(Xy) =0 fori>n.

Note that if F;, is the fibre of the fibration p,, from the exact homotopy sequence for
pr, it follows that F), is an Eilenberg - MacLane space of type (m,(X),n).

Thus, the spaces X,, can be thought as ‘homotopy approximations’ of X, and we have
better approximations as n increases.

We want to prove that any path-connected CW-complex admits a Postnikov tower, for
which we need the following lemma.

Lemma 2.1.10. Let (X, A) be a relative CW-complex and let Y be a path-connected
topological space. Suppose that for all n € Ng such that there exists at least one n-cell in
X — A we have that 7,—1(Y) = 0. Then every continuous map f: A —Y can be extended
to X, i.e. for every continuous map f: A — Y there exists a continuous map f: X — Y

such that fla = f.

Its proof follows from the fact that a nullhomotopic map S”~! — X can be extended
to the disk D™.

Theorem 2.1.11. Let X be a path-connected CW-complex. Then X admits a Postnikov
tower.

Proof. By 1.4.17, we may build a CW-complex X,, such that (X,,, X) is an (n+ 1)-model
of (CX, X). Moreover, we may construct X,, by attaching cells of dimension greater than
(n+1) to X. We take f,, : X — X,, to be the inclusion.

By the above lemma, the map f, : X — X, can be extended to a map ppy1 : Xpnt1 —
X, since X,,11 is obtained from X by attaching cells of dimension greater than (n + 2)
and m;(X,) =0 for i > n.

Now, we will turn the maps p, into fibrations. We proceed by induction in j. For
J = 2, consider a factorization pa = phia with is : X9 — X} a homotopy equivalence and
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p2 : X5 — Xj afibration. For j > 3, we write p;i;—1 = pji; with i; : X; — X| a homotopy
equivalence and p’; : X — X]_; a fibration.
Thus, we obtain a commutative diagram

3 ’
X3 —2> X}

P3 4

and clearly, the spaces X/, n € N, together with the maps i, f,, n € N, and the fibrations
pl,, n € N, constitute a Postnikov tower for X. ]

Definition 2.1.12. Let p : E — B be a fibration with fibre . We say that p is a principal
fibration if there is a commutative diagram

F E B
QB F’ E' B’

where the bottom row is a fibration sequence (i.e F’ is the fibre of the map E’ — B’) and
where the vertical arrows are weak equivalences.

Theorem 2.1.13. Let X be a path-connected CW-complex. Then X admits a Postnikov
tower of principal fibrations if and only if 1 (X) acts trivially on m,(X) for alln > 1.

For its proof, see [8].
We end this section stating another result from [8] that we will need later.

Proposition 2.1.14. Let X be a path-connected CW-complex and let

p3

f3 X,

P2
A

X%

be a Postnikov tower for X. Then, the induced map X — lim X, is a weak equivalence.
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2.2 Spectral sequences

In this section we will recall the basic notions about spectral sequences and fix the cor-
responding notation for later use throughout this thesis. For a comprehensive exposition
on spectral sequences and applications to algebra and topology, the reader might consult
[10].

2.2.1 Definition

Definition 2.2.1. A (homological) spectral sequence (starting in a > 0) is a collection
(E",d")r>a of (Z x Z)-graded modules E" = (E} ,)p ez together with morphisms dj, , :

P

Epq — Ep—rg+r—1 such that d, dy, .~ =0 for all p,q,r, and explicit isomorphisms
1~ _

E;fg ~ H,,(E") = ker dz’;q/Im Ayt grt1-

The (Z x Z)-graded module (E",d") is called the r-th page of E (or the r-th term of
E). Via the isomorphism Eft! ~ H, ,(E"), E™*! can be identified to a subquotient of
E". We define the total degree of E, , by n = p + g. Clearly, the boundary morphisms d"
have total degree —1.

In a similar way we define cohomological spectral sequences.

Definition 2.2.2. A cohomological spectral sequence (starting in a > 0) is a collection
(Er,dy)r>q of Z x Z-graded modules E" = (E*?), , together with morphisms d?? : EY —

BP0 guch that dy ooy i1 = 0 for all p, g, 7, and explicit isomorphisms E}f; o~

Hp(Er) = ker df’q/Im di;—r,q+r—1_

For the following construction we will work with homological spectral sequences but
the cohomological version can be done too.
Let E be a spectral sequence starting in page a. We define Z, = E} , By, = 0,
atl — kerd® , BoT! =Tmd?,. Then Eof! = Z0t1/Botl. Let wotl : zotl — Eatl e
Zpg =kerdy,, By, =1Im pa- o, 0 opa T “pa [Tpa - BE Tpa - Spg 7 Tpa
the quotient map. We define Z;7° = (my7 ")~ (kerdj "), Byt® = (mp7) " (Imdj7 ). By
the first isomorphism theorem, it is easy to verify that Z3+2/Bat? = EFi+2,

Thus, we define n0#? : Z0+2 — Et? as the quotient map and repeat the above

procedure. Inductively, for each (p, q) € Z X Z we construct sequences of modules (B} 4);>q

and (Z3 q)j>a such that

_ a a+1 a+1 a __ a
0= Blhq < Bp,q c...C Zp7q < Zp:q - Epyq

We define

[o@) oo
oo T oo T o o x
Bp,q - U Bp,q ’ Zp,q - ﬂ Zp7q and Ep,q - Zp7q/Bp,q‘
r=a r=a

The bigraded module £ = (E} )y ¢ez is called limit of the spectral sequence E.

We say that the spectral sequence E converges if for all p, g € Z there exists r(p, q) > a
such that d" : B} , — E}_, ., is trivial for r > r(p, q).

In this case, E;fgl is isomorphic to a quotient of £ . and E}% is isomorphic to the
direct limit

m(p,q) m(p,q)+1
By = Epy BRAERE
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Definition 2.2.3. A first quadrant spectral sequence is a spectral sequence E such that
E,;,=0ifp<0orq<0.

Note that if E is a first quadrant spectral sequence then E converges. Moreover, for
all (p,q) € Z x Z there exists ro such that £} = E>5 if 7 > 1.

Definition 2.2.4. Let E be a spectral sequence. We say that E collapses at page k if
dy =0 for r > k and for all p,q € Z. In consequence, E" ~ Etl~ o~ B>

Clearly, if the spectral sequence E collapses at page k then it converges.
We now recall the definition of a filtration of an R-module in order to complete the
notion of convergence.

Definition 2.2.5. Let M be an R-module. A filtration of M is a sequence of R-modules
(FuM)pez such that {0} C...C F,M C F,; M C...C M.

We will say that the filtration is bounded from below (resp. bounded from above) if
there exists a € Z such that F,,M = 0 for n < a (resp. F,M = M for n > a). We say
that a filtration is bounded if it is bounded from below and above.

Note that if M = @ M,, is a graded module and (F,, M ),ecz is a filtration of M then

neN
(FM N Mj)pez is a filtration of Mj, for all j € N.

Definition 2.2.6. Let E = (E",d"),>, be a convergent spectral sequence. We say that E

converges to the graded module H = @ H,, if there exists a filtration (F,H),ez of H such

neL
that for all p,q € Z, E,S, is isomorphic to the quotient (F,H N Hyyq)/(Fp—1H N Hyyq).

2.2.2 Exact couples

Definition 2.2.7. An ezxact couple is a diagram of R-modules

WA

E

which is exact at each module, i.e. keri = Im k, kerj = Im ¢ and ker k = Im 5. We will
denote it (A, E,i,j,k).

Given an exact couple as above, we consider the map d : E — FE defined by d = j o k.
From exactness, it is clear that d> = 0. Hence, we may compute the homology of E
with respect to d and define E' = kerd/Im d. We also define A’ = Im ¢ and morphisms
i A A A - Eand k' E'— A by i =i|a, j'(i(a)) = [j(a)] and k'([e]) = k(e).

It is routine to check that k' and j" are well defined. Indeed, j(a) € ker d since d(j(a)) =
(jkj)(a) = 0 and if i(a1) = i(az) then a3 — az € keri = Im k, thus, j(a1) — j(a2) €
Im jk = Im d. Hence, j is well defined. Note also that if [¢] € E’ then e € kerd, hence
jk(e) = d(e) = 0. Thus, k(e) € kerj = Imi = A’. Then, Im k' C A’ as desired. Moreover,
if (] =0 in E' then e € Imd C Im j = ker k. In consequence, k' is well defined.
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The diagram

is called the derived couple of the exact couple (A, E, 1, j, k).
A crucial result is the following

Proposition 2.2.8. The derived couple of an exact couple is an exact couple.

The proof is easy and we omit it. It can be found in [10].

This result means that we can iterate the above process indefinitely. Given an exact
couple (A, E,i,7,k), we will denote its n-th derived couple by (A™, B () ;) g()y,

Exact couples give rise to spectral sequences in the following way. Suppose that

BN

E

is an exact couple where A and E are (Z x Z)-graded modules and where the maps
i, 7 and k have bidegrees (1,—1), (0,0) and (—1,0) respectively. Let (A', E' ¢ j' k)
denote its derived couple. The modules A’ and E’ inherit a graduation from A and E
since the morphisms ¢, 7 and k are bigraded. Moreover, it is clear that i and k' have
the same bidegrees as ¢ and k, i.e. (1,—1) and (—1,0) respectively. Regarding j', since
j'(i(a)) = [j(a)] it follows that deg(j’) + deg(i) = deg(j). Hence, j' has bidegree (—1,1).

By induction, it is easy to prove that for all n € N, the morphisms i, j(”) and k(™
have bidegrees (1, —1), (—n,n) and (—1,0) respectively.

For r € N, let E" = EC~1 and d" = j=Y 0 k=1 where (A®, E©) 4(0) ;0) r©)) =
(A,E,i,j,k) and d* = j o k . Hence, d" has bidegree (—r,r — 1). Thus, (E",d"),>1 is an
spectral sequence.

In most topological applications one encounters an exact couple

BN

E

where A and E are (Z x Z)-graded modules and where the maps i, j and k have bidegrees
(0,1), (0,0) and (—1,—1) respectively. In this case, to obtain the spectral sequence as
above we will need to make a change of indexes. If A = (A, p)np and E = (Epp)np, We
call ¢ = n—p and consider A = (A4, 4)p,q and E = (E} 4)pq- Since ¢, j and k have bidegrees
(0,1), (0,0) and (—1,—1) respectively in n and p, they have bidegrees (1,—1), (0,0) and
(—1,0) respectively in p and g. So, we are in the hypothesis of the previous construction.
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A useful presentation of this case of bigraded exact couples is by means of the following
‘staircase’ diagram

o I

k J k J
An,l’ En7p A?’L—l,p—l e

I i

T An7p+1 I En,p—i—l — An—l,p —_—

% Vi

k J k J
e > An,p+2 I En,p+2 —— An—l,p—l—l —

I b

Note that the sequences formed by arrows i, 7 and k in succession are exact and these are
arranged in staircase form.

Example 2.2.9. Let X be a topological space X and let {X,},cz be an increasing se-

quence of subspaces of X such that U X, = X. For example, X might be a CW-complex

PEZL
and X, its p-skeleton. Take

A= P Hu(X,) and E= P Hu(Xp, X, 1)
n7p€Z n,pEZ

and let ¢, 7 and k be the maps defined by the long exact sequence of homology groups
associated to the pairs (X, X,—1) for p € N:
k i J k i
o= Hp1(Xp-1) = Hp1(Xp) > Hn1(Xp, Xp-1) = Hp(Xp-1) > - -
This exact couple induces a spectral sequence which, under certain additional hypotheses
on the filtration of X, will converge to the homology of X. Note that if X is a CW-complex

and we consider the skeletal filtration, the morphism d is just the cellular boundary map.
We will come back to this example later.

Now we will impose some extra conditions on the exact couple (A, F, i, j, k). As above,
suppose that A and E are (Z x Z)-graded modules and that the maps i, j and k have bide-
grees (0,1), (0,0) and (—1, —1) respectively, and let (E",d") denote the induced spectral
sequence.

(1) For fixed n € N there are only a finite number of nontrivial modules E, , i.e.
in the staircase diagram above only finitely many terms in each E column are not 0. By
exactness this is equivalent to saying that all but a finite number of maps in each A-column
are isomorphisms.

Two important consequences arise from (1). Firstly, since the differential d" has bide-
gree (—r,r — 1) (and total degree —1) it follows that the spectral sequence (E",d") con-
verges. Secondly, for all n € N there exists modules A,, o and A, ;~ and integers a(n)
and b(n) such that A, , ~ A, _ for all p < a(n) and A, ~ A, 1 for all p > b(n).
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Taking this into account, we can state the other conditions to consider:
(2) Ap,—oo =0 for all n € Z.
(3) Ap,+00 =0 for all n € Z.

Theorem 2.2.10. Let (A, E,i,j,k) be an exact couple such that A and E are (Z x Z)-
graded modules and that the maps i, j and k have bidegrees (0,1), (0,0) and (—1,—1)
respectively, and let (E",d") denote the induced spectral sequence. Then

(a) If conditions (1) and (2) are satisfied then the induced spectral sequence converges to

the graded module @An7+oo. Moreover, for all p,q € Z, E;, is isomorphic to the
neL

quotient Fff/Fﬁ_l, where n = p+q and F} is the image of the map Ay, p — Ap too-

(b) If conditions (1) and (3) are satisfied then the induced spectral sequence converges

to the graded module @An,_m. Moreover, for all p,q € Z, E, is isomorphic
nez

to the quotient Ff;_l/Fﬁj, where n = p+ q and FY_, is the kernel of the map

Anfl,foo - Anfl,p-

Proof. Let (A", E(™ () () k(7)) denote the r-th derived couple of (A, E, 1,7, k). For
each » € N there is an exact sequence
E() () 4 E() () 4
Er(z:)—l,p—&-r—l e A’E:]))—‘rT‘—Q — A'E:;H—r—l - Er(zrz); - Agj1,p—1 — Agﬂzl,p - Er(:jl,p—r‘-‘rl
Fix n and p. If r is sufficiently large, then the first and the last terms of this sequence
are 0 by condition (1). Since A7, , = (i Yo...0iM) 0i)(Ap,p_r) then for sufficiently

large 7 the last two A terms of this sequence are 0 by condition (2). Thus, ET(LT})? =

AL A ) = (0 o 0dM 0 i) (Any) /(i 0 iV o 0iM 0 d) (App).
Hence ng’p is isomorphic to the quotient F}/ Ff{_l.

We prove now the second statement. As before, if r is sufficiently large, then the first
and the last terms of the sequence above as well as the two first A terms are 0. Hence,
Er(:% = ker(i(’") : ASLT—)I,p—l — Agﬁ_)ljp). We may suppose that A,_1,—r = Ap—1p—rt1 =
Ap_1,—c0, thus there are epimorphisms it Apt—oo = An—1pr — Ap_1p—1 and " :
Ap—1,—0co = An—1p—r — Ap_1,p. There is a commutative triangle

_sr—1
An_l,_m% (r)

n—1,p—1
Agzl,p

Applying the first isomorphism theorem to B|ker = kery — keri we obtain that keri =
ker~/ker 8 = Fl?’l/F;__ll. O

Examples 2.2.11.
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(a)

2.3

We return to example 2.2.9. Suppose, in addition, that X, = @ for p < 0 and that,
given n, the inclusion X, < X induces isomorphisms in H,, for sufficiently large p.
Then the exact couple defined there satisfies conditions (1) and (2) and the induced
spectral sequence converges to the homology of X.

In particular, if we take X, to be the p-skeleton of X for all p € Ny, then the
conditions mentioned above are satisfied and hence the induced spectral sequence
converges to the homology of X. In this case, the first page of this spectral sequence
has (at most) one nontrivial row, namely E} o = Hp(X,, Xp—1) = EB Z.
p-cells of X

As was noted in example 2.2.9, the differential d is the cellular boundary map. Hence
the nontrivial row of the induced spectral sequence coincides with the cellular chain
complex of X. Since this spectral sequence converges to the singular homology of X
it follows that cellular homology groups coincide with singular homology ones.

We see now the cohomological version of example 2.2.9. As it was defined there, let
X be a topological space X and let {X,},cz be an increasing sequence of subspaces

of X such that U X, = X. As above, suppose that X;,, = @ for p < 0 and that for

pEZ
all n € N, the inclusion X, — X induces isomorphisms in H" for sufficiently large

p.
Now define

A= P H (X ,) and E= @ H (X p11,X )
n,pEZL n,pEZ

and let ¢, j and k be the maps defined by the long exact sequence of cohomology
groups associated to the pairs (X1, X)) for p € N:

S HY (X pgr, Xp) B HY(Xpp) S HY(Xp) = H'™ (X1, Xp)

The exact couple (A, E, 1, j, k) satisfies conditions (1) and (3) and the induced spec-
tral sequence converges to the cohomology of X.

Serre spectral sequence

Let p: E — B be a Serre fibration with B path-connected and let by € B. By 2.1.8 all
the fibres are homotopy equivalent to F' = F},,. Moreover, if v € m(B) = m1(B, bg) then ~
induces a homotopy equivalence L, : F' — F' and hence isomorphisms (L), : H,(F,G) —
H,(F,G) for all n € N and for all abelian groups G. Hence, 7;(B) acts on H,(F,G) with
action defined by v.x = (Ly)«(z) for v € m(B) and « € H,(F,G).

The following theorem is of great importance and is due to Serre ([17]). It gives a
relation between the homology groups of the base space, the total space and the fibre of
a Serre fibration by means of a spectral sequence: the Serre spectral sequence.
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Theorem 2.3.1. Let f : X — B a Serre fibration with fibre F, where B is a path-
connected CW-complex and let G be an abelian group. If m(B) acts trivially on Hy(F; Q)

for all n € N then there exists a homological spectral sequence {E; d,} which converges
to H.(X;G) and such that E2 , ~ H,(B; Hy(F;G)).

7q’

Proof. We consider the filtration @ C ... C X_; C Xg C X; C ... of X given by the
preimages of the skeletons of B, i.e. X, = f~1(BP) for p > 0 and X, = & for p < 0. This
filtration induces an exact couple as in example 2.2.9 with

A= P Hu(X,;G) and E= P Ha(Xp Xp-1;G).
n,pE” n,pEZ

Since (B, BP) is p-connected and f is a fibration, from the homotopy lifting property
of f it follows that (X, X)) is also p-connected. Indeed, let by € B° be the base point
of B and suppose we are given a continuous map « : (D", S"1) — (X, X)) with r < n.
Since (B, B,) is p-connected then fa : (D", S""!) — (B, BP) is nullhomotopic (as map of
topological pairs). Hence, there exists a homotopy H : D" x I — B such that Hig = fa,
H(z,1) = bg for all z € D™ and H(S""!x I) C BP. Then, there is a commutative diagram
of solid arrows

X
K
B

Since f is a fibration, there exists a homotopy H making commutative the whole diagram.
Note that H(S™' x I) C f~Y(B?) = X,, and Hi;(D") C f~'(by) C X,. By, 1.4.5 a ~ .
Hence, (X, X,) is p-connected.

Thus, by the Hurewicz theorem (1.4.34) it follows that H,, (X, X,) = 0if p > max{1,n}.
Note that the result holds even if the spaces are not path-connected since we can apply
the Hurewicz theorem in each path-connected component. Then, the inclusion X, — X
induces isomorphisms in H,, if p > max{1,n}. From the universal coefficient theorem
(A.3) it follows that X, — X induces isomorphisms in H,( ;G) if p > max{1l,n}.

Then, for fixed n, Hy,(X,, X,—1;G) is nontrivial only for a finite number of p’s. By
2.2.10, the induced spectral sequence converges to H.(X; G).

The proof of the fact that E2  ~ H,(B; Hy(F;G)) can be found in [9]. O

[0}

D’I’

0

D' x [ —>

7
H

We will give now two basic examples.

Example 2.3.2 (Homology of a K(7Z,2)). In this example we will compute the homology
groups of an Eilenberg - MacLane space of type (Z,2) by means of spectral sequences. A
different way to do this is using the fact that CP> is a K(Z,2) and computing then its
cellular homology.

Let B be a K(Z,2) (note that B is simply connected). We consider the path space
fibration f : PB — B. Its fibre F' is the loop space Q2B and hence it is a K(Z,1). Then
F is homotopy equivalent to S! and we obtain H,(F;Z) =Z if ¢ = 0,1 and H,(F;Z) =0
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for ¢ > 2. Let (E",d"),>1 be the spectral sequence associated to the fibration f. Then
E2, = Hy(B; (Hy(F;Z))) = 0 for ¢ > 2. Hence, page E? has at most two nonzero rows:

B) " H,

0 0 0
B) _ Hy(B) _ H3(B) Hy(B)
( ( (B)
0

0 0 0

Therefore, qu = E;5, and since this spectral sequence converges to the homology of
P, which is contractible, then Eg,q = 0 for (p,q) # (0,0). Thus, the arrows of the previous

diagram must be isomorphisms and H;(B) = 0. In consequence,

7 if n is even

Hn(B;7) = { 0 ifnisodd

Example 2.3.3 (Homology of QS™ for n > 2). In this example we will compute the
homology of 2S™ using the spectral sequence associated to the path space fibration f :
PS™ — S™. Note that the fibre of f is F' = QS™ and that it is simply-connected.

Since H,(S™;Z) = 0ifp # 0,n, Hy(S™; Z) = Z and H,,(S™; Z) = Z, by the universal coef-
ficient theorem we obtain that H,(S"; Hy(QS™; Z)) = 0if p # 0,n and H,(S™; Hy(Q2S™;Z)) =
H,(QS™Z) if p=0,n.

Hence, the second page of the spectral sequence will have at most two nonzero columns:

0 H.(QS“Z) 0 -~ 0  Hu(QS™Z) 0
0 H, (08" anl (QS™Z) 0
0 Hl(QS";Z)NHl(QS”;Z) 0
0 Ho(QS™:Z) o0 -+ 0 Ho(QS“Z) 0
It follows that E? = E3 = ... = E™ and E™! = E>. But since P is contractible,

then E;};;l 0 for (p,q) # (0,0). Hence, the arrows of the above diagram must be
isomorphisms. Thus, for n = 2 we obtain that H,(2S™;Z) = Z for all ¢ > 0. If n > 3,
since QS" is (n — 2)-connected, by the Hurewicz theorem we obtain that H,(2S™) = 0 for
1 < g <n-—2. Hence,

n.o | Z if g is a multiple of n — 1
o8 2) = { 0 if ¢ is not a multiple of n — 1

Now we turn our attention to an important example of application of Serre spectral
sequence: a generalization of the Hurewicz theorem. This theorem is due to Serre himself,
who also introduced Serre classes [17]. We begin by recalling its definition.

Definition 2.3.4. A nonempty class € of abelian groups will be called a Serre class if
for all exact sequences of abelian groups of the form A — B — C with A, C € € we have
that B € %.
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Note that if € is a Serre class then it satisfies the following properties

Moreover, if a nonempty class of abelian groups satisfies (e) then it also satisfies (a),
(b), (c) and (d). From this, we get that a nonempty class € of abelian groups is a Serre
class if and only if it satisfies

() If 0 - A— B — C — 0 is a short exact sequence of abelian groups then A,C € ¢
if and only if B € ¥.

Indeed, it is clear that a Serre class satisfies this property. So, suppose % is a nonempty
class of abelian groups satisfying (e’) and let A ~ B L C be a short exact sequence with

A,C € €. We consider the induced short exact sequence 0 — A/ ker B4 Im j —0.
Since A,C € € then A/keri € ¢ and Imj € ¢ by (d) and (c) respectively. Thus, B € ¢

by (e’).
It is easy to prove that the following classes of abelian groups are Serre classes.

e The class of finitely generated abelian groups.
e The class of finite abelian groups.

e The class 7p of torsion abelian groups whose elements have orders which are divisible
only by primes in a set P of prime numbers.

e The class of finite groups in 7p.

e The class of trivial groups.

These will prove to be very interesting and useful examples.

Definition 2.3.5. Let ¥ be a Serre class and let f : G — H be a morphism between
abelian groups.

e We say that f is a ¥-monomorphism if ker f € €.
e We say that f is a €-epimorphism if coker f € €.

e We say that f is a € -isomorphism if it is a ¥-monomorphism and a %-epimorphism.



Section 2.3: Serre spectral sequence 7

For example, note that if ¥ is the class of trivial groups then %-monomorphisms,
% -epimorphisms and %-isomorphisms are just monomorphisms, epimorphisms and iso-
morphisms of groups respectively.

Suppose now that € is the class of 2-torsion abelian groups. Then the trivial map from
Zs to Zo and the multiplication by 2 map from Zg to Zg are €-isomorphisms.

The following proposition helps us to understand %-isomorphisms in case ¢ = 7p.

Proposition 2.3.6. Let P be a set of prime numbers and let f : G — H be a morphism
between torsion abelian groups. We denote by Tp(G) and Tp(H) the subgroups of torsion
elements of G and H respectively such that their elements have orders which are divisible
only by primes in P. Then f is a Tp-isomorphism if and only if the induced map f :
G/Tp(G) — H/Tp(H) is an isomorphism.

Proof. Suppose first that f is a T7p-isomorphism, i.e. ker f € 7p and coker f € 7p. Thus,
ker f C Tp(G).

Let * € G such that f(z) = 0 in H/7p(H). Then f(z) € Tp(H), i.e. there exists
m € N divisible only by primes in P such that mf(z) = 0. Hence, mz € ker f C 7p(G).
Thus, z € 7p(G) and T = 0 in G/Tp(G). So, f is a monomorphism.

Now, let §y € H/Tp(H) and let [y] denote the class of y in H/Im f = coker f. Then,
there exists m € N divisible only by primes in P such that m[y] = 0 in coker f. Thus,
my € Im f, i.e. there exists z € G such that f(z) = my. Hence, f(Z) = m7.

From group theory we know that if A is a torsion abelian group and p is a prime
number such that A has no elements of order p, then the map p, : A — A defined by
multiplication by p is an isomorphism. Indeed, it is clear that p, is a monomorphism.
We will prove that it is also an epimorphism. Let a € A and let £k = ord (a). Let
S={ja:0<j<k—-1} CA. Then p,:S — S is a monomorphism. Since S is finite, 1,
is an isomorphism. Thus, a € Im p,. Hence, p, is an epimorphism.

Returning to the above situation, note that G/7p(G) and H/Tp(H) are torsion groups
whose elements have orders which are divisible only by primes not in P. Since m € N
is divisible only by primes in P it follows that wu,, : G/7p(G) — G/Tp(G) and i, :
H/Tp(H) — H/Tp(H) are isomorphisms. Then we obtain (p,,) L f(Z) = (tm) H(my) =
y. Thus, f((um) 1(Z)) = y. Hence, f is an epimorphism.

Conversely, suppose f is an isomorphism. Let ¢ : G — /Tp(G) and ¢’ : H — H/Tp(H)
denote the quotient maps. Then ker f C ker(q'f) = ker(fq) = kerq = 7p(G). Thus, f is
a 7Tp(G)-monomorphism.

Now let h € H. Then ¢'(h) = f(q(g)) for some g € G. Hence, ¢'(h) = ¢'(f(g)) and thus
¢ (h— f(g)) =0. Then h — f(g) € Tp(H). In consequence, there exists m € N divisible
only by primes in P such that m(h — f(g)) = 0. Thus, mh = mf(g) = f(mg) € Im f.
Hence, m[h] = [mh] = 0 in H/Im f = coker f. Therefore, coker f € 7p. O

Note that this proposition does not hold if G and H are not torsion groups. For
example, the multiplication by 2 map from Z to Z is a T(py-isomorphism, but f : Z — Z
coincides with f which is not an isomorphism.

Definition 2.3.7. Let X be a topological space. We say that X is € -acyclic if H,(X;Z) €
€ for all n € N.
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Later on, we will need that the product of €-acyclic spaces is again a %-acyclic space.
This does not hold for all Serre classes and hence leads to the following definition.

Definition 2.3.8. Let ¥ be a Serre class. We say that € is a ring of abelian groups if
for all A, B € ¢ we have that A® B € ¢ and Tor(A, B) € %.

Note that if € is a ring of abelian groups then by the Kiinneth formula the product of
% -acyclic spaces is a %-acyclic space.

It is easy to verify that the examples of Serre classes given above are also rings of
abelian groups.

Lemma 2.3.9. Let € be a ring of abelian groups and let f : X — B be a fibration between
path-connected spaces with path-connected fibre F' such that w1 (B) acts trivially on Hy(F).
Then, any two of the followings three conditions imply the third

(a) Hy(F) € € for all n > 0.
(b) Hy(X) € € for alln > 0.
(¢) Hn(B) € € for all n > 0.

Proof. Let (E",d"),cn be the Serre spectral sequence associated to the fibration f.

Suppose first that (a) and (c) hold. Then, by the universal coefficient theorem E? =
H,(B; Hy(F)) ~ Hy(B) ® Hy(F) & Tor(H,—1(B), Hy(F)). Since € is a ring of abelian
groups, we obtain that Eg’q € ¢ for (p,q) # (0,0). By induction on r, it follows that
Ep , € € for (p,q) # (0,0) and for all r > 2. Indeed, we have just proved the case r = 2,
and if we suppose that EJ . € ¢ for some p, g € Z, then its subgroups ker d” and Imd" are
also in ¥ and hence their quotient E;"gl also belongs to % .

But given p,q € Z, there exists 7 € N such that E)f = E . Therefore, £ € ¢ for
(p,q) # (0,0). But since the spectral sequence (E",d"),en converges to H,.(X) we know

that E)9,_, are the succesive quotients in a filtration

0C FyHo(X) C ... C FyHo(X) = Ho(X).

Hence, by induction we obtain that F; H,(X) € € for 0 < i < n. In particular, H,(X) €
t.

Now suppose that (a) and (b) hold. Since B and F' are path-connected we obtain that
Eg,o = Hy(B) for p > 0 and E&q = H,(F) € € for ¢ > 0. By hypothesis, H,(X) € € for
all n > 0, hence E;5,_,, € ¢ for n > 0 and 0 < p < n since they are the succesive quotients
in a filtration of H,(X).

We will prove by induction that H,,(B) € € for all n > 0. Thus, suppose that H;(B) €
¢ for 0 < i < n. As before, by the universal coefficient theorem thq = H,(B;Hy(F)) ~
Hy(B)® Hy(F)@®Tor(H, 1(B), Hy(F)). Hence, E} € € for 0 < p < n and (p,q) # (0,0).
Thus, E, , € € for all 7 > 0 and for the same values of p and q.

Since (E",d")ren is a first cuadrant spectral sequence then E:;Bl = kerd;, , C Ej .
Thus, there is a short exact sequence

T

d
r+1 Er 7,0 T
0 Em() n,0 Im dn,O >0
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Since Im d, , C Ej_,,_; € € we obtain that Im d; , € €. Thus, from the short exact
sequence above we get that E::Bl € ¢ if and only if Ej , € €. Since EyY) € ¢ and EJY) =
Eﬁ,o for sufficiently large k, then by an inductive process we get that Eg,o =H,(B)e?%
as desired.

The third case of the proof is analogous to the previous one, so we omit it. O

Moreover, with the same proof as above we obtain the following stronger result which
will be needed later.

Lemma 2.3.10. Let & be a ring of abelian groups and let f : X — B be a fibration
between path-connected spaces with path-connected fibre F' such that m(B) acts trivially
on H.(F). Let n € N. Then

(a) If Hi(F) € € for1 <i<n+1and Hi(X) € € for 1 <i <mn then H(B) € € for
1< <n.

IN

(b) If Hi(B) € € for1
1< <n.

< n+1and Hi(X) € € for 1 <i <n then H;(F) € € for

(¢c) If H(F) € € for 1 < i <n and Hi(B) € € for 1 < i < n then H(X) € € for
1<t <n.

One of the key ingredients needed for the proof of the generalized version of Hurewicz
Theorem is that Eilenberg - MacLane spaces of type (G, n) are %-acyclic.

Definition 2.3.11. Let % be a Serre class. We say that & is acyclic if for all G € €,
Eilenberg - MacLane spaces of type (G, 1) are @-acyclic.

Note that if ¢ is an acyclic ring of abelian groups (i.e. a ring of abelian groups and
an acyclic Serre class) and G € € then, for all n € N, any Eilenberg - MacLane space of
type (G,n) is €-acyclic. Indeed, if Z is an Eilenberg - MacLane space of type (G, n) with
n > 2 then its loop space is an Eilenberg - MacLane space of type (G,n —1). Hence, if we
consider the path-space fibration Q72 — PZ — Z, since PZ is contractible, by the above
lemma we obtain that Z is €-acyclic if and only if QZ is €-acyclic. Since any Eilenberg
- MacLane space of type (G, 1) is €-acyclic, it follows that for all n € N, any Eilenberg -
MacLane space of type (G, n) is @-acyclic.

An important result is that the examples of Serre classes given above are also acyclic
rings of abelian groups. This will allow us to apply the generalized version of Hurewicz
Theorem to that classes.

Before stating the theorem, we recall the definition of abelian spaces.

Definition 2.3.12. Let X be a path-connected topological space. We say that X is
abelian (or simple) if m1(X) acts trivially on 7, (X) for all n € N.

For example, simply-connected spaces are abelian. Note also that if X is an abelian
topological space then 1 (X) acts trivially on 71(X) and hence it is an abelian group.

Theorem 2.3.13 (Generalized Hurewicz’s theorem). Let X be an abelian topological space
and let € be an acyclic ring of abelian groups. Then the following are equivalent:
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(a) mi(X) €€ for1<i<n-—1.
(b) H(X) €€ for1<i<n-—1.

Moreover, any of them imply that the Hurewicz morphism h : m,(X) — Hp(X) is a
& -isomorphism.

Proof. By CW-approximation, we may suppose that X is a CW-complex. Moreover,
we may suppose that X has only one 0O-cell since any path-connected CW-complex is
homotopy equivalent to a CW-complex with only one 0-cell. Let this 0-cell be the base
point of X and let

p3

f3 X,

P2
A

X

be a Postnikov tower of principal fibrations for X where, for all j € N, X; is a CW-complex
built by attaching cells of dimension greater than j + 1 to X.

Suppose first that m;(X) € € for 1 < i < n —1. Then m;(Xy) € € for k <n—1
and for all 7 € N. Since X7 is a K(71(X), 1) and 71(X) € €, it follows that H;(X;) € €
for all ¢ € N. From the fibration sequences Fy, — X — Xj;_1, since F} is an Eilenberg
- MacLane space of type (m;(X), k), by the previous lemma we obtain inductively that
H;i(X;) € € for j <n—1and for all i € N,

In particular, H;(X,—1) € € for all i € N. Since X,,_; is built by attaching cells of
dimension greater than n to X, H;(X,,—1) = H;(X) for i <n — 1 and hence H;(X) € €
for1<i<n-—1.

Conversely, suppose that H;(X) € ¢ for 1 <i <n — 1. Since Xj is built by attaching
cells of dimension greater than j + 1 to X, then H;(X;) ~ H;(X) for 1 <14 < j and there
is an epimorphism Hj;1(X) — Hj41(X;). Thus, Hy(X;) € € for 1 <i<j<n-—1. We
will prove inductively that m;(X) € € and X; is €-acyclic for 1 <i <n — 1.

Since X is abelian, m1(X) = H1(X) € ¢ and hence X is €-acyclic because it is an
Eilenberg - MacLane space of type (71(X),1).

Suppose that m;(X) € ¢ and X; is €¢-acyclic for 1 < i < k—1 < n — 2. Consider
the fibration sequence F, — X, — Xjp_1. Since Xj_; is @-acyclic and H;(X}) € € for
1 < i <k, by the previous lemma H;(F}) € ¢ for 1 < i < k. In particular Hi(F}) € €,
but by the Hurewicz theorem Hy(Fy) = m(Fg) = m(X), hence mp(X) € €. Thus,
Fy, is %-acyclic. Then, applying again the previous lemma to the fibration sequence
F, — X, — Xj_1 we obtain that X is %-acyclic. Therefore, we have proved that
mi(X)e @ for1 <i<n-—1.
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To prove the last statement it suffices to show that the hurewicz map h : m,(X,,) —
H,(X,) is a ¥-isomorphism. Let (E",d"),>1 be the spectral sequence associated to the fi-
bration X,, — X,,_1. Since its fibre F,, is an Eilenberg - MacLane space of type (m,(X),n),
EZ, =0for 1 <q<mn—1 Hence, B} = Hy(F,) and E}{{ (= Hny1(Xno1).

Since (E",d"),>1 converges to H,(X) there exists a filtration 0 = F_; C Fy C F; C
... C© Fy = Hp(X) of Hy(X) with F;/F,—y ~ EF}_, for 0 < i < n. Since Ef}_; = 0 for
0 < i < n we obtain that ngn = Fy=F = ... = F,_1. Hence, there is a short exact

sequence
q

0 FO Fn Fn/FO*)[)

Recall that F,, = H,(X) and F,,/Fy = E5y- Moreover, by 2.2.10 and by the proof of
2.3.1 we know that Fp is the image of the map H,(XQ) — H,(X,), where (X!);en, is
the filtration of X, obtained by taking preimages of the skeletons of X,,_;. But since the
0-skeleton of X,, 1 is the base point, it follows that X9 = F,. Hence, Fy is the image of
the map in, : H,(F,) — Hy,(X,) induced by the inclusion.

It is clear that Eg5, = E&ZQ = coker dgiio and that E&Zl = H,(F,), therefore there
is a short exact sequence

mn—+1

dn+l,0 o0
04>Hn+1(Xn—1) 4>Hn<Fn) EO,n 0

Combining this short exact sequence with the previous one we obtain an exact sequence

n+1 .
Hypp1 (Xpo1) —25% H,(F,) —> Hy(X) —4> B —0

(note that ker g = Fy = Im (incy)).
Consider the commutative square

incs

Since 7 41(Xp—1) = 0 and m,(X,—1) = 0, from the long exact sequence of homotopy
groups associated to the fibration X,, — X,,_1 we obtain that the upper map is an iso-
morphism. Also, the left-hand vertical map is an isomorphism by the Hurewicz theorem.

Now, if we assume that m;(X) € € for 1 <i <n —1 then m;(X,_1) € € for alli € N
and hence, by the first part of this theorem H;(X,,_;) € € for all i € N. Thus, the first
and fourth terms of the exact sequence above belong to the class ¥ and hence the map
inc, : H,(F,) — H,(X,,) is a €-isomorphism.

Therefore, the Hurewicz map h : m,(X) — Hy(X) is a €-isomorphism. O

As a first example of application when % is the class of finitely generated abelian groups
we obtain that all the homotopy groups of spheres are finitely generated. However, we
shall prove later a much stronger result.
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Note also that if € is the class of trivial groups, then we obtain the classical version of
Hurewicz Theorem.

Now we turn to the cohomological version of Serre spectral sequence. In this case we
require that m(B) acts trivially on H"(F'; G) for all n € N, where this action is defined
in a similar way as its homological counterpart.

Theorem 2.3.14. Let f : X — B a Serre fibration with fibre F', where B is a path-
connected CW-complex and let G be an abelian group. If w1(B) acts trivially on H"(F; Q)
for alln € N then there exists a cohomological spectral sequence { EX'?, d,.} which converges

to H*(X;G) and such that EY? ~ HP(B; H1(F;G)).

The proof is similar to the homological one, thus we will omit it.

A big advantage of this cohomogical version is that cohomology can be given a ring
structure by means of cup product and this product behaves wonderfully with respect to
(cohomological) Serre spectral sequence, as is shown by the following theorem.

Theorem 2.3.15. Let f : X — B a Serre fibration with fibre F', where B is a path-
connected CW-complex and let R be a ring. Suppose that w1 (B) acts trivially on H"(F'; R)
for alln € N and let {EZ? d,.} be the (cohomological) Serre spectral sequence associated to
the fibration f. Then there exists bilinear products EX'? x ESt — pprsatt forr € NU{oo}
such that:

(a) The differentials d, are derivations, i.e. d.(vy) = d(z)y + (=1)PT9z(dy) for all
zeFEM ye EY reN,

(b) The product in E,y1 is the product induced by the product in E, (note that since the
differential d, is a derivation, the product in E, induces one in cohomology).

(¢) The product in E is induced by the product in the faces E, for finite r.

(d) The product in Ey is induced by the composition

EYY x Byt = H?(B; Hy(F; R)) x H*(B; H,(F; R))

|

HP(B; Ho(F; R)) x H*(B; Hi(F; R))

lv,

HP*(B; Ho(F; R))

where the product in H.(F; R) is the standard cup product and where the second
arrow is defined by o ~' 3 = (=1)¥a — B with — denoting cup product.

(e) If forn >0, {F} = FPH"(X)}pez (with )}y C F}} for all p) denotes the filtration
of H,(X) given by the definition of convergence of { EX'? d"}, then the cup product in

H*(X; R) restricts to maps Fy} x F" — F;L_;:m Moreover, these maps induce maps

. . . n—
FyJE)y x FPFT, — F;igm/F;:ﬂl which coincide with the products E5%"? x
Egémfs _ Egjs,n+mfpfs'
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The proof of this theorem con be found in [9].

We will give first an easy example of application and then we will show how this results
con be applied for instance to obtain interesting information about homotopy groups of
spheres.

Example 2.3.16 (Computation of H*(K(Z,2)),Z). Let B be an Eilenberg - MacLane
space of type (Z,2). Consider the pathspace fibration f : PB — B. Its fibre F is QZ, and
hence an Eilenberg - MacLane space of type (Z,1). Thus F is homotopy equivalent to S*.
Let (EF? d,),cz be the cohomological Serre spectral sequence associated to the fibration
f. Since B is simply-connected, EY'? ~ HP(B; H1(S1;7Z)).

Hence, the E» page has at most two nonzero rows:

0 O 0 0 0 0

0 Z-_HYB)_ H?*B)_ H*B) H*B)

0 zZ HYB) H¥ ( (

0 O 0 0 0 0
In a similar way as in 2.3.2, we obtain that

Z if n is even
n . —

H™(B;Z) = { 0 ifnisodd
Let a denote a generator of Eg 1 ~ 7 and for even i, let x; denote a generator of E;’O ~
Z. Since we consider homology with coefficients in Z which is a unital ring, the ring
H*(B;Z) has also an identity element which is 1 € Z ~ H"(B;Z). Therefore, the product
Eg’q x Byt — E59" is just multiplication of coefficients. Hence, ax; is a generator of
EY' ~ 7.

0 0 0 0 0 0 0 0
0 Za_ 0 Zaxe 0 Zaxy 0 Zaxg
0 7 0 Zixo 0 Zixy 0 Zxg

0 0 0 0 0 0 0 0

Since the arrows shown above are isomorphisms, doa is a generator of Zxo. Thus, we may
suppose that o = doa. Then,

dg(afz’gi) = dg(a).rgi — adg(xgi) = dg(a)xzi = X2x9;.

Now, since da(ax2;) is a generator of Zxy; we may assume that xoxe; = T2i12.
Thus, H*(B;Z) is the polynomial ring Z|[x], where x = z5.

We give now the first application of the cohomological Serre spectral sequence to com-
putation of homotopy groups of spheres.

Proposition 2.3.17. Let p be a prime number. Then, the p-torsion subgroup of m;(S?)
is 0 for i < 2p and Z, for i = 2p.
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Proof. Note that if we apply the generalized Hurewicz theorem directly to S3, we will not
be able to see beyond 3 since m3(S®) = Z is not a p-torsion group. Hence, the idea is to
construct a space F' which has the same homotopy groups as S2, except for 73(F) which
will be trivial and then apply the generalized Hurewicz theorem to F.

Let Y be an Eilenberg - MacLane space of type (Z,3) and let g : S — Y be a

continuous map such that g, : 73(5%) — m3(Y) is an isomorphism. Let §3 — Z 25 Y
be a factorization of g into a homotopy equivalence followed by a fibration and let F' be
the fibre of p. Note that p induces an isomorphism in 73. Hence, from the homotopy exact
sequence associated to the fibration p it follows that the inclusion inc : F — S2 induces
isomorphisms inc, : 7;(F) — 7;(S3) for i > 3 and that F is 3-connected.

Let F , X -z, S3 be a factorization of inc : F' — S3 into a homotopy equivalence
followed by a fibration and let F’ be the fibre of p/. It follows that (p'), : 7;(X) — m;(S%) is
an isomorphism for ¢ > 3 and that X is 3-connected. From the homotopy exact sequence
associated to the fibration p’ it follows that F’ is an Eilenberg - MacLane space of type
(Z,2).

Let (Er,d;)r>1 be the cohomological Serre spectral sequence associated to the fibration
p’. By the example above we know that H*(F’) is isomorphic to the polynomial ring Z[z],
with 2 corresponding to an element a € H2(F'). Hence, page E» looks like

IS
wo

IS IS
wo wo

o O O O o o o
N o N o N o N
o /O O /O RO /O O
N o N o N o N
o O O o o o o

Note that F5 = Fy. Let z = dz(a). Since X is 3-connected, the differential dg’2 27— 7
must be an isomorphism. Then z is a generator of Eg’o ~ 7. Thus, as in the previous
example, a'z is a generator of Eg 20~ 7 for all i € N.

It follows that d3(a?) = d3(a)a-+ads(a) = 2ax, and by an inductive argument we obtain
that d3(a™) = na™ 'z. Therefore, Eg’q =0 for ¢ € N and Ei’% = Zj+1 for k € N. Since

E4 = E,, we obtain that

‘ 0 ifi=1lori=3
HY(X;Z) =< Zygy1 ifi=2k+ 3 for some k € N
0 if 7 is even

Hence, by the universal coefficient theorem for cohomology groups we get
0 ifi=2

Hi(X;Z)=( Zj ifi=2k for some k € N, k > 2
0 ifiisodd
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Applying the generalized version of Hurewicz’s theorem with € the class of p-torsion
abelian groups gives the desired result. O

Corollary 2.3.18.
(a) 74(S3) = Zs.
(b) The groups m;(S%) are nonzero for infinitely many values of i.

For the proof of the last theorem of this section we need the following lemma. Its proof
involves the cohomological Serre spectral sequence and similar arguments to those in the
example and proposition above, but we will not give the details here. A sketch of the
proof can be found in [9].

Lemma 2.3.19. Letn € N and let X be an Filenberg - MacLane space of type (Z,n). Then
H*(X;Q) ~ Q[z] for n even and H*(X;Q) ~ Q[z]/(x?) for n odd, where x corresponds
to an element of H"(X;Q).

Now we state the last theorem of this section, which is a strong result about homotopy
groups of spheres. To prove it, we will work with rational coefficients, so as kill torsion in
homology groups and retain nontorsion information. The idea of the proof is analogous to
that of the previous proposition: we will kill certain homotopy groups leaving the others
unchanged and then we will apply the generalized version of Hurewicz’s theorem.

Theorem 2.3.20. The groups 7;(S™) are finite for i > n, except for ma,—1(S?") which is
the direct sum of Z with a finite group.

Proof. We may assume that n > 2, since the result clearly holds for n = 1.
Let B be an Eilenberg - MacLane space of type (Z,n) and let g : S™ — B be a contin-

uous map which induces an isomorphism on m,. Let S —— X 4, B be a factorization
of g into a homotopy equivalence followed by a fibration and let F' be the fibre of f. From
the homotopy exact sequence associated to the fibration f it follows that F' is n-connected
and 7;(F) ~ m;(S™) for ¢ > n.

Let (E,,d;).en be the cohomological Serre spectral sequence with coefficients in Q
associated to the fibration f.

We suppose first that n is odd. Since by the previous lemma H*(B;Q) ~ Q[z]/{x?)
(where z corresponds to an element of H"(X;Q)), then the Ey page has at most two
nonzero columns, namely columns p = 0 and p = n. Moreover, Ey? ~ E3? for all ¢ € Z
and Eg’o ~ E;L’O ~ Q. Since F' is n-connected, Eg’q ~ 0 for 1 < g < n. Suppose there
exists k € N such that Eg’k is not a trivial group and let m be the minimum of such £’s.
Then m > n + 1 and hence Eg’m ~ E%™. Thus, H (X)) E%™ and therefore it is not
trivial, which entails a contradiction since X is homotopy equivalent to S™.

Therefore, Eg’k ~ 0 for all k € N. Hence, H*(F;Q) ~ 0 for all k € N. From the
universal coefficient theorem for cohomology it follows that Hom(Hy(F;Z); Q) = 0 for all
k € N. Then Hy(F;Z) is a torsion group for all k£ € N. Now since F' is n-connected and
mi(F) ~ m;(S™) for i > n, it follows that m;(F') is finitely generated for all i« € N. Hence,
by the generalized Hurewicz theorem H;(F';Z) is finitely generated for all i« € N. But since
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H;(F;Z), i € N are torsion groups we get that H;(F;Z) is a finite group for all i € N.
Applying the generalized Hurewicz theorem again we obtain that m;(F’; Z) is a finite group
for all + € N and hence 7;(S™) is a finite group for i > n.

Now suppose that n is even. Then, by the previous lemma H*(B;Q) ~ Q[z], where x
corresponds to an element z € H"(X;Q). Thus,

EPO Q if p = kn for some k € Ny
2 0 otherwise

Since F' is m-connected, Eg’q ~ 0 for 1 < g < n. Suppose that Eg’q is not trivial for
some ¢ < 2n — 1 and let m be the minimum ¢ with this property. Then m > n and
EQ™ ~ Eg’m. Hence H™(X;Q) is not trivial, but X is homotopy equivalent to S™, which
entails a contradiction. Hence, HY(F;Q) ~ Eo? ~ 0 for 1 < ¢ < 2n — 1. Then EY? ~ 0
for 1 <g<2n—1 and for all p € N.

In consequence, Ey*" ' ~ ES*"1 g0 ~ EI0 ~ Q and the differential dy>" !
EY*=1 20 ~ Q must be an isomorphism because otherwise either B2t op g0
would be nontrivial. Hence we have that H?"~1(F;Q) ~ Q and HY(F;Q) ~ 0 for 1 < ¢ <
2n — 1. From the universal coefficient theorem for cohomology, since H;(F';Z) is finitely
generated for all ¢ € N, by an inductive argument and proceeding as in the case above it
is not difficult to prove that H;(F;Z) is a finite group for 1 <i < 2n—1 and Ha,—1(F;Z)
is the direct sum of Z with a finite group. Applying the generalized Hurewicz theorem
with & the class of finite groups we obtain that the same holds for the groups m;(F),
1 <i < 2n — 1. Therefore, m;(S™) is a finite group for 1 < i < 2n — 1 and mo,—1(F;Z) is
the direct sum of Z with a finite group.

Now, let a € En®" "' be such that dn(a) = 22 € Ea"" ~ H?"(X;Q). Thus, by the
derivation property dﬁi’%_l(azi) = 2*+2 for ; € N. Then d2"*"~! is an isomorphism for
all ¢ € N. With a similar argument as in the previous case we obtain that Eg K ~ 0 for all
k > 2n, since the first nontrivial entry would survive to E,. Thus, H*(F;Q) ~ Q[xz]/(x?),
where 2 corresponds to an element of H*"~!(X;Q).

Let I’ be obtained from F by attaching cells of dimension greater than 2n — 1 and
such that m;(F’") = 0 for ¢ > 2n — 1. Let inc : F — F’ denote the inclusion map and
let FF - X il F’ be a factorization of inc into a homotopy equivalence followed by a
fibration. Let F” be the fibre of f’. From the homotopy exact sequence for the fibration
1" it follows that m;(F") ~ m;(F) ~ m;(S™) for i > 2n — 1.

Since F’ has finite homotopy groups, the same holds for its reduced homology groups
and hence H"(F’,Q) ~ 0 for n € N. From the cohomological Serre spectral sequence for
the fibration f’ we obtain that H*(F";Q) ~ H*(X';Q) ~ H*(F;Q) ~ Q[z]/(x?), where
x corresponds to an element of H?"~1(F";Q).

Let Y be an Eilenberg - MacLane space of type (Z,2n — 1) and let F” — Y be a map
inducing an isomorphism on the nontorsion in 7o,_1. Now, we consider factorization of
this map into a homotopy equivalence followed by a fibration and with a similar argument
as in the case n odd we obtain that m;(F") ~ m;(S™) is finite for i > 2n — 1. O
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2.4 Localization of CW-complexes

In this section we will study localization of CW-complexes. We begin by recalling some
basic facts about algebraic localization of rings and modules.

For the whole section, P will denote a subset of the set of prime numbers. If GG is an
abelian group and a € Z, we denote by p, : G — G the group homomorphism defined by
ta(g) = ag.

We denote

Zp:{%6@/(b:p):1f0rallp€77}

Note that Zp is torsionfree and that Zg = Q. If the subset P consists of just one prime
number p we write Zp = Z).

If G is an abelian group, its localization at P is defined as G ® Zp. The induced
morphism G — G ® Zp is called localization map. Clearly, given a map f : G — H, there
is an induced map f @ Zp : G ® Zp — H ® Zp and a commutative diagram

G H

L

where the vertical arrows are the localization maps.

We know that G ® Zp is the abelian group generated by {g®r / g € G and r € Zp}.
Note that a finite sum g1 ® r1 + ... + g, ® 7, can be written in the form g ® %, with m
not divisible by primes in P. Indeed, we proceed by taking m the least common multiple
of the denominators of r1,...,7, and we write g; @ r; = g} ® %

Note also that the map G — G ® Zp is an isomorphism if and only if G can be given a
(compatible) Zp-module structure. The following lemma states an equivalent condition.

Lemma 2.4.1. Let G be an abelian group and let P be a subset of the set of prime
numbers. Then G can be given a (compatible) Zp-module structure if and only if for all
prime numbers p such that p ¢ P the map p, : G — G is an isomorphism.

Proof. For the first implication, note that if p ¢ P then % € Zp. Hence, the map v, : G —

G defined by vp(g) = % g is the inverse of s,

Conversely, suppose that for all prime numbers p such that p ¢ P the map p, : G — G
is an isomorphism. Thus, if b € {m € Z / (m : p) = 1 for all p € P}, the map p; is an
isomorphism. Hence, for g € G and § € Zp (with b not divisible by prime numbers in P),

we define ¢.g = u;luag. It is easy to prove that this defines a Zp-module structure on

G. O]

For example, Z3 can be given a compatible Z3)-module structure and can not be given
a (compatible) Zy)-module structure. In general, given a prime number p and n € N, Zpn
can be given a (compatible) Zp-module structure if and only if p € P.

In the following proposition we give some results that will be needed later.

Proposition 2.4.2. Let P be a subset of the set of prime numbers.
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(a) If A ENYSREN ¢ DEEisan exact sequence of abelian groups and A, B, D and
E can be given compatible Zp-module structures then the same holds for C.

(b) The P-localization functor is exact, that is, it takes exact sequences to eract se-
quences.

Proof. (a) Let p be a prime number such that p ¢ P and consider the following commu-
tative diagram

A——=B—>(C—>D——FE
R A
A—>B—=C—>D—~FE

where the vertical arrows are the maps induced by multiplication by p. By the previous
lemma, the maps u;‘, ,uf , ,u}? and ,uf are isomorphisms. Since the rows are exact, by
the five lemma the map ,ug is also an isomorphism. Hence, C' can be given a compatible
Zp-module structure.

(b) Let A 4, B % C be an exact sequence of abelian groups. We want to prove that the
sequence A ® Zp /ety B® Zp 987p C ® Zp is exact. It is clear that g Zp o f @ Zp = 0.
Suppose that b ® = € ker(g ® Zp), i.e. g(b)® = = 0 in C ® Zp. Thus, g(b) has finite
order k not divisible by primes in P. Hence, kb € ker(g) = Im (f). Then, kb = f(a) for
someaeAand(f®Zp)(a®ﬁ):b®%. O

Now we turn to the topological setting.

Definition 2.4.3. Let X be an abelian space. We say that X is P-local if 7m,(X) is a
Zp-module for all n € N.

For example, if 3 € P and n € N, an Eilenberg-MacLane space of type (Zs, n) is P-local.

Definition 2.4.4. Let X and Y be abelian spaces and let f : X — Y be a continuous
map. We say that f is a P-localization map if Y is P-local and for all n € N, the induced
map fi @ Zp : mp(X) @ Zp — m,(Y) ® Zp is an isomorphism.

A P-localization of X consists of a P-local space Y together with a P-localization map
f: X->Y.

Note that since Zp is torsion-free, from the universal coefficient theorem (A.3) we
obtain that m,(X) ® Zp ~ m,(X; Zp).

The following lemma will be used to prove an equivalent homological definition of
P-localization.

Lemma 2.4.5. Let F — E — B be a fibration sequence of path-connected spaces such that
m1(B) acts trivially on H.(F,Zy) for allp ¢ P. Then, any two of the following statements
imply the third.

(a) H,(F) is a Zp-module for all n € N.
(b) H,(E) is a Zp-module for alln € N.
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(¢) Hn(B) is a Zp-module for alln € N.

Proof. Consider the short exact sequence 0 — Z — Z — Z, — 0, where the second
arrow is multiplication by p. For any space X, taking tensor product with C(X), where
(Cy(X),d) is the singular chain complex of X, we obtain a short exact sequence of chain
complexes, which induces a long exact sequence

Bp  ~ ~ ~ Bp  ~
> H\(X,Z) —> Hy(X,Z) —> Hy(X,Zp) —> Hy (X, Z) —> Hy_ (X, Z) —> -+

Hence, applying 2.4.1 we obtain that .FNIn(X ) is a Zp-module for all n € N if and only if
H,(X,Zy) =0 for all n € N and for all prime numbers p ¢ P.
The result then follows from the Serre spectral sequence. O

Proposition 2.4.6. Let X and Y be abelian spaces and let f : X — 'Y be a P-localization
map. Then for alln € N, H,(Y) can be given a compatible Zp-module structure and the
induced map fr @ Zp : Hy(X) @ Zp — H,(Y) ® Zp is an isomorphism.

Proof. We consider first the particular case in which X is an Eilenberg - MacLane space
of type (G,n). Hence, Y is an Eilenberg - MacLane space of type (G ® Zp,n).

We proceed by induction on n, starting with the case n = 1. If G = Z then Y is an
Eilenberg - MacLane space of type (Zp,1). But a Moore space of type (Zp,1) can be
constructed as a mapping telescope of a sequence of maps S? — S? of appropiate degrees,
as in [8], p. 312. From this construction it is not difficult to verify that a Moore space of
type (Zp,1) is also an Eilenberg - MacLane space of type (Zp,1). Hence, Y is a Moore
space of type (Zp, 1) and thus, for all n € N, H,,(Y) can be given a compatible Zp-module
structure.

The naturality of the Hurewicz map gives us a commutative square

« Q7
m(X) © Zp L2 1y (V) © Zp

h@Zp i J{h@Zp

Hl(X) ® Z'P e Hl(Y) ® Zp
[« ®Lp
The vertical arrows are the abelianization maps, and hence isomorphisms in this case.
The upper arrow is also an isomorphism since f : X — Y is a P-localization map. Thus,
fi®@Zp:Hy(X)®Zp — Hy(Y) ® Zp is an isomorphism.

If G =Zyn withp ¢ P and m € N then G®Zp = G. Since f : X — Y induces an
isomorphism on m; and X and Y are Eilenberg - MacLane space of type (G, n) it follows
that f is a homotopy equivalence. Hence, the result holds in this case.

It G =Zyn with p € P and m € N then G ® Zp = 0. Hence, Y is contractible and the
result follows.

If G is finitely generated, the result follows from the cases above applying the Kiinneth
formula (A.11).

For an arbitrary group G, we know that G is the direct limit of its finitely generated
subgroups. Hence, the result holds since homology commutes with direct limits.
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Now suppose that n > 2 and that the statement holds for n — 1. Consider the commu-
tative diagram

QX PX X
QY PY Y

where the rows are the path-space fibration sequences for X and Y and where the vertical
arrows are induced by the morphism G — G ® Zp. Note that 2X and QY are Eilenberg-
MacLane spaces of type (G,n — 1) and (G ® Zp,n — 1) respectively.

By 2.4.5 and the inductive hypothesis it follows that H;(Y") can be given a compatible
Zp-module structure for all 7 € N. Moreover, the commutative diagram above induces a
map between the Serre spectral sequences associated to both fibration sequences. Since
the induced maps H;(2X,Zp) — H;(QY,Zp) and H;(PX,Zp) — H;(PY,Zp) are iso-
morphisms for all ¢ € N, then by proposition 1.12 of [9], the induced map H;(X,Zp) —
H;(Y,Zp) is an isomorphism for all i € N.

Hence, the statement is proved in case X is an Eilenberg-MacLane space.

For the general case, the P-localization f : X — Y induces a map of Postnikov towers.
For n € N, let X,, and Y,, denote the n-th stage of the Postnikoy towers of X and Y
respectively. Then, there is a commutative diagram

Fn — Xn — Xn

.

FAHYnH‘Ynfl

where F,, and F] are the fibres of X,, — X,,_1 and Y;, — Y}, respectively. Hence F}, is an
Eilenberg - MacLane space of type (m,(X),n) and F'n is an Eilenberg - MacLane space of
type (mp(Y),n). Since X and Y are abelian, it is not difficult to prove that 71 (X,,—1) acts
trivially on H,(F,,) for all r and that a similar statement holds for the fibration sequence
FE, —Y,— Y, 1.

By induction on n and applying naturality of spectral sequences (cf. [9]) it follows that
H,(Y) can be given a compatible Zp-module structure and the induced map f, ® Zp :
H,(X)® Zp — H,(Y) ® Zp is an isomorphism for all n € N. O

Theorem 2.4.7. Let X be an abelian space. Then there exists a P-localization X — Y.

Proof. By 2.1.13, X admits a Postnikov tower of principal fibrations. For n € N let X,
denote the n-th stage of this Postnikov tower. Let X| be an Eilenberg - MacLane space
of type (m(X) ® Zp,1). Since X; is an Eilenberg - MacLane space of type (7m1(X), 1),
the natural morphism m1(X) — m(X) ® Zp induces a continuous map i; : X; — X
which turns out to be a P-localization. Moreover, replacing X| by Z;, and applying
CW-approximation we may suppose that 71 is an inclusion map of CW-complexes.

Since Xy — X7 is a principal fibration with fibre an Eilenberg - MacLane space of type
(m2(X),2), we may suppose that there exists an Eilenberg - MacLane space Z of type
(m2(X),3) and a fibration k; : X7 — Z.
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Let Z' be an Eilenberg - MacLane space of type (m2(X) ® Zp,3) and let j : Z — Z’ be
the induced map which, as before, is a P-localization.

Since i; : X1 — X is a P-localization, the induced map (i1). : Hn(X1;Zp) —
H, (X{;Zp) is an isomorphism for all n € N by 2.4.6. Applying the universal coefficient
theorem over Zp we obtain that (i1)* : H"(X]; A) — H™(X1; A) is also an isomorphism
for any Zp-module A and for all n € N. Hence H"(X], X1; A) = 0 for all n € N. Thus, by
obstruction theory, the composition jk; : X1 — Z’ can be extended to a continuous map
K X — Z.

We may suppose that k] is a fibration by writing it as a composition of a homotopy
equivalence with a fibration. Let X/ be the fibre of k] and let iy : Xo — X} be the
induced map. Note that m1(X}) is abelian and that X} admits a Postnikov tower of
principal fibrations by construction. Hence, by 2.1.13 we obtain that X} is abelian. Also,
from the long exact sequence of homotopy groups associated to the fibration k] : X — Z’
and applying 2.4.2 we conclude that X} is P-local. Also, from the five-lemma and item
(b) of 2.4.2 it follows that iy : X9 — X7 is a P-localization.

Hence, we may construct inductively a Postnikov tower of principal fibrations X/ —
X/ _ together with P-localizations iy, : X,, — X,. Let X’ be a CW-approximation to
1<iinXT’L. Since by 2.1.14 there is a weak equivalence X — @X;l, we obtain the desired

P-localization X — lim X/ — X'. O

Now we can complete the equivalent homological definition of localization with the
following theorem. Note that it aids us in checking that a map is a P-isomorphism, since
it is often easier to work with homology groups than with homotopy groups.

Theorem 2.4.8. Let X and Y be abelian spaces and let f : X — Y be a continuous
map. Then f is a P-localization map if and only if for alln € N, H,(Y') can be given a
compatible Zp-module structure and the induced map f.@Zp : Hy(X)@Zp — H,(Y)RZp
1 an isomorphism.

Proof. The first implication is proposition 2.4.6. For the converse, let X — X’ be a
P-localization of X. We may suppose that (Y, X) is a CW-pair, replacing Y by Zy
and then taking a CW-approximation. Hence, H,(Y,X,Zp) = 0 for all n € N, and
thus H"(Y, X,Zp) = 0 for all n € N by the universal coefficient theorem over Zp. By
obstruction theory, the P-localization map X — X’ can be extended to g : ¥ — X'.

By the first implication, H, (X') can be given a compatible Zp-module structure and
the induced map f[n(X i Lp) — I;'n(X ' Zp) is an isomorphism. Hence, the induced map
gv + Hy(Y:Zp) — H,(X'; Zp) is also an isomorphism. But since H,(Y;Zp) ~ H,(Y)
and H,(X';Zp) ~ H,(X') for all n € N we obtain that g, : H,(Y) — H,(X') is an
isomorphism for all n € N.

Since Y and X are abelian, applying 1.4.36 we get that g : Y — X’ is a homotopy

equivalence. Thus, X — Y is a P-localization map. O

Proposition 2.4.9. Let f : X — Y and f' : X' — Y’ be P-localizations and let g :
X — X' be a continuous map. Then, there exists a continuous map h :' Y — Y’ such
that hf = f'g. Moreover, if ¢ : X — X' and h' : Y — Y’ are continuous maps such that
Wf=fqg and g ~ g then h ~h .
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The proof of this proposition involves obstruction theory and similar arguments as those
above and will not be given here. From it we obtain the following important corollary.

Corollary 2.4.10. Let X be an abelian space. Then the P-localization of X is unique
up to homotopy equivalence, i.e. given P-localizations f : X — Y and f': X — Y’ there
exists a homotopy equivalence h : Y — Y’ such that hf = f'.

As a corollary of 2.4.7 and 2.4.9 we obtain a homological caracterization of P-local
spaces.

Corollary 2.4.11. Let X be an abelian space. Then X is P-local if and only if for all
n €N, H,(Y) can be given a compatible Zp-module structure.

2.5 Federer spectral sequence

In this section we will recall the Federer spectral sequence [6] and exhibit an alternative
proof of his result. It is worth mentioning that our approach differs from Federer’s since we
are interested in A-homotopy groups of spaces rather than in homotopy groups of function
spaces. Of course they are isomorphic if, for example, A is a locally compact CW-complex.

Definition 2.5.1. Let A and X be pointed topological spaces and let n € Ng. We define
the n-th A-homotopy group of X as w4(X) = [E"A, X]. These are groups for n > 1 and
abelian groups if n > 2.

For example, 75" (X) = T, m(X) and 72" (X) = 0 for all n,m € Ny and for all

n

topological spaces X.

Definition 2.5.2. Let i : A — B be a cofibration. The cofibre of i is the space B/A
defined by the pushout diagram

A *
zi push l

The sequence A — B — B/A is called a cofibration sequence.

Note that this notion is dual to that of the fibre of a fibration.
Dual to the long exact sequence of homotopy groups associated the fibration, there is
a long exact sequence associated to a cofibration sequence.
Let A5 B%B /A be a cofibration sequence and let X be a topological space. Then
there is a long exact sequence
i

q* * o q*
s g BIAX) B B (X)) S (X)) S AP X = 2P X B (X)) S (X))

n—1

Let Y be a topological space with abelian fundamental group and let A be a finite
dimensional CW-complex. Suppose, in addition that A has only one 0-cell. Note that
this is not a homotopical restriction since any path-connected CW-complex is homotopy
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equivalent to a CW-complex (of the same dimension) with only one 0O-cell. We define
A" =x forr < —1.

For r € N, let J, be an index set for the r-cells of A. For o € J, let g/, be the attaching
map of the cell ef,.

The cofiber sequences A" 1 — A" — \/ST induce the corresponding long exact se-

Jr
quences which may be extended as follows

_— O r r r— i r—
) F YT () Y S () m o, = Y ST (V) Im o,y Sy S (V) /Ima,_y =0

where ¢ is the quotient map.
These extended exact sequences yield an exact couple (Ag, Eo, i, j, k) where the bigraded

groups Ag = @ Ap g and Ey = @ E;yq are defined by

D,gEZL p,qEZ
ﬁgﬂﬂf) if p+¢>0
Apg = W(\)/S ’ (Y)/Imo ifp+qg=-1
0 if p+q<—2
and i,
w57 (y) ifp+q>0
—p—1
Ezl),q: WS/SP (Y)/Imo ifp+qg=-1
0 ifp+qg< -2

Note that all these groups are abelian, except perhaps for 71" (Y), » € N. We will
prove now that 71" (Y) is also an abelian group for all 7 € N. We know that 7{" (V) =
[ZA" Y] ~ [A", QY] and that QY is an H-group, where the multiplication map is given
by standard path composition. Since 7m1(Y") is abelian, it follows that this multiplication
is commutative and hence QY is an abelian H-group. Therefore, 7{ (V) is an abelian
group for all r € N.

Hence, the exact couple (Ag, Eo, 1, j, k) induces a spectral sequence which, since A is
finite dimensional, converges to 7/} (Y") for n > 1 by 2.2.10.

Note that )

By =) (V) = [[m(Y) = CP(4m, (V)
J_
for p4+¢ > 0 and p < —1, where C*(A; 7y (Y)) denotes the cellular cohomology complex
associated to A with coefficients in m4(Y)
(

_ VST

The isomorphism ~ : E;,q =Tyt (Y) = C7P(A;7,(Y)) is given by

Y([D(ea?) = [ ia]

where i, : STP — \/ S7P denotes the inclusion in the a-th copy. Note also that Eiq =0
ifp+qg<—-1lorp>0.

We wish to prove now that E2 ~ H P(A;my(Y)) for p+¢ > 1 and p < —1. We will
need the following lemma.
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Lemma 2.5.3. Let X be a CW-complex, let r > 2 and let g : S™ — X" be a continuous
map. For r € N, let J. be an index set for the r-cells of X and for each 8 € J, let
ig:S" — \/S" be the inclusion in the 3-th copy and let qg : X" — S” be the quotient map

Jr

which collapses X" — eﬁ to a point. Let q: X" — X"/X""1 = \/ST be the quotient map.

7‘

Then
lagl = Y _ lipasg)
BEJr
in ﬂ'r(\/ ST).
Jr
Proof. For each § € J, let qb \V S — Sﬁ be the quotient map which collapses all
yEJr
but the §-th copy of S” to a point. It is easy to see that @ (qlﬁ)* is the inverse of the

BeJr

isomorphism @ (ig)« : @ m(S") — 7T7-(\/ S).
Jr

BEJr BEJr
Thus,

lag] = P (ip)+(EP (a5)+([a9])) = EP (ip)+({lasal}s) = > _ lisasg].

BeJr pedr peJr Bedr
O

Now we consider § : E , ~ CP(A;my(Y)) — E)_; , ~ C Pt (A;7,(Y)) induced from
the spectral sequence. We will prove that § = d* forn = p+q¢q > 1 and p < —1, where
d is the cellular boundary map. This is equivalent to saying that the following diagram

commutes

(+ PAARY
* ’ p/ S +1
w5 () T (Y) ()
Wlﬁ Wiz

C¥ (A5 oy (V)

CP Y (A (V)
Here p’ = —p.
If [h] € W,YS (V) and § ™ is a (p/ + 1)-cell of A, then

vV 5 () | () = 7 (ks \/ Sngh (el ) = [hsngsn gl ).
16 8

On the other hand,
& (v ()R ™) = () (AR H)) = 3 deg(gagh ™) (v([h))(€}) =
BEJ,
= ) deg(gpgh T [hE"ig).
BEJ,,
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Applying 2.5.3 we get

[Ergsgh ™ = ha((Z"qgh ) = he (B0 ligapgh 7)) = Y (WS (ipaqagh )] =
BEJ/ ﬂEJ /
= Z deg(X"( qﬁggJrl ))[hE"ig] = Z deg( qgggﬂ )[hig).
BEJPI ,BEJ /

It follows that Ezq ~ HP(A;my(Y)) for p+¢g>1and p < —1.

Hence, we have proved

Theorem 2.5.4. Let Y be a topological space with abelian fundamental group and let A
be a finite dimensional CW-complex. Then there exists a homological spectral sequence
{Ep Ya>1, with Equ satisfying

o Ezaq ~ HP(A;mg(Y)) forp+qg>1 andp < —1.
. E§7q=0 ifp+q<0orp>0.
which converges to m p+q( ) forp+q>1.
We will call {E}  }o>1 the Federer spectral sequence associated to A and Y.

Example 2.5.5. If A is a Moore space of type (G, m) (with G finitely generated) and X
is a path-connected abelian topological space, in the Federer spectral sequence we get

Hom(G,my (X)) ifp=m
Egpq_ Ext(G,m(X)) ifp=m+1 for —p+¢q > 1.
0 otherwise

Hence, from the corresponding filtrations, we deduce that, for n > 1, there are short
exact sequences of groups

0~ Bxt(G, g1 (X)) —— 74 (X) — Hom (G, g (X)) — 0

As a corollary, if G is a finite group of exponent 7 then " = 0 for every o € 7/ (X).
For example, if X is a path-connected and abelian topological space, then every element
in 72°(X) (n > 1) has order 1, 2 or 4.

Now, we will apply the previous theorem to give an extension to the Hopf-Whitney
theorem, which is not only interesting for its own sake but also will be useful for us later.

Theorem 2.5.6. Let K be a path-connected CW-complex of dimension n > 2 and let Y
be (n — 1)-connected. Then there ezists a bijection [K,Y] < H"(K;m,(Y)).

In addition, if K is the suspension of a path-connected CW-complex: (or if Y is a loop
space), then the groups [K,Y] and H"(K;m,(Y)) are isomorphic.
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The first part is the Hopf~-Whitney theorem [16]. The second part can be proved easily
by means of the Federer spectral sequence. Concretely, suppose that K = YK’ with K’
path-connected. Let {qu} denote the Federer spectral sequence associated to K’ and Y.
Then Eg,q =0 for ¢ <n —1since Y is (n — 1)-connected, and Eg’q =0 for p < —n since
dim K/ = n — 1. Hence, Ez(n—l),n = H" Y (K';7,(Y)) survives to E*. As it is the only
nonzero entry in the diagonal p + g = 1 of E? it follows that

K.Y=l (V) = B, ), = H" (K my (V) = HY (K m (V).

n—1



Chapter 3

Definition of CW (A)-complexes
and first results

In this chapter, we introduce CW-complexes of type A, or CW(A)-complexes for short,
generalizing CW-complexes, which turn out to be CW(S°)-complexes. As mentioned in
the introduction, there exist other generalizations of CW-complexes in the literature, but
our approach is quite different from them and keeps the geometric and combinatorial
nature of Whitehead’s original theory. Thus, it also gives us a deeper insight onto the
classical theory of CW-complexes.

We also mention that many results given in this chapter are completely new, while
others are generalization of well-known properties of CW-complexes. Among these latter
ones, we find that some proofs can be generalized without difficulty, while others need a
different argument.

In the first section of this chapter, we give the constructive definition of CW(A)-
complexes, analyse some of their topological properties and generalize known results for
CW-complexes. We study basic constructions such as cylinders, cones and suspensions of
CW(A)-complexes which are useful when dealing with homotopy and homology of these
spaces.

Of course, some classical results are no longer true for general cores A. For example,
the notion of dimension of a space (as a CW(A)-complex) is not always well defined.
Recall that in the classical case, the good definition of dimension is deduced from the
famous invariance of dimension theorem. By a similar argument, we can prove that in
particular cases (for example when the core A is itself a finite dimensional CW-complex)
the dimension of a CW(A)-complex is well defined. We study this and other invariants
and exhibit many examples and counterexamples to clarify the main concepts.

Although our definition of CW(A)-complexes is constructive, we also give a descriptive
definition and compare them. In the classical theory of CW-complexes it is well known
that both definitions coincide, but for an arbitrary chosen core A they may differ, as we
shall see.

We also study the relationship between different decompositions and analyse the change
from a core A to a core B via a map o : A — B.

From now on we will work in the category of pointed topological spaces. Hence, maps

97
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will be pointed and cylinders, cones and suspensions will always be reduced.

3.1 The constructive approach

Let A be a fixed pointed topological space.

Definition 3.1.1. We say that a (pointed) space X is obtained from a (pointed) space B
by attaching an n-cell of type A (or simply, an A-n-cell) if there exists a pushout diagram

Zn_lA*g>B

| l

cxnlg T> X

The A-cell is the image of f. The map g is the attaching map of the cell, and f is its
characteristic map.
We say that X is obtained from B by attaching a 0-cell of type A if X = BV A.

Note that attaching an S%-n-cell is the same as attaching an n-cell in the usual sense,
and that attaching an S™-n-cell means attaching an (m + n)-cell in the usual sense.

The reduced cone CA of A is obtained from A by attaching an A-1-cell. In particular,
D? is obtained from D! by attaching a D'-1-cell. Also, the reduced suspension YA can
be obtained from the singleton * by attaching an A-1-cell.

Of course, we can attach many n-cells at the same time by taking various copies of
¥ 1A and CE" 1A,

+ ga
V yn—=1l A acJ
aed B
zl push
\V Csn1A
acJ ‘ngoz X

Definition 3.1.2. A CW-structure with base A on a space X, or simply a CW(A)-
structure on X, is a sequence of spaces * = X 1, X0 X1 . X" ... such that, for n € Ny,
X" is obtained from X"~! by attaching n-cells of type A, and X is the colimit of the di-
agram

x=X1o X' xS X" .

We call X™ the n-skeleton of X. The base point * will be regarded as a (—1)-cell.

We say that the space X is a CW/(A)-complex (or simply a CW(A)), if it admits some
CW(A)-structure. In this case, the space A will be called the core or the base space of the
structure.

Note that a CW(A)-complex may admit many different CW (A)-structures.
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Examples 3.1.3.

(1) A CW(S?)-complex is just a CW-complex and a CW (S™)-complex is a CW-complex
with no cells of dimension less than n, apart from the base point. Moreover, any path-
connected CW-complex is homotopy equivalent to a CW(S°)-complex. Indeed, if X is a
path-connected CW-complex, then X is homotopy equivalent to a CW-complex with only
one O-cell and any attaching map is homotopic to a base-point preserving map. Hence,
the result follows applying 1.1.19 and 1.1.22.

(2) The space D™ admits several different CW(D!)-structures. For instance, we can take
X"=Dtl for 0 <r <mn—1since CD" = D"t We may also take X0=. . . =X"2=x
and X"~ ! = D" since there is a pushout

Zn—QDl — Dn—l

*
Z\L push l
1 _ Dn

Cyn"2pl =Ccpr! ——xD""

As in the classical case, instead of starting attaching cells from a base point *, we can
start attaching cells on a pointed space B.

Definition 3.1.4. A relative CW(A)-complez is a pair (X, B) such that X is the colimit
of a diagram
B:X]§1—>X%—>X]]‘3—>...—>Xg—>...

where X7 is obtained from Xg_l by attaching n-cells of type A.

One can also build a space X by attaching cells (of some type A) without requiring
them to be attached in such a way that their dimensions form an increasing sequence.
That means, for example, that a 2-cell may be attached on a 5-cell.

In general, those spaces might not admit a CW(A)-structure and they will be called
generalized CW(A)-complezes (see 3.1.6). If the core A is itself a CW-complex, then a
generalized CW(A)-complex has the homotopy type of a CW-complex. This generalizes
the well-known fact that a generalized CW-complex has the homotopy type of a CW-
complex.

Before giving the formal definition we show an example of a generalized CW-complex
which is not a CW-complex.

Example 3.1.5. We build X as follows. We start with a 0-cell and we attach a 1-cell by
the identity map obtaining the interval [—1;1]. We regard 1 as the base point. Now, for
each n € N we define g,, : S° — [~1,1] by gn(1) =1, go(—1) = 1/n. We attach 1-cells by
the maps g,,. This space X is an example of a generalized CW-complex (with core S°).

It is not hard to verify that it is not a CW-complex. To prove it, suppose that X admits
a CW-complex structure. We will prove that the points 1/n must be 0-cells, but they have
a cluster point which is not possible for 0-cells of a CW-complex. Fix n and call p = 1/n.
The point p must be in the interior of some cell. By a dimension argument it is easy to
see that p can’t belong to the interior of an r-cell for r > 1 because the neighbourhoods
of p are not homeomorphic to the r-disk. Thus, p must belong to the interior of a 0-cell,
and hence it is a 0-cell.
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We shall see that if A is a CW-complex then a generalized CW(A)-complex has the
homotopy type of a CW-complex. In particular, a generalized CW-complex (that is, a
generalized CW(S?)) has the homotopy type of a CW-complex.

Definition 3.1.6. We say that X is obtained from B by attaching cells (of different
dimensions) of type A if there is a pushout

+
v Ena_lA aEJga
acJ

ii push

(VAviveseta)
a€Jo acJ +

Sy

where n, € N for all & € J. We say that X is a generalized CW(A)-complex if X is the
colimit of a diagram

=X 5 X! 5 X2 5 S X" — .

where X" is obtained from X"~! by attaching cells (of different dimensions) of type A.
We call X™ the n-th layer of X.
One can also define generalized relative CW (A )-complexes in the obvious way.

For standard CW-complexes, by the classical Invariance of Dimension Theorem, one
can prove that the notion of dimension is well defined. Any two different structures of a
CW-complex must have the same dimension.

For a general core A this is no longer true. However, we shall prove later that for
particular cases (for example when A is a finite dimensional CW-complex) the notion of
dimension of a CW(A)-complex is well defined.

Definition 3.1.7. Let X be a CW(A)-complex. We consider X endowed with a particular
CW (A)-structure K. We say that the dimension of K is n if X™ = X and X"~ ! # X, and
we write dim(KC) = n. We say that K is finite dimensional if dim(KC) = n for some n € Ny.

Important remark 3.1.8. A CW(A)-complex may admit CW(A)-structures of different
dimensions. For example, let A = \/ S and let X = \/ A. Then X has a zero-

neN jEN
dimensional CW(A)-structure. But we can see that X = (\/ A) V £ A, which induces
JjeN
a l-dimensional structure. Note that \/ A = (V A) V £ A since both spaces consist of
JEN JeEN

countably many copies of S™ for each n € N.

Another example is the following. It is easy to see that if B is a topological space
with the indiscrete topology then its reduced cone and suspension also have the indiscrete
topology. So, let A be an indiscrete topological space with 1 < #A < ¢. If A is just a
point then its reduced cone and suspension are also singletons, so * can be given a CW(x)
structure of any dimension. If #A4 > 2 then #(X"A) = ¢ for all n, and X" A are all
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indiscrete spaces. Since they have all the same cardinality and they are indiscrete then all
of them are homeomorphic. But each ¥" A has an obvious CW(A)-structure of dimension
n. Thus, the homeomorphisms between > A and X™ A, for all m, allow us to give X" A a
CW (A)-structure of any dimension (greater than zero).

Given a CW(A)-complex X, we define the boundary of an n-cell e” by " = e? N X" 1

L]
and the interior of e” by e = e — ™.

A cell ey is called an immediate face of ey, if e Neg % &, and a cell ey is called a face
of e if there exists a finite sequence of cells

m __ Mo mi mo me __ N
€3 = €3, 1€3 1€3, 11 €3" = €q

such that eg;j is an immediate face of eg;j*ll for 0 <j <k.
Finally, we call a cell principal if it is not a face of any other cell.

Remark 3.1.9. Note that el N ey # @ if and only if n = m, « = 3. Thus, if eg is a face
of eg and €’ # eq then m < n.

As in the classical case, we can define subcomplexes and A-cellular maps in the obvious
way. A-cellular maps will often be called simply cellular when there is no risk of ambiguity.

Remark 3.1.10. If X is a CW(A), then X = [Jel.

n,a
Proof. Let x € X. Then there exist m, 3 such that x € eg‘, and we may choose a cell with

minimum m. If z € eg‘ we are done. If not, x € eg‘ C X™~1 then z belongs to a cell with
dimension less than m, a contradiction. ]

Proposition 3.1.11. Let X be a CW(A)-complex and suppose that the base point of A
is closed in A. Then the interiors of the n-cells are open in the n-skeleton. In particular,
X" 1 s a closed subspace of X™.

Proof. For n = —1 and n = 0, the statement is clear. Let n > 1. There is a pushout
diagram
\/ EnilA aJerJga n—1
acl X
zl push
\V CxntA X =Xxn"tyJen
aeJ + fa @

acJ

[0}
Consider a cell eg. In order to verify that eg is open in X" we have to prove that

(+f5) " () is open in \/JCE”flA. Since (+f3)"'(e}y) = CE"'A - £" 14 is open in
ae

o
CxX" 1A, then e is open in X™. O
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The previous proposition does not hold if the base point is not closed in A. For example,
let A be an indiscrete space with #A4 > 2 and X = CA, obtained by attaching an A-1-cell
to A by the identity map. Then X has also the indiscrete topology and hence, the interior
of the A-1-cell is not open in X.

Recall that a topological space Y is T1 if the points are closed in X.

Proposition 3.1.12. Let A be a pointed T1 topological space, let X be a CW(A)-complex
and let K C X be a compact subspace. Then K meets only a finite number of interiors of
cells.

Proof. Let A = {a/ K Nel> # @}. For each o € A choose z, € K Nel>. We want to

o
show that for any a € A there exists an open subspace U, C X such that U, D el* and

xzg ¢ U, for any g # a.
For each n, let J,, be the index set of the n-cells. We denote by g the attaching map

of e and by f] its characteristic map.
[e]

Fix 8 € A. Take U} = egﬁ, which is open in X"8. If ng = —1, we take Uy =
( V A—{z.})Vv( V A), which is open in the O-skeleton.
acJoNA acJo—A

Now, for ng+n —1 > 1 we construct inductively open subspaces U,, of X ns+n=1 with
Up1 C Uy, U, N X472 =, and such that z, ¢ U, if o # 3.
If the base point ag ¢ U,—1, we take

Un=Un1U  {J  fao((9a") " (Un-1) (1 = €q, 1))

anJnﬁ+n—1

with 0 < e4 < 1 chosen in such a way that z, ¢ U, if « # 3. Note that U, is open in
Xng—l—n—l‘
If ap € U, _1 we take

Un=UpaU |J S (((a) ™ Unm1) X (1 =0, 1NU(Wa, x HUEH T AX0,€,)))

aeJnﬁﬁ»nfl

with W, = Vi, N (g7) 1 (U,—1), where V,, C X% "1 4 is an open neighbourhood of
the base point not containing x/, (where z, = fl*(al,,ts)), and 0 < e, < 1,0 < &/, < 1,
chosen in such a way that z, ¢ U, if a # 3. Note that U, is open in X"s+7=1,

Weset Ug = |J Up. Thus K C |J el> C | Ua, and 2o ¢ Ug if a # 3. Since {Uq faen

neN a€A a€A
is an open covering of K which does not admit a proper subcovering, A must be finite. [

Lemma 3.1.13. Let A and B be Hausdorff spaces and suppose X is obtained from B by
attaching cells of type A. Then X is Hausdorff.

Proof. Let z,y € X. If z,y lie in the interior of some cell, then it is easy to choose
the open neighbourhoods. If one of them belongs to B and the other to the interior of
a cell, let us say = € el'», we work as in the previous proof. Explicitly, if z = f,(a,t)

with @ € X" 1A t € I then we take U’ C X"=~!A open set such that ¢ € U’ and
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ap ¢ U’, where ag is the basepoint of X1 A. We define U = £, (U’ x (t/2,(1 +t)/2)),
and V = X — fo (U x [t/2,(1 +1)/2]).

If z,y € B, since B is Hausdorff there exist U’, V' C B open disjoint sets such that
xz € U and y € V'. However, U’ and V' need not be open in X. Suppose first that =, y
are both different from the base point. So we may suppose that neither U’ nor V' contain
the base point. We take

U=U"UJfallga) " (U) x (1/2;1])

aeJ

V=V'U Ufa((goz)_l(vl) x (1/2;1])

acJ

If x is the base point then we take

U=U"U{Jfalllga) ' (U) x DU ("1 A % [0;1/2)))
acJ

O

Proposition 3.1.14. Let A be a Hausdorff space and let X be a CW(A)-complex. Then
X is a Hausdorff space.

Proof. By the previous lemma and induction we have that X™ is a Hausdorff space for all
n > —1. Given z,y € X, choose m € N such that x,y € X™. As X™ is a Hausdorff space,
there exist disjoint sets Uy and Vj, which are open in X", such that z € Uy and y € V}.
Proceeding in a similar way as we did in the previous results we construct inductively sets
U, Vi, for k € N such that Uy, Vi, € X™%* are open sets, UyNV;, = @, U,N X1 = U,
and Vz N X™HE=1 =V, | for all k € N. We take U = JUy, V = | Vk. d

Remark 3.1.15. Let X be a CW(A)-complex and S C X a subspace. Then S is closed in
X if and only if S Ne} is closed in €], for all n, a.

Proposition 3.1.16. Let A be a finite dimensional CW-complexr, A # %, and let X be
a CW(A)-complex. Let K and K' be CW(A)-structures in X and let n,m € Ny U {oo}
denote their dimensions. Then n = m.

Proof. We suppose first that K and K are finite dimensional and n > m.
Let £k = dim(A) and let € be an n-cell of K. There is a homeomorphism e ~

CY" 1A - ¥""1A and e? is open in X. Let e be a cell of maximum dimension of the

o]
CW-complex CX" !4 and let U = e. Thus U is open in X and homeomorphic to D"k,
Now, U intersects some interiors of cells of type A of K'. Let ey be one of those cells
with maximum dimension. Suppose eq is an m/-cell, with m’ < m. Then eoo is open in the
m/-skeleton of X with the K’ structure. It is not hard to see that V = UnN 60() is open in U,
extending eo to an open subset of X as in the proof of 3.1.12. Indeed, let Uy be an open
subset of X such that Uy Nx™ = eoo. Note that U C xm, Hence, UgNU C Uy Nx™ = eoo.
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Then, UyNU C eoo N U. On the other hand, eoo C Up and hence eoo NU CUyNU. Thus,
V= eoo NU C Uy NU and therefore V is open in U.

In a similar way, co ~ Cxm =14 — Y ~14 and V meets some interiors of cells of
the CW-complex CX”' 1 A. We take e; a cell (of type S°) of maximum dimension among

those cells and we denote k' = dim(ep). Then eol is homeomorphic to D¥. Let W = Vﬂeol.

[¢]

One can check that W is open in e1 ~ D¥ and that it is also open in U ~ D"tk

Indeed, let W = VNer. Again, W is open in e1 and since €] is open in the k’-th skeleton
of eg, there exists Us C eoo open subset with Us N (eo)k' =¢;. Then W =V e, =VNU,.
Now, V C eoo, so W is open in V. Thus W is open in e1 and in V and hence in U. So, W

[} o

is open in €; ~ D¥ and W is open in U ~ D"tk

Hence, by the invariance of dimension theorem, n+k = k/, but also ¥ < m+k < n+k.
Thus n = m.

It remains to be shown that if m = oo then n = co. Suppose that m = co and n # oo.
o

Let k = dim(A). We choose e an I-cell of K’ with [ > n + k. Then €' is open in the

l-skeleton (K')!. As in the proof of 3.1.12, we can extend €' to an open subset U of X
with U N (K')"1 = @. Now we take a cell e; of K such that e; N U # @ and with the
property of being of maximum dimension among the cells of I whose interior meets U.
Let r = dim(e;). We have that U C K. As before, we extend eol to an open subset V of
X with VNK™1 =@, VNK" =¢€). SoUnNe; = UNV is open in X. Proceeding similarly,
since €; ~ CXr—1A4 — Y=l A, we can choose a cell ez of e (of type S?) with maximum
dimension such that W = e, N (U Ney) # @. Again, W is open in X. Let s = dimey. So
W is open in €5 ~ D and s <r+k <n+k <I. On the other hand, W must meet the
interior of some cell of type S° belonging to one of the cells of K’ with dimension greater
than or equal to [ (since U N (K')'~! = @). So, a subset of W is homeomorphic to an open

o
set of D? with ¢ > [, a contradiction. ]

Lemma 3.1.17. Let X and Y be CW(A)-complexes, let B C X be a subcomplex, and let
f:B —Y be an A-cellular map. Then the pushout

f

B
zi push
X

. X

Y

WC <~—

is a CW(A)-complex.
Proof. We denote by {e ,}aecs, the n-cells (of type A) of the relative CW(A)-complex
(X, B) and by {ey, }ae, the n-cells of Y. We will construct X Y Y attaching the cells of

Y with the same attaching maps and at the same time we will attach the cells of (X, B)
using the map f: B — Y.
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Let JJ = JoU Jj and Z° = \/ A. We define fy : X° — Z° by folgo = f|po and
acJlf

fol U e . the inclusion.
acgJy

Suppose that Z" ! and f, 1 : X" 1 — Z"1 with f,_1|gn1 = f are defined. We
define Z" by the following pushout.

1

1 %—Hga
n— a€gJy!
\V 4

anl
acJ]]
zl push In—1
cxyrtg
v " 1" Zn
acJ]! + £

acJl!

where J, = J, U J] and

" _ fn—logoz ifaEJn
Jo gb if a €J),

where g, and g/, are the attaching maps. We define f, : X" — Z" by fulpn = f|Bn,
falxn—t = fo1 and ful ey = IV o(ie. fo(falz)) = fU(x)). Note that f, is well

aEJn
defined.
Let Z be the colimit of the Z™. By construction it is not difficult to verify that Z
satisfies the universal property of the pushout. O

Corollary 3.1.18. Let X be a CW(A)-complex and B C X a subcomplex. Then X/B is
a CW(A)-complex.

Theorem 3.1.19. Let X be a CW(A)-complex. Then the reduced cone CX and the
reduced suspension XX are CW(A)-complexes. Moreover, X is a subcomplex of both of
them.

Proof. By the previous lemma, it suffices to prove the result for CX.

Let e be the n-cells of X and, for each n, let J, be the index set of the n-cells. We
denote by g” the attaching maps and by f” the characteristic maps. Let i, 1 : X" 71 — X7
be the inclusions. We construct Y = CX as follows.

Let YO = \/ A= XO.

acJy
We construct Y from Y9 and from the 0-cells and the 1-cells of X by the pushout
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where J; = Jo U J;. The maps g, for a € J{, are defined as

e ifae Jy
Yo = Jgo fa€edy

and i, : A — \/ A is the inclusion of A in the a-th copy. Note that X' is a subcomplex
acJy
of Y.
Note also that the 1-cells of Y are divided into two sets. The ones with o € J; are the
1-cells of X, and the others are the cone of the 0-cells of X.
Inductively, suppose we have constructed Y"~!. We define Y™ as the pushout

/

+ o
v yn=1 g acJ;

_ s Yn—l

acJ)
Z\L push -
\V Ccxnlig v
acly, + fh
aEJ{,{
where J], = J,—1 U J, and
i | Ga for a € J,
o = faUCgy forace J, 1.

We prove now that Y = CX" 1 UJe?. We have the following commutative diagram.
e}

( + gu)vid Id+( + gb)
\/ EnflA a€d, 1 Yn—l Vi \/ En_lA a€Jn Yn—l
acl), acJn
Vl lvv push
\V/ CcEnmlig cxnlv \/ cxn A CxX"tuUen
acJ, ( Ej_ fLHvId acJn Id+( E+J fa) a
aCJdn—1 acdn

The right square is clearly a pushout. To prove that the left square is also a pushout it
suffices to verify that the following is also a pushout.

+ g
V En_lA aeJn_lg Yn—l — CXn—Q U U eg—l

a€Jn—1 a€dn_1
Vo .
a€dy 1 inc
n—1
V C¥n A Cxn-1
a€Jn—1 +  fi
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For simplicity, we will prove this in the case that there is only one A-(n — 1)-cell. Let

j:YlA - oxnlAa

i1 : C(Z"TA) x {1} — CcCxntA

ig: (X" 1A) x {1} x I/ ~— CCY™ 1A
i:Y"A =024 Y x4 — CxrA

be the corresponding inclusions.
Let ¢ : CC(X"1A) — CE(X"!A) be a homeomorphism, such that ¢=1i = i1 + is.
Note that Cj = ¢2. There are pushout diagrams

sl g ———— xn ozt — 2 oxnet
jl push iinc Cj:i2l push lCinc
OZnlA—= X" = X"luen  COSTlA g CX7

It is not hard to check that the diagram

SrA=CEr Ay Ot A L L e o

CxnA o CX

satisfies the universal property of pushouts. Indeed, Cfop~ti = Cf(i; +i2) = f + Cg,
so the diagram commutes. Suppose we have a : CX" ' Ue” — Z and 8 : CEL"A — Z
such that i = a(f + Cg). Then Byi; = ainf and fpis = ainCg = a|gyn-1. We have a
commutative diagram

C
oxnlg —> o xnl
Cjzigi push i \

cexr—ta o7 CX?—Q, ]

Then, there exists a (unique) map ~ such that yin = a|cxn»-1 and YCf = B¢. So,
vCfe~!t = B. We must see that vin = a, so it remains to be proved that this holds in e”.
But vCf = By, then vCfi; = Byiy = ainf. Thus vinf = ainf, and since f is surjective
this implies that v = « in €. The uniqueness of 7 is clear. We have proved that the
diagram at the beginning is a pushout.

Now we take Y to be the colimit of Y, which satisfies the desired properties. O

Remark 3.1.20.
(1) The standard proof of the previous theorem for a CW-complex X uses the fact that
the reduced cylinder I X is also a CW-complex. For general cores A, it is not always true
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that IX is a CW(A)-complex when X is. For example, take A = X = S°. The reduced
cylinder IX has two path-connected components: the base point and the unit interval.
But in any CW(S?), each of the path connected components which do not contain the
base point consists of only one point. Thus, IX is not a CW(S?).

However, we will see below that if A is the suspension of a locally compact and Hausdorff
space then the reduced cylinder of a CW(A)-complex is also a CW(A)-complex.

(2) It is easy to see that if X is a CW(A), then XX is a CW(A)-complex. Just apply
the ¥ functor to each of the pushout diagrams used to construct X. In this way we give
YX a CW(A)-structure in which each of the cells is the reduced suspension of a cell of X.
This is a simple and useful structure. However, it does not have the property of having X
as a subcomplex.

Note that (IX) A A = I(X A A) for any spaces A and X since IZ = (I Ux) A Z for
every topological space Z (here LI denotes disjoint union).

Lemma 3.1.21. Let A be a loccaly compact and Hausdorff space and let X be a topological
space. Then (CX)NA=C(XNA), XVY)ANA=(XANA) VY ANA) and (EX)NA=
(X ANA).

Proof. Since A is locally compact and Hausdorff, by the exponential law we get that the
functor —A A is left adjoint to the functor Hom(A,-). Hence —A A commutes with colimits.
The result follows applying the — A A functor to the pushouts

X—IX * X XVX—IX
l push l \L push l l push \L
* —— CX Y—XVY * XX

O]

Proposition 3.1.22. Let A be a locally compact and Hausdorff space and let X be a
CW-complex. Then X N A is a CW(A)-complex. Moreover, the CW(A)-complex structure
of X N\ A is induced by the CW-complex structure of X.

Proof. As it was said in the proof of the previous lemma, the functor — A A commutes
with colimits. The result follows using the previous lemma and applying — A A functor
to the pushouts which define the A-skeletons by attaching cells and to the colimit of the
A-skeletons. O

Lemma 3.1.23. Let v : S' — S' v S be the usual map inducing the comultiplication in
S1. Then there is a pushout

Sl —"=gly gt

=

cSt —— st
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Proof. Note that the pushout of the diagram

Sl —"=gly gt

|

Ccst
is D?/{(—1,0),(1,0)}. There are homeomorphisms
IS' =8 < I1/({(1,0)} x I) =~ I x I/({0,1} x I) ~ D?/{(—1,0),(1,0)}
and hence, the result follows. ]

Proposition 3.1.24. Let A’ be a locally compact and Hausdorff space and let A = L A’.
Let X be a CW(A)-complex. Then the reduced cylinder 1X is a CW(A)-complex. More-
over, io(X) and i1(X) are CW(A)-subcomplezes of I1X.

Proof. For n € Nlet J, be an index set for the A-n-cells of X. We proceed by induction in
the A-skeletons of X. For the initial case we have that X° = \/ A. Then IX° = \/ IA.

a€eJy acJy
But IA is a CW(A)-complex since applying — A A’ to the pushout of the previous lemma

gives a pushout

VA=A YAVIA=AVA
i push l
CxA" =CA IYA =1T1A

Now suppose that I X"~ ! is a CW(A)-complex with io(X™ 1) and i1 (X"~ ) are CW(A)-
subcomplexes. We consider

+GI
ynlA g Y4 o @
OéEJn—\l/an—l IXn_l aé{]n Yn

l push i push

\ CEnlAg vV esa oy

n
a€dp—1UJpn—1 +fn n acdn
«

where g =  + g9l + + i192 with (¢g7), the adjunction maps of the A-n-cells of X, and
EJn 1

aEdp_1 « _
where the maps G, are defined as the composition

cErta) U 1z ta) U C(E”—lA)w)Y

E(ZN_IA) sn—14 yn—14 n

where the first map is a homeomorphism and F, is the composition

I n .
I(ZnilA) Yo IXn_l inc Yn

We wish to prove that Z,, is homeomorphic to IX™. Note that ¥, = X" |J IX"! | X"
Xn—1 Xn—1
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We have that

-1 .
0el ,YuJ ,Fn A2 xn-ly {0} v X1 x {1} 2 et

\L push k push

n—1

a€Jp—1UJn—1 +fo
«@

and clearly W, = X™ x {0} v X™ x {1}.
Now, the homeomorphism (X" 1A) — C(X"14) | I(Z"1A) U C(Z"1A)
sn=14 sn=14
extends to a homeomorphism C(X"1A) — IC(X" !A). Indeed, this follows applying
~ A A to the homeomorphism of topological pairs ¢ : (D"t! S") — (ID" CS"~! U

Sn—1
ISt U osnl
Sn—1

Then, we have

G’n
V (CE14 | IS4 | Conla) VLY RGN
= $n—14 nn—14 a€dy "
i push l push
\V ICxtA \V CX"A 7
acdy acdy n

where the first square is a pushout since it commutes and its two horizontal arrows are

homeomorphisms.
Note now that the top horizontal composition is f} U F, U f! and that Z,, = I X" since
F, =inco Ig];. The result follows. O

Lemma 3.1.25. Let A be a topological space and let (X, B) be a relative CW(A )-complex
(resp. a generalized relative CW(A)-complex). Let'Y be a topological space, and let f :
B — Y be a continuous map. We consider the pushout diagram

f

B Y

zi push \L
XUY

Xy

Then (X Lé YY) is a relative CW(A)-complex (resp. a generalized relative CW(A)-

complex).
Moreover, if (X,B) has a CW(A)-stucture of dimension n € Ng (resp. a CW(A)-
structure with a finite number of layers) then (X % YY) can also be given a CW(A)-

stucture of dimension n (resp. a CW(A)-structure with a finite number of layers).

The proof is easy and we omit it.



Section 3.1: The constructive approach 111

Theorem 3.1.26. Let A be a CW(B)-complex of finite dimension and let X be a gener-
alized CW(A)-complex. Then X is a generalized CW(B )-complez. In particular, if A is a
CW-complex of finite dimension then X is a generalized CW-complex.

Proof. Let
k=X > X S X" .

be a generalized CW (A)-structure on X. Then, for each n € N we have a pushout diagram

CTL = \/ ZnaflA a—nga 1
aeJ X"
zi push
D= (V A)V(V Cxra—ia) o
a€cdy acJ JerJfa

where n, € N for all o € J.

We have that (D, C,,) is a relative CW(B)-complex by 3.1.19, and it has finite di-
mension since A does. So, by 3.1.25, (X", X" !) is a relative CW(B)-complex of finite
dimension. Then, for each n € N, there exist spaces Y, for 0 < j < m,, with m, € N
such that Y{ is obtained from Y7 ' by attaching cells of type B of dimension j and
Y, b= X"l ymn = X Thus, there exists a diagram

s =X'=V'-V -V - sy =X=Y s =X =Y

where each space is obtained from the previous one by attaching cells of type B. It is clear
that X, the colimit of this diagram, is a generalized CW(B)-complex. O

In the following example we exhibit a space X which is not a CW-complex but is a
CW(A), with A a CW-complex.

Example 3.1.27. Let A = [0,1] U {2}, with 0 as the base point. We build X as follows.
We attach two 0-cells to get AV A. We will denote the points in AV A as (a,j), where
a € A and j = 1,2. We define now, for each n € N, maps g, : A — AV A in the following
way. We set g,(a) = (a,1) if a € [0,1] and ¢,,(2) = (1/n,2). We attach 1-cells of type A
by means of the maps g,. By a similar argument to the one in 3.1.5, the space X obtained
in this way is not a CW-complex.

If A is a finite dimensional CW-complex and X is a generalized CW(A), the previous
theorem says that X is a generalized CW-complex, and so it has the homotopy type of
a CW-complex. The following result asserts that the last statement is also true for any
CW-complex A.

Proposition 3.1.28. If A is a CW-complex and X is a generalized CW(A)-complex then
X has the homotopy type of a CW-complez.
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Proof. Let
«CX'CX?’C...cX"C...

be a generalized CW(A)-structure on X. We may suppose that all the 0O-cells are attached

in the first step, that is,
xX'=\/Av\/zm4
B [e%

with no € N. It is clear that X' is a CW complex.

We will construct inductively a sequence of CW-complexes Y,, forn € Nwith Y, C Y,
subcomplex and homotopy equivalences ¢, : X™ — Y,, such that ¢y |xn-1 = ¢p_1.

We take Y7 = X' and ¢; the identity map. Suppose we have already constructed
Yi,...,Y and ¢1,..., ¢, satisfying the conditions mentioned above. We consider the
following pushout diagram.

+9a
a_l @ ¢
\a/Zn A XF b~V
\O{Zl push, sz push Vi
Na—1
VO A e X - Y

Note that (§ is a homotopy equivalence since 7; is a closed cofibration and ¢ is a
homotopy equivalence.
We deform ¢y o (+¢4) to a cellular map 1 and we define Yy, as the pushout
«

\/Eno‘_lA Y Yk

«

Tk

o

\/Cxne—lg

vll push

— Y1

There exists a homotopy equivalence k : Yk’Jrl — Yjq1 with k|y, = Id. Let i : Xk -
X*+1 be the inclusion. Then kBix = kv} ¢ and kv, = v is the inclusion. Let ¢p11 = kS.
Then, ¢r4+1 is a homotopy equivalence and ¢gi1|xr = @k.

We take Y to be the colimit of the Y,,’s. Then Y is a CW-complex. As the inclusions
ix, Vi are closed cofibrations, by 1.1.22, it follows that X is homotopy equivalent to Y. [

We prove now a variant of theorem 3.1.26.

Theorem 3.1.29. Let A be a generalized CW(B )-complex with B compact, and let X be a
generalized CW(A)-complex. If A and B are T1 then X is a generalized CW(B )-complezx.

Proof. Let
x=X0 o X5 o X" .

be a generalized CW(A)-structure on X. Let Cy,, D,, be as in the proof of 3.1.26.
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We have that (D, C,,) is a relative CW(B)-complex by 3.1.19. By 3.1.25, (X", X"~ 1)
is also a relative CW(B)-complex, but it need not be finite dimensional, so we can not
continue with the same argument as in the proof of 3.1.26. But using the compactness
of B, we will show that the cells of type B may be attached in a certain order to obtain
spaces Z" for n € N such that X is the colimit of the Z™’s.

Let J denote the set of all cells of type B belonging to some of the relative CW(B)-
complexes (X", X"~ 1) for n € N. We associate an ordered pair (a,b) € (Ng)? to each cell
in J in the following way. Note that each cell of type B is included in exactly one cell of
type A. The number a will be the smallest number of layer in which that A-cell lies. In a
similar way, if we regard that A-cell as a relative CW(B)-complex (CX"1A, 371 4) (or
more precisely, the image of this by the characteristic map), we set b to be the smallest
number of layer (in (CX"" 1A, X"~ A)) in which the B-cell lies. If e is the cell, we denote
#(e) = (a,b).

We will consider in (Ng)? the lexicographical order with the first coordinate greater
than the second one.

Now we set the order in which the B-cells are attached. Let J; be the set of all the
cells whose attaching map is the constant. We define inductively J,, for n € N to be the
set of all the B-cells whose attaching map has image contained in the union of all the cells
in J,_1. Clearly J,_1 C J,. We wish to attach first the cells of J;, then those of Jy — Ji,
etc. This can be done because of the construction of the J,. We must verify that there

are no cells missing, i.e. that J = |J J,.
neN
Suppose there exists one cell in J, which we call ej, which is not in any of the J,. The

image of its attaching map, denoted K, is compact, since B is compact and therefore it
meets only a finite number of interiors of A-cells. For each of these cells e4 we consider
the relative CW (B)-complex (1,4 — €4), where e is the cell of type A.

Then K Nex is closed in K and hence compact, so it meets only a finite number of
interiors of B-cells of the relative CW (B)-complex (e4,€4 — €4).

Thus K meets only a finite number of interiors of B-cells in J.

This implies that K, which is the image of the attaching map of e, meets the interior
of some cell es which does not belong to any of the .J,,, because of the finiteness condition.

Recall that e is an immediate face of e;, which easily implies that p(e2) < ¢(e1).

Applying the same argument inductively we get a sequence of cells (e,)nen such that
(ent1) < p(ey) for all n.

But this induces an infinite decreasing sequence for the lexicographical order, which is
impossible. Hence, J = |J Jp.

neN
Let Z" = |J e. It is clear that (Z", Z""!) is a relative CW(B)-complex.
e€Jn
Since colimits commute, we prove that X = colim Z" is a generalized CW (B)-complex.

O

3.2 The descriptive approach

In this section we introduce the descriptive definition of CW(A)-complexes, which will
be used to prove some results. It also gives a different approach to CW(A)-complexes



Section 3.2: The descriptive approach 114

and generalizes the usual definition of CW-complexes. We will compare the constructive
definition of CW(A)-complexes given in the previous section with the descriptive one
giving conditions for each of them to imply the other, providing counterexamples if these
conditions do not hold. This shows once more which intrinsic properties of S¥ are used in
the usual theory of CW-complexes giving us the chance to study it in depth.

As before, let A be a fixed pointed topological space.

Definition 3.2.1. Let X be a pointed topological space (with base point xg). A cellular
complex structure of type A on X is a collection K = {e’ : n € Ny, € J,,} of subsets of
X, which are called the cells (of type A), such that z¢ € el for all n and «, and satisfying
conditions (1), (2) and (3) below.

Let K" = {el,r < n,a € J.} for n € Ng, K1 = {{mo}}. K" is called the n-skeleton of
K. Let K" = U e, |K" € X a subspace.

r<n
OéEJ'r

L] (¢} [ ]
We call e = e? N |[K"~Y| the boundary of the cell €? and e = e — e the interior of
the cell el.
The collection I must satisfy the following properties.

(1) X = Uea =I[K|

n,o

(o} o

(2) epNeg #T=>m=n,a=0
(3) For every cell el with n > 1 there exists a continuous map

o (CE A Y A ag) — (e, e, xg)

[eRds})

o
such that f7 is surjective and f? : CX" 14 — ¥""14 — ¢” is a homeomorphism.
For n = 0, there is a homeomorphism f : (4, ag) — (€2, z).

The dimension of K is defined as dim K = sup{n : J,, # &}.

Definition 3.2.2. Let K be a cellular complex structure of type A in a topological space
X. We say that K is a cellular CW-complex with base A if it satisfies the following
conditions.

(C) Every compact subspace of X intersects only a finite number of interiors of cells.
(W) X has the weak (final) topology with respect to the cells.
In this case we will say that X is a descriptive CW(A).
We study now the relationship between both approaches.

Theorem 3.2.3. Let A be a T1 space. If X is a constructive CW(A )-complex, then it is
a descriptive CW(A)-complex.
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Proof. Let K = {el}na U {{zo}}. It is not difficult to verify that K defines a cellular
complex structure on X.

It remains to prove that it satisfies conditions (C) and (W). Note that condition (C)
follows from 3.1.12, while (W) follows from 3.1.15. O

Note that the hypothesis of T1 on A is necessary. For example, take A = {0,1} with
the indiscrete topology and 0 as base point. Let X = \/ A. The space X also has
jEN
the indiscrete topology and it is a constructive CW(A)-COIjnpleX. If it were a descriptive
CW(A), it could only have cells of dimension 0 since X is countable. But X is not finite,
then it must have infinite many cells, but it is a compact space. This implies that (C)
does not hold, thus X is not a descriptive CW(A)-complex.

Theorem 3.2.4. Let A be a compact space and let X be a descriptive CW(A)-complex.
If X is Hausdorff then it is a constructive CW(A)-complez.

Proof. We will prove that |K"| can be obtained from |K"~!| by attaching A-n-cells. For
n = 0 this is clear since we have a homeomorphism \/ f0: \/ A — |K°].

acJy acJy
For any n € N, there is a pushout
+ fgcl‘znflA
sn—=1 g acin _1
Z\L push
\V cxn1l4a fed
acdn + fg

aEJn

The topology of |K™| coincides with the pushout topology since X is Hausdorff and A
is compact. Indeed, suppose F' C |K"| is closed in the pushout topology. Then F N |7}
is closed in ||, and so F' N ey is closed in e for all m < n. Since (fM)~Y(Fner)is
closed in CX" 1A, then (f?)"'(F Nen) is compact. This implies that F N e” is compact
and, since |K"| is Hausdorff, it is closed in €. Therefore, F' is closed in |K"| with the
subspace topology. O

It is interesting to see that 3.2.4 need not be true if X is not Hausdorff. For example,
take A = S° with the usual topology, and X = [~1,1] with the following topology.
The proper open sets are [—1,1), (—1,1] and the subsets U C (—1,1) which are open
in (—1,1) with the usual topology. It is easy to see that X is a descriptive CW(A)-
complex. We denote D' = [—1,1] with the usual topology. Take ¢® = {—1,1}, e! = X.
Let fO: A — {-1,1} and f! : CA = D' — e! be the identity maps on the underlying

o
sets. Both maps are continuous and surjective. The maps fY and f!| o D' — el are
D

homeomorphisms. So conditions (1), (2) and (3) of the definition of cellular complex are
satisfied. Condition (C) is obvious, and (W) follows from the fact that e! = X. So X is
a descriptive CW(A)-complex. But it is not a constructive CW(A)-complex because it is
not Hausdorff.
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In a similar way one can define the notion of descriptive generalized CW(A )-complex.
The relationship between the constructive and descriptive approachs of generalized CW (A)-
complexes is analogous to the previous one.

3.3 Changing cores

Suppose we have two spaces A and B and maps «: A — Band §: B — A. Let X be
a CW(A)-complex. We want to construct a CW(B)-complex out of X, using the maps «
and S.

We shall consider two special cases. First, we consider the case fa = Idy, that is, A is
a retract of B. In this case, we construct a CW(B)-complex Y such that X is a retract of
Y.

Let J, be an index set for the A-n-cells of X. For a € J,, let g be the attaching map
of the cell e, and let f7' be its characteristic map. Let Y%= \/ Bandlet pg: X° — YO
v€Jo
be the map Vo and let g : Y? — X0 be the map V3. Clearly opo = Id yo.
By induction suppose we have constructed Y~ and maps ¢,_1 : X"~ ! — Y~ and
1 : Y"1 — X" ! such that v,_1¢n—1 = Idxn—1 and such that ¢, ¥y, extend p_1,
Y1 for all k < n —1. We define Y” by the following pushout.

on—1( + grE"T1p)
v gt L T
yeJIn
\/il push i
v CE”_IB yn
YEJIn + h:’YL
YEJIn
Since
+ frCEnIg)(vi) = 4+ (fPCEMTIB) = + (f1iXtT1B) = 4 (inegl¥Tlg) =
(& BOTIB(VE) = + (FOS180) = + (fis1) = + (ineghw'g)
=incYn_1 + (Pn_1g7S"10)
YEIn

there exists a map ¢, : Y™ — X" extending ¢, 1 such that ¢,, + hJ = + (fQCE"_lﬂ)
yEJIn YEJIn

and ¥, = incy,_1.
On the other hand we have the following commutative diagram
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EnflA ’Ye—bng:;
\/ Xn—l
YEJIn
Kﬂ*la Pn—1
@n—l( + y'n.Zn—l
n—1 a1
Vi V by B 7€M Ynfl
YE€JIn
inc
vi
V CxrlA ' o j
YETn + 7
W:la ven en
\V CxnlB v
YEJIn + h:’\;
YEJIn

where the front and back faces are pushouts. Then the dotted arrow exists and we have
On =Jon—1+( + hijCE”fla). Also, Ypw, = Idxn, since
YEIn

wn@n = ¢nj@n—1 + ( g} ¢nhgczn_1a) = inc¢n—1@n—1 + ( 2:] ffylczn—lﬁcxn—la) =
YEIn YEJIn
=inc+ ( + f7)=Idxn
YEIn

Let Y = colim Y™. Then there exist maps ¢ : X — Y and ¢ : Y — X induced by the
y’s and ,’s and they satisfy ¥ = Idx. So, X is a retract of Y.

The second special case we consider is the following. Suppose A and B have the same
homotopy type, that is, there exists a homotopy equivalence 8 : B — A with homotopy
inverse «. Suppose, in addition, that the base points of A and B are closed. Let X be a
CW(A)-complex. We will construct a CW(B)-complex which is homotopy equivalent to
X

Again we take Y? = \/ B. Let g : X° — YY be the map Va. So, ¢ is a homotopy
v€Jo
equivalence.

Now, let n € N and suppose we have constructed Y~ ! and a homotopy equivalence
Pp—1 : X"l — Y71 We define Y" as in the first case. Consider the commutative
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diagrams
v sip 5
- YE€JIn
n—1
YEJIn X
\Id L Pn—1
on-1( + pournolp
n—1 ~yEJ, v
1B 'yé{] by B " Yn—l
inc
iB
n—1
’yé{] Ccx B Xn—l U 6% j
\V CSnlB it
YEIn + h:’\;
YEJIn
nEnfl
\/ =B vem g L
YEJIn X"
s K
\/ En_lA «,e]ngg
' YEJ, anl
Jinc
iA
n—1
7!] Cx B xn-1 U 6% inc
n -
\ L P2
veEr—1lp
\V Cxr-lg S
yEIn + f7
yEJIn

Since the front and rear faces of both cubical diagrams are pushouts, the dotted arrows
p1 and ps exist. Now ¢,,_1, VI3 and VCE" 13 are homotopy equivalences and i4 and
ip are closed cofibrations. Then, by 1.1.20, p; and ps are homotopy equivalences. We
have the following commutative diagram.

yn-1 Pt xn—l Id xn—1

Pk

yn <LX71—1 U 6% &.Xn

where 4, j and k are the inclusions. Let ps ! be a homotopy inverse of ps. Then P1Py g =
plpz_lmj ~ p1j = iYp_1. Since k : X" 1 — X" is a cofibration, ¢,_1 extends to some
¢Yn : X" — Y™ and ¢, is homotopic to pi1psy ! and thus, it is a homotopy equivalence.
Again, we take Y = colim Y. Then the maps ¢, for n € N induce amap ¢ : X — Y
which is a homotopy equivalence by 1.1.22.
We summarize the previous results in the following theorem.

Theorem 3.3.1. Let A and B be pointed topological spaces. Let X be a CW(A)-complez,
and let « : A — B and 3 : B — A be continuous maps.
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i. If Ba = Ida, then there exists a CW(B)-complex Y and maps ¢ : X — Y and
Y — X such that Yo = Idx.

1. Suppose A and B have closed base points. If 3 is a homotopy equivalence, then there
exists a CW(B )-complex' Y and a homotopy equivalence ¢ : X — Y.

1. Suppose A and B have closed base points. If fa = Idg and af ~ Ida then there
exists a CW(B)-complex Y and maps ¢ : X — Y and ¢ : Y — X such that

Yo =Idx and oy ~1Idy.
Note that item (iii) follows by a similiar argument.

The previous theorem has an easy but interesting corollary.

Corollary 3.3.2. Let A be a contractible space (with closed base point) and let X be a
CW(A)-complex. Then X is contractible.

This corollary also follows from a result analogous to Whitehead’s Theorem which we
prove in the next chapter.

3.4 Localization

In this section the core A will be assumed to be an abelian CW-complex.

Remark 3.4.1. Let v : A — Ap be a P-localization map. Note that C, : CA — CAp is
also a P-localization since (CA)p and C(Ap) are contractible.

Moreover, X(Ap) is a P-local space since Ap is. By theorem 2.4.8 applied to v, we
deduce that ¥v : ¥ A — 3(Ap) induces isomorphisms H,(XA)@Zp — H.(X(Ap))RZp ~
H,(X(Ap)). Hence, by the mentioned theorem we obtain that ¥+ is a P-localization.

Theorem 3.4.2. Let A be a simply connected CW-complex and let X be an abelian
CW(A)-complex. Let P be a set of prime numbers. Given a P-localization A — Ap there
exists a P-localization X — Xp with Xp a CW(Ap )-complex. Moreover, the CW(Ap )-
complex structure of Xp is obtained by localizing the adjunction maps of the CW(A)-
complex structure of X.

Proof. We proceed by induction in the A-n-skeletons of X. For X© the result follows
immediately from 2.4.8. Suppose now that the result holds for X"~ !. Consider the
following diagram

9= + ga
\/ E”_lA aelJ 1l
aeJ X
\V CunlA

aeJ
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By P-localizing it we obtain a diagram

9= + Ja
V yn—l g aeJ 1
acJ X"
N AN
n—1 g -
' a\e/JZ Ap - (X" Hp
\ CxnlA i
aceJ
\\\Qi\\
\/ CE"*lAp
acJ

where v1, 72 and 3 are the localization maps. We consider the pushouts of the original
and localized diagrams and obtain a commutative cube

= + e
\/ Y| g ang

aeJ

)(n—l

N 1S

\V It Ap gp

: n—1
! aeJ (XT )P
\V CxnlA » o
aed
X v
acd

We will prove that v : X™ — Z is a P-localization map. By 2.4.8, it suffices to prove that Z
is a P-local space and that -y induces isomorphisms H.(X")®Zp — H.(Z)@Zp ~ H.(Z).
It is clear that Z is a P-local space since we have a cofibration sequence (X" 1)p —

7 — Z/( X" Hp =V X"Ap and (X" 1)p and \/ " Ap are P-local spaces.
acJ acJ
Now, considering the exact sequences in homology associated to the topological pairs

(X", X" 1) and (Z, (X" 1)p) and tensoring them with Zp, by the naturality of localiza-
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tion we obtain a commutative diagram

Hpp (X", XN @ Zp ——> Hp1(Z, (X" )p) @ Zp

H (X" 1) @ Zp H,(X"Y)p) ® Zp

H.(X") ® Zp H.(2) ® Zp

~

H, (X", X"Y) @ Zp

HA(Z, (X" V)p) @ Zp

Hr—l(Xnil) ®ZP Hr—l((Xnil)'P) ®Z'P

Note that the second and fifth horizontal arrows are isomorphisms by inductive hypoth-
esis. Also, the first and fourth horizontal arrows are isomorphisms by the previous
remark since H;(X" X" 1) ~ H;(X"/X" ') ~ H;(\/ ¥"A) and H;(Z,(X" 1)p) ~
acJ
H;(Z)(X"1)p) ~ H;( ) T"Ap) for all j.
acJ
Hence, the inductive step is finished and the theorem is proved in case X is a finite

dimensional CW(A)-complex.
For the general case note that H,(X) ~ H,(X") and that by the above construction
(Xp)™ is a P-localization of X™. The theorem follows from commutativity of the square
H,(X™) @ Zp —— H,(

")
zl lz
)

(XP)") ® Zp
Hp(X) ® Zp —— Ha((X)p) ® Zp

where the vertical arrows are induced by the inclusion maps. O



Chapter 4

Homotopy theory of
CW (A)-complexes

In this chapter we start to develop the homotopy theory of CW(A)-complexes. We de-
fine degrees of A-connectedness, A-n-equivalences and A-weak equivalences, all of them
related to A-homotopy groups of spaces. Then we study degrees of connectedness and
A-connectedness of CW(A)-complexes.

The main result of this chapter is theorem 4.2.4 which generalizes the famous Whitehead
Theorem.

4.1 A-connectedness and A-homotopy groups

In this section we prove various homotopical results concerning CW(A)-complexes which
will be needed later and are also interesting for their own sake.

Let X be a (pointed) topological space and let 7 € Ny. Recall that the sets 7/ (X) are
defined by 72 (X) = [Y" A, X], the homotopy classes of maps from ¥"A to X. It is well
known that these are groups for » > 1 and abelian for r > 2.

Similarly, for B C X one defines 7/(X,B) = [(CX""1A, X" A), (X, B)] for r € N,
which are groups for r > 2 and abelian for r > 3.

Note that 75" (X) = m(X) and 75" (X) = T4 (X). Note also that 72(X) are trivial
if A is contractible.

Definition 4.1.1. Let (X, B) be a pointed topological pair. The pair (X, B) is called A-
0-connected if for any given continuous function f : A — X there exists amap g: A — B
such that ig ~ f, where i : B — X is the inclusion.

* — B
AL
A?X

Definition 4.1.2. Let n € N. The pointed topological pair (X, B) is called A-n-connected
if it is A-O-connected and 7(X, B) = 0 for 1 <r < n.

122
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Definition 4.1.3. Let f : X — Y be a continuous map, and let A be a topological space.
The map f is called an A-0-equivalence if for any given continuous function g : A — Y,
there exists a map h : A — X such that fh ~ g.

HX

7

—Y

Given n € N, the map f is called an A-n-equivalence if it induces isomorphisms f, :
7A(X,20) — 7MY, f(x0)) for 0 < r < n and an epimorphism for r = n.
Also, f is called an A-weak equivalence if it is an A-n-equivalence for all n € N.

Remark 4.1.4. Let f : X — Y be map and let n € N. We denote by Z; the mapping
cylinder of f. Then f is an A-n-equivalence if and only if the topological pair (Z¢, X) is
A-n-connected.

Lemma 4.1.5. Let X, S, B be pointed topological spaces, S C X a subspace, Tg € S
and by € B the base points. Let f : (CB,B) — (X,S) be a continuous map. Then the
following are equivalent.

i) There exists a base point preserving homotopy H : (CB x I,B x I) — (X, S) such
that Hig = f, Hiy(x) = z¢ Yz € CB.

it) There exists a (base point preserving) homotopy G : CB x I — X, relative to B,
such that Gip = f, Gi1(CB) C S.

i11) There exists a (base point preserving) homotopy G : CBx I — X, such that Gig = f,
Gi1(CB) C S.

Proof. i) = ii) Define G as follows.

_ H([x7%]>t) 1f0§3§1_%
Gl sl t) = { H(jz,1),2-2s) if1-L<s<1
It is clear that G is well defined and continuous. Note that
Gio([z, s]) = H([z, %],0) = H([z, s],0) = f(z,5)
Giy([z,s]) = H([x,2s],1) =2z9 € S ifsﬁ%
Giy([z, s]) = H([z,1],2—2s) € S if s> 3
since H(B x I) C S.
i1) = 4i1) Obvious.
ii1) = i) We define H by
_ [ G([z,s],2t) ifo<t<3i
H(lz,s],8) = { Gir(fz,s2—20))) ift<t<1
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Lemma 4.1.6. Let X, Y be pointed topological spaces and let f : X — Y be an A-n-
equivalence. Let r € N, r < n and let i4 : ¥'"'A — CX" 1A be the inclusion. Suppose
that g : X" 'A — X and h : CX""YA — Y are continuous maps such that hiy = fg. Then,
there exists a continuous map k : CE" 1A — X such that kiy = g and fk ~ hrel 271 A,

ET_1A49>X

iAl I ’f: if

T‘—].H
CerlA ——>Y

Proof. Consider the inclusions 7 : X — Zy and j:Y — Zy. Let r: Z; — Y be the usual
retraction. Note that there is a homotopy commutative diagram

ZT—1A49>X

14— o
Cor—tA—> 2y

Let H : X"'A x I — Z; be the homotopy from jhi to ig defined by H(a,t) = [g(a), ]
for a € X771 A, t € I. Consider the commutative diagram of solid arrows

Sl —2s sl ]

CEr A —> OO lAXT

Since i4 is a cofibration there exists a map H' such that the whole diagram commutes,
which induces a commutative diagram

ZT_1A$X
77
I R
Cxr 1A > 2

The pair (Zy, X) is A-n-connected, so by lemma 4.1.5 there exists a continuous function
k:CY"'A — X such that kig = g, ik ~ H'i; rel ¥""'A. Then

fk=rik ~rH'iy ~rH'ig =rjh=h
Note that the homotopy is relative to X"t A, thus fk ~ h rel "1 A. O

Lemma 4.1.7. Let A be an l-connected CW-complez, let B be a topological space, and
suppose X is obtained from B by attaching a 1-cell of type A. Then (X,B) is (I + 1)-
connected.
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Proof. Let g be the attaching map of the cell and f its characteristic map. Since A is an
l-connected CW-complex, (CA, A) is a relative CW-complex which is (I 4+ 1)-connected.
Then there exists a relative CW-complex (Z, A’) such that A is a strong deformation
retract of A’, CA is a strong deformation retract of Z and (Z4/)!*! = A’. Let r: A’ — A
be the retraction and let ix : B — X be the inclusion. Consider the pushout

gr
!/ >

N

Y
f/

Then (Y, B) is a relative CW-complex with (Y)*! = B, and hence it is (I + 1)-
connected. The inclusions i : A — A’ and j : CA — Z and the identity map of B induce a
map ¢ : X — Y with pix =iyldg. Now, ia, 14/ are closed cofibrations and 4, j and Idp
are homotopy equivalences, then by 1.1.20, ¢ is a homotopy equivalence. Thus, (X, B) is
(I + 1)-connected. O

B
push liy
Y

N<—

Note that the previous lemma can be applied when attaching a cell of any positive
dimension, since attaching an A-n-cell is the same as attaching a (X" 1A)-1-cell. The
following lemma deals with the case in which we attach an A-O-cell. The proof is similar
to the previous one.

Lemma 4.1.8. Let A be an l-connected CW-complex, B a topological space, and suppose
X is obtained from B by attaching a 0-cell of type A (i.e. X = BV A). Then (X, B) is
l-connected.

Now, using both lemmas we are able to prove the following proposition.

Proposition 4.1.9. Let A be an l-connected CW-complez, and let X be a CW(A)-complex.
Then the pair (X, X™) is (n + 1+ 1)-connected. In particular, X is l-connected.

Proof. Let r < n+1+1and f: (D",S"!) — (X", X"). We want to construct a
map f': (D", 8"71) — (X", X") such that f/(D") C X", and f ~ f’' rel S"~!. Since
f(D") is compact, it intersects only a finite number of interiors of (n + 1)-cells (note that
A is T1). By an inductive argument, we may suppose that we are attaching just one
(n 4 1)-cell of type A, which is equivalent to attaching a 1-cell of type ¥™A. Since ¥"A
is (n + [)-connected, (X™*! X™) is (n + [ + 1)-connected. The result of the proposition
follows. O

Proposition 4.1.10. Let A be an l-connected CW-complez, with dim(A) = k € Ny, and
let X be a CW(A)-complex. Then the pair (X, X"™) is A-(n — k + | + 1)-connected.

Proof. We prove first the A-0O-connectedness in case k < n 4+ 1+ 1. We have to find a
dotted arrow in a diagram

HX’I’L

*
2
A X

_

f
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This map exists because A is a CW-complex with dim(A) = k and (X, X™) is (n + 1+ 1)-
connected.

Now we prove the A-r-connectedness in case 1 <r <n—k+1+ 1. By lemma 4.1.5, it
suffices to find a dotted arrow in a diagram

ET7%4‘44$2Xn

[

Ccyr-14 —X

This map exists because (CX" 14, %71 A4) is a CW-complex of dimension r + k, (X, X™)
is (n+ 1+ 1)-connected, and r + k <n+1+ 1. O

Corollary 4.1.11. Let A be an l-connected CW-complez, with dim(A) = k € Ny, and
let X be a CW(A)-complex. Leti: X™ — X denote the inclusion of the A-n-skeleton.
Then iy : T2(X™) — 7(X) is an isomorphism for r <n —k +1 and an epimorphism for
r=n—k+1+1. In consequence, 72(X) depends only on the A-(r +k —1)-skeleton of X.

Proposition 4.1.12. Let A be a CW-complex of dimension k. Let X be an n-connected
CW-complex and 'Y be an m-connected CW-complex and letix : X — XVY andiy : Y —
X VY denote the inclusions. Suppose either X or Y is locally compact. Then the map
((ix)s, (iy)s) : A X) P 7A(Y) — 7 X VY) is an isomorphism for 2 <r <n+m — k.

Proof. We know that the topological pair (X x Y, X VYY) is (n +m + 1)-connected since
(X xY, XVY)tmth) — XY, Then (X xY, XVY) is A-(n+m+1—k)-connected. Hence,
from the long exact sequence of A-homotopy groups for the topological pair (X xY, X VY)
it follows that the inclusion i : X VY — X x Y induces isomorphisms i, : 71(X VY) —
TA(X xY)for1<r<n+m—k.

Let px : X XY — X and py : X XY — Y be the projections. It is clear that the map
(px )y (Py)5) : TA(X x V) — 74(X) x 74(Y) is an isomorphism for all € N. O

Corollary 4.1.13. Let A be an l-connected CW-complex of dimension k with k < 2] 4 2
m

and let m € N>o. For 1 < a < m we denote by i, : ¥"A — \/ Y"A the inclusion in the

a=1
a-th copy. Then the map
PBlia) : P (27 A) — 72 (\/ £74)
a=1 a=1 a=1

s an isomorphism.

Proof. We proceed by induction in m. For m = 2, since X"A is an r + [-connected
CW-complex of dimension k + r, by the previous proposition we get an isomorphism
((i1)x, (i2)«) : THETA) P rA(TTA) — 7A(XTAVEA) for 2<r < (I+7)+(+7)—F,
which is equivalent to » > 2 and k < 2] + r, that holds by hypothesis.

The inductive step is similar. O
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The following corollary shows that the same result holds for an infinite wedge if A is
compact. The proof is formally identical to that of corollary 6.37 of [20].

Corollary 4.1.14. Let A be an l-connected and compact CW-complex of dimension k
with k < 21 4+ 2 and let J be an index set. For o € J we denote by i, : XA — \/ YA

acJ
the inclusion in the a-th copy. Then the map

Dlic)e - (7 4) — A\ 57 4)

acJ aed acJ

1 an isomorphism for r > 2.

Proof. Note that every map f: X"A — \/ > A has compact image. Then there is a finite
acJ
set L ={a1,ag,...,am} such that Im f C \/ ia(X"A). From the commutative square
aclL

Priera)_ PriEra)
a€cLl acJ
@(z‘ani: i@%)*
acl acJ
A\ 24w\ ¥4
€L i aed

we get that f € Im @(za)* Hence @(za)* is surjective.
acJ acJ
Similarly, any homotopy H : ¥"A x I — \/ 3" A has compact image, so @(za)* is

o ) acJ acJ
injective. O

Lemma 4.1.15. Let A be a finite dimensional CW-complex, let X be a CW(A)-complex
and let B be a CW(A)-subcomplex of X. Then there exists a CW-pair (X', B") homotopy
equivalent to (X, B).

Its proof is not difficult and is analogous to that of 3.1.28.

Proposition 4.1.16. Let A be an l-connected CW-complex of dimension k. Let X be a
CW(A)-complex and let B be a CW(A)-subcomplex of X such that B is m-connected and
(X, B) is n-connected, with n > 1. Let p : (X,B) — (X/B,*) be the projection. Then
ps : X, B) — nA(X/B) is an isomorphism for 2 < r < m+n —k and an epimorphism
forr=m+4n—k+1.

Proof. We proceed inductively in the skeletons of A. As usual we may suppose that A has
only one 0-cell (the base point) since any connected CW-complex has the homotopy type
of a CW-complex with just a single 0-cell. Hence for A° the result trivially holds.

Now suppose the result holds for A7~! and consider the following commutative diagram
made up by two long exact sequences associated to the cofibration sequence A7~! < A7 —

AT JAI-L =\ §9,
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o= (XB) = 1Y S (X, B) > wf (X, B) = TN (X, B) > aY Y (X, B) >

r—1

| A T

) (X/B) =Y ¥ (X/B) =¥ (X/B) — = (X/B) ~ Y} (X/B) —~

Now observe that the first and second vertical arrows are isomorphisms for 2 < r <
m+mn — j — 1 and an epimorphism for » = m 4+ n — j by inductive hypothesis and 6.22
of [20] respectively (since (X, B) has the homotopy type of a CW-pair). Similarly, the
fourth and fifth vertical arrows are isomorphisms for 2 < r < m + n — j. Hence, by the
five lemma the third vertical arrow is an 2 <r < m +n — j — 1 and an epimorphism for
r=m+n — j. The result follows. O

Now, we turn our attention to stable homotopy groups.

Definition 4.1.17. Let A and X be pointed topological spaces. We define the stable
A-homotopy groups of X by T *(X) = colim ﬂf+j(ZjX).
J

Proposition 4.1.18. Let A be a CW-complez of dimension k. Let X be a CW(A)-complex
and let B be a CW(A)-subcomplex of X. Then there are exact sequences WT’?’St(B) —
T (X) = 7N X/B) for alln € Z.

Proof. Fix n € Z. For each j € N there are exact sequences
n+](ZJB) n+](EJX) n—l—j(EJX E]B)

which are natural in j since CXY is homeomorphic to XCY for every Y.

It is clear that the CW-pair (3’X,¥’/B) is j-connected. Then the quotient map
(X7 X, B) — (¥/X/¥7B) induces an isomorphism 7Tn+](EJX Y B) — 7rn+j(23X/ZJB)
if2<n+j<j+j—k, orequivalently j > max{2,n + k}.

Hence there are exact sequences

n—i—j(Z]B) n+](ZJX) - 7Tn+j(ZJ(X/B))

for j > max{2,n + k}.

Taking colimit in j, by proposition 7.50 of [20], we obtain a short exact sequence

T4 B) — b X)) — 7Y (X/B).

n

4.2 Whitehead’s theorem

In this section we prove a generalization of Whitehead’s theorem. It is interesting to
comment that the proof of Whitehead’s theorem given in [20] can be generalized to our
setting with almost no difficulties. This is the proof we give here. We also point out that



Section 4.2: Whitehead’s theorem 129

in proposition 4.2.3 the standard proof of injectivity of the induced map f, uses the fact
that the cylinder of a CW-complex is a CW-complex, which does not hold for CW(A)-
complexes. However, surjectivity of f, suffices for the proof of Whitehead’s theorem, as
we shall see.

Theorem 4.2.1. Let f : X — Y be an A-n-equivalence (n = oo is allowed) and let (Z, B)
be a relative CW(A)-complex which admits a CW(A)-structure of dimension less than or
equal ton. Let g: B — X and h : Z — Y be continuous functions such that h|p = fg.
Then there exists a continuous map k : Z — X such that k|p = g and fk ~ h rel B.
B—1-X
7
l i
.

HY

h
Proof. Let

S = {(Z,K,K')/)BC Z' CZ A—subcomplex , k' : Z' — Z with k'|p = ¢g and
K':Z xI—Y,K': fk =~ h|y rel B}

It is clear that S # @. We define a partial order in S in the following way.
(Z' K, K') < (2" k' K") if and only if Z' C Z" K"|z1 = K K'|zrs1 =K

It is clear that every chain has an upper bound since Z has the weak topology. Then, by
Zorn’s lemma, there exists a maximal element (Z', k', K'). We want to prove that Z' = Z.
Suppose Z' # Z, then there exist some A-cells in Z which are not in Z’. Choose e an
A-cell with minimum dimension. We want to extend the maps k' and K’ to Z' Ue. If e is
an A-0-cell this is easy to do since f is an A-0-equivalence and all homotopies are relative
to the base point. Suppose then that dime > 1. Let ¢ : (CX" 1A, X" 1A) — (Z,2') be
the characteristic map of e, let 1) = ¢|sr-14, and let Z” = Z’ Ue. We have the following
diagram.

erlALzlL/)X

ul I Zl o lf

r—1 PN/ AN
CYr—A 3 Z hn Y
Here, the homotopy of the right square is relative to B. Let a : I — I be defined by
a(t) = 1—t. Since iy is a cofibration we can extend K'(Id x a) tosome H : Z" x I — Y,
and then we obtain a commutative diagram

ET_IAL)ZIL)X

’L‘Al I iz/J/ Il J{f

CY A= 2" =Y
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By the previous lemma, there exists [ : CX" ' A — X such that liy = k¢ and fl ~ Hi ¢
rel Y"1 A. Let G denote this homotopy.

Now, since the left square is a pushout, there is a map v : Z” — X’ such that v¢ = [,
vigr = k'. So 7 extends k’. We want now to define a homotopy K" : fy ~ h|z» extending
K'. We consider CYX" 1A x [0,2]/ ~ where we identify (b,t) ~ (b,t') for b € X1 A,
t,t' € [1,2]. There is a homeomorphism 3 : CX" 1A x [0,2]/ ~— CX""1A x I defined by

‘ﬁ

) if0<t<1
t+52) if1<t<2

=N

» »

swan={ (4

)

N

vl

We have the following commutative diagram.

1d
srtg s 7 2

iAxIdI\L push iz‘Z,}a{\ K (1)
N\

r—1 N
CEr AT o= 2" x 1 \

K A ¥
(H(¢pxIdp)+G(Idxa Y

Note that
(H(¢ x Id;) + G(Id x a))ﬂfl(iA x1Id;) = H(¢ x Idy)(ia x Id) =
= H(izy xId;)(¢p x Id;) = K'(Id x ) (¢ x Idy)

Then, the map K exists. We take K" = I}(Id X ). O

Remark 4.2.2. If (Y, B) is a relative CW(A)-complex which is A-n-connected for all n € N
then ¢ : B — Y is an A-n-equivalence for all n € N and we have

Idp
—_—

B B
E4

%Ih~li

Y ——>Y

—_—
Idy

Thus B is a strong deformation retract of Y. In particular, if X is a CW(A)-complex with
74(X) = 0 for all n € Ny, then X is contractible.

n

The following proposition follows immediately from 4.2.1.

Proposition 4.2.3. Let f: Z — Y be an A-n-equivalence (n = oo is allowed) and let X
be a CW(A)-complex which admits a CW(A)-structure of dimension less than or equal to
n. Then, the map f, : [X,Z] — [X,Y] is surjective.

Finally we obtain a generalization of Whitehead’s theorem.

Theorem 4.2.4. Let X and Y be CW(A)-complexes and let f : X — Y be a continuous
map. Then f is a homotopy equivalence if and only if it is an A-weak equivalence.
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Proof. Suppose f is an A-weak equivalence. We consider f, : [Y, X] — [Y,Y]. By the
previous proposition, f. is surjective, then there exists g : ¥ — X such that fg ~ Idy.
Then g is also an A-weak equivalence, so applying the above argument, there exists an
h: X — Y such that gh ~Idx. Then f ~ fgh ~ h, and so, gf ~ gh >~ Idx. Thus f is a
homotopy equivalence. ]



Chapter 5

Homology of CW (A)-complexes

In this chapter we start investigating the homology theory of CW(A)-complexes. Our main
goal is to develop tools and techniques which allow us to compute the singular homology
of these spaces out of the homology of the core A and the CW(A)-structure of the space.
The tools we work with in this chapter are generalizations of classical cellular homology.

Note that the (reduced) homology of SY (with coefficients in Z) has two significant
properties: it is concentrated in one degree (degree zero) and it is free (as an abelian
group). Keeping this in mind, we study two cases: when the reduced homology of A is
concentrated in a certain degree and when the homology groups of A are free.

When the homology of the core A is neither concentrated nor free, the homology of
X is more difficult to compute. Example 5.2.8 of Section 3 shows that, in that case, the
homology of X cannot be computed from an A-cellular complex as in the other cases.
However, in next chapter, we will study the general case by means of spectral sequences.

In the last section of this chapter we define and investigate the A-Euler characteristic x 4
of CW(A)-complexes, which is a homotopy invariant if A is a CW-complex with y(A) # 0.
We also define the multiplicative Euler characteristic when the core A has finite homology
(see Theorem 5.3.8 below).

Throughout this chapter, homology will mean reduced homology with coefficients in Z.

5.1 Easy computations

As we claimed in the introduction, our aim is to compute the singular homology groups
of CW(A)-complexes out of the homology of A and the CW(A)-structure of the space.

Remark 5.1.1. Recall that if A and X are (pointed) CW-complexes and g : A — X is a
continuous (cellular) map there is a long exact sequence

e H (A ) — L Ho (X, %) — Hy(Cg, %) — 2 Hpyq (A, %) 2

which induces short exact sequences

0 —— Coker g. B H,(Cg, *) —* Ker g« —0

132
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Here, Cg denotes the mapping cone of g. This has an evident analogy with the chain
complex Cg,, where g, is the induced map in the singular chain complexes.

In case all these short exact sequences split, the homology of Cg can be computed in the
following way. The map g induces a morphism of chain complexes g, : Hi(A) — H.(X).
The homology of the cone of this morphism

( 0 9*22 g 0 g*ﬁ)
0 0 0 0
= Hp1(X) ® Hp(A) — Hp(X) © Hypm1(A) — Hp1(X) © Hp—2(A) — -+~

is clearly the homology of Cg.

The well-known remark above will be our starting point to compute the singular ho-
mology of finite CW(A)-complexes. Consider the following example. Define D} as the
pushout

Sd Af%4>‘91

[ o |

D?—=Dj

where g4 is a map of degree 4. Let the core A be D7 and let g : D> C C — D? be the
map g(z) = z2. The map g induces a well defined cellular map ¢’ : A — A. Let X be the
CW (A)-complex of dimension one defined by the following pushout

*>A

A g
l push l
CA——X

Note that Hi(A) = Z4 and H,.(A) = 0 for » # 1. Also, the induced map
g, : Hi(A) — Hy(A) is given by multiplication by 2. The cone of ¢’ is in this case

g

0 Ly Ly 0

where the group Z, appears in degrees 1 and 2. Note that in the short exact sequences
as above one gets ker g, = 0 or coker g, = 0. It follows that H,.(X) = Zy for r = 1,2 and
H, (X)=0forr#1,2.

The previous idea can also be applied to prove the following.

Proposition 5.1.2. Let A be a CW-complex and let n € N. Let X be a CW(A)-complex
with the property that, for every r € Ny, H,_.(A) = 0 whenever X has at least one
A-r-cell. Then H,(X) = 0.

Proof. Since A is a CW-complex, by cellular approximation we may suppose that X is
also a standard CW-complex.

Since all (standard) cells of dimension less than or equal to n + 1 lie in the A-(n + 1)-
skeleton X"*! it suffices to prove that H,(X"*!) = 0.
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We proceed by induction in the A-skeletons X*.

For k = 0 the result is clear. Suppose it holds for X*~1 and X has A-k-cells. We
denote by g : ¥ 1A — Xk o € A, the corresponding attaching maps. Consider the
long exact sequence

e Hy (X e H (00— @ () = @ Hp ()T

By hypothesis, H,(X*™') = 0 and since X* has an A-k-cell, H,_;(A) = 0. Hence,
Ho (X", %) = 0. O

As an easy consequence we obtain the following.

Corollary 5.1.3. Let A be a CW-complex with homology concentrated in degree v and let
X be a CW(A)-complex. If X does not have any A-n-cells, then Hy1,(X) = 0.

5.2 A-cellular chain complex

Given a CW(A)-complex X, our aim is to construct a suitable chain complex whose
homology coincides with the homology of X. We investigate two particular cases: when
the homology of the core A is concentrated in one degree and when the homology groups
of A are all free. The constructions and results that we obtain in both cases generalize
the standard results on cellular homology of CW-complexes.

We begin with the first case. Suppose H,,(A) = 0 for n # r, i.e. the (reduced) homology
of A is concentrated in degree 7.
In this case, given a CW(A)-complex X, we define the A-cellular chain complex (C,d,)
of X as follows. Take
C.,= @ H(A)

A-(n — r)-cells

and define dy4, : Cpyr — Cpir—1 in the following way. Given e} and eg_l A-cells of
dimensions n and n — 1 respectively we consider g, : " 'A — X"~ the attaching map
of e (where X"~ ! denotes the A-n-skeleton of X) and the quotient map

o

K anl N anl/(anl . eg—l) _ anlA‘

The map ggga : Y14 — ¥ 14 induces
(989a)+ : Hn—&—r—l(znilA) = H,(4) — n-H“—l(EnilA) = H,(4).

Finally, d,, is induced by the maps ael = (g89a)« from the a-th copy of H,(A) to the
B-th copy of H,(A) (recall that Hi(A) =0 if k # 7).

Note that this chain complex is very similar to the standard (cellular) one. In fact,
to prove that (Ci,d,) is actually a chain complex one may proceed as in the classical
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case, but replacing S~ ! by "' 4 and D™ by CX" ' A. Explicitly, consider the following
commutative diagram

~ o,
Hyp 1 (CEP T A, 577 A) S Hyy (577 A) = Hy(A) — 2 H,(S7 7 A) = Hy(A)
(fa)*l (ga»i (95): T(qb)*

0 qx

Hn+1 (Xn+1fr, anr) Hn (Xn—r) Hn (anr/anrfl)

x ij E lw

Hn(Xn—T Xn—r—l) 4’—; Hn(Xn—r/Xn—r—l Xn—r—l/Xn—r—l)

(compare with the analogous diagram in [8] page 141) and let J,, and J,—; be index sets
for the A-(n — r)-cells and A-(n — r — 1)-cells of X respectively.
Since the map (fa)« corresponds to the inclusion H,(A) — € H,(A) into the a-th
‘]77477"

!/

coordinate and the map (gg), corresponds to the projection & H,(A) — H,(A) onto
Jﬁfrfl

the (-th copy, it follows that d,, = jO up to isomorphisms. Therefore d,d,+1 = 0 since
the maps j and 0 come from exact sequences as the diagram below shows.

H, (Xn—r)

]Jn_"_l()(n—r—%l7 Xn—r) L Hn(Xn—r7 Xn—r—l) Hn—l (Xn—r—I’ Xn—r—Q)

Hn—l (anrfl)

dl

More precisely, let j, : ¥""A4 — X"" /X" "1 = \/ X" " A be the inclusion in the

a-th copy and let ¢/ : CE""A — X" "t1 A be the quotient map. Consider the boundary
map &' : Hy, 1 (CX" ™A ¥ +14) — H, (X" "A), which is an isomorphism in this
case. Let ¢ : H, (X" "1 A) — H, (X" " A) be the isomorphism given by ¢/ = &'(¢,) ™.

Hy oy (CEn—7+1A, srmr14) Lo [ (507 A)

/
£
I~
q*l =

Hn+1 (En—r+1A)

Let €p—p : Hy(X""A) — H,(A) be the isomorphism given by &,_, = (¢/)"~". The
inclusion maps j, induce isomorphisms € (jo)s« : @ Hp(X""A) — H,(\/ A) and
J,

Jnf'r Jnf’r‘ n—r

@ (jo‘)*ggir : J@HT(A) - Hn(J\/ A) = Hn(anr/anrfl).

In—r n—r

For each n € NB, let

¢ Ho(X" 7, X" — P H(A)
A-(n — r)-cells
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be the isomorphism defined by ¢, = ( @  (Ja)se ') @n. Then, there is a commutative

n—r

acJp_r
diagram
_ L $n H,.(A bp
Hn(Xn rXnT 1) —— A-(n—e?)-cells 7"( )—>HT(A)
S Ni @ Ua)wcyl, NTEM
on Tn—r

Hn<anr/anr71) (Tﬁ)j Hn(En—TA)

Note that the right square commutes since for a in the a-th copy of H,.(A) in € H,(A)
Jn_r

we have

1 . —
@) @ (el @) = @).lieile) = { 5 1020

YEIn—r

thUS, en*T(QB)*( @ (]7)*€;lr) = Dg-
’YEJn—T

Hence €,—(¢3)«¥n = pgédn.
We want to prove now that ¢n+1(fa)s = iaen—rd in the following diagram

Hp 1 (CETA, ST A) ——— Hp (X" A) —— Hp1 (27711 A)
5o [
norl xneny = @ Hi(4) .
Hn+1(X y X ) Gnil A-(n — r + 1)-cells ® (j’Y)*E:ziﬂq (Ja)=
1 *"\

Hn+1(anr+1/anr)

Since the triangle and the right square commute and €D (jy)*sgir 41 1s an iso-
'Yejnfvul»l
morphism it suffices to prove that ¢.(fa)s = (ja)«(¢')710. But there is a commutative
diagram

(CEH_TA, Zn—rA) fa (Xn—'l“—l—l’ Xn—'r)

q qi

ETL—T—HA . anH»l/anr — v EnfrJrlA

Ja Jn77'+1

Hence, q.(fo)s = (Ja)«(@)x = (ja)«(e') 10" as we wanted to prove.
Summing up, we have shown that e,—,(¢g)«pn = pgén and ¢ni1(fa)sx = taen—rd’. We
consider now the following diagram
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d'=j0
Hn+1(Xn_T+1, Xn—r) ]; Hn(Xn_T, Xn—'r—l)

¢n+1 l ¢n l

D H,(A) % . b H,.(A) | (4p)+¢n
-(n — 7+ 1)-cells A-(n — r)-cells

lpﬁ

H,(A)

The lower square commutes by definition and the two triangles commute because of
what we proved previously. Also, d*® = (gg)xnd (fa)«(0') 1 (en—r)! as we have proved
at the beginning. But ¢, and ¢, are isomorphisms, hence d = ¢,d'(¢n11)""' and
d> = 0 follows. Note that to prove that d = ¢,d'(¢nr1)"" it suffices to check that
padia = pdnd (pni1) tia for all a, B, and this follows from the last diagram.

Theorem 5.2.1. Let A be a CW-complex with homology concentrated in degree r and let
X be a CW(A)-complex. Then, the homology of the A-cellular chain complex defined as
above coincides with the singular homology of X .

Proof. We proceed by induction in the A-n-skeleton X™. For n = 0 the result is clear.
Suppose the result holds for X»~1. For simplicity, we assume that X is obtained from
X"~ by attaching only one A-n-cell. The general case is similar.
Let (C.,d.,) be the A-cellular chain complex of X"~!. By hypothesis, the homology
of (C!,d.) coincides with the singular homology of X"~ !. Hence, by 5.1.1, the singular
homology of X™ can be computed as the homology of the chain complex

(0 9*2
0 0
o+ ——>Hy, 1 1(CL) @ Ho (5" A) — H, (CL) @ Hy 1 (BT A) —— -+

where g : X" 1A — X" ! is the attaching map of the A-n-cell.
We want to prove that this complex has the same homology as the A-cellular complex
of X, namely
+ . dl .
N § Hn—l—r—l(znilA) @) 1’1+T71 ;>1. ..
By the long exact sequence of the homology of the cone, it suffices to prove that +ggg.«
induces the map g, in homology. But this follows from the commutativity of the diagram

Hy 1 (5771 A) —2— Hyy oy (X7)

/ J/Jr(fm)*

ker d;1+r71 @ Hn—i—r—l(znilA)

inc

where the isomorphism H,, 4,1 (X" ') — kerd,,,,_; is induced by the map +(gz). O
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Remark 5.2.2. The previous construction generalizes the classical one for cellular homology
of CW-complexes. Note that the S-cellular chain complex of X is the standard cellular
chain complex.

Remark 5.2.3. Note that Cpyp = @ H.(A) = H, (o (X"/X™ 1), As in the classical

n-cells
cellular setting, we could have obtained a chain complex as above in the following way.

Consider the following commutative diagram made up of pieces of the long exact sequences
associated to the topological pairs (X%, X*~1), k € N.

Hn+r—1 (Xn)

~. /

Hn+rfl(Xn_1) Hn+r73(Xn_3)

2 a

=
I
[
Ny
>
i
=
i
Ny
>
3
=
5
~
3
>
i

Define the differentials as ¢.0. It can be proved that the chain complex that we obtain
in this way has the same homology groups as X (cf. [8] pages 137-140). Note that, with
this construction, the differentials are not explicitly computed.

The following corollary is an example of one possible application of theorem 5.2.1.

Corollary 5.2.4. Let G and H be finite abelian groups with relatively prime orders. Let
A and B be CW-complexes with homology concentrated in certain degrees n and m re-
spectively, and with H,(A) = G and H,,(B) = H. Let X be a simply connected CW(A)-
complex and let Y be a simply connected CW(B )-complex. Then X and Y have the same
homotopy type if and only if both of them are contractible.

Proof. By the hypothesis on the order of the elements, a quotient of @ G different from 0
cannot be isomorphic to any quotient of @ H. It follows that if X and Y have the same
homotopy type, then all their singular homology groups must vanish. O

We investigate now the second case, i.e. when the homology groups H,(A) are free
for all n. The following lemma plays a key role in the proof of 5.2.6. Since its proof is
standard, we only sketch the main ideas.

Lemma 5.2.5. Let (Cy,d.) and (D, d,) be chain complexes of Z-modules, with C,, free
for every n. Given morphisms f, : Hy(Cy) — Hp(Dy), n € N, there exists a morphism of
chain complezes g : (Cy,dy) — (D, d)) which induces the maps f, in homology.
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Proof. Since Cj is projective, there exists a map go : Co — Dg inducing fp in homology.
Suppose that we have already defined gq, . .., gn—1 and they commute with the differentials
and induce fo,..., fn—1 in homology. Since ker d,, is projective there exists a map (§ in a
commutative diagram

qC
ker d,, — ker d,, /Im d,,+1

ﬁi J/fn
a?

ker d}, —>kerd;, /Im d;,

Note that C,, ~ kerd,, ® Im d,,. We define ¢g,, = § in kerd,,. Since Im d,, is projective, we
can define g, in Im d,, such that g,—1(y) = d,gn(y) for all y € Im d,,. It is easy to check
that d},gn, = gn—1d, and that g, induces the map f,,. ]

Theorem 5.2.6. Let A be a CW-complex with free homology groups and let X be a finite
dimensional CW(A)-complex. Then there exists a chain complex of Z-modules (Cl,d)
whose homology is the singular homology of X, where

C, = @Hn_T(A)#T_w”S.

Proof. We proceed by induction in the dimension of X. If X has dimension zero, the result
is trivial. If X has dimension one, the result follows from remark 5.1.1. Suppose that the
proposition is true for X’ and that X is obtained from X’ by attaching A-n-cells. For
simplicity, we will suppose that only one A-n-cell is attached, and we call g its attaching
map. We denote by H,(X" 'A) and H,(X’) the chain complexes of the homology of
Y"1 A and X' respectively with all differentials equal to zero, and by C(X’) the chain
complex of X’ of the inductive step. By remark 5.1.1, the homology of X can be computed
as the homology of the chain complex

Cg. H, (2 1A) 2> H.(X).

By lemma 5.2.5, there exists a morphism ¢ : H, (X" '4) — C(X’) inducing g, in ho-
mology. It is easy to prove that the homology of C'y coincides with the homology of Cg,
which is the homology of X. O

Example 5.2.7. Let A be a CW-complex such that H,.(A) = Z for r = 1,4 and 0
otherwise. Let X be a CW(A)-complex having n A-O-cells and m A-2-cells. Note that all
the maps in the chain complex of the previous theorem are 0 and hence

7" forr=1,4
H,(X)=4¢ Z™ forr=3,6
0 otherwise

We can generalize this situation in the following way.
Let A be a CW-complex such that H,(A) = Z for r = 1,4 and 0 otherwise. Let X be a
CW(A)-complex satisfying the following condition: ‘For all r € Ny, if #{A-r-cells of X'} #
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0 then #{A-(r + 1)-cells of X} = 0 and #{A-(r + 4)-cells of X} = 0’. Then all the maps
in the chain complex of the previous theorem are 0 and therefore

HX)=( @ P D 2

A-(n — 1)-cells A-(n — 4)-cells

Important example 5.2.8. This example shows that theorem 5.2.6 may not hold if the
hypothesis are not satisfied. Concretely, for the core A = D37 vV ¥D? (see page 133) we
exhibit a CW(A)-complex X whose homology cannot be computed with a chain complex
as in 5.2.6. Note that the homology of A is not concentrated in any degree and that its
homology groups are not free.

The space X will consist of 3 A-cells, one of each dimension 0, 1 and 2. It will be also
a CW-complex because the attaching maps will be cellular maps. The attaching maps are
defined as follows.

For each n € Z, let g}, : D> C C — D? be the map ¢/,(z) = z". The map g/, induces a
well defined cellular map g, : D3 — D?. We also denote g}, = g/,|g1 : St — S™.

Let X! be the CW(A)-complex of dimension one defined by attaching an A-1-cell to
A by the map * V Xgo. We obtain X by attaching an A-2-cell to X! by the map 3V *,
where 3 : ¥D?7 — X1 is the unique map induced by v and § in the following pushout

5
S2i>82

incl push in AN

D3 — E]D)2

The map + is defined as the composition

29,72 iny

52 S?

sD? 25 x1

(where inj is the canonical inclusion in the pushout) and § = (41 V d2) o g, where 01, d2 and
q are defined as follows. The map ¢ : D? — D? Vv D? is the quotient map that collapses
the equator to a point. The map d; is the composition

ngl—l inz
D3 D3

Z]D)i ing Xl
and the map J9 is the composition

Cxgl Ci
D3 2D3 iny CE ing Xl

The map iny is the canonical map induced in the pushout

*\VY
A=D2vID2 % 4 =D} v ED?

i push J/in’3 Ving

CA = CD? v CxD? X1

N
n, Ving
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Let v : §? — S2 v 52 be the suspension of the quotient map S* — §1/5% ~ St v S1. We
obtain that

mec = 1V 02)gqinc = 11nc) V (021nc)) o v = (1nginginc.g. | V ingini2.g_ o) ov =

5i PRV RY 5 5o ingingineXg’ | V inginSg’
= (inzimXgjXg’ | VingXgeini Xg’ ,) o v = (inging B¢’ 4, V inzing XghXg’ ,) ov =
= (inzim;Xg’ 4, Vingin;Xg’ ;) o v = in3in; Xg’ ¢ = ingin; g’ 4 X g} = vXg).

Hence, dinc = vXg}.

Since the attaching maps are cellular, it follows that X is a CW-complex. We will show
that H3(X) = Zsg @ Z4. Hence, its homology cannot be computed with a chain complex
as in 5.2.6 because H3(X) has an element of order 8.

Note that X, as a standard CW-complex, has 1 0-cell, 1 1-cell, 3 2-cells, 4 3-cells, 3
4-cells and 1 5-cell. Moreover, by construction, the rightmost part of its cellullar chain
complex is the following:

-2 10
0 0 00 000 0
0 4 20 402 -2
4 0 4 0 040 0 (4 00) o
73 74 73 7 7

It follows that H3(X) = Zg @ Z4 with an element of order 8 being the class of (0,0, 1,1).

The key fact about this example is the following: a 3-dimensional cell belonging to the
A-2-cell is attached onto a 2-dimensional cell which belongs to an A-0O-cell. This attaching
map must be taken into account when computing cellular homology groups, but will not
be considered at all in an A-cellular chain complex as above. This is the reason why an
A-cellular chain complex might not work in the general case.

To sum up, while for cellular homology groups the way that an n-cell is attached to an
(n — 2)-cell is irrelevant, in CW(A)-complexes this is not so, because A-cells might not be
‘dimensionally homogeneous’.

Important remark 5.2.9. Note that X is a generalized CW(D3)-complex which does
not have the homotopy type of a CW(IDj)-complex. Indeed, if there existed a CW(D3)-
complex Z, homotopy equivalent to X, then by theorem 5.2.1, Zg = H3(X) = H3(Z)
would be a subquotient of @ Z4, which is impossible.

5.3 A-Euler characteristic and multiplicative characteristic

Let X be a pointed finite CW-complex. Recall that the reduced Euler characteristic of X
is defined by

X(X) = (—1)q,

Jj=0
where o is the number of j-cells and where the base point does not count as a 0-cell. In
this way the reduced Euler characteristic differs in 1 from the standard (unreduced) one.
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Definition 5.3.1. Let A be a CW-complex and let X be a CW(A)-complex with a finite
number of A-cells. We define the A-FEuler characteristic of X by

xa(X) = Y (~1ya

Jj=0

where ajA is the number of A-j-cells of X.

Note that if A = SY then the A-Euler characteristic of X is the reduced Euler char-
acteristic in the usual sense. Also, if A = S™ then xa(X) = (—1)"x(X). Recall that a
CW(S™)-complex is a CW-complex with no cells of dimension less than n, apart from the
base point.

The A-Euler characteristic gives useful information about the space. For example,
proposition 5.3.2 will show that if the core A is a finite CW-complex and X is a finite
CW(A)-complex then x(X) can be computed from x(A) and x4(X). Note that x(X) is
well defined since X has the homotopy type of a finite CW-complex. When x(A4) # 0,
the A-Euler characteristic is a homotopical invariant. In case x(A) = 0, it might not be
invariant by homotopy equivalences or even homeomorphisms, as the following example
shows.

Take the core A as D' (with 1 as base point). The disk D? is homeomorphic to CA and
Y A. We know that CA is obtained from A by attaching an A-1-cell, hence x4(CA) = 0.
On the other hand, YA is obtained from * by attaching a A-1-cell, so ya(XA) = —1.
Note that there are A-cellular approximations to the identity map of D? between these
two different A-cellular structures, and that the homology of D? can be computed from
the A-cellular complex by 5.2.1. But in this case the A-Euler characteristic cannot be
computed from the A-cellular complex since, in contrast to the classical situation where
the cellular complex has a copy of Z for each cell, the A-cellular complex has a trivial
group for each A-cell of D?.

Nevertheless the A-Euler characteristic gives us very useful information about the space.
The following proposition shows that if the core A is a finite CW-complex and X is a finite
CW(A)-complex then x(X) can be computed from x(A) and x4(X). Note that x(X) is
well defined since X has the homotopy type of a finite CW-complex.

Proposition 5.3.2. Let A be a finite CW-complex and let X be a finite CW(A)-complex.
Then x(X) = xa(X)x(A).

Proof. The proposition follows from the fact that, for all n € Ny the relative CW-complexes
(CX"A,¥™A) have exactly the same cells as A but shifted in dimension. Note also that
X has the homotopy type of a CW-complex X’ which is obtained by approximating the
attaching maps of X by cellular maps. O

Corollary 5.3.3. If x(A) # 0 and xa(X) # 0 then X is not contractible.

Note that in case A = S™ the corollary does not say anything new. But, for example,
if Aisatorus (x(A) = —1) and X is a CW(A)-complex with an odd number of cells, then
X is not contractible. Also, in this case, if X has any number of cells but only in even
dimensions, it cannot be contractible.
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We study now another interesting case: when the homology of A is a finite graded
group.

We say that graded group (G )nen, is finite if only a finite number of groups are non
trivial and all of them are finite. In a similar way we say that a chain complex of abelian
groups is finite if the underlying graded group is finite.

Definition 5.3.4. Let G = (Gy,)nen, be a finite graded group. We define the multiplicative
Euler characteristic of G as

Xm(g> = H #(Gn)(il)n

n>0

Let C = (C4,d,) be a chain complex of abelian groups whose underlying graded group
is finite. Since H,(C) = kerd,,/Im d,,+1 and C,,/ ker d,, = Im d,,, then

#H,(C)=+#kerd,/#Imd,y1 and #C, = #kerd, . #Im d,.

It follows that

[T #(Ha ()" = ] #kerdy#Imd,/ [] #kerdp#Imd, = [] #(Co) D"

n>0 n even n odd n=>0

Therefore, the multiplicative Euler characteristic of C coincides with the multiplicative
Euler characteristic of the graded group H,(C). In particular, the multiplicative Euler
characteristic is invariant by quasi isomorphisms.

Example 5.3.5. Let (Cy,ds) be a chain complex with C,, = @ Z4 for all n (where I,
i€ln
is any index set). Let (D,,d,) be a chain complex with Hy(D) = Zs for some k and
H,(D) =0 for r # k. Then C and D are not quasi isomorphic, because x,(C) = 4™ for
1

some m € Z, while x,,(D) = 2 or x;n(D) = 5.

We may also ask whether the converse is true. Namely, given finite abelian groups
G1,...,GE with Hn>0#(Gn)(_1)n = 4™ for some m, can we find a chain complex of

abelian groups (Cy,d,) with C), = €D Z4 for all n such that H,(C) =G, forn=1,...,k
i€ln
and H,(C) = 0 in other case? For example, given m € N, can we construct a chain

complex (Cy,dy) with C,, = @ Z4 for all n such that Hy(C) = Zym for some k and
Jj€Jn
H,(C) =0 for r # k?

The answer to this question is negative. For instance, if Hy(C) = Zj¢, then it contains
an element of order 16 which cannot be obtained by taking a quotient of a subspace of

D Zu.

J€Jn

Remark 5.3.6. Let C = (Cp)nengs D = (Dn)nen, and E = (Ep)nen, be finite graded
groups. Suppose that for each n € Ny there exists a short exact sequence

0—-¢C,—D,— FE,—DO.

Then, #D,, = #Cy.#Epn. Hence, Xim (D) = Xm(C)xm(E).
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The same holds in case there is an exact sequence
o= By —Cy— Dy - E,—Ch1— ...

for if we call this complex B, we have x;,(B) = xm(H«(B)) = 1 and clearly x,n(B) =
Xm (C)xm(E)/Xm(D).

Definition 5.3.7. Let X be a topological space with finite homology. We define the
multiplicative Euler characteristic of X as the multiplicative Euler characteristic of H,(X).

Theorem 5.3.8. Let A be a CW-complexr with finite homology and let X be a finite
CW(A)-complex. Then

() = [ xm(A) DAl (aeat)
n>0

Proof. We proceed by induction in the number of cells of X. If X has only one cell the
theorem trivially holds. Suppose the result is true for X’ and suppose X is obtained from
X'’ by attaching an A-r-cell. There exists a long exact sequence

> Hn(zr—1A7 *) - Hn(Xla *) - Hn(X’ *) - Hn—l(zr_l"LL *) T
Then, by 5.3.6,

Xn(X) = (Ha(X) = i (HL (57 14) (. (X)) =
= X (H(A) T X (Ha (X)) = xm (A) Yy (X)

S0, Xin(X) = X (X )xm (4) D" m

Example 5.3.9. Let A be a CW-complex with Hi(A) = Z4 and H,(A) = 0 for r # 1.
Let X be a topological space with Hy(A) = Zs for some k and H,(A) = 0 for r # k. Then
X does not have the homotopy type of a CW(A)-complex.

The next result follows immediately from 5.3.8.

Proposition 5.3.10. Let A and B be CW-complexes with finite homology. Let X be a
topological space with finite homology such that x,(X) # 1. Suppose, in addition, that X
can be given both CW(A) and CW(B) structures. Then there exist k,l € Z — {0} such
that Xm(A)k = Xm(B)l'

Example 5.3.11 (Moore spaces). Fix a core A. Some questions that arise naturally are
the following. For which abelian groups G and n € N does there exist a CW(A)-complex
X such that H,(X) = G and H,(X) = 0if r # n? Or more generally, for which sequences
of abelian groups (Gj)nen, does there exist a CW(A)-complex X such that H,(X) = G,
for all n?

For example, if the core A is a simply-connected CW-complex with H,(A) = Z for
r = n and H.(A) = 0 in other case, then A is homotopy equivalent to S™. We know
that for any abelian group G and for any k > n there exists a CW-complex Z such that
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Hy(Z) = G and H.(Z) = 0 if r # k. Hence, by 3.3.1, there exists a CW(A)-complex X
such that X has the same homology groups as Z.

Therefore, in this particular case, for any sequence of abelian groups (Gj);>n there
exists a CW(A)-complex X such that H;(X) = G; for all j > n.

If A is a CW-complex with finite homology, the results above provide necessary condi-
tions for the required CW(A)-complex X to exist. For instance, 5.3.8 settles an easy-to-
check necessary condition, as example 5.3.9 shows. In the case A = D? (see page 133), we
cannot construct a CW(A)-complex X such that H,(X) = Zs for some n € N since, by
5.2.1, H,(X) must be a quotient of a subgroup of & Zj.

We will continue studying these questions in chapter 7, where we will give some very
interesting partial anwers to them.



Chapter 6

Applications of spectral sequences
to CW(A)-complexes

One basic and fundamental idea in topology is to study homotopical and homological
properties of a topological space by decomposing it into smaller parts. Since a CW(A)-
complex is built up out of A-cells, one expects that its homotopical properties will depend
heavily on the homotopy type of A. Our aim in this chapter is to develop methods to
compute homotopy and homology groups of a CW(A)-complex X from those of A and
the CW(A)-structure of X generalizing those in the previous chapter. It is evident that
the skeletal filtration plays an important role and it seems quite natural that spectral
sequences are the right tool to work with. For example, from the skeletal filtration of a
CW(A)-complex X we will construct a spectral sequence which converges to the singular
homology groups of X.

Moreover, as one might expect, the homotopy groups of a CW(A)-complex X are
strongly related to those of A, although in general explicit computation seems to be hard
work. However, we obtain results which show how the homotopy groups of X depend on
those of A.

In the first section, given a CW-complex A we define a reduced homology theory on
the category of CW-complexes, called A-homology, which coincides with classical singular
homology in case A = SY. One of the most interesting results is a generalization of the
Hurewicz theorem (6.1.5), which gives a relationship between A-homology groups and
A-homotopy groups.

In section 2 we study homotopy and homology of CW-complexes by means of spectral
sequences and Serre classes obtaining many interesting results. Moreover, we introduce a
generalization of Serre classes which is suitable for working with CW(A)-complexes.

Finally, in the last section we derive some applications to real projective spaces.

6.1 A-homology and A-homotopy

In this section we will define an A-shaped homology theory, which we call A-homology. This
is a reduced homology theory which not only generalizes the classical singular homology
theory, but also satisfies nice properties such as a Hurewicz-type theorem (6.1.5).

146
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Definition 6.1.1. Let p: (E,eq) — (B,bg) be a continuous map and let F' = p~1(by). We
say that p is an A-quasi-fibration if it induces isomorphisms p, : Wf(E, Feq) — m(B, bo)
for all i € N, where 7 (E, F, ep) = [(CX"1A, %171 A ag), (E, F, ep)]-

Let c., and ¢, denote the constant loops at ey and by respectively. Recall that, for
any space A, 71 (B,by) = 1 (2B, cy,) and 7(E, F,eq) = 7 | (P(E, eq, F), ce,). Since
a weak equivalence is also an A-weak equivalence if A is a CW-complex, we deduce the
following.

Lemma 6.1.2. If p is a quasifibration and A is a CW-complex, then p is an A-quasi-
fibration.

We define the A-homology groups inspired by the Dold-Thom theorem.

Definition 6.1.3. Let A be a CW-complex and let X be a topological space. For n € Ny
we define the n-th A-homology group of X as

H;}(X) = 7 (SP(X))
where SP(X) denotes the infinite symmetric product of X.

Theorem 6.1.4. The functor HA(-) defines a reduced homology theory on the category
of (path-connected) CW-complezes.

Proof. Tt is clear that HA(-) is a homotopy functor. If (X, B, zg) is a pointed CW-pair,
then by the Dold-Thom theorem, the quotient map ¢ : X — X /B induces a quasifibration
Gg:SP(X) — SP(X/B) whose fiber is homotopy equivalent to SP(B). Then there is a
long exact sequence

=1 (SP(B)) —= m) (SP(X)) —= m) (SP(X/B)) —=m 1 (SP(B)) — -+

It remains to show that there is a natural isomorphism H/'(X) ~ H;;‘H(EX ) and that
HZ(X) are abelian groups for n = 0,1. The natural isomorphism follows from the long
exact sequence above applied to the CW-pair (CX, X). Note that H2(CX) = 0 since CX
is contractible and H;;‘ is a homotopy functor. The second part follows immediately, since
HiNX) ~ HA(YX) ~ H5{(¥2X). The group structure on H'(X) is induced from the one
on H{*(X) by the corresponding natural isomorphism. O

Theorem 6.1.5. Let A be a path-connected CW-complex of dimension k > 1 and let X
be an n-connected topological space (with n > k). Then HA(X) = 0 forr < n —k and

A (X))~ HA L (X).

Proof. By Hurewicz, H,(X) = 0 for 7 < n and H,41(X) ~ mp4+1(X). Hence SP(X)
is m-connected. Since dim A = k, it follows that SP(X) is A-(n — k)-connected. Thus,
HA(X)=0forr <n—k. Also,

(X)) = [BRHA X~ (S RA 0 (X))
H™ N (S MA Hy (X)) = HPH (S MA w4 (SP(X))

[Sn=kHA SP(X)] = 74, (SP(X)) = HA |, (X)

1R

where the first and fourth isomorphisms hold by 2.5.6. O
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Federer’s spectral sequence provides a first method of computation of A-homology
groups. Given CW-complexes A and X with A finite and H;(X) = 0, the associated
Federer spectral sequence {Ej } converges to the A-homotopy groups of SP(X) (note
that SP(X) is simply-connected). In this case we have E> = H P(A,m(SP(X))) =
HPAH (X)) ifp+g>Tandp<—1.

We exhibit now some examples.

Example 6.1.6. If A is a finite CW-complex and X is a Moore space of type (G, n) then
SP(X) is an Eilenberg-MacLane space of the same type. Note that SP(X) is abelian.
Hence, by the Federer spectral sequence

HA(X) = 72(SP(X)) = HV "(A,m,(SP(X))) = H" "(A,G)  forr > 1.

In particular, HA(S") = H" (A, Z).
We also deduce that if X is a Moore space of type (G,n) and A is (n — 1)-connected,
then HA(X) = 0 for all r > 1.

Example 6.1.7. Let A be a Moore space of type (G, m) (with G finitely generated) and
let X be a path-connected abelian topological space. As in example 2.5.5, for n > 1, there
are short exact sequences of abelian groups

0~ Ext(G, Hypmi1 (X)) — HA(X) —— Hom(G, Hygm(X)) — 0

As a consequence, if G is a finite group of exponent r, a?” = 0 for every a € H;?(X ).
Using 6.1.6 we will show now an explicit formula to compute A-homology groups.

Proposition 6.1.8. Let A be a finite CW-complex and let X be a connected CW-complez.
Then for every n € Ng, HA(X) = @Hj*"(A,Hj(X)).
JEN

Proof. By corollary 4K.7 of [8], SP(X) has the weak homotopy type of H K(H,(X),n).

neN
Also, since A is a CW-complex, a weak equivalence is also an A-weak equivalence. Hence,

HNX) = m(SP(X)) = m (][] K(H;(X).9) = [] = (K(H;(X).4)) =
€N €N
= HHj’"(A,Hj(X;)ZEBHJ'*"(AHJ‘](X))

JEN JEN
where the first equality of the second line follows from 6.1.6 since for every group G and

m €N, SP(M(G,m)) is a K(G,m). O

Now we show that, in case A is compact, HZ satisfies the wedge axiom. This can
be proved in two different ways: using the definition of A-homotopy groups or using the
above formula. We choose the first one.
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Proposition 6.1.9. Let A be a finite CW-complex, and let {X;}icr be a collection of

CW-complexes. Then
HA (\/ Xi> =P B (x0).

i€l i€l

Proof. Tt is known that SP(\/ X;) = [[“SP(X;) with the weak product topology, i.e. the

iel iel
colimit of the products of finitely many factors. Since A is compact, 72 ([[“SP(X;)) =
i€l
@A (SP(X;)) and the result follows. O

iel
Henceforward, ¢ will denote a Serre class of abelian groups unless specified otherwise.

Proposition 6.1.10. Let A be a finite CW-complex and let k € N. Let X be a topological
space such that m,(X) € € for alln > k. Then 7X(X) € € for alln > k.

Proof. We proceed by induction in the number of cells of A. If A has only one cell, the
result trivially holds. Suppose A is obtained from A’ attaching an m-cell. The cofibration
A’ — A induces a long exact sequence

e (X) (X)) i (X)

By hypothesis, 77" (X) € € and 7' (X) € € for i > k. Then 7}(X) € € fori > k. [

6.2 Homology and homotopy of CW(A)-complexes

In this section we present a variety of results which give information about the homotopy
groups of a CW(A)-complex showing that they depend strongly on the homology and
homotopy groups of A.

Let A be a CW-complex. Let X be a (generalized) CW(A)-complex and let B C X be
a (generalized) A-subcomplex of X. Replacing (X, B) by a homotopy equivalent CW-pair
(X', B") we obtain that H, (X, B) ~ H,(X',B') ~ H,(X'/B') ~ H,(X/B), where the last
isomorphism holds since a homotopy equivalence of pairs ¢ : (X, B) — (X', B') induces a
homotopy equivalence ¢ : X/B — X'/B’ by 1.1.20.

Proposition 6.2.1. Let A be a €-acyclic CW-complex and let B be a topological space.
Suppose X is obtained from B by attaching a finite number of A-cells (in one step). Then
the inclusion i : B — X induces € -isomorphisms i, : Hy,(B) — Hp(X) for all n.

Proof. Let J be an index set for the A-cells attached, and for each j € J let m; denote
the dimension of the j-th A-cell. Consider the long exact sequence

O Hy(B) — > Hy(X) —> Ho(X,B) —2 > Hy_1(B) —— - -
Note that ker(ix) € ¥ because it is isomorphic to a quotient of H,41(X,B). On the
other hand, ker 0 = coker (iy) € € because it is a subgroup of H,(X,B) = H,(X/B) =

Hy(\V X" A) = @ Hpm,;(A). Then i, is a €-isomorphism. O
jed jeJ
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The following proposition gives a relation between the homology groups of a CW(A)-
complex X and those of A. Of course, we need X to have a finite number of A-cells.

Proposition 6.2.2. Let A be a €-acyclic CW-complex and let X be a finite generalized
CW(A)-complex. Then X is also €-acyclic.

Proof. We proceed by induction in the number of A-cells of X. If X has only one A-cell
the result follows. For the inductive step, suppose X is obtained from B by attaching only
one A-cell (say of dimension m). Consider the short exact sequences

0 — coker 9 — Hy(X) ker 0 0
associated to the long exact sequence

- —% H,(B) —> Hy(X) —> Hy(X,B) 2> H,_1(B) —> -
Note that H, (X, B) = H,(X/B) = H,(X"™A) = H,,_m(A). Also, coker 9 € € because
it is a quotient of H,,(B) and ker 0 € € because it is a subgroup of H,,(X, B) = Hyp—m(A).
Then H,(X) € €. O

Using the generalized Hurewicz theorem (2.3.13) and the previous proposition we obtain
the following.

Corollary 6.2.3. Let A be a €-acyclic CW-complexr and let X be a finite generalized
CW(A)-complex. Suppose, in addition, that X is simply connected and that € is an
acyclic ring of abelian groups. Then m,(X) € € for all n € N.

We turn now our attention to A-homotopy groups. From 6.2.3 and 6.1.10 we deduce

Corollary 6.2.4. Let A be a finite CW-complex and let X be a finite generalized CW(A)-
complex. Suppose that A is € -acyclic (with € an acyclic ring of abelian groups) and that
X is simply connected. Then n2(X) € € for all n € N.

We propose now a slight modification of Serre classes and rings of abelian groups to
get rid of the finiteness hypothesis in the previous results.

Definition 6.2.5. Let 4’ be a nonempty class of abelian groups. We say that ¢’ is a
special Serre class if the following conditions are satisfied

(i) For any three-term exact sequence of abelian groups A — B — C'if A,C € ¢” then
Be¥'.

(ii) For any collection of abelian groups {4;};cs if A; € €’ for all i, then PA; € €.
el

(iii) If {G;}ien is a direct system of abelian groups, all of which belong to %', then
cdi/x\n G, e
1€
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Note that a special Serre class is, in particular, a Serre class.

An interesting example for our purposes is the following. Let P be a set of prime
numbers. Then, the class 7p of torsion abelian groups whose elements have orders which
are divisible only by primes in P is a special Serre class.

If A is a CW-complex and X is a generalized CW(A)-complex, then every compact
subspace of X intersects only a finite number of interiors of A-cells (cf. 3.1.12). Hence, if
X' denotes the I-th layer of X, we have collim H,(X") = H,(X). From this we can deduce

the following result which is an interesting variation of 6.2.2, 6.2.3 and 6.2.4.

Proposition 6.2.6. Let ¢’ be a special Serre class, let A be a €' -acyclic CW-complex
and let X be a generalized CW(A)-complex. Then:

(a) X is €' -acyclic.

(b) If, in addition, X is simply connected and €' is an acyclic ring of abelian groups,
then mp(X) € €' for all n € N.

(c) If A is finite and X is simply connected and €' is an acyclic ring of abelian groups,
then X (X) € €' for alln € N.

The next result provides a more concrete description of the singular homology of a
CW(A)-complex, in case that A is a finite dimensional CW-complex.

Given a CW(A)-complex X, for each n € Ny, let J,, be an index set for the A-n-cells
of X. For o € J,, and 8 € J,,_1 let g, and g be defined as in section 2.

Proposition 6.2.7. Let A be a finite dimensional CW-complex and let X be a CW(A)-
complex. Then there exists a spectral sequence {ES Y, ez with B}, = @ Hy(A)
A—p—cells
which converges to H.(X).
Moreover, the differentials dzlw : Ez%,q — E;—l,q are given by dll,yq = @ (9890 )+-

acdp
/BGprl

Proof. Let B} = Hpy (X%, X P~1) and A}, = Hpo(XY). From the long exact sequences
in homology associated to the pairs (XK‘,XZFl), m € Ny, we obtain an exact couple
(B, A')i, 4, k), which induces a spectral sequence {Ey  }pqez- Since A is finite dimen-
sional, it follows that this spectral sequence converges to H,(X).

Moreover, the differential d‘,}%q is given by the composition

-1y O -1y J -1 —2
Hypo( X0, X0 — Hppq1 (X)) = Hpg (X5, X579)

where these maps come from the long exact sequences mentioned above. Under the isomor-
. -1 -1 -2
phisms Hp1q(X5, X3 ) = @  Hy(A) and Hpyq1 (X, X5 7) = D Hy(A),
A—p—cells A—(p—1)—cells
the map 9 corresponds to @ (9o )« and the map j corresponds to q., where ¢ : Xffl —
acJp
Xfl_l/Xf'Zl_2 is the quotient map.
Hence, the result follows. O



Section 6.3: Examples on real projective spaces 152

Remark 6.2.8. The previous proposition generalizes 5.2.1.

The following theorem generalizes theorem 6.2.7 above and its proof is formally iden-
tical.

Theorem 6.2.9. Let A and B be CW-complexes, with A finite and B such that H.(B) #
0 only for a finite number of r’s (this holds, for example, if B is finite dimensional).
Let X be a CW(B)-complex. Then there exists a spectral sequence {Ey } with E;’q =
D HI;4+q(EpB) which converges to HA(X).
A—p—cells
It is well known that if a CW-complex does not have cells of a certain dimension 7, then
its j-th homology group vanishes. The following proposition heads towards that direction,
giving, in several cases, a range of dimensions outside of which the A-homology groups
are trivial.

Proposition 6.2.10. Let A be an [-connected CW-complex of dimension k and let X be
a topological space such that SP(X) is abelian (this holds, for example, if H1(X) =0).

(a) If X is an abelian CW-complex of dimension m, then HA(X) =0 forr >m —I.

(b) If X is an abelian CW(A)-complex of dimension m, then HA(X) = 0 for
r>m+k—1.

(¢) If X is an abelian CW(A)-complex without cells of dimension less than m', then
HMNX)=0 forr <m'+1— k.

The proof follows immediately from the Federer spectral sequence applied to the space
SP(X).

6.3 Examples on real projective spaces

We exhibit now some examples concerning real projective spaces.

It follows from 2.5.5 that if X is a path-connected abelian topological space, every
element in 72°(X) (n > 1) has order 1, 2 or 4. This can be generalized to P! (for any
dimension 1) in the following way. By 2.5.4 we know that there is a spectral sequence

oy (X) for p+q > 1. If [ is even then, for p + ¢ > 1 and

{E,,} which converges to m,,,

p < —1, we get

2 —pol. _ (X)) /2m(X) if p is even and —p <1
Epq = HP (P (X)) { {a e my(X)/ ord (o) =1 or 2} if pisodd and —p <1
It follows that if 8 € 7f (X) (and n > 1) then ord (3)|2.

It is worth mentioning that if the homotopy groups of X are finite and do not contain
elements of order 2, then HP(P!;7,(X)) =0 for p+¢ > 1 and p < —1. Thus, WEl (X)=0
for n > 1.

On the other hand, if [ is odd then, for p+¢ > 1 and p < —1, we get
(X)) /2m(X) if piseven and —p <[l -1
Eg’q:pr(Pl;ﬂq(X)): {aoemy(X)/ord (o) =1or 2} ifpisoddand —p<i-—1
mq(X) if p=—I
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It follows that, for n > 1, there exists a short exact sequence of groups
0 —— Tp41(X) — 7l (X) —= G —=0

where G is such that exp(G)[2/~!. Note that G turns out to be solvable if n = 1, and
abelian for n > 2.
Now, we turn our attention to P?-homology. From example 6.1.6 we get

P2 2\ 1r2—r /o2 . Zo ifr=1
Also, from example 6.1.7 it follows that if X is a (path-connected) CW-complex, then
every element in HE*(X) (n > 1) has order 1, 2 or 4.

From 6.2.6 we deduce the following relationship with Eilenberg-MacLane spaces.

Example 6.3.1. There is no generalized CW(PP?)-complex X such that X is a K(Z,n)
for some n > 2.

Example 6.3.2. For n > 2, there does not exist any CW (P?)-complex which is a K (Z4, n).
Indeed, if X is a CW(P?)-complex and a K(Z4,n) then by Hurewicz, H,(X) = Z4. But
by 5.2.1 H,(X) must be a subquotient of € Zz, which entails a contradiction.

Given n > 2, we construct now a generalized CW(PP?)-complex which is a K(Z,n).
We need first the following lemma.

Lemma 6.3.3. Let f : S' — X be a continuous map. Then [f]?> =0 in 71 (X) if and only
if f can be extended to P?.

This lemma can be proved easily considering the pushout

Sli>51

-

D> —=P?

where g is a map of degree 2. This result can also be deduced from the cofibration sequence
St < P2 — §2. Clearly, this can be generalized for maps g of any degree.

Proposition 6.3.4. Given n € N, n > 2, there ewists a generalized CW(P?)-complex
which is an Eilenberg-MacLane space of type (Za,n).

Proof. We start with the singleton and attach a P?-(n — 1)-cell to obtain X"~ 1P2. Clearly,
7 (E"71P?) = 0 for r < n — 1 and 7,(3"'P?) = Zy. Moreover, by the generalized
Hurewicz theorem we know that the groups 7,.(X" 'P?) must be finite and of 2-torsion
for all » € N. Then, there exists I € N such that exp(m,;1(X" 1P?)) = 2.

We attach now P2-(n + 1)-cells to " 1P? to kill 7, ;1. We proceed inductively in I. If
I > 1, let J be a set of generators of the elements of order 2 in 7,1 (X" !P?). For each
a € J we will attach a P2-(n + 1)-cell in the following way. By the previous lemma, a
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can be extended to some @ : ¥"P? — X" P2 which will be the attaching map of the
P2-(n + 1)-cell.

Let Y be the space obtained in this way. It follows that exp(m,41(Y)) < 271, Thus,
by induction, we construct a generalized CW (IP?)-complex X,, 11 such that 7, (X,41) = Zo
and 7, (Xp41) =0 forr <n+1, r # n. By 6.2.3, m.(X,,+1) must be finite and of 2-torsion
for all r € N, so the previous argument may be applied again and the result follows. [

Example 6.3.5. Let X be a CW (PP?) with no cells in adjacent dimensions. By theorem
6.2.7 there exist short exact sequences

Jn73 J’nfl

where Jj, is an index set for the A-k-cells of X. In the same way, if X is a CW (P!) (with
[ odd) with no cells in adjacent dimensions, we obtain short exact sequences

0 Dz Hy(X)——=G—=0
In—1

where G is an abelian group such that exp(G) | 25



Chapter 7

CW (A)-approximations when A is
a Moore space

In this chapter we give CW(A)-approximation theorems for topological spaces in case A
is a Moore space. As corollaries, we obtain homotopy classification theorems for CW(A)-
complexes.

7.1 First case: Ais a M(Z,,r) with p prime

Proposition 7.1.1. Let A be a Moore space of type (Zy,r) with p prime, and let X
be a simply-connected topological space. Then there exists a CW(A)-complex Z and a
weak equivalence f : Z — X if and only if H;(X) = 0 for 1 < i < max{r — 1,1} and
H;(X) = @Z, for all i > max{r,2}.

Ji

Proof. Suppose first that there exists a CW(A)-complex Z and a weak equivalence f :

Z — X. By 5.2.1 we know that, for all n € N, H,(Z) is a subquotient of Ly, Ly,
A-(n — 1)-cells
hence it is isomorphic to @Z, for some index set J,,. Note that Z is (r — 1)-connected by
J,

4.1.9. Since f is a weak eqLTivalence, it induces isomorphisms in all homology groups. Thus
H;(X)=0for1<i<max{r—1,1} and H;(X) = H;(Z) = @Z for all ¢ > max{r, 2}.

For the converse we will analyse first the case r = 1 for snnphc:lty So, suppose that
Hi(X)=0for1<i<1and Hy(X) = @Z for all # > 2. Let ¢ : X’ — X be a CW-

approximation of X. Since \/X'A4 is a Moore space of type (@va i+ 1), we may take a
J;

homology decomposition f’: Z — X' of X’ such that Z = cohm Zn, with Z1 = % and Z,

the mapping cone of a map \/¥" 24 — Z, 1 for n > 2. Hence, Z is a CW(A)-complex
‘]'Il
and f = po f': Z — X is a weak equivalence.

Now we study the case r > 2, which is similar to the previous one. Suppose that
Hi(X)=0for1 <i<r—1and Hi(X) = @Z, for all i > r. Let ¢ : X’ — X be a
Ji

155
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CW-approximation of X. Since \/X¢A is a Moore space of type (@Zp,r + i), we may
Ji

take a homology decomposition f’: Z — X' of X’ such that Z = Cohm Zy, With Z, = *

for1 <n<r-1, Z, = VA and Z, the mapping cone of a map \/E” 1A — Z,_4 for
JV J’VL
n > r+1. Hence, Z is a CW(A)-complex and f = o f': Z — X is a weak equivalence. [

Applying Whitehead’s theorem we get the following corollary.

Theorem 7.1.2. Let A be a Moore space of type (Zp,r) with p prime, and let X be
a simply-connected topological space having the homotopy type of a CW-complex. Then
X has the homotopy type of a CW(A)-complex if and only if Hi(X) = 0 for 1 < i <
max{r — 1,1} and H;(X) = @Z, for all i > max{r,2}.

Ji

We want to obtain now a homotopy classification theorem for generalized CW(A)-
complexes. We will need the following proposition which states that, under certain hy-
potheses, given a chain complex (Cy,d,) one can construct a CW-complex such that its
cellular chain complex is (Cy,d,). Other results of this kind can be found in [23] (cf.
theorem 7.2.1 below).

Proposition 7.1.3. Let (Cy,dy) be a chain complex such that Co = C1 = Z, dy : C; — Cy
18 the trivial map, Cp, = 0 forn > 4 and C,, = @Z for 2 < n < 3, where Jy and J3 are

index sets. Then there exists a CW-complex X such that its cellular chain complex is

(C,,d,).

Proof. We fix the following notation. For a € J, let 1, € @Z be defined by (14)3 =0
JIn
if 3 # a and (14)q = 1.
For a € Jo let g2 : St — S! be a map of degree da(1,) in 71 (X1). We define X? by

+ o
\/Sl a€lJy

1
Jo — S5
zi push ‘inc
VD? o
J2 f X
Note that the cellular chain complex of X? is
da dy

0 0 Cy Ch Co.
Now, for each m € Z, let F,, : S* — S* be a map of degree m, and for 3 € Jy, let

incg : S? — \/S?% denote the inclusion in the S-th copy of S2.
J2
For o € J3 we define g, : S? — X? as follows. Let A, = {8 € J2 / (d3(14))s # 0}. Note
that A, is a finite set. We define Go,: \/ D* — \/ D?*by G, = + incgC(Fas(1a))5)-
BEAa BEA BEAa
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Now leti: \/ D? — 52 be asubspace map. Note that the boundary of i( \/ D?) C 52 is
BEAa BEA
homeomorphic to \/ S'. It is not difficult to prove that S?—i( \/ D?) is homeomorphic

BEAa BEA

o]
to D? and that its closure in S? is homeomorphic to DQ/Z, where Z C S1 C D? is a finite
set with #2 = #A,.

Thus, there exists a pushout diagram

Vost_i, VD

BEAa BEAa
\L push iz
D?%/7 52

where j is the inclusion map.

Now let v/ : S* — \/ S! be the map induced by taking standard comultiplication
BEAa
#(An) — 1 times. For g € Jy let fﬂ2 be the characteristic map of e%.

Note that the composition

+ f3
1 i 2 2 o P
V S J V D Ga \/ D# re4

-

2
BEAa BEAa BEAa X

coincides with inc o (ﬂ 6—1:4 g%F(dS(la)) 5) . Hence,

) . T ) . 2 -
[(ﬁetxafﬂ> Ga]”/} - [mc <ﬁe—i:4agBF(d3(1a))ﬁ> V/]_mc* g;: (95 s 10)5) | =

= inc, Z 93] [Flas(1a)),) | =0
BEAa
in 71(X?), since dads = 0.
Thus, the map ( —1:4 fé) Gojv' : ST — X? can be extended to a map h, : D? — X2
BEAQ

Let q;D2 — D?/Z be the quotient map. By construction, it follows that there exists a
map hy, : D?/Z — X? such that haq = hg.
Now, let g, be the dotted arrow defined by the commutative diagram

\/ St _inc_ \/ D?
BEAL BEAL

l push l

D*/z S%.
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Let X be obtained by attaching 3-cells to X2 by the maps g,, o € J3. By construction,
it follows that the cellular chain complex of X is (Ci,dy). O

Lemma 7.1.4. Let X be a topological space and let A be a Moore space of type (Zq,1)
obtained by attaching a 2-cell to S* by a map o of degree d. Let m > 2 and suppose we
attach to X an m-cell and an (m + 1)-cell by maps g™ and g™+ respectively

—1 9" m gm+l m
S X S XUe
incl push ih incl push iiz

D" —m= X Ue™ DmWXUemUemH

where g™+ in the northern hemisphere Hy C S™ is the map fmoCY™ 2a: D™ ~ H, —
X Ue™ and for the southern hemisphere H_ we have g™ (H_) C X.

Then X Ue™ U e™t is homeomorphic to a space X Ued™ =1 obtained by attaching an
A-(m —1)-cell to X.

Proof. Let ga : Y™ 2A — X be the map defined by

-2
Sm—l &g Sm—l

| e ]
push AN
DM ——=ym=24
X
gm+1 lm_ X

and let X Ue4™~1 be defined by the pushout

ga

ym—2 -4 X

| |

cxm—24 T> X Uedm—1
A

Using the universal properties of pushouts and colimits we will prove that X Ue™Ue™t!
and X U e 1 are colimits of the diagram

—2
gm—1 u gm—1
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Let us define first arrows 1, ¥, V3, ¢1, ¢2 and ¢3 such that the following diagrams
commute

—2
Sm—l & Sm—l

csm ICE
cD™
Smfl " 2a Smfl

Csmflczm O‘csm 1

PR >

Ccpm XU 6A,m 1

We define the maps 91 : X — X Ue™ Ue™ and ¢ : X — X Ue™ 1 to be the
corresponding inclusions and 1y : CS™™1 ~ D™ — X Ue™ U e™T! by 1)y = iof™, where
ip : X Ue™ — X Ue™Ue™t is the inclusion. We also define 3 : CD™ ~ D™+l
X Ue™Uemt! as the characteristic map of ™!, that is 13 = fm+1.

Now we define ¢3 and ¢3 in the following way. We consider the commutative cube

l push CLi

CD™ —> Cxm—24
J

where the front and rear faces are pushout squares, and set ¢ = f41Ct, ¢35 = faCj.
Now we will prove that both X Ue™Ue™ ! and X Ue4™~1 satisfy the universal property
of the colimit. Suppose that Y is a topological space and that there are continuous maps
1:X =Y, p:C8" ! =Y and p3 : CD™ — Y such that the following diagram
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commutes

CXm7/ %o
Csm—l Csml m+1|H

| L /

com™ ®3

Then there exist maps 31 : X Ue™ —= Y, B : S - Y B: XUemUem - Y,
71 :CE™ 24 - Y and v : X UeA™ ! such that the following diagrams commute

Smfl X Smfl I Dm
\L push \\ l push m m—2 m+1
o \(,91 BrofmoCEM™ ™ 2a=p1og™ g
csm-l——=XuUe™ \\ Dm*>5m
\ﬂ Wlogm+l|H
gm+l
Sm Xuer
J/ push l 61
CD™ ~ pmtl WX Ue™Uemtl
\\“%
¥3 Y
CSm—lwcsm—l Em—QA 94 X
\L push CL\L \\\ 02 \L push ¢>1i \
A \\ O A — > X yetm! \
X
. v \.—)

It is routine to check that Gv; = p; and v¢; = p; for ¢ = 1,2,3. The uniqueness of the
maps 0 and v satisfying this equalities follows easily from the universal properties of the
pushouts diagrams above.

Hence, X Ue™ U e™t! and X UeA™ ! are homeomorphic. O

Proposition 7.1.5. Let p be a prime number and let A be a Moore space of type (Zy,1).
Then for every m,n € N with n > r + 1 there exists a generalized CW(A)-complex X
which is a Moore space of type (Zym,n). Moreover, X has a finite number of A-cells.
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Proof. We suppose first that » = 1. Note that it suffices to prove the case n = 2 since
suspensions of generalized CW(A)-complexes are also generalized CW(A)-complexes and
the suspension of a Moore space of type (G,r) (r > 2) is a Moore space of type (G,r+1).
We will suppose that A is constructed by attaching a 2-cell to S' by a map of degree
p and we will consider the general case later.
Consider the chain complex

da

0 Zerl Zm+2 L 7,

where di and ds are the morphisms of Z-modules defined by left multiplication by the
matrices

My=(p p™ —p™ ' ... (=)™ 'p (-1)™)
and

pm 00 0 0

p 1 0 0 0

0o p 1 0 0

Ma=| o o0 p 0 0

0O 0 0 p 1

0 0 0 0 »p

where an arrow labeled with k& € Z indicates multiplication by k.

It follows that the homology of this chain complex is 0 in degrees ¢ # 2 and Zyn in
degree 2 with generator the class of (1,0,0,...,0,(=1)""1p).

By theorem 7.1.3, there exists a CW-complex Z such that its cellular complex is the
chain complex above. Applying the previous lemma, we obtain that Z is homeomorphic
to a generalized CW(A)-complex X with a finite number of A-cells.

Now, if A’ is any Moore space of type (Z,, 1) and A is as above then there is a homotopy
equivalence A — A’. Hence, by a similar argument as the one in the proof of 3.3.1 there
exists a generalized CW(A’)-complex X’ homotopy equivalent to X. Thus X' is also a
Moore space of type (Zpm,2). Note that X’ has a finite number of A’-cells since X has
finite number of A-cells.
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It remains to prove the general case »r € N. By the same reasoning as above, we may
suppose that A = ¥"~'B where B is a Moore space of type (Zp,1). Hence, there exists a
generalized CW(B)-complex X which is a Moore space of type (Zym,n —r+1). Since the
suspension functor commutes with colimits, it follows that X" 71X is a CW(A)-complex
which is a Moore space of type (Zym,n). O

Corollary 7.1.6. Let p be a prime number and let A be a Moore space of type (Zy,r).
Let G be a finitely generated p-torsion abelian group and let n € N, n > r+ 1. Then there
exists a generalized CW(A)-complex X which is a Moore space of type (G,n). Moreover,
X has a finite number of A-cells.

Proof. Since G is a finitely generated p-torsion abelian group, we know that there exist

an index set I and natural numbers m;, ¢ € I, such that G = @mei. We take X to
el

be a wedge sum of Moore spaces M (Zymi,n), i € I, which might be taken to be CW(A)-

complexes by the previous proposition. The result follows applying the wedge axiom for

(reduced) homology. O

As an example of an application, we will show now which Eilenberg-MacLane spaces
can be obtained as generalized CW(A)-complexes. We give a constructive proof at this
point. However, it will be also deduced later by a homotopy classification theorem for
generalized CW (A)-complexes.

We need the following lemma.

Lemma 7.1.7. Let m € N and let A be the Moore space of type (Zm,1) obtained by
attaching a 2-cell to S* by a map g of degree m. Let f : S' — X be a continuous map.
Then [f]™ =0 in m1(X) if and only if f can be extended to A.

Proof. Note that [f]™ = [fg] in 71(X). Hence if [f]™ = 0 then fg ~ 0 and thus it can
be extended to D?. The extension of f to A is obtained then by the universal property of
pushouts.

To prove the converse, let § : D?> — A be the characteristic map of the 2-cell of A
and let inc : S* — D? be the inclusion map. If f can be extended to f : A — X then
fg = fginc is nullhomotopic. Hence [f]™ = [fg] = 0. O

Note that this result can also be deduced from the cofibration sequence S* < A — S2.

Proposition 7.1.8. Let p be a prime number and let A be a Moore space of type (Zy,r).
Let G be a finitely generated p-torsion abelian group and let n € N withn > r + 1. Then
there exists a generalized CW(A)-complex X which is an Filenberg-MacLane space of type

(G,n).

Proof. Applying the same argument as in the proof of 7.1.5, we may suppose that A is
obtained by attaching a 2-cell to S by a map of degree p.
We will prove only the case r = 1, since the general case is completely analogous to it.
By the previous corollary we may build a finite generalized CW(A)-complex X, which
is also a Moore space of type (G,n). By the Hurewicz theorem, m,(Xg) =0 for r <n —1
and 7,(Xo) = G. Moreover, by the generalized Hurewicz theorem (2.3.13) we know that
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the groups m,(Xo) must be finite and of p-torsion for all » € N. Then, there exists [ € N
such that exp(m,11(Xo)) = p.

We attach now A-(n+ 1)-cells to X to kill 7,+1. We proceed inductively in . If [ > 1,
let J be a set of generators of the elements of order p in m,4+1(Xp). For each o € J we
will attach an A-(n + 1)-cell in the following way. By lemma 7.1.7, o can be extended to
some @ : X" A — Xy, which will be the attaching map of the A-(n + 1)-cell.

Let Y be the space obtained in this way. It follows that exp(m,11(Y)) < p'~!. Thus,
by induction, we may construct a finite generalized CW(A)-complex X, ;1 such that
Tn(Xnt1) = Zp and 7 (Xp41) = 0 for r < n+ 1, r # n. By 6.2.3, m(X,41) must
be finite and of p-torsion for all r € N, so the previous argument may be applied again
and the result follows. O

Theorem 7.1.9. Let p be a prime number and let A be a Moore space of type (Zy,r). Let
X be an r-connected CW-complex such that Hy,(X) is a finitely generated p-torsion abelian
group for alln >r+1. Then X has the homotopy type of a generalized CW(A)-complex.

Proof. As in the proofs above, we will only analyse the case » = 1 since the general case
is very similar to that.

By 1.4.39 we know that X admits a homology decomposition. Then, there exist a CW-
complex Z, a homotopy equivalence f : Z — X and a sequence (Z,),en of subcomplexes
of Z such that

(a) Zy, C Zyyq for all m € N.

(b Z=J 2.

neN

(¢) Zi is a Moore space of type (H1(X),1).

(d) For all n € N, Z, 1 is the mapping cone of a cellular map g, : M,, — Z,, where
M,, is a Moore space of type (H,4+1(X),n), and g, is such that the induced map
(gn)« : Ho(My,) — Hy(Z,) is trivial.

Now, by 7.1.6 we may suppose that M, is a finite generalized CW(A)-complex for all
n € N. By a similar argument as that of the proof of 3.1.26 it follows that Z is a
generalized CW (A)-complex. O

Remark 7.1.10. Note that if A is a Moore space of type (Z,,r) and X is an r-connected
CW-complex which has the homotopy type of a generalized CW(A)-complex, then by
6.2.6, H,(X) is a p-torsion abelian group for all n > r + 1.

Hence, from this fact and the previous theorem we obtain a homotopy classification
theorem for r-connected generalized CW(A)-complexes which have finitely generated ho-
mology groups.

Note that from 7.1.9 and the generalized Hurewicz theorem (2.3.13) we may deduce
proposition 7.1.8.
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7.2 General case: Ais a M(Z,,,r)

To study the case where A is a Moore space of type (Z,, ), with m not necessarily prime,
we will make use of the following theorem, due to J.H.C. Whitehead [23].

Theorem 7.2.1. Let (Cy,dy) be a chain complez such that Cy = Z, C1 = 0 and C,, = PZ
JIn
for each n > 2, where J,, n > 2, are index sets. Then there exists a simply-connected

CW-complex X such that its cellular chain complez is (Cy, dy).

Proof. For each n € N, we will construct a CW-complex X,, of dimension n with cellular
chain complex (Cin), d&n)) such that

L4 (Xn)n_l =X,

e O —Ciif0<i<n

e« C"=0ifi>n
o dW =dif1<i<n
o d” =0ifi>n

o If, for n € N, jj, : mp(Xy) — mn (X, Xp—1) and 0y, : mp (X, Xnm1) — mn—1(Xn—1)
are morphisms coming from the long exact sequence of homotopy groups associated
to the pair (X,,, X;,—1), then Im j, = ker(j,—10,).

We proceed by induction on n. For n = 1 we take X7 = * and for n = 2 we take

X5 = \/S?. We also define Xy = *. From the long exact sequence of homotopy groups
Ja
associated to the pair (Xo, X;) it follows that Im jo = m2(Xo, X7) which coincides with

ker(j102), since 710 is the trivial map.

Suppose now that n > 3 and that X"~! is constructed. Since (X,—1, X,—2) is (n — 2)-
connected, n—2 > 1 and X,,_» is simply-connected, by the relative version of the Hurewicz
theorem we obtain that m,—1(Xn—1, Xn—2) ~ Hp—1(Xp-1,Xn—2) ~ Cp_1. Similarly,
Tn—2(Xn—2, Xn—3) ~ Hyp—o(Xp—2, X;—3) =~ C,_2 (note that this holds trivially if n = 3).

Let ¢p_1 : Cpo1 — ﬂn_l(Xn_l,Xn_Q) and ¢p_o : Cp_g9 — Wn_g(Xn_g,Xn_;g) be the
inverse maps of the respective Hurewicz isomorphisms. Hence, from the naturality of the
Hurewicz morphisms it follows that there is a commutative diagram

d dnfl
= Cn—l Cn—2

¢n1l~ Ni¢n2

Wn—l(Xn—laXn—2) 7Tn—2(Xn—27Xn—3)

f On—1 -
In—1 In—2

Wn—l(Xn—l) 7Tn—2(Xn—2)

Ch

jn728n71
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Let {z; : i € J'} be a basis of Imd,,. For each i € J' let ¢; € C), be such that d,(¢;) = 2;
and let G, C C), be the subgroup generated by {c; : i € J'}. Note that a relation between
the ¢;’s will imply the corresponding relation between the z;’s. Hence, {¢; : i € J'} is a
basis of Gy,. Therefore, C,, ~ kerd,, & G,, and d,|g, : G, — Imd, is an isomorphism. Let
{x; : i € I'} be a basis of ker d,.

Let B be the basis of C), defined by B = {z; : i € [} U{¢; : i € J'}. Note that there
exists a bijection B ~ J,, and that j,—20,—1¢n—1d,(a) = ¢p—2d,—1d,(a) =0 for all a € B.
Hence, ¢,—1d,(a) € ker(jn—20,—1) = Im j,—1. Thus, there exists b, € m,—1(X,,—1) such
that j,—1(bs) = pn—1dn(a). We take b, = 0 if a € ker d,,.

For a € B, let g, : S~ ! — X,,_1 be a continuous map such that [g,] = b,. If by = 0
we take g, to be the constant map. Let X,, be obtained from X, _; by attaching n-cells
by the maps ¢,, a € B ~ J,. Note that m,(X,,X,—1) ~ @PZ ~ C,. As above, let

Jn

¢n : Cp — mp(Xpn, Xp—1) be induced by the inverse map of the Hurewicz isomorphism.
By construction, it is not hard to check that the following diagram commutes

dn dn— 1

Cn Cn—l Cn—2
¢nl" ¢n—1l~ Niqﬁn—z
jnflan jn728n71
Wn(XnaXn—l) 4>7rn—1(Xn—laXn—2) 7Tn—2(Xn—27Xn—3)

In—1 In—2

Wn—l(Xn—l) 7Tn—2(Xn—2>

Thus, the first five conditions above are satisfied. It remains to prove that Im j, =
ker(jp—10n)-

Note that Im j, = ker(d,) C ker(j,—10,). On the other hand, let a € kerd, N B
and let e? be the cell with attaching map g,. Let f, : (D", 8" 1) — (X,, Xn_1) be
the characteristic map of e]l. Since by construction g, is the constant map, f, induces
a continuous map f, : D"/S"1 ~ §" — X,,. Note that, j,(fs) = fo = ¢n(a). Hence,
ker(jn—10n) = ¢n(kerd,) C Im j,. It follows that Im j,, = ker(j,—10,) as desired.

Finally, we take X = coleilr\ln X, O

n

The previous theorem allows us to obtain the following results.

Proposition 7.2.2. Let m,d € N such that dlm and let A be a Moore space of type
(Z, 7). Then, for all n > max{r,2}, there exists a CW(A)-complex which is a M(Zg,n).

Proof. As in the proofs above, we will only analyse the case r = 1, n = 2, since the general
case is completely analogous to that.
Let (Cy,dy) be the chain complex defined in the following way. The groups C,,, n € Ny
are defined by
Z ifn=0o0rn=2
C,=< 0 ifn=1
Z&Z iftn>3
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and the morphism d, : C,, — Cj,_1 is trivial if n = 1 or n = 2 and is defined by left
multiplication by the matrix D,, if n > 3, where

(m d) ifn=3
—d —

D, = m
_m
d
("
It follows that Ho(Cl,dy) = Zg4 and H,(Cy,dy) =0 if n # 2 and n # 0.
By the previous theorem, there exists a CW-complex X such that its cellular chain
complex is (Cy, d,). Hence, X is a Moore space of type (Zg4,2).

Finally, with a similar argument to the one in the proof of 7.1.5 we conclude that X is
homotopy equivalent to a CW(A)-complex. O

—_

m) if n > 4 and n is even
d
_d1> if n >4 and n is odd

Now, proceeding as in the proof of 7.1.9, we obtain the following result. We mention
that we will generalize this result later on.

Proposition 7.2.3. Let m € N and let A be a Moore space of type (Zm,r). Let X be an

r-connected CW-complex such that for allm > r+1, Hy(X) = @ Zy,, with mj|m for all
J€JIn
j € Jn. Then X has the homotopy type of a generalized CW(A)-complex.

Remark 7.2.4. The converse of the previous proposition does not hold, since the space of
example 5.2.8 is a generalized CW(ID?)-complex but its homology in degree 3 is Zs.

Proposition 7.2.5. Let m € N and let A be a Moore space of type (Zm,r). Let k € N,
k > max{r + 1,3}, and let G be a finite abelian group such that the prime divisors of
the orders of its elements also divide m. Then there exists a generalized CW(A )-complex
which is a Moore space of type (G, k).

Proof. As in the proof of 7.1.5, it suffices to prove the case k = max{r + 1,3}. We know
that G is the direct sum of cyclic groups of order a power of a prime that divides m. Since
reduced singular homology groups satisfy the wedge axiom, it suffices to analyse the case
G = Z,, where p/m and [ € N.

By 7.2.2, there exists a CW(A)-complex B which is a Moore space of type (Z,, k —1).
By 7.1.5, there exists a generalized CW(B)-complex X which is a Moore space of type
(Zyy, k). Finally, X is a CW(A)-complex by 3.1.29. O

Now we obtain another homotopy classification theorem.

Theorem 7.2.6. Let m € N and let A be a Moore space of type (Zy,,r), with r > 2. Let
X be an (r — 1)-connected CW-complex satisfying the following conditions

(a) H.(X) = @ij with mj|m for all j € J
j€J

(b) For alln >r+1, Hy(X) is a finite abelian group such that the prime divisors of the
orders of its elements also divide m.
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Then X has the homotopy type of a generalized CW(A)-complex.

Its proof is analogous to that of 7.1.9. Clearly, there is a similar result for » = 1.

Note that by 6.2.6 if a topological space X has the homotopy type of a generalized
CW(A)-complex, where A is a Moore space of type (Zy,,r), then X is (r — 1)-connected
and for all n > r, H,(X) is a torsion abelian group such that the prime divisors of the
orders of its elements also divide m. Thus, the previous theorem is a weak converse to
this statement.

As a corollary of 7.2.6 we obtain a sufficient condition for the existence of a homotopical
approximation by a generalized CW(A)-complex.

Theorem 7.2.7. Let m € N and let A be a Moore space of type (Zy,,r) with r > 2.
Let X be an (r — 1)-connected topological space satisfying conditions (1) and (2) of the
previous theorem. Then there exists a generalized CW(A )-complex Z and a weak homotopy
equivalence f : Z — X.



Chapter 8

Obstruction theory

In this chapter we start developing an obstruction theory for CW(A)-complexes. However,
the A-cellular chain complex introduced in chapter 5 is not suitable for this purpose. Thus,
we define a new A-cellular chain complex which fulfils our requirements. It is interesting to
point out that although this new chain complex is completely different from the previous
one, it coincides with the classical cellular chain complex if A = SY.

We also define an obstruction cocycle and a difference cochain, which give the exact
obstructions to extension problems for maps, as we shall see. These are generalizations
of the classical ones. We emphasize that the crucial part is the definition of an adequate
A-cellular chain complex so that classical obstruction theory can be taken to our more
general setting.

This chapter is only an introduction to obstruction theory for CW(A)-complexes. Much
more work can be done.

8.1 A new A-cellular chain complex

Let A be an [-connected and compact CW-complex of dimension k with k£ < 2] and [ > 1.
By theorem 11 of [19] p. 458 the map ¥ : [S"A,X"A] = 72 (A) — [EnH1A, 21 4] =
WT’?H(A) is a bijection for n > 0 and hence an isomorphism of groups for n > 1.

Let R = 7T64’St(X) = Colgm 7A(X"X). Then R is isomorphic to 7 (X" A) for r > 2.

We will denote by + the usual abelian group operation in 7 (X"A). We will also define
a product in 74(X"A) as follows: [f][g] = [g o f]. It is clear that this operation is well
defined and associative and has an identity element [Id].

Also, ([f]+ [gD)[k] = hu([f]+[g]) = he([f]) + hu(lg]) = LF]K] + [g][}]. We will prove now
that [h]([f] + [g]) = [R][f] + [M][g]- If [h] € /(2" A) by the isomorphism 74 | (X7~1A) ~
7A(X"A) we know that there exists [A'] € 72 (X771 A) such that [h] = [ZA/]. We denote
by q: X"A — X"AV X" A the quotient map which induces the sum +. Then

RI(f1+1g]) = [MI(f+g)ogd=[f+g)ogohl=[(f+g)ogoZh]=
= [(f+9)o (BN VEN)oql=[(foXh +goXh)oq] =
= [foXW]+[goXh] = [foh]+[goh]=I[h][f]+ [h][g].

Hence 7(X"A) is a unital ring.

168
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Note that ¥ : [S"A, S"A] = 1 (A) — [EnF1A, 571 A] = 721 | (A) is an isomorphism
of rings for n > 2. Hence R is also a unital ring with the inherited structure and the
induced maps 7 (X" A) — cohm TA(YTX) = A *(X) = R are ring isomorphisms.

Note also that since X : [EA, YA] = m{{(A) — [224,%%4] = 75'(A) is an isomorphism,
we get that [YA, ¥ A] = m{}(A) is an abelian group.

We will define now another A-cellular complex which will be used to develop the ob-
struction theory for CW(A)-complexes. For a CW(A)-complex X, let C,, be the free
R-module generated by the A-n-cells of X. We define the boundary map d : C,, — Cj,_1
in the following way. Let el be an A-n-cell of X, let g, be its attaching map and let
Jn—1 be an index set for the A-(n — 1)-cells. As usual, for 3 € J,_q, let g5 : X" ™1 —

xn-t/(xn=t_ eg_l) = Y"1 A be the quotient map. We define d(el?) = Z [qgga]eg_l
ﬁEJnfl
Recall that this sum is finite since A is compact.
Now we wish to prove that (Cj,d) is a chain complex. We proceed as in [11] p. 95-98.
Note that applying 4.1.14 we get

Cn =RV = @RN@W (Z"A) ~ 7/ \/E”A )~ mA (X" X
Jn JIn

Thus, up to isomorphisms, we may think d : 72(X"/ X"~ 1) — g4 (X7=1/X7=2),
We will give another description of the boundary map d. We deﬁne Op : X"/Xn1
Y X" 1/X"=2 as the composition

X/ gt U X GO gy B et xn

where ¢; and ¢ are quotient maps and ¢! is a homotopy inverse of the quotient map
,¢ X" U CXn— 1_>Xn/Xn1
xn-1
We will prove that the triangle

(Xn/Xn 1 Xn I/Xn 2)
m /
Xn 1/Xn 2

commutes.
As usual, for each A-n-cell e, a € J,, let g, be its attaching map and f, be its
characteristic map and consider the following commutative diagram

Cxn-la /s <t O A U CEMHA L, wyisn-ty)
qfa ifaUCga Yga

n n—1
" X XnL{1 CX o ZXn—l

Xn/anl
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where 19 and ¢ are quotient maps and qf, is the map induced by f,U JCga in the quotient
spaces. Let (1)9) ! be a homotopy inverse of 1. It follows that q1¢~1qfa ~ Xgaqo(o) .
It is easy to prove that, up to the standard homeomorphisms CX" 1A/¥"" 14 =

ynl4 U ) Cy" 14 = B(X"1A) = ¥4, the maps qo and 1y are both homotopic to
nn-

the identity map. Note also that the isomorphism C, ~ 7/(X"/X" 1) takes the basis
{el)! o € J,} to {qfa : @ € J,}. Hence, up to this isomorphism,

SN0 (el) = STHonafal = ST St g fa] ~ 7SS gagqo (vo) ] ~
~ BT [E¢Nga] = X7 %(g90)] = [aga)-

Thus, %71 (9, )«(€2) = [a9a] € T (X1 /X"72) = Cpr.

We need now the following lemma. Its proof is formally identical to that of lemma
2.5.3.

Lemma 8.1.1. Let A be an [-connected and compact CW-complex of dimension k with
k <2042 and let X be a CW(A)-complex. Letr > 2 andlet g : ¥"A — X" be a continuous
map. Let ¢ : X" — X"/X""1 = \/ ¥"A be the quotient map. Let J, be an index set

r-cells

for the A-r-cells of X and for each B € J, let gg : X" — X" A be the quotient map which
collapses X" — eg to a point. Then

lagl = Y lisgsg)

peJr

in m(\/ T"A).

Tr

Applying the previous lemma we obtain that [gg.] = Z [i3989a) = Z [989a][i5]
BEIn—1 BEIn—1
which corresponds to Z [qgga]eg_l under the isomorphism 74 | (\/ g DVTTA) ~
B€JIn-1
Cpn_1. Hence, d = X74(0,)x.
Using this description of the boundary map d we will prove that d?> = 0. We consider
the following commutative diagram

X" X7LLJ71 CXnil a Zanl 2 E(Xnil XnU72 CXn72) qll EQanQ

¢i g EWJ/ s2q
Xn/anl an; E(anl/an2) o S E(anl/anQ) Ean_f 22(Xn72/Xn73)

where ¢} and ¢’ are quotient maps and 7 is an inclusion.
Since Xq} o i is the constant map and v is a homotopy equivalence we conclude that
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30p—1 0 Op =~ *. Thus, from the commutative diagram

T (X" /X T (XX T (X" T2 /X7
(On)- / (On—1)+ /
T (B X T (DX T2/ XR))
Zan 1)*

A )(n 2/)(n 3

TL

we deduce that d? = 0.

Remark 8.1.2. Although S° does not satisfy the required relation between dimension and
degree of connectedness (see p. 168), the suspension functor induces isomorphisms of
groups [¥7S0, ¥180] ~ [¥n G0 3nH+160] for n > 1. Hence, the previous construction also
works for SY if the CW-complex X has only one O-cell (recall that this is not a homotopical
restriction). In this case, by [11] p. 95-98, the S°-cellular chain complex coincides with
the classical cellular chain complex.

The homology of this chain complex is not a topological invariant as the following
example shows.

Remark 8.1.3. The homology of this A-cellular chain complex is not invariant by home-
omorphisms. Indeed, take A = S3Vv S%. Let X = D*v D> v D6 v D7. We will give two
CW(A)-complex structures to X. The first one is defined by the following pushouts

Id

*

A X0=4 YA X1

l pet | l por |

CA—— X1 =D*v D5 CXA——X2=-D4v D>v 8>V S

N2A = §5 v §8 > X2

| l

cx?4 X
while the second one is defined by the pushouts
ing+
A=SBy gl ——> A=y gl $A =8ty S5 X1 =Dty Sty s
l push l l push l

CA

X1 =D*v Sty s° CXA X2=D*v D5V S5V §6

Y24 — G5\ S6 jE£4>.)(2

| l

Cx2A X
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Since A is 2-connected and has dimension 4, by theorem 11 of [19] p. 458 we get that
R ~ w§'(A). Applying proposition 6.36 of [20] we obtain that

R ~ 7f(A) =193V 84 S3Vv S =m3(S3 Vv S*) @ my(S3v S =
= m3(S)om(SH) om(S)em(SY) =ZDZy 7.

Before analyzing the A-cellular chain complexes we need to study the ring structure in
R. Recall that we have defined the product in R as a composition in m§'(A) ~ R. More
precisely, if f,g: A — A are continuous maps then [f].[g] = [g o f]. We wish to obtain a
concise description of this product under the isomorphism 74'(A) ~ Z © Zy @ Z.

Ifa:A=582vS* - A=5%v5%is a continuous map, we may decompose o = a1 + g
with a1 : 9% — 83V 8% and ag : S* — S3V.S%. Let iy : S% — S3Vv.S* and iy : S* — §3Vv 64
be the inclusions and let p; : S3 Vv §* — S and py : S v S* — S* be the standard
quotient maps. Note that, up to the isomorphism given by proposition 6.36 of [20] we
have that [a1] = ([rai], [gea1]) and [ae] = ([qr2], [g2ce]). Hence, the isomorphism
T (A) = Z® Lo © L takes [a] to ([qroa], [q1a2], [g2a2]) = ([qrai1], [g1ada], [g2aia)).

Taking this into consideration we get that the product [f].[g] = [go f] can be translated
into

(lgrfin], qu iz, lga fia])-(lqrgials (@192, [g2gi2]) = (g1 (g © F)in], [q1(g © )iz, [g2(g © [)iz])

As mentioned above, [fa] = ([q1f2], [¢2f2]) under the isomorphism ((q1)«, (¢2)«) which
is the inverse of ((i1)x, (i2)s) : m(S3) ® 74(S%) — 74(S93 v §4). Hence,

[g2(g © f)iz] = [g2gi1q1 fi2] + [q2gi2g2 fia] = [g2gi2qa fi2]

since qagip : S — 8% is nullhomotopic.
By a similar argument we get that

[q1(g © f)ir] = [q1gi1q1 fiA]

and
[q1(g © [ie] = [q1gi1q1 fiz] + [q1972g2 fia).

From these equations it is easy to conclude that the product in 7'('64(14) ~7 DLy DL
is defined by (a1, ag,as)(bi,ba,b3) = (biai,bias + baas,bsas). Indeed, we only have to
note that if v : S" — S™ and # : S™ — S™ are continuous maps and [y] € m,(S™) is
represented by m € Z then [ o y] = m][f], which follows from the identities [3 o 7] =
Be(b]) = Bu(mld]) = mp.([1d]) = m[3].

Now it is easy to prove that the A-cellular chain complex corresponding to the first
CW(A)-complex structure of X is

0 0 R R R R

whose homology is 0 in every degree.
On the other hand, we will prove now that the A-cellular chain complex corresponding
to the second CW(A)-complex structure of X is

ds d
0 0 R—=sp-Ysp-"sR
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where ds and d; are defined by ds(ri,r2,7r3) = (0,0,r3) and di(ri,re,73) = (r1,72,0).
Hence its homology is Z in degrees 0 and 1 and Z & Zs in degrees 2 and 3.

The map d; is defined by dy(e?) = [¢P gP]e!, where ¢ : X' — X1/(X! —el) = XA
is the quotient map and ¢ = in; + « is the attaching map of the A-cell e2. Note that
q@ is the identity map and that ¢(® = in; + % corresponds to [(1,0,0)] € Z ® Zy @
7 under the isomorphism mentioned before. Hence dy(r1,72,73) = (r1,72,73).d1(e?) =
(7“1, T2, 7“3).(1, O, 0) = (Tl, T2, 0).

In a similar way, the map dz is defined by ds(e*) = [¢Wg*¥]e?, where ¢ : X3 —

X3/(X3 — e3) = B34 is the quotient map and ¢(® = inc is the attaching map of the
A-cell €2. Note that ¢ ¢ corresponds to [(0,0,1)] € Z @ Zy ® Z. Hence d (r1,79,73) =
(7"1, r2, TS)-dl (62) = (Tla 2, 7‘3).(0, 07 1) = (O) 07 T3)‘

Note that, as it occurs with the A-cellular chain complex of chapter 5, this new A-
cellular chain complex does not take into consideration the way that A-n-cells are attached
to A-k-cells for k < n—2. Hence, different CW(A)-decompositions of the same space may
lead to different results, as the example above shows. Again, the key fact here is including
in one of the structures an A-2-cell and an A-3-cell such that their attaching maps involve
in a non-trivial way the A-0-cell and the A-1-cell respectively.

Remark 8.1.4. Suppose that A is a finite [-connected CW-complex of dimension k with k <
2] and X is a finite CW(A)-complex. Let C' = (Cy,d) be the A-cellular complex defined
above. Then x(C) = xa(X).rg(R). But since x(H.(C)) = x(C) and xa(X).x(A) = x(X)
we obtain

X(H«(C)).x(A) = x(X).rg(R).

Hence for fixed X and A with x(A) # 0, x(H«(C)) is uniquely determined although
H,(C) is not a topological invariant.

On the other hand, if A is fixed and we know H.(C), not every CW(A)-complex X is
possible, since if rg(R) # 0 then y(X) = X(H*(C))'X(A).
rg(R)

In a similar way, we consider now another case. Let A be finite CW-complex with finite
homology groups and let X be a finite CW(A)-complex. We have proved that x,,(X) =
Xm(A)X4X) | By 6.2.2 and 6.1.10 we obtain that the groups 7/} (X™A) are finite for all
n > 2. Hence R ~ 7764’St(A) is a finite group. Then, (#R)XA(X) = x,.(C) = xm(H.(C)).

8.2 Obstruction cocycle

Let f : X! — Y be a continuous map. If n > 2, the abelian group 7*(Y) has a
right 72 (X" A)-module structure defined by [a][g] = [a 0 g] for a € T2(Z"A), g € T2(Y).
This structure induces a right R-module structure in 72(Y). We call C*(X, 77 (Y)) =

Homp(Cp, mt 1 (Y)) and define c(f) € C™(X, 72 (Y)) by c(f)(€?) = [f © ga] and extend
it linearly.

Note also that there is a bijection Hompg(Ch,, 7/ (Y)) « Homges(A-n-cells, 74 | (Y)).

y m—1 » tn—1

It is clear that ¢(f) = 0 if and only if f can be extended to X™.

Theorem 8.2.1. ¢(f) is a cocycle.
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Proof. Recall the following commutative diagrams from earlier (pages 169 and 170), where
we have relabeled some of the arrows.

_ X
xnyxnt ) xn R, ex et L syt xne2)
T %
Cn d Cn—l
d’nT: :T¢n1
(X" XY ‘ (Xl X2
(871)* »-1

Czn—lA/En_1A<ﬁczn71A U oxrla an: E(En_lA)

En—l
qfal lfau(Jga lzga
-1
Xn/Xn—l " X" X?LiJ—l cx"™ = Eanl
n nH]

X" U CXn_lﬁz:anl Zin-1 E(Xn_l U CXn_2)E(n_—1qf()>22Xn72

Xn—l Xn—2
Tlifi Zqi{ll Ew'r)z(ll qule
Xn/Xn—l 5 R Z(Xn_l/Xn_2) - s E(Xn_l/Xn_2) SE R EQ(Xn—Q/Xn—?))
n n—1

Since the composition ¥(,,_1¢;\) o ¥i,,_1 is the constant map and ;X is a homotopy
equivalence we get that X(,,_1¢;X) S (X ) 710, ~ *.

It easy to see that the isomorphism 74 (\/ g, 2"A) ~ 74 (X™/X"1) is an isomorphism
of Wﬁ(Z”A)-modules since the distributive properties hold by a similar argument to that
in page 168. Hence it is also an isomorphism of R-modules.

We will prove now that the isomorphisms ¢,, are morphisms of R-modules for n > 2. It
suffices to prove that ¢,, : 74(\/E"A) — @r2(X"A) is a morphism of 7 (X" A)-modules.

Jn Jn

But (¢n)"' = @ (ia)« is casily seen to be a morphism of 7/}(X"A)-modules as for

[g] € T (2" A) and {falacs, € gaﬁ,’?(E”A) we have that

@ (ia)*([g]-{foc}aejn) = @ (ia)*({fa Og}aEJn) = Z [iafag] = Z [9} [iafa] =

acdn acdn a€dy a€Jn
= gl Z [iafa] = [g] @ (ia)«({fatac,)-
acJ, acJn

Hence (¢,) is an isomorphism of R-modules for n > 2.
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Now,

Onafa = (0n)s(¢7'(ed)) = B(d(d,"(eR))) = B(¢y, ' (dey)) =
St (D lasgalel™) =20 Y lapgalin) = (Y ligasgal)

IBGJ'IL—l ﬁevjn—l ﬁGJn—l
Thus, Onqfo = S( Y ligasgal)-
ﬁeJn—l
Since we have proved that %(,,—1¢{ )X (10X )10, =~ *, we get
#2210 1) T Ondfa = Zlaorai W) TN D [is4s9a))) =
ﬁeJnfl
= S > d @) tipasgel) =2 D [ne1ar W 1) ' afadsgal) =
BGJnfl 56*]77,71
= X( Z [Zga(an)(lb;?fl)il%@ga])):Z( Z [Egoa%@ga])
BEJnfl ﬁEJnfl

because (an‘)(w;?_l)’l ~ Id. But X is an isomorphism, hence Z [£90989a] = 0. Then

BEIn-1
d*(e(fNE™?) = e(N)des™) =e())( Y laagsles™) = D ldagpllfgal =
a€Jni1 a€dni1
= Z [EQaQagﬁHf] = 0.
a€dpy1
Hence ¢(f) is a cocycle. O

8.3 Difference cochain

Definition 8.3.1. Let A be a CW-complex and let X be a CW(A)-complex. Let f,g :
X™ — Y be continuous maps such that f|xn-1 ~ g|yn-1 and let H : IX" ' — Y be a
homotopy between f|xn-1 and g|x»—1. We define the difference cochain of f and g with
respect to H as the cochain d(f, H,g) € Homg(C,,7(Y)) defined by

d(f, H,g)(eq) = [(fo fa) U(H o Iga)U(go fa)l
with
. n—1 n—1 n—14 _ yn N
(fofa)U(Holga)U(go fa):CE AznglAI(E A) LY, ORI A=A Y

where g, the attaching map of the cell e and f, is its characteristic map.

In the particular case that f|xn-1 = g|x»—1 and that H is stationary we will write
d(f, H,g) = d(f,9)-
Remark 8.3.2. If A =X A’ with A’ a CW-complex and let X, f, g and H be as above. By
3.1.24 we know that I.X is a CW(A)-complex if X is. Moreover, the CW(A)-complex struc-
ture of /X is induced by that of X as in the standard case. It follows that d(f, H, g)(e) =
c(H)(Ieg).
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Remark 8.3.3. If f|xn-1 = g|xn—1 then d(f,g)(el) = [(f o fa) U (g0 fa)] with

(Ffofa)Ulgofa) :CE"IA U CXIA=3"A - Y.

Theorem 8.3.4. Let A = X A" with A" a CW-complex and let 6 = d*. Let f, g be as above.
Then 6(d(f,H,g)) = c(f) — c(g)-

Proof By the remark above 5( (f,H,g))(el) = d(f,H,g)(del) = c(H)(I(del)), where
Z agley” Lif d(en) = Z agey -1
66‘]’” 1 5€Jn 1

On the other hand, by theorem 8.2.1, ¢(H) is a cocycle. Hence,

0 = o(c(H))(Ieq) = c(H)(d(Ieq)) = c(H)(eq x {1} — I(deg) — eg x {0}) =
= c(H)(eq x {1}) — c(H)(I(deg)) — c(H)(eq x {0})
But clearly c¢(H)(el! x {0}) = c(f)(e) and c(H)(el} x {1}) = ¢(g)(e}) and the result

«

follows. O

Theorem 8.3.5. Let A, X and f be as above and let d € Homg(Cy,, 72(Y)). Then there
exists a continuous map g : X™ —'Y such that g|xn-1 = f|xn—1 and d(f,g) = d.

Proof. We will define g in each A-n-cell of X extending f|yn—1. For each A-n-cell e, let
ga be its attaching map and f, its characteristic map. Let v = d(e?) € 72(Y) and let
H:CY" 'Ax I —Y beahomotopy from y|csin-14 to f 0 fa.

Let j1,72 : CX" 1A — ¥"A be the inclusion maps defined by the following pushout
diagram

anlA % CznflA

incl push ijl
J2

cyr1l4a YA

Note that j; and jo are analogous to the inclusions of the northern and southern hemi-
spheres in the sphere.
We consider the following commutative diagram of solid arrows

Cxn—lg — [(Cxr1A)
jll J/Ijl \ H

1(z"A)

Since jj is a cofibration, the dotted arrow H exists. We extend g to e? in the following
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way
=14 $Xn_1
inci push \L \\
\9|Xn71:f‘xn—l
(G)NL Y| T> X"

Hiyjo
Note that Hiyjoinc = Hiyjjinc = HIjjijinc = Hijinc = ffainc = fg,. Hence, the
extension egsts.

Finally, H is a homotopy from ~ to (f o fo) U (g0 fo). Thus, d(f,g)(el) = [(f o fa)U
(90 fa)] =[] = d(eq)- O

Theorem 8.3.6. Let X be a CW(A)-complex and let f: X™ — Y be a continuous map.
Then there exists a continuous map g : X" — Y such that g|xn-—1 = f|xn-1 if and only
if ¢(f) is a coboundary.

Proof. If such a map g exists then 6(d(f,g)) = ¢(f) — c¢(g) but since g : X"™ — Y may be
extended to X" *! then ¢(g) = 0. Hence c(f) is a coboundary.

Conversely, if ¢(f) = dd we take g : X" — Y such that g|xn-1 = f|xn-1 and d(f,g) = d.
Then c(f) = dd = 0d(f,g9) = c(f) — c(g). Hence c¢(g) = 0 and ¢ can be extended to
Xn—o—l' ]

Theorem 8.3.7. Let A be the suspension of a CW-complex and let X be a CW(A)-
complex. Let f,g: X™ —Y be continuous maps. Then

(a) f~g rel X" 1 if and only if d(f,g) = 0.
(b) f =~ g rel X" 2 if and only if d(f,g) = 0 in H*(C*,6).

Proof.
(a) We define H : IX" 1 U (X" x {0,1}) —= Y by

_f fx) ift=00rze X!
H(m,t)—{ glx) ift=1

It is clear that f ~ g rel X"~ 1 if and only if H can be extended to I X", which is equivalent
to ¢(H) = 0. By remark 8.3.2 this holds if and only if d(f, g) = 0.

(b) Define H as above. By (a relative version of) the previous theorem the map
H | xn—2y(xnx{0,1}) can be extended to IX™ if and only if ¢(H) is a coboundary, or equiv-

alently, if and only if d(f,g) =0 in H"(C*,4). O

8.4 Stable A-homotopy

Theorem 8.4.1. Let A be a CW-complex. Then Wf’St(—) defines a reduced homology
theory on the category of CW(A)-complexes.
Moreowver, wf’St(f) satisfies the wedge axiom if A is compact.
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Proof. The graded functor ibst (—) is clearly homotopy invariant and the suspension axiom
holds trivially. The exact sequence axiom follows from 4.1.18.
Suppose now that A is compact. Let J be an index set and let X,, a € J be CW(A)-

complexes. We wish to prove that ma="( \/ Xa) = @ " (X,).
acJ acJ
Firstly, we prove the case #J = 2. From 4.1.12 we deduce that for fixed r > 2

T (EPXVEY) =l (EnX)erd , (EY) for n > r+dim(A). Hence, taking colimits
we get T (X VYY) = miS(X) @ mist(Y).
If J is a finite set, the result follows from the case #J = 2 using an inductive argument.

For the general case, note that if K C \/ X, is a compact set there exists a finite
acJ
subset J' C J such that K C \/ X,. Here we are using that X, is a T'1 space for all
acJ’
a € J. The result follows by a similar argument as the one used in the proof of 4.1.14. [

Remark 8.4.2. Let X be a CW(A)-complex and let B C X be an A-subcomplex. There
are long exact sequences

™ (B) > m ™ (X) = m (X B) > m S (B) —

n—1

where the index n runs through the integers.

Thus, if A is a finite CW-complex and X is a CW(A)-complex there is a commutative
diagram

i i

A A — —
N (XR) —— (XA /X —— (X —

i i

Agstyp+l Asst +1 A
e m (XA e m (T X)) ()

i i

A,st +2 A,st +2 +1 A,st +1
nJrsl(Xp ) nJrsl(Xp /Xp ) ﬂ-ns(Xf} )

| |

where X% =« for p < 0. So, b St(Xff‘) =0 for p < 0.
On the other hand, 72 (X%) = 7(X) for p > dim(A) + n + 1. Hence m*"(X%) =
fSt( X) for p > dim(A) +n + 1.
Then there is an spectral sequence { ES } with E) = 7T;)4 f; (XP/XP~1) which converges
Ast

to " (X). Note that, by the wedge axiom, we get

1 A ,st 1 A st A,st Ast
Epyq p+q (Xp/Xp p+q \/ EPA @ P+q (ZPA) @ Tq ’ (A)
A-p-cells A-p-cells A-p-cells

So, we have proved the following theorem
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Theorem 8.4.3. Let A be a finite CW-complex and let X be a CW(A)-complex. Then

there eists a spectral sequence {E} } with B}, = @ 77{]4’“(/1) which converges to
A—p—cells

(X)),
Note also that (for n > 1) the map 74(X) — colim Wf+j(EjX) = m7*%(X) is a kind of
J

Hurewicz morphism. Also, by theorem 11 of [19] p. 458 we get that if X is m-connected
and n + dim(A) < 2m then the previous map is an isomorphism.



Appendix A

Universal coefficient theorems and
Kunneth formula

In this appendix we recall some useful formulas for computation of homology and coho-
mology groups: the universal coefficient theorems and the Kiinneth formula. The first
ones relate homology and cohomology groups with coefficients with homology groups with
integral coefficients. The latter helps to compute the homology groups of the product of
spaces from the homology groups of each one.

We begin by recalling some basic facts about Tor and Ext functors.

Proposition A.1. Let G, H and G;, i € I, be abelian groups.
(a) Tor(G,H) ~ Tor(H, Q).

(b) Tor(EP G, H) ~ €P Tor(G;, H).

iel iel
(¢) Tor(G,H) =0 if G or H is torsionfree.
(d) If T(G) is the torsion subgroup of G then Tor(G, H) ~ Tor(T(G), H).
(e) If n € N and py, : G — G is defined by pn(g) = ng, then Tor(Z,,G) ~ ker(uyg).

(f) If 0 = A — B — C — 0 is a short exact sequence, then there is an exact sequence
0 — Tor(G, A) — Tor(G, B) — Tor(G,C) — G A—-=G®B—-—GxC—0
Proposition A.2. Let G, H and H' be abelian groups. Then
(a) Ext(H ® H',G) ~ Ext(H,G) ® Ext(H', G).
(b) Ext(H,G) =0 if H is free.
(¢) Ext(Z,,G) ~ G/nG.

180
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Theorem A.3 (Universal coefficient theorem for homology). Let (Cy,d.) be a chain com-
plex of free abelian groups and let G be an abelian group. Then for each n € N there are
natural short exact sequences

0— H,(C)® G— H,(C;G) — Tor(H,,—1(C),G) —=0
Moreover, these exact sequences split (but not naturally).

Corollary A.4. Let X be a topological space and let A C X be a subspace. Then

(a) There exist natural short exact sequences
0— H,(X;Z)® G —— H,(X;G) —Tor(H,—1(X;Z),G) —=0
for all n € N, and these exact sequences split, but not naturally.
(b) There exist natural short exact sequences
0——H,(X,A;2) ® G—— Hy (X, A;G) —— Tor(H,—1(X, A} Z),G) — 0
for all n € N, and these exact sequences split, but not naturally.
Corollary A.5. Let X be a topological space and let n € N.
(a) Hn(X;Q) ~ Hn(X;Z) ® Q.
(b) If Hy(X;Z) and H,_1(X;Z) are finitely generated and p is a prime number then
H,(X;Z,) consists of
e a 7Z, summand for each Z summand of Hy(X;Z).
e a Z, summand for each Z,x summand of H,(X;Z) with k > 1.
e a Z, summand for each Z,x summand of Hp_1(X;Z) with k > 1.

Corollary A.6. (a) Let X be a topological space. Then ﬁn(X;Z) =0 for allm >0 if
and only if Hy,(X;Q) =0 for alln >0 and H,(X;Z,) =0 for all n > 0 and for all
prime numbers p.

(b) A continuous map f: X — Y induces isomorphisms on integral homology groups if
and only if it induces isomorphisms on homology groups with Q and Z, coefficients
for all prime numbers p.

Theorem A.7 (Universal coefficient theorem for cohomology). Let (Cy,dx) be a chain
complex of free abelian groups and let G be an abelian group. Then for each n € N there
are split exact sequences

0— Ext(H,_1(C),G) —= H"(C;G) —> Hom(H,(C),G) — 0

Corollary A.8. Let X be a topological space and let G be an abelian group. Then for
each n € N there are split exact sequences

0 —— Ext(H,_1(X;2),G) — H"(X; G) — Hom(H,(X;Z),G) —= 0
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Corollary A.9. Let (Cy,dy) be a chain complex of free abelian groups and let G be an
abelian group. Forn € N let T,, be the torsion subgroup of H,(C) and let k € N. If Hi(C)
and Hy—1(C) are finitely generated then H"(C;Z) ~ (H,(C)/Tn) ® Ty—1.

Corollary A.10. Let G be an abelian group and let f : X — Y be a continuous map such
that f induces isomorphisms in homology groups. Then f.: H"(X;G) — H™(Y;QG) is an
isomorphism for all n > 0.

We give now the topological Kiinneth formula which derives directly from its algebraic
version. However, we will not develop this one here.

Theorem A.11 (Topological Kiinneth formula). Let X and Y be CW-complezes and let
R be a principal ideal domain. Then, there are natural short exact sequences

0— P Hi(X) @ Hyi(Y)) —= Ho(X x V) — P Torr(Hi(X), Hyo1—i(Y)) —=0

0<i<n 0<i<n—1

for all n € N, where homology means homology with coefficients in R. Moreover, these
short exact sequences split (but not naturally).

There exists also a relative version of this formula which can be found in [8]. From this
relative version we can deduce the reduced Kiinneth formula:

Theorem A.12 (Reduced Kiinneth formula). Let X and Y be CW-complexes with base
points xg and yg respectively and let R be a principal ideal domain. Then, there are natural
short exact sequences

0— D H(X) @ Hoi(V) — A (X AY)— D Tora(Hi(X), Huoai(Y)) —>0

0<i<n 0<i<n—1

for all n € N, where (reduced) homology means (reduced) homology with coefficients in
R and where X N'Y denotes the smash product of X and Y, i.e. X NY = X xY/(X X
{vo} U{zo} x Y). Moreover, these short exact sequences split (but not naturally).

In particular, if Y = S7, we obtain isomorphisms H,(X) ~ Hy (3" X).
Also, if Y is a Moore space we obtain the following corollary.

Corollary A.13. Let G be an abelian group, let 1 € N and let Y be a Moore space of
type (G,r). Let X be a CW-complex and let n € N. Then there are natural isomorphisms

H,(X;G)~ Hp (X NY;Z).
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