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Buenos Aires, 2009





Topoloǵıa Algebraica de Espacios Topológicos Finitos y Aplicaciones

Resumen

El objetivo principal de esta Tesis es estudiar y profundizar el desarrollo de la teoŕıa de
espacios topológicos finitos e investigar sus aplicaciones a la teoŕıa de homotoṕıa y homo-
toṕıa simple de poliedros y espacios topológicos más generales. Utilizamos en particular
varios de los resultados obtenidos para analizar dos conjeturas abiertas muy importantes de
topoloǵıa algebraica y geométrica: La conjetura de Quillen sobre el poset de p-subgrupos
de un grupo finito y la conjetura geométrica de Andrews-Curtis.

Los tipos homotópicos de espacios finitos pueden ser descriptos a través de movimientos
elementales que consisten en agregar o quitar un tipo especial de puntos a los espacios,
llamados beat points. Por otro lado, es más importante comprender los tipos homotópicos
débiles de espacios finitos, ya que estos se corresponden con los tipos homotópicos de
los poliedros asociados. Un acercamiento a la resolución de este problema viene dado
por los puntos que denominamos weak points. Estos puntos dan lugar a una noción de
colapso entre espacios finitos que se corresponde exactamente con el concepto de colapso
simplicial de los complejos asociados. De este modo obtenemos una correspondencia entre
los tipos homotópicos simples de espacios finitos y los de complejos simpliciales finitos.
Este resultado fundamental nos permite estudiar problemas geométricos conocidos desde
una nueva óptica, utilizando toda la maquinaria combinatoria y topológica propia de los
espacios finitos.

La conjetura de Quillen sobre el poset de p-subgrupos investiga la relación entre las
propiedades algebraicas de un grupo finito y las propiedades topológicas de un poliedro
asociado al grupo. Por medio de nuestros resultados, veremos que esta conjetura puede ser
reformulada y analizada en términos puramente topológicos, utilizando homotoṕıa simple
equivariante.

La conjetura de Andrews-Curtis es una de las conjeturas más importantes de topoloǵıa
geométrica y está muy relacionada con la conjetura de Zeeman, y, por lo tanto, con la
conjetura de Poincaré. Como consecuencia de la demostración de Perelman de la conjetura
de Poincaré, se deduce que esta conjetura es verdadera para ciertos complejos, llamados
standard spines, pero el problema todav́ıa permanece abierto para los poliedros de di-
mensión 2 en general. Utilizando los resultados desarrollados en esta Tesis extenderemos
sustancialmente la clase de complejos para los cuales la conjetura se sabe cierta.

Palabras clave: Espacios toplógicos finitos, complejos simpliciales, tipos homotópicos,
equivalencias débiles, homotoṕıa simple, colapsos.





Algebraic Topology of Finite Topological Spaces and Applications

Abstract

The main goal of this Thesis is to study and to delve deeper into the development of
the theory of finite spaces and to investigate their applications to the homotopy theory
and simple homotopy theory of polyhedra and general topological spaces. We use, in
particular, some of the results that we obtain, to analize two important open conjectures
of algebraic and geometric topology: Quillen’s conjecture on the poset of p-subgroups of
a group and the geometric Andrews-Curtis conjecture.

Homotopy types of finite spaces can be described through elemental moves which con-
sist in adding or removing a particular kind of points from the spaces, called beat points.
On the other hand, it is more important to understand the weak homotopy types of finite
spaces, since they correspond to the homotopy types of the associated polyhedra. One
step in this direction is given by the points that we called weak points. These points lead to
a notion of collapse of finite spaces which corresponds exactly to the concept of simplicial
collapse of the associated simplicial complexes. In this way we obtain a correspondence
between simple homotopy types of finite spaces and of simplicial complexes. This fun-
damental result allows us to study well-known geometrical problems from a new point of
view, using all the combinatorial and topological machinery proper of finite spaces.

Quillen’s conjecture on the poset of p-subgroups of a group investigates the relationship
between algebraic properties of a finite group and topological properties of a polyhedron
associated to the group. As an application of our results, we will see that this conjec-
ture can be restated and analized in purely topological terms, using equivariant simple
homotopy theory.

The Andrews-Curtis conjecture is one of the most important conjectures in geometric
topology and it is closely related to Zeeman’s conjecture, and, therefore, to Poincaré
conjecture. As a consequence of Perelman’s proof of Poincaré conjecture, one deduces
that this conjecture is true for some complexes called standard spines, but the problem is
still open for general polyhedra of dimension 2. With the results developed in this Thesis
we substantially extend the class of complexes for which the conjecture is known to be
true.

Key words: Finite topological spaces, simplicial complexes, homotopy types, weak
homotopy equivalences, simple homotopy, collapses.
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todav́ıa más complicado.

Gracias al CONICET, por darme este trabajo, que es sin dudas, el mejor posible.
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Introducción

La Topoloǵıa permite manipular estructuras más flexibles que los espacios métricos, sin em-
bargo, la mayoŕıa de los espacios estudiados en Topoloǵıa Algebraica, como CW-complejos
o variedades, son Hausdorff. En contraste, los espacios topológicos finitos rara vez son
Hausdorff: un espacio topológico con finitos puntos, cada uno de los cuales es cerrado,
debe ser discreto. Matemáticamente hablando, los espacios finitos son en muchos senti-
dos más naturales que los CW-complejos. Su combinatoria y aparente simpleza, los hace
atractivos y maleables, tanto como los conjuntos parcialmente ordenados finitos, pero es
la conjunción entre sus estructuras combinatorias y topológicas lo que los hace tan fasci-
nantes y útiles. A primera vista, uno podŕıa creer que tales espacios con un número finito
de puntos y no Hausdorff no son interesantes, pero veremos que la teoŕıa de espacios finitos
puede ser utilizada para investigar problemas profundos conocidos de Topoloǵıa, Algebra
y Geometŕıa.

En 1937, P.S. Alexandroff [1] describe la combinatoria de los espacios finitos, com-
parándola con la de los conjuntos parcialmente ordenados (posets) finitos. El probó que
los espacios finitos y los posets finitos son esencialmente los mismos objetos considerados
desde puntos de vista distintos. Sin embargo, no fue hasta 1966 que aparecieron resultados
fuertes y profundos sobre la teoŕıa de homotoṕıa de espacios finitos, plasmados en los dos
papers fundacionales independientes [37] y [26].

R. E. Stong [37] usó la combinatoria de los espacios finitos para explicar sus tipos
homotópicos. Este fantástico art́ıculo probablemente habŕıa pasado desapercibido si en el
mismo año, M.C. McCord no hubiera descubierto la relación entre los espacios finitos y los
poliedros compactos. Dado un espacio topológico finito X, existe un complejo simplicial
asociado K(X) (order complex) que tiene el mismo tipo homotópico débil que X, y, para
cada complejo simplicial finito K, existe un espacio finito X (K) (face poset) débilmente
equivalente a K. Por lo tanto, a diferencia de lo que uno podŕıa haber esperado en
un principio, los tipos homotópicos débiles de espacios finitos coinciden con los tipos
homotópicos de los CW-complejos finitos. De esta forma, Stong y McCord ponen a los
espacios finitos en el juego, mostrando impĺıcitamente que la fusión entre su combinatoria
y topoloǵıa puede ser usada para estudiar invariantes homotópicos de espacios Hausdorff
conocidos.

A pesar de la importancia de estos papers, los espacios finitos permanecieron en las
sombras por varios años más. Durante ese tiempo, la relación entre posets finitos y com-
plejos simpliciales finitos fue explotada, pero en la mayoŕıa de los casos ignorando o des-
conociendo la topoloǵıa intŕınseca de los posets. Un claro ejemplo de esto es el caso de
D. Quillen [33], quien, en 1978 investiga la conexión entre propiedades algebraicas de un
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grupo finito G y propiedades homotópicas del complejo simplicial asociado al poset de p-
subgrupos de G. En ese art́ıculo, Quillen desarrolla poderosas herramientas y demuestra
resultados muy lindos sobre este tema, y deja una conjetura muy interesante que per-
manece abierta hasta el d́ıa de hoy. Sin embargo, parece que él no estaba al tanto de los
resultados de Stong y McCord sobre espacios finitos. Vamos a ver que el punto de vista
de los espacios finitos da una dimensión completamente nueva a esta conjetura y permite
atacar el problema con nuevas herramientas topológicas y combinatorias. Mostraremos
que el Teorema de Whitehead no vale para espacios finitos: hay espacios finitos débilmente
equivalentes con distinto tipo homotópico. La distinción entre tipos homotópicos débiles
y tipos homotópicos se pierde cuando uno mira los poliedros asociados (por el Teorema
de Whitehead) y, en realidad, la esencia de la conjetura de Quillen reside precisamente en
la distinción entre tipos homotópicos débiles y tipos homotópicos de espacios finitos.

En las últimas décadas, aparecieron unos pocos art́ıculos interesantes sobre espacios
finitos [20, 31, 38], pero el tema ciertamente no recibió la atención que requeŕıa. En
2003, Peter May escribe una serie de notas [24, 23, 22] en las que sintetiza las ideas más
importantes sobre espacios finitos hasta ese momento. En estos art́ıculos, May también
formula algunas preguntas y conjeturas naturales e interesantes que surgen de su investi-
gación. May fue uno de los primeros en notar que la perspectiva combinatoria de Stong
y el puente constrúıdo por McCord, pueden ser usados a la vez para atacar problemas de
Topoloǵıa Algebraica usando espacios finitos. Esas notas llegaron a las manos de mi di-
rector, Gabriel Minian, quien me ofreció trabajar en este tema. Las notas y problemas de
May, junto con los papers de Stong y McCord, fueron el punto de partida para nuestra in-
vestigación sobre la Topoloǵıa Algebraica de Espacios Topológicos Finitos y Aplicaciones.
En esta Disertación intentaré sentar las bases de la teoŕıa de espacios finitos, recordando el
desarrollo previo al nuestro y después exhibiré los resultados más importantes de nuestro
trabajo a través de estos años.

Casi todos los resultados presentados en esta Tesis son originales. Algunos de ellos
aparecen en nuestras publicaciones [6, 8, 7, 5]. Los resultados previos sobre espacios
finitos están en el Caṕıtulo 1 y en las introducciones de algunas secciones. El Caṕıtulo
5 (sobre tipos homotópicos fuertes de poliedros), el Caṕıtulo 8 (sobre homotoṕıa simple
equivariante y la conjetura de Quillen) y el Caṕıtulo 9 (sobre la conjetura de Andrews-
Curtis) contienen algunos de los resultados más fuertes de este trabajo, los cuales todav́ıa
no fueron publicados y son parte de futuros papers.

Dado un espacio finito X, existe un espacio finito X0, homotópicamente equivalente
a X que es T0. Es decir que para cualesquiera dos puntos de X0, existe un abierto que
contiene a uno solo de ellos. Por lo tanto, al estudiar tipos homotópicos de espacios finitos,
podemos restringir nuestra atención a espacios T0.

En [37], Stong define la noción de linear points y colinear points, que nosotros llamamos
up beat points y down beat points siguiendo la terminoloǵıa de May. Stong demuestra que
quitar un beat point de un espacio finito, no afecta su tipo homotópico. Más aun, dos
espacios finitos son homotópicamente equivalentes si y sólo si es posible obtener uno a
partir del otro agregando y sacando beat points. Por otra parte, los resultados de McCord
sugieren que es más importante entender los tipos homotópicos débiles de espacios finitos
que los tipos homotópicos. En esta dirección, generalizamos la definición de Stong de beat
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points, presentando la noción de weak point (ver Definición 4.2.2). Si uno remueve un weak
point x de un espacio finito X, el espacio obtenido no es necesariamente homotópicamente
equivalente a X, sin embargo probamos que en este caso, la inclusión X r {x} →֒ X es
una equivalencia homotópica débil. Como aplicación de este resultado, damos un ejemplo
(4.2.1) de un espacio finito que es homotópicamente trivial, i.e., débilmente equivalente a
un punto, pero que no es contráctil. Esto muestra que el Teorema de Whitehead no vale
para espacios finitos, ni siquiera para espacios homotópicamente triviales.

T. Osaki demuestra en [31] que si x es un beat point de un espacio finito X, hay
un colapso simplicial del complejo asociado K(X) a K(X r {x}). En particular, si dos
espacios finitos son homotópicamente equivalentes, los complejos asociados tienen el mismo
tipo homotópico simple. Sin embargo, existen ejemplos sencillos de espacios finitos que no
son homotópicamente equivalentes y tienen complejos asociados simplemente equivalentes.
Quitar beat points constituye un movimiento fundamental de espacios finitos, que da lugar
a los tipos homotópicos. La noción de colapso simplicial de Whitehead es el movimiento
fundamental de complejos que da origen a los tipos homotópicos simples. Nosotros, nos
preguntamos si existiŕıa otro tipo de movimiento fundamental de espacios finitos, que se
correspondiera exactamente con los tipos homotópicos simples de complejos. Descubrimos
que los beat points eran la llave para responder esta pregunta. Decimos que hay un colapso
de un espacio finito X a un subespacio Y si podemos obtener Y a partir de X quitando
weak points, y decimos que dos espacios finitos tienen el mismo tipo homotópico simple
si podemos obtener uno a partir del otro agregando y sacando weak points. En el primer
caso escribimos X ց Y y en el segundo X�ց Y . El siguiente resultado, que aparece
en el Caṕıtulo 4, dice que los tipos homotópicos simples de espacios finitos corresponden
exactamente a los tipos homotópicos simples de los complejos asociados.

Teorema 4.2.12.

(a) Sean X e Y espacios finitos T0. Entonces, X e Y son simplemente equivalentes si y
sólo si K(X) y K(Y ) tienen el mismo tipo homotópico simple. Más aun, si X ց Y ,
entonces K(X)ց K(Y ).

(b) Sean K y L complejos simpliciales finitos. Entonces, K y L son simplemente equiv-
alentes si y sólo si X (K) y X (L) tienen el mismo tipo homotópico simple. Más aun,
si K ց L, entonces X (K)ց X (L).

Este resultado permite usar espacios espacios finitos para estudiar problemas de teoŕıa
de homotoṕıa simple clásica. De hecho, utilizaremos una versión más fuerte del Teorema
4.2.12 para investigar la conjetura de Quillen sobre el poset de p-subgrupos de un grupo
finito, mencionada anteriormente.

Es relativamente sencillo saber si dos espacios finitos son homotópicamente equiva-
lentes, usando las ideas de Stong, pero es muy dif́ıcil decidir si dos espacios finitos tienen
el mismo tipo homotópico débil. Notar que esto es tan complicado como reconocer si
los poliedros asociados tienen el mismo tipo homotópico. Nuestros resultados sobre tipos
homotópicos simples son un primer acercamiento en esta dirección. Si dos espacios finitos
tienen grupo de Whitehead trivial, entonces son débilmente equivalentes si y sólo si tienen
el mismo tipo homotópico simple. En particular, un espacio finito X es homotópicamente
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trivial si y sólo si es posible agregar y quitar weak points a X para obtener el singleton
∗. La importancia de reconocer espacios homotópicamente triviales será evidente cuando
estudiemos la conjetura de Quillen. Notar que el movimiento fundamental de espacios fini-
tos inducido por los weak points es más sencillo de trabajar y describir que el simplicial,
porque consiste en remover tan sólo un punto del espacio.

En la Tercera Sección del Caṕıtulo 4, estudiamos un análogo al Teorema 4.2.12 para
equivalencias homotópicas simples. Damos una descripción de las funciones entre espacios
finitos que corresponden a las equivalencias homotópicas simples a nivel de complejos.
El resultado principal de esta sección es el Teorema 4.3.12. A diferencia de la situación
clásica en la que equivalencias simples son casos particulares de equivalencias homotópicas,
las equivalencias homotópicas entre espacios finitos son casos especiales de equivalencias
homotópicas simples.

Como una interesante aplicación de nuestros métodos sobre tipos homotópicos simples,
probaremos la siguiente version “simple” del famoso Teorema A de Quillen.

Teorema 4.3.14. Sea ϕ : K → L un morfismo simplicial entre complejos simpliciales
finitos. Si ϕ−1(σ) es colapsable para todo simplex σ de L, entonces |ϕ| es una equivalencia
simple.

Los movimientos fundamentales descriptos por los beat points o los weak points son
lo que llamamos métodos de reducción. Un método de reducción es una técnica que
permite cambiar un espacio finito para obtener uno más chico, preservando algunas de
las propiedades homotópicas, como tipo homotópico, tipo homotópico simple, tipo ho-
motópico débil o los grupos de homoloǵıa. En [31], Osaki presenta dos métodos de este
tipo que preservan el tipo homotópico débil, y se pregunta si estos movimientos son efec-
tivos en el siguiente sentido: dado un espacio finito X, es siempre posible conseguir un
espacio de mı́nimo cardinal débilmente equivalente a X aplicando reiteradamente estos
métodos? En el Caṕıtulo 6 damos un ejemplo que muestra que la respuesta a esta pre-
gunta es negativa. De hecho, es un problema muy complicado el de encontrar modelos
finitos minimales de espacios (i.e. un espacio débilmente equivalente de mı́nimo cardinal)
ya que esta pregunta está directamente relacionada al problema de distinguir espacios
débilmente equivalentes.

En el Caṕıtulo 6, estudiamos los métodos de Osaki y probamos que en realidad estos
preservan el tipo homotópico simple. En este Caṕıtulo también estudiamos los métodos de
reducción de un punto, que consisten en quitar un único punto del espacio. Por ejemplo,
los beat points y los weak points dan lugar a métodos de reducción de un punto. En la
Segunda Sección de ese Caṕıtulo, definimos la noción de γ-point que generaliza el concepto
de weak point y provee un método más aplicable que preserva el tipo homotópico débil.
La importancia de este nuevo método es que es casi el método de reducción de un punto
más general posible. Más espećıficamente, demostramos el siguiente resultado.

Teorema 6.2.5. Sea X un espacio finito T0 y sea x ∈ X un punto que no es maximal ni
minimal y tal que X r {x} →֒ X es una equivalencia débil. Entonces x es un γ-point.

En algún sentido, los métodos de reducción de un punto no son suficientes para des-
cribir los tipos homotópicos débiles de espacios finitos. Concretamente, si x ∈ X es tal
que la inclusión X r {x} →֒ X es una equivalencia débil, entonces X r {x}�ցX (ver
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Teorema 6.2.7). Por lo tanto, estos métodos no pueden ser utilizados para obtener espacios
débilmente equivalentes que no sean simplemente equivalentes.

McCord encuentra en [26] un modelo finito de la n-esfera Sn (es decir, un espacio
finito débilmente equivalente a Sn) con sólo 2n + 2 puntos. May conjetura en sus notas
que este espacio es, en nuestro lenguaje, un modelo finito minimal de Sn. En el Caṕıtulo
3 probamos que la conjetura de May es cierta. Más aun, Sn tiene un único modelo finito
minimal, salvo homeomorfismo (ver Teorema 3.1.2). En este Caṕıtulo también estudiamos
los modelos finitos minimales de los grafos finitos (CW-complejos de dimensión 1) y damos
una descripción completa de los mismos en el Teorema 3.2.7. En este caso la unicidad de
los modelos finitos minimales depende del grafo. La razón para estudiar modelos finitos
de espacios en lugar de espacios finitos con el mismo tipo homotópico, es que los tipos
homotópicos de complejos finitos, rara vez aparecen en el contexto de los espacios finitos
(ver Corolario 2.3.4).

En el Caṕıtulo 5 estudiamos la relación entre espacios finitos homotópicamente equiva-
lentes y los complejos asociados. El concepto de clases de contigüidad da lugar a la noción
de equivalencia homotópica fuerte (Definición 5.0.4) y tipos homotópicos fuertes de com-
plejos simpliciales. Esta relación de equivalencia está generada por los colapsos fuertes que
son más restrictivos que los colapsos simpliciales usuales. Probamos el siguiente resultado.

Teorema 5.0.15.

(a) Si dos espacios finitos T0 son homotópicamente equivalentes, sus complejos asociados
tienen el mismo tipo homotópico fuerte.

(b) Si dos complejos finitos tienen el mismo tipo homotópico fuerte, los espacios finitos
asociados son homotópicamente equivalentes.

Otro de los problemas planteados originalmente por May en [23], consiste en extender
las ideas de McCord para modelar, con espacios finitos, no sólo complejos simpliciales,
sino CW-complejos en general. Hacemos un acercamiento en este sentido en el Caṕıtulo
7, en donde definimos la noción de CW-complejo h-regular. Ya era sabido que los CW-
complejos regulares pod́ıan ser modelados por sus face posets. La clase de complejos h-
regulares extiende considerablemente la clase de complejos regulares y además construimos
expĺıcitamente para cada complejo h-regular K, una equivalencia débil K → X (K). Nues-
tros resultados sobre complejos h-regulares permiten conseguir muchos ejemplos nuevos
e interesantes de modelos finitos. También aplicamos estos resultados para investigar
los cocientes de espacios finitos y conseguir una sucesión exacta larga de los grupos de
homoloǵıa reducidos para espacios finitos.

Dado un grupo finitoG y un número primo p, denotamos Sp(G) al poset de p-subgrupos
no triviales de G. En [33], Quillen prueba que si G tiene un p-subgrupo normal no trivial,
K(Sp(G)) es contráctil, y conjetura la rećıproca: si el complejo K(Sp(G)) es contráctil,
G posee un p-subgrupo normal no trivial. El mismo Quillen demuestra su conjetura
para el caso G resoluble, pero el problema general todav́ıa está abierto. Algunos avances
importantes se consiguieron en [3]. Como dijimos antes, Quillen nunca considera al poset
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Sp(G) como un espacio finito. En 1984, Stong [38] publica un segundo art́ıculo sobre
espacios finitos. El demuestra algunos resultados sobre teoŕıa de homotoṕıa equivariante
de espacios finitos, que usa para atacar la conjetura de Quillen. Stong prueba que G tiene
un p-subgrupo normal no trivial si y sólo si Sp(G) es un espacio finito contráctil. Por lo
tanto, la conjetura puede ser reformulada en términos de espacios fintos del siguiente modo:
Sp(G) es contráctil si y sólo si es homotópicamente trivial. En el Caṕıtulo 8 estudiamos
una versión equivariante de los tipos homotópicos simples de complejos simpliciales y
espacios finitos y probamos un análogo al Teorema 4.2.12 en este caso. Usando este
resultado, obtenemos algunas nuevas formulacionas de la conjetura, pero que están escritas
exclusivamente en términos de complejos simpliciales. Los espacios finitos son usados
en este caso como una herramienta para conseguir el resultado, pero no aparecen en
la formulación final que es la siguiente: K(Sp(G)) es contráctil si y sólo si tiene tipo
homotópico simple equivariante trivial. También obtenemos formulaciones de la conjetura
en términos del poliedro asociado al poset más pequeño Ap(G) de los p-subgrupos abelianos
elementales.

En el último Caṕıtulo de la Tesis mostramos algunos avances con respecto a la conjetura
de Andrews-Curtis. La conjetura geométrica de Andrews-Curtis afirma que si K es un
complejo contráctil de dimensión 2, entonces se 3-deforma a un punto, es decir que puede
ser deformado en un punto por medio de una sucesión de colapsos y expansiones que
involucran a complejos de dimensión no mayor a 3. Este problema bien conocido planteado
en los sesenta, está ı́ntimamente relacionado con la conjetura de Zeeman y, luego, con la
famosa conjetura de Poincaré. Con la demostración de la conjetura de Poincaré dada
por G. Perelman, y por [17], sabemos ahora que la conjetura geométrica de Andrews-
Curtis es cierta para los standard spines ([34]), pero todav́ıa permanece abierta para
2-complejos en general. Inspirados por nuestros resultados sobre teoŕıa de homotoṕıa
simple de espacios finitos y complejos simpliciales, definimos la noción de 2-complejo quasi
construible que generaliza el concepto de complejo construible. Usando técnicas de espacios
finitos, demostramos que los 2-complejos quasi construibles se 3-deforman a un punto. De
esta forma extendemos sustancialmente la clase de complejos que se sabe satisfacen la
conjetura.

Otros resultados de esta Disertación, incluyen una descripción del grupo fundamental
de un espacio finito, una demostración alternativa de la invarianza homotópica de la
Caracteŕıstica de Euler, un resultado sobre la realizabilidad de un grupo como grupo de
automorfismos de un poset y algunos resultados sobre teoŕıa del punto fijo para espacios
finitos y el número de Lefschetz.

Espero que después de este trabajo quede claro que la combinatoria de los espacios
finitos, junto con su topoloǵıa, hacen de estos objetos una herramienta muy poderosa y
adecueda que puede ser utilizada para estudiar problemas conocidos de Algebra, Topoloǵıa
Algebraica, Combinatoria y Geometŕıa Discreta, dando más información que los complejos
simpliciales.
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Introduction

Topology allows to handle more flexible structures than metric spaces, however, most of
the spaces studied in Algebraic Topology, such as CW-complexes or manifolds, are Haus-
dorff spaces. In contrast, finite topological spaces are rarely Hausdorff: a topological
space with finitely many points, each of which is closed, must be discrete. Mathemati-
cally speaking, finite spaces are in many senses more natural than CW-complexes. Their
combinatorics and their apparent simplicity, make them attractive and tractable, as much
as finite partially ordered sets are, but it is the conjuction between their combinatorial
and topological structures what makes them so fascinating and useful. At first glance,
one could think that such spaces with a finite number of points and non Hausdorff are
uninteresting, but we will see that the theory of finite spaces can be used to investigate
deep known problems in Topology, Algebra and Geometry.

In 1937, P.S. Alexandroff [1] described the combinatorics of finite spaces, comparing it
with the one of finite partially ordered sets (posets). He proved that finite spaces and finite
posets are essentially the same objects considered from different points of view. However,
it was not until 1966 that strong and deep results on the homotopy theory of finite spaces
appeared, shaped in the two foundational and independent papers [37] and [26]. R. E.
Stong [37] used the combinatorics of finite spaces to explain their homotopy types. This
astounding article would have probably gone unnoticed if in the same year, M.C. McCord
had not discovered the relationship between finite spaces and compact polyhedra. Given a
finite topological space X, there exists an associated simplicial complex K(X) (the order
complex) which has the same weak homotopy type as X, and, for each finite simplicial
complex K, there is a finite space X (K) (the face poset) weak homotopy equivalent to
K. Therefore, in contrast to what one could have expected at first sight, weak homotopy
types of finite spaces coincide with homotopy types of finite CW-complexes. In this way,
Stong and McCord put finite spaces in the game, showing implicitely that the composite
between their combinatorics and topology can be used to study homotopy invariants of
well-known Hausdorff spaces.

Despite the importance of those papers, finite spaces remained in the shadows for
many years more. During that time, the relationship between finite posets and finite
simplicial complexes was exploited, but in most cases ignoring or unknowing the intrinsic
topology of the posets. A clear example of this is the case of D. Quillen [33], who, in 1978
investigates the connection between algebraic properties of a finite group G and homotopy
properties of the simplicial complex associated to the poset of p-subgroups of G. In that
article, Quillen develops powerful tools and proves very nice results about this subject,
and he leaves a very interesting conjecture which remains open until these days. However,
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it seems that he was unaware of Stong’s and McCord’s results on finite spaces. We will
see that the finite space point of view adds a completely new dimension to his conjecture
and allows to attack the problem with new topological and combinatorial tools. We will
show that Whitehead’s Theorem does not hold for finite spaces: there are weak homotopy
equivalent finite spaces with different homotopy types. This distinction between weak
homotopy types and homotopy types is lost when we look into the associated polyhedra
(because of Whitehead’s Theorem) and, in fact, the essence of Quillen’s conjecture lies
precisely in the distinction between weak homotopy types and homotopy types of finite
spaces.

In the last decades, a few interesting papers on finite spaces appeared [20, 31, 38], but
the subject certainly did not receive the attention it required. In 2003, Peter May writes
a series of unpublished notes [24, 23, 22] in which he synthesizes the most important ideas
on finite spaces until that time. In these articles, May also formulates some natural and
interesting questions and conjectures which arise from his own research. May was one of
the first to note that Stong’s combinatorial point of view and the bridge constructed by
McCord could be used together to attack algebraic topology problems using finite spaces.
Those notes came to the hands of my advisor Gabriel Minian, who proposed me to work
on this subject. May’s notes and problems, jointly with Stong’s and McCord’s papers
were the starting point of our research on the Algebraic Topology of Finite Topological
Spaces and Applications. In this Dissertation I will try to set the basis of the theory of
finite spaces, recalling the development previous to ours and then I will exhibit the most
important results of our work along these years.

Almost all the results presented in this Thesis are new and original. Some of them
appear in our publications [6, 8, 7, 5]. The previous results on finite spaces appear in
Chapter 1 and in the introduction of some Sections. Chapter 5 (on strong homotopy types
of polyhedra), Chapter 8 (on equivariant simple homotopy types and Quillen’s conjecture)
and Chapter 9 (on the Andrews-Curtis conjecture) contain some of the strongest results
of this Dissertation which are still unpublished and subjects of future papers.

Given a finite space X, there exists a homotopy equivalent finite space X0 which is T0.
That means that for any two points of X0 there exists an open set which contains only
one of them. Therefore, when studying homotopy types of finite spaces, we can restrict
our attention to T0-spaces.

In [37], Stong defines the notion of linear and colinear points, which we call up beat
and down beat points following May’s terminology. Stong proves that removing a beat
point from a finite space does not affect its homotopy type. Moreover, two finite spaces
are homotopy equivalent if and only if it is possible to obtain one from the other just by
adding and removing beat points. On the other hand, McCord results suggest that weak
homotopy types of finite spaces are more important to be understood than homotopy
types. In this direction, we generalized Stong’s definition of beat points introducing the
notion of weak point (see Definition 4.2.2). If one removes a weak point x from a finite
space X, the resulting space need not be homotopy equivalent toX, however we prove that
in this case the inclusion Xr{x} →֒ X is a weak homotopy equivalence. As an application
of this result, we exhibit an example (4.2.1) of a finite space which is homotopically trivial,
i.e., weak homotopy equivalent to a point, but which is not contractible. This shows that
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Whitehead’s Theorem does not hold for finite spaces, not even for homotopically trivial
spaces.

T. Osaki proves in [31] that if x is a beat point of a finite space X, there is a simplicial
collapse from the associated complex K(X) to K(Xr{x}). In particular, if two finite spaces
are homotopy equivalent, their associated complexes have the same simple homotopy type.
However, we noticed that the converse is not true. There are easy examples of non-
homotopy equivalent finite spaces with simple homotopy equivalent associated complexes.
Removing beat points constitute a fundamental move of finite spaces, which gives rise
to homotopy types. Whitehead’s notion of simplicial collapse is the fundamental move
of complexes which leads to simple homotopy types. We asked whether there existed
another kind of fundamental move of finite spaces, which corresponded exactly to the
simple homotopy types of complexes. We found out that weak points were the key to
answer this question. We say that there is a collapse from a finite space X to a subspace
Y if we can obtain Y from X by removing weak points, and we say that two finite spaces
have the same simple homotopy type if we can obtain one from the other by adding and
removing weak points. In the first case we denote X ց Y and in the second, X�ց Y .
The following result, which appears in Chapter 4, says that simple homotopy types of
finite spaces correspond precisely to simple homotopy types of the associated complexes.

Theorem 4.2.12.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simple homotopy equivalent
if and only if K(X) and K(Y ) have the same simple homotopy type. Moreover, if
X ց Y then K(X)ց K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy
equivalent if and only if X (K) and X (L) have the same simple homotopy type. More-
over, if K ց L then X (K)ց X (L).

This result allows one to use finite spaces to study problems of classical simple homo-
topy theory. Indeed, we will use some stronger version of Theorem 4.2.12 to investigate
Quillen’s conjecture on the poset of p-subgroups of a finite group, mentioned above.

It is relatively easy to know whether two finite spaces are homotopy equivalent using
Stong’s ideas, however it is very difficult to distinguish whether two finite spaces have
the same weak homotopy type. Note that this is as hard as recognize if the associated
polyhedra have the same homotopy type. Our results on simple homotopy types give a
first approach in this direction. If two finite spaces have trivial Whitehead group, then
they are weak homotopy equivalent if and only if they are simple homotopy equivalent.
In particular, a finite space X is homotopically trivial if and only if it is possible to add
and remove weak points from X to obtain the singleton ∗. The importance of recognizing
homotopically trivial spaces will be evident when we study the conjecture of Quillen. Note
that the fundamental move of finite spaces induced by weak points is easier to handle and
describe than the simplicial one because it consists in removing just one single point of
the space.

In the Third Section of Chapter 4 we study an analogue of Theorem 4.2.12 for simple
homotopy equivalences. We give a description of the maps between finite spaces which
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correspond to simple homotopy equivalences at the level of complexes. The main result of
this Section is Theorem 4.3.12. In contrast to the classical situation where simple homo-
topy equivalences are particular cases of homotopy equivalences, homotopy equivalences
between finite spaces are a special kind of simple homotopy equivalences.

As an interesting application of our methods on simple homotopy types, we will prove
the following simple homotopy version of Quillen’s famous Theorem A.

Theorem 4.3.14. Let ϕ : K → L be a simplicial map between finite simplicial complexes.
If ϕ−1(σ) is collapsible for every simplex σ of L, then |ϕ| is a simple homotopy equivalence.

The fundamental moves described by beat or weak points are what we call methods
of reduction. A reduction method is a technique that allows to change a finite space to
obtain a smaller one, preserving some homotopy properties, such as homotopy type, simple
homotopy type, weak homotopy type or the homology groups. In [31], Osaki introduces
two methods of this kind which preserve the weak homotopy type, and he asks whether
these moves are effective in the following sense: given a finite space X, is it always possible
to obtain a space of minimum cardinality weak homotopy equivalent to X by applying
repeatedly these methods? In Chapter 6 we give an example to show that the answer
to this question is negative. In fact, it is a very difficult problem to find minimal finite
models of spaces (i.e. a space weak homotopy equivalent with minimum cardinality) since
this question is directly related to the problem of distinguish weak homotopy equivalent
spaces.

In Chapter 6 we study Osaki’s methods of reduction and we prove that in fact they
preserve the simple homotopy type. In this Chapter we also study one-point reduction
methods which consist in removing just one point of the space. For instance, beat points
and weak points lead to one-point methods of reduction. In the Second Section of that
Chapter, we define the notion of γ-point which generalizes the concept of weak point
and provides a more appliable method which preserves the weak homotopy type. The
importance of this new method is that it is almost the most general possible one-point
reduction method. More specifically, we prove the following result.

Theorem 6.2.5. Let X be a finite T0-space, and x ∈ X a point which is neither maximal
nor minimal and such that X r {x} →֒ X is a weak homotopy equivalence. Then x is a
γ-point.

In some sense, one-point methods are not sufficient to describe weak homotopy types
of finite spaces. Concretely, if x ∈ X is such that the inclusion X r {x} →֒ X is a weak
homotopy equivalence, then Xr{x}�ցX (see Theorem 6.2.7). Therefore, these methods
cannot be used to obtain weak homotopy equivalent spaces which are not simple homotopy
equivalent.

McCord finds in [26] a finite model of the n-sphere Sn (i.e. a finite space weak homotopy
equivalent to Sn) with only 2n+2 points. May conjectures in his notes that this space is, in
our language, a minimal finite model of Sn. In Chapter 3 we prove that May’s conjecture
is true. Moreover, the minimal finite model of Sn is unique up to homeomorphism (see
Theorem 3.1.2). In this Chapter we also study minimal finite models of finite graphs
(CW-complexes of dimension 1) and give a full description of them in Theorem 3.2.7. In
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this case the uniqueness of the minimal finite models depends on the graph. The reason
to study finite models of spaces instead of finite spaces with the same homotopy type is
that homotopy types of finite complexes rarely occur in the setting of finite spaces (see
Corollary 2.3.4).

In Chapter 5 we study the relationship between homotopy equivalent finite spaces and
the associated complexes. The concept of contiguity classes of simplicial maps leads to
the notion of strong homotopy equivalence (Definition 5.0.4) and strong homotopy types of
simplicial complexes. This equivalence relation is generated by strong collapses which are
more restrictive than the usual simplicial collapses. We proved the following result.

Theorem 5.0.15.

(a) If two finite T0-spaces are homotopy equivalent, their associated complexes have the
same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associated finite
spaces are homotopy equivalent.

Another of the problems originally stated by May in [23] consists on extending Mc-
Cord’s ideas in order to model, with finite spaces, not only simplicial complexes, but gen-
eral CW-complexes. We give an approach to this question in Chapter 7, where the notion
of h-regular CW-complex is defined. It was already known that regular CW-complexes
could be modeled by their face posets. The class of h-regular complexes extends consider-
ably the class of regular complexes and we explicitly construct for each h-regular complex
K, a weak homotopy equivalence K → X (K). Our results on h-regular complexes allow
the construction of a lot of new and interesting examples of finite models. We also apply
these results to investigate quotients of finite spaces and derive a long exact sequence of
reduced homology for finite spaces.

Given a finite group G and a prime integer p, we denote by Sp(G) the poset of nontriv-
ial p-subgroups of G. In [33], Quillen proves that if G has a nontrivial normal p-subgroup,
then K(Sp(G)) is contractible and he conjectures the converse: if the complex K(Sp(G))
is contractible, G has a nontrivial p-subgroup. Quillen himself proves his conjecture for
the case of solvable groups, but the general problem still remains open. Some important
advances were achived in [3]. As we said above, Quillen never regards Sp(G) as a topo-
logical space. In 1984, Stong [38] publishes a second article on finite spaces. He proves
some results on the equivariant homotopy theory of finite spaces, which he uses to attack
Quillen’s conjecture. He shows that G has a nontrivial normal p-subgroup if and only if
Sp(G) is a contractible finite space. Therefore, the conjecture can be restated in terms of
finite spaces as follows: Sp(G) is contractible if and only if it is homotopically trivial. In
Chapter 8 we study an equivariant version of simple homotopy types of simplicial com-
plexes and finite spaces and we prove an analogue of Theorem 4.2.12 in this case. Using
this result we obtain some new formulations of the conjecture, but which are exclusively
written in terms of simplicial complexes. Finite spaces are used in this case as a tool to
obtain the result, but they do not appear in the final formulation which is the following:
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K(Sp(G)) is contractible if and only if it has trivial equivariant simple homotopy type. We
also obtain formulations of the conjecture in terms of the polyhedron associated to the
much smaller poset Ap(G) of the elementary abelian p-subgroups.

In the last Chapter of the Thesis we exhibit some advances concerning the Andrews-
Curtis conjecture. The geometric Andrews-Curtis conjecture states that if K is a con-
tractible complex of dimension 2, then it 3-deforms to a point, i.e. it can be deformed into
a point by a sequence of collapses and expansions which involve complexes of dimension
not greater than 3. This very known problem stated in the sixties, is closely related to
Zeeman’s conjecture and hence, to the famous Poincaré conjecture. With the proof of
the Poincaré conjecture by G. Perelman, and by [17], we know now that the geometric
Andrews-Curtis conjecture is true for standard spines ([34]), but it still remains open for
general 2-complexes. Inspired by our results on simple homotopy theory of finite spaces
and simplicial complexes, we define the notion of quasi constructible 2-complexes which
generalizes the concept of constructible complexes. Using techniques of finite spaces we
prove that contractible quasi constructible 2-complexes 3-deform to a point. In this way
we substantially enlarge the class of complexes which are known to satisfy the conjecture.

Other results of this Dissertation include a description of the fundamental group of
a finite space, an alternative proof of the homotopy invariance of Euler Characteristic, a
result on the realizability of a group as automorphism group of a poset and some results
on fixed point theory of finite spaces and the Lefschetz number.

I hope that after this work it will be clear that the combinatorics of finite spaces along
with their topology make of these objects a very powerful and suitable tool which can be
used to study well-known problems of Algebra, Algebraic Topology, Combinatorics and
Discrete Geometry, giving more information than simplicial complexes.
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Chapter 1

Preliminaries

In this First Chapter, we will recall the most important results on finite spaces which
are previous to our work. They originally appeared in [1, 37, 26]. We will describe the
correspondence between finite spaces and finite posets and its relationship with basic
topological properties: continuous maps, connectedness, homotopies. Then, we will study
the homotopy types of finite spaces from Stong’s angle and compare weak homotopy types
of finite spaces with homotopy types of compact polyhedra using McCord’s results.

Homotopy types of finite spaces are conclusively characterized by Stong and homotopy
equivalences are well understood as well. However, it is much more difficult to characterize
weak homotopy equivalences between finite spaces. One of the most important tools to
identify weak homotopy equivalences is the Theorem of McCord 1.4.2. However, we will
see in following Chapters that in some sense this result is not sufficient to describe all weak
equivalences. The problem of distinguishing weak homotopy equivalences between finite
spaces is directly related to the problem of recognizing homotopy equivalences between
polyhedra.

1.1 Finite spaces and posets

A finite topological space is a topological space with finitely many points and a finite
preordered set is a finite set with a transitive and reflexive relation. We will see that
finite spaces and finite preordered sets are basically the same objects seen from different
perspectives. Given a finite topological space X, we define for every point x ∈ X the
minimal open set Ux as the intersection of all the open sets which contain x. These sets
are again open. In fact arbitrary intersections of open sets in finite spaces are open. It is
easy to see that minimal open sets constitute a basis for the topology of X which is called
the minimal basis of X. Define a preorder on X by x ≤ y if x ∈ Uy.

Conversely, if X is a finite preordered set, there is a topology on X given by the basis
{y ≤ x}x∈X . These two applications relating topologies and preorders of a finite set are
mutually inverse. This simple remark made in first place by Alexandroff [1] allows us to
use algebraic topology to study finite spaces as well as combinatorics araising from their
intrinsic preorder structures.

The antisimetry of a finite preorder corresponds exactly to the T0 separation axiom.
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CHAPTER 1. PRELIMINARIES

Recall that a topological space X is said to be T0 if for any two points of X there ex-
ists an open set containing one and only one of them. Therefore finite T0-spaces are in
correspondence with finite partially ordered sets (posets).

Example 1.1.1. Let X = {a, b, c, d} be a finite space whose open sets are ∅, {a, b, c, d}
{b, d}, {c}, {d}, {b, c, d} and {c, d}. This space is T0, and therefore it is a poset. The
first figure (Figure 1.1) is a scheme of X with its open sets represented by the interiors
of the closed curves. A more useful way to represent finite T0-spaces is with their Hasse
diagrams. The Hasse diagram of a poset X is a digraph whose vertices are the points of
X and whose edges are the ordered pairs (x, y) such that x < y and there exists no z ∈ X
such that x < z < y. In the graphical representation of a Hasse diagram we will not write
an arrow from x to y, but a segment with y over x (see Figure 1.2).

Figure 1.1: Open sets of X.

a•

��
��

��
�

;;
;;

;;
;

b• •c

d•

Figure 1.2: Hasse diagram of X.

If (x, y) is an edge of the Hasse diagram of a finite poset X, we say that y covers x
and write x ≺ y.

Open sets of finite spaces correspond to down-sets and closed sets to up-sets. A subset
U of a preordered set X is a down-set if for every x ∈ U and y ≤ x, it holds that y ∈ U .
The notion of up-set is defined dually. If X is T0, the open sets of X are in bijection with
its antichains.

If x is a point of a finite space X, Fx = {y ∈ X | y ≥ x} denotes the closure of the set
{x} in X. If a point x belongs to finite spaces X and Y , we write UX

x , UY
x , FX

x and F Y
x

so as to distinguish whether the minimal open sets and closures are considered in X or in
Y .

Note that the set of closed subspaces of a finite space X is also a topology on the
underlying set of X. The finite space with this topology is the opposite of X (or dual)
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1.2. MAPS, HOMOTOPIES AND CONNECTEDNESS

and it is denoted by Xop. The order of Xop is the inverse order of X. If x ∈ X, then
UXop

x = FX
x .

The following remark is easy to check.

Remark 1.1.2.

(a) Let A be a subspace of a finite space X and let a, a′ ∈ A. Then a ≤A a′ if and only
if a ≤X a′. Here ≤A denotes the preorder corresponding to the subspace topology
of A and ≤X the corresponding to the topology of X.

(b) Let X and Y be two finite spaces and let (x, y), (x′, y′) ∈ X × Y with the product
topology. Then (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′.

1.2 Maps, homotopies and connectedness

Proposition 1.2.1. A function f : X → Y between finite spaces is continuous if and only
if it is order preserving.

Proof. Suppose f is continuous and x ≤ x′ in X. Then f−1(Uf(x′)) ⊆ X is open and since
x′ ∈ f−1(Uf(x′)), x ∈ Ux′ ⊆ f−1(Uf(x′)). Therefore f(x) ≤ f(x′).

Now assume that f is order preserving. To prove that f is continuous it suffices to
show that f−1(Uy) is open for every set Uy of the minimal basis of Y . Let x ∈ f−1(Uy)
and let x′ ≤ x. Then f(x′) ≤ f(x) ≤ y and x′ ∈ f−1(Uy). This proves that f−1(Uy) is a
down-set.

If f : X → Y is a function between finite spaces, the map f op : Xop → Y op is the map
which coincides with f in the underlying sets. It easy to see that f is continuous if and
only if f op is continuous.

Remark 1.2.2. If X is a finite space, a one-to-one continuous map f : X → X is a
homemorphism. In fact, since f is a permutation of the set X, there exists n ∈ N such
that fn = 1X .

Lemma 1.2.3. Let x, y be two comparable points of a finite space X. Then, there exists
a path from x to y in X, i.e. a map α from the unit interval I to X such that α(0) = x
and α(1) = y.

Proof. Assume x ≤ y and define α : I → X, α(t) = x if 0 ≤ t < 1, α(1) = y. If U ⊆ X
is open and contains y, then it contains x also. Therefore α−1(U) is one of the following
sets, ∅, I or [0, 1), which are all open in I. Thus, α is a continuous path from x to y.

Let X be a finite preordered set. A fence in X is a sequence x0, x1, . . . , xn of points
such that any two consecutive are comparable. X is order-connected if for any two points
x, y ∈ X there exists a fence starting in x and ending in y.

Proposition 1.2.4. Let X be a finite space. Then, the following are equivalent:

1. X is a connected topological space.
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CHAPTER 1. PRELIMINARIES

2. X is an order-connected preorder.

3. X is a path-connected topological space.

Proof. If X is order-connected, it is path-connected by Lemma 1.2.3. We only have to
prove that connectedness implies order-connectedness. Suppose X is connected and let
x ∈ X. Let A = {y ∈ X | there is a fence from x to y}. If y ∈ A and z ≤ y, then z ∈ A.
Therefore A is a down-set. Analogously, it is an up-set and then, A = X.

If X and Y are finite spaces we can consider the finite set Y X of continuous maps from
X to Y with the pointwise order: f ≤ g if f(x) ≤ g(x) for every x ∈ X.

Proposition 1.2.5. The pointwise order on Y X corresponds to the compact-open topology.

Proof. Let S(K,W ) = {f ∈ Y X | f(K) ⊆ W} be a set of the subbase of the compact-
open topology, where K is a (compact) subset of X and W an open set of Y . If g ≤ f
and f ∈ S(K,W ), then g(x) ≤ f(x) ∈ W for every x ∈ K and therefore, g ∈ S(K,W ).
Thus, S(K,W ) is a down-set in Y X . Conversely, if f ∈ Y X , {g ∈ Y X | g ≤ f} =⋂
x∈X

S({x}, Uf(x)). Therefore both topologies coincide.

If X and Y are topological spaces, a sufficient condition for the compact-open topology
of Y X being exponential is that every point of X has a basis of compact neighborhoods. If
X is a finite space, every subspace of X is compact and this condition is trivialy satisfied.
In particular, if X is a finite space and Y is a topological space not necessarily finite,
there is a natural correspondence between the set of homotopies {H : X × I → Y } and
the set of paths {α : I → Y X}. From now on we consider the map spaces Y X with the
compact-open topology, unless we say otherwise.

Corollary 1.2.6. Let f, g : X → Y be two maps between finite spaces. Then f ≃ g if
and only if there is a fence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g. Moreover, if A ⊆ X, then
f ≃ g rel A if and only if there exists a fence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g such that
fi|A = f |A for every 0 ≤ i ≤ n.

Proof. There exists a homotopy H : f ≃ g rel A if and only if there is a path α : I → Y X

from f to g such that α(t)|A = f |A for every 0 ≤ t ≤ 1. This is equivalent to saying that
there is a path α : I → M from f to g where M is the subspace of Y X of maps which
coincide with f in A. By 1.2.4 this means that there is a fence from f to g in M . The
order of M is the one induced by Y X , which is the pointwise order by 1.2.5.

Remark 1.2.7. Any finite space X with maximum or minimum is contractible since, in
that case, the identity map 1X is comparable with a constant map c and therefore 1X ≃ c.

For example, the space of Figure 1.2 has a maximum and therefore it is contractible.

Note that if X and Y are finite spaces and Y is T0, then Y X is T0 since f ≤ g, g ≤ f
implies f(x) = g(x) for every x ∈ X.
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1.3 Homotopy types

In this Section we will recall the beautiful ideas of R. Stong [37] about homotopy types
of finite spaces. Stong introduced the notion of linear and colinear points that later were
called up beat and down beat points by P. May [24]. Removing such kind of points from
a finite space does not affect its homotopy type. Therefore any finite space is homotopy
equivalent to a space without beat points, which is called a minimal finite space. Moreover
two minimal finite spaces are homotopy equivalent only if they are homeomorphic.

The next result essentially shows that, when studying homotopy types of finite spaces,
we can restrict ourselves to T0-spaces.

Proposition 1.3.1. Let X be a finite space. Let X0 be the quotient X/ ∼ where x ∼ y
if x ≤ y and y ≤ x. Then X0 is T0 and the quotient map q : X → X0 is a homotopy
equivalence.

Proof. Take any section i : X0 → X, i.e. qi = 1X0 . The composition iq is order preserving
and therefore i is continuous. Moreover, since iq ≤ 1X , i is a homotopy inverse of q.

Let x, y ∈ X0 such that q(x) ≤ q(y), then x ≤ iq(x) ≤ iq(y) ≤ y. If in addition q(y) ≤
q(x), y ≤ x and then q(x) = q(y). Therefore the preorder of X0 is antisymmetric.

Remark 1.3.2. Note that the map i : X0 → X of the previous proof is a subspace map
since qi = 1X0 . Moreover, since iq ≤ 1X and the maps iq and 1X coincide on X0, then by
1.2.6, iq ≃ 1X rel X0. Therefore X0 is a strong deformation retract of X.

Definition 1.3.3. A point x of a finite T0-space X is a down beat point if x covers one
and only one element of X. This is equivalent to saying that the set Ûx = Ux r {x} has
a maximum. Dually, x ∈ X is an up beat point if x is covered by a unique element or
equivalently if F̂x = Fx r {x} has a minimum. In any of this cases we say that x is a beat
point of X.

Its easy to recognize beat points looking into the Hasse diagram of the space. A point
x ∈ X is a down beat point if and only if there is one and just one edge with x at its top.
It is an up beat point if and only if there is one and only one edge with x at the bottom.
In the example of Figure 1.2, a is not a beat point: it is not a down beat point because
there are two segments with a at the top and it is not an up beat point either because
there is no segment with a at the bottom. The point b is both a down and an up beat
point, and c is an up beat point but not a down beat point.

If X is a finite T0-space, and x ∈ X, then x is a down beat point of X if and only if it
is an up beat point of Xop. In particular x is a beat point of X if and only if it is a beat
point of Xop.

Proposition 1.3.4. Let X be a finite T0-space and let x ∈ X be a beat point. Then
X r {x} is a strong deformation retract of X.

7
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Proof. Assume that x is a down beat point and let y be the maximum of Ûx. Define the
retraction r : X → X r {x} by r(x) = y. Clearly, r is order-preserving. Moreover if
i : Xr{x} →֒ X denotes the canonical inclusion, ir ≤ 1X . By 1.2.6, ir ≃ 1X rel Xr{x}.
If x is an up beat point the proof is similar.

Definition 1.3.5. A finite T0-space is a minimal finite space if it has no beat points. A
core of a finite space X is a strong deformation retract which is a minimal finite space.

By Remark 1.3.2 and Proposition 1.3.4 we deduce that every finite space has a core.
Given a finite space X, one can find a T0-strong deformation retract X0 ⊆ X and then
remove beat points one by one to obtain a minimal finite space. The amazing thing about
this construction is that in fact the core of a finite space is unique up to homeomor-
phism, moreover: two finite spaces are homotopy equivalent if and only if their cores are
homeomorphic.

Theorem 1.3.6. Let X be a minimal finite space. A map f : X → X is homotopic to
the identity if and only if f = 1X .

Proof. By 1.2.6 we may suppose that f ≤ 1X or f ≥ 1X . Assume f ≤ 1X . Let x ∈ X and
suppose by induction that f |Ûx

= 1Ûx
. If f(x) 6= x, then f(x) ∈ Ûx and for every y < x,

y = f(y) ≤ f(x). Therefore, f(x) is the maximum of Ûx which is a contradiction since X
has no down beat points. Therefore f(x) = x. The case f ≥ 1X is similar.

Corollary 1.3.7. A homotopy equivalence between minimal finite spaces is a homeomor-
phism. In particular the core of a finite space is unique up to homeomorphism and two
finite spaces are homotopy equivalent if and only if they have homeomorphic cores.

Proof. Let f : X → Y be a homotopy equivalence between finite spaces and let g : Y → X
be a homotopy inverse. Then gf = 1X and fg = 1Y by Theorem 1.3.6. Thus, f is a
homeomorphism. If X0 and X1 are two cores of a finite space X, then they are homotopy
equivalent minimal finite spaces, and therefore, homeomorphic. Two finite spaces X and
Y have the same homotopy type if and only if their cores are homotopy equivalent, but
this is the case only if they are homeomorphic.

Example 1.3.8. Let X and Y be the following finite T0-spaces:

X a•

BB
BB

BB
BB

b•

BB
BB

BB
BB

•c

||
||

||
||

CC
CC

CC
CC

•d

{{
{{

{{
{{

e• •f •g

Y a•

b•

BB
BB

BB
BB

•c

||
||

||
||

CC
CC

CC
CC

•d

{{
{{

{{
{{

e• •f •g

The following sequence of figures, shows how to obtain the core of X removing beat
points. Note that b is an up beat point of X, c is an up beat point of X r {b} and e an
up beat point of X r {b, c}. The subspace X r {b, c, e} obtained in this way is a minimal
finite space and then it is the core of X.
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a•

BB
BB

BB
BB

b•

BB
BB

BB
BB

•c

||
||

||
||

CC
CC

CC
CC

•d

{{
{{

{{
{{

e• •f •g

ցց

a•

BB
BB

BB
BB

00
00

00
00

00
00

00
0

•c

||
||

||
||

CC
CC

CC
CC

•d

{{
{{

{{
{{

e• •f •g

ցց

a•

00
00

00
00

00
00

00
0

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

•d

{{
{{

{{
{{

e• •f •g

ցց a•

AA
AA

AA
AA

•d

}}
}}

}}
}}

f• •g

On the other hand, a is a beat point of Y and Y r {a} is minimal. Therefore the cores
of X and Y are not homeomorphic, so X and Y are not homotopy equivalent.

To finish this Section, we exhibit the following characterization of minimal finite spaces.

Proposition 1.3.9. Let X be a finite T0-space. Then X is a minimal finite space if and
only if there are no x, y ∈ X with x 6= y such that if z ∈ X is comparable with x, then so
is it with y.

Proof. If X is not minimal, there exists a beat point x. Without loss of generality assume
that x is a down beat point. Let y be the maximum of Ûx. Then if z ≥ x, z ≥ y and if
z < x, z ≤ y.

Conversely, suppose that there exists x and y as in the statement. In particular x
is comparable with y. We may assume that x ≥ y. Let A = {z ∈ X | z ≥ y and for
every w ∈ X comparable with z, w is comparable with y}. This set is non-empty since
x ∈ A. Let x′ be a minimal element of A. We show that x′ is a down beat point with
y = max(Ûx′). Let z < x′, then z is comparable with y since x′ ∈ A. Suppose z > y. Let
w ∈ X. If w ≤ z, then w ≤ x′ and so, w is comparable with y. If w ≥ z, w ≥ y. Therefore
z ∈ A, contradicting the minimality of x′. Then z ≤ y. Therefore y is the maximum of
Ûx′ .

1.4 Weak homotopy types: The theory of McCord

In the previous Section we have studied homotopy types of finite spaces. On the other hand
we will see in the next Chapter, that Hausdorff spaces do not have in general the homotopy
type of any finite space. However finite CW-complexes do have the weak homotopy type
of finite spaces. In 1966 M. C. McCord proved that every compact polyhedron has an
associated finite space with the same weak homotopy type and every finite space has a
weak equivalent associated polyhedron.
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Recall that a continuous map f : X → Y between topological spaces is said to be
a weak homotopy equivalence if it induces isomorphisms in all homotopy groups, i.e. if
f∗ : π0(X)→ π0(Y ) is a bijection and the maps

f∗ : πn(X,x0)→ πn(Y, f(x0))

are isomorphisms for every n ≥ 1 and every base point x0 ∈ X. Note that homotopy
equivalences are weak homotopy equivalences, but the converse is not true. Whitehead’s
Theorem says that the converse holds when both spaces are CW-complexes. We will see
many examples of weak homotopy equivalences which are not homotopy equivalences using
finite spaces. If f : X → Y is a weak homotopy equivalence, it induces isomorphisms in all
homology groups, that is to say f∗ : Hn(X)→ Hn(Y ) are isomorphisms for every n ≥ 0.

Weak homotopy equivalences satisfy the so called 2-out-of-3 property. That means
that if f and g are two composable maps and 2 of the 3 maps f, g, gf are weak homotopy
equivalences, then so is the third. Moreover if f and g are two homotopic maps and one
is a weak homotopy equivalence, then so is the other.

Next, we will state the Theorem of McCord 1.4.2 which plays an essential role in the
homotopy theory of finite spaces. This result basically says that if a continuous map is
locally a weak homotopy equivalence, then it is a weak homotopy equivalence itself. The
original proof by McCord is in [26], Theorem 6, and it is based on an analogous result for
quasifibrations by A. Dold and R. Thom. A proof for finite covers can be also obtained
from Corollary 4K.2 of [21].

Definition 1.4.1. Let X be a topological space. An open cover U of X is called a basis-
like open cover if U is a basis for a topology which is coarser than the topology of X
(or, equivalently, if for any U1, U2 ∈ U and x ∈ U1 ∩ U2, there exists U3 ∈ U such that
x ∈ U3 ⊆ U1 ∩ U2).

For instance, if X is a finite space, the minimal basis {Ux}x∈X is a basis like open
cover of X.

Theorem 1.4.2 (McCord). Let X and Y be topological spaces and let f : X → Y be a
continuous map. Suppose that there exists a basis-like open cover U of Y such that each
restriction

f |f−1(U) : f−1(U)→ U

is a weak homotopy equivalence for every U ∈ U . Then f : X → Y is a weak homotopy
equivalence.

Example 1.4.3. Consider the following map between finite spaces

a1•

II
II

II
II

II
a2•

uuuuuuuuu

GG
GG

GG
GG

G •b

ww
ww

ww
ww

w

a3• c• •d
f //

a•

DD
DD

DD
DD

•b

zz
zz

zz
zz

c• •d

defined by f(a1) = f(a2) = f(a3) = a, f(b) = b, f(c) = c, f(d) = d. It is order
preserving and therefore continuous. Moreover, the preimage of each minimal open set Uy,
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is contractible, and then the restrictions f |f−1(Uy) : f−1(Uy) → Uy are (weak) homotopy
equivalences. Since the minimal basis is a basis like open cover, by Theorem 1.4.2 f is a
weak homotopy equivalence. However, f is not a homotopy equivalence since its source
and target are non homeomorphic minimal spaces.

Definition 1.4.4. Let X be a finite T0-space. The simplicial complex K(X) associated to
X (also called the order complex ) is the simplicial complex whose simplices are the non-
empty chains of X. Moreover, if f : X → Y is a continuous map between finite T0-spaces,
the associated simplicial map K(f) : K(X)→ K(Y ) is defined by K(f)(x) = f(x).

a•

b•

BB
BB

BB
BB

•c

||
||

||
||

d• •e

Figure 1.3: A finite space and its associated simplicial complex.

Note that if f : X → Y is a continuous map between finite T0-spaces, the vertex map
K(f) : K(X)→ K(Y ) is simplicial since f is order preserving and maps chains to chains.

If X is a finite T0-space, K(X)=K(Xop). Moreover, if f : X → Y is a continuous map
between finite T0-spaces, K(f) = K(f op).

Let X be a finite T0-space. A point α in the geometric realization |K(X)| of K(X)

is a convex combination α = t1x1 + t2x2 + . . . + trxr where
r∑

i=1
ti = 1, ti > 0 for every

1 ≤ i ≤ r and x1 < x2 < . . . < xr is a chain of X. The support or carrier of α is the set
support(α) = {x1, x2, . . . , xr}. We will see that the map α 7→ x1 plays a fundamental role
in this theory.

Definition 1.4.5. Let X be a finite T0-space. Define the K-McCord map µX : |K(X)| →
X by µX(α) = min(support(α)).

Theorem 1.4.6. The K-McCord map µX is a weak homotopy equivalence for every finite
T0-space X.

Proof. Notice that the minimal open sets Ux are contractible because they have maximum.
We will prove that for each x ∈ X, µ−1

X (Ux) is open and contractible. This will show that
µX is continuous and that the restrictions µX |µ−1

X (Ux) : µ−1
X (Ux)→ Ux are weak homotopy

equivalences. Therefore, by Theorem 1.4.2, µX is a weak homotopy equivalence.
Let x ∈ X and let L = K(X r Ux) ⊆ K(X). In other words, L is the full subcomplex

of K (possibly empty) spanned by the vertices which are not in Ux. We claim that

µ−1
X (Ux) = |K(X)| r |L|.

11
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If α ∈ µ−1
X (Ux), then min(support(α)) ∈ Ux. In particular, the support of α contains a

vertex of Ux and then α /∈ |L|. Conversely, if α /∈ |L|, there exists y ∈ support(α) such that
y ∈ Ux. Then min(support(α)) ≤ y ≤ x and therefore µX(α) ∈ Ux. Since |L| ⊆ |K(X)| is
closed, µ−1

X (Ux) is open.
Now we show that |K(Ux)| is a strong deformation retract of |K(X)| r |L|. This is a

more general fact. Let i : |K(Ux)| →֒ |K(X)|r|L| be the inclusion. If α ∈ |K(X)|r|L|, α =
tβ+(1−t)γ for some β ∈ |K(Ux)|, γ ∈ |L| and 0 < t ≤ 1. Define r : |K(X)|r|L| → |K(Ux)|
by r(α) = β. Note that r is continuous since r|(|K(X)|r|L|)∩σ : (|K(X)| r |L|) ∩ σ → σ is
continuous for every σ ∈ K(X). Here, σ ⊆ |K(X)| denotes the closed simplex. Now, let
H : (|K(X)|r |L|)× I → |K(X)|r |L| be the linear homotopy between 1|K(X)|r|L| and ri,
i.e.

H(α, s) = (1− s)α+ sβ.

Then H is well defined and is continuous since each restriction

H|((|K(X)|r|L|)∩σ)×I : ((|K(X)| r |L|) ∩ σ)× I → σ

is continuous for every simplex σ of K(X). To prove the continuity of r and of H we use
that |K(X)| r |L| has the final topology with respect to the subspaces (|K(X)| r |L|) ∩ σ
for σ ∈ K(X).

Since every element of Ux is comparable with x, K(Ux) = xK(Ux r {x}) is a simplicial
cone (see Section 2.7). In particular |K(Ux)| is contractible and then, so is µ−1

X (Ux) =
|K(X)| r |L|.

Remark 1.4.7. If f : X → Y is a continuous map between finite T0-spaces, the following
diagram commutes

|K(X)|
µX

��

|K(f)|
// |K(Y )|

µY

��
X

f // Y

since, for α ∈ |K(X)|,

fµX(α) = f(min(support(α))) = min(f(support(α))) =

= min(support(|K(f)|(α))) = µY |K(f)|(α).

Corollary 1.4.8. Let f : X → Y be a map between finite T0-spaces. Then f is a weak
homotopy equivalence if and only if |K(f)| : |K(X)| → |K(Y )| is a homotopy equivalence.

Proof. Since µY is a weak homotopy equivalence, by the 2-out-of-3 property, |K(f)| is a
weak homotopy equivalence if and only if µY |K(f)| = fµX is a weak homotopy equivalence.
Since µX is a weak homotopy equivalence, this is equivalent to saying that f is a weak
homotopy equivalence.

Corollary 1.4.9. Let f : X → Y be a map between finite T0-spaces. Then f is a weak
homotopy equivalence if and only if f op is a weak homotopy equivalence.
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Proof. Follows immediately from the previous result since K(f) = K(f op).

Definition 1.4.10. Let K be a finite simplicial complex. The finite T0-space X (K)
associated to K (also called the face poset of K) is the poset of simplices of K ordered by
inclusion. If ϕ : K → L is a simplicial map between finite simplicial complexes, there is a
continuous map X (ϕ) : X (K)→ X (L) defined by X (ϕ)(σ) = ϕ(σ) for every simplex σ of
K.

Example 1.4.11. If K is the 2-simplex, the associated finite space is the following

•

��
��

��
�

<<
<<

<<
<

•

<<
<<

<<
< •

��
��

��
�

<<
<<

<<
< •

��
��

��
�

• • •

If K is a finite complex, K(X (K)) is the first barycentric subdivision K ′ of K. Let
sK : |K ′| → |K| be the linear homeomorphism defined by sK(σ) = b(σ) for every simplex
σ of K. Here, b(σ) ∈ |K| denotes the barycenter of σ. Define the X -McCord map
µK = µX (K)s

−1
K : |K| → X (K)

From 1.4.6 we deduce immediately the following result.

Theorem 1.4.12. The X -McCord map µK is a weak homotopy equivalence for every
finite simplicial complex K.

Proposition 1.4.13. Let ϕ : K → L be a simplicial map between finite simplicial com-
plexes. Then, the following diagram commutes up to homotopy

|K|
µK

��

|ϕ|
// |L|

µL

��
X (K)

X (ϕ)
// X (L).

Proof. Let S = {σ1, σ2, . . . , σr} be a simplex of K ′, where σ1 ( σ2 ( . . . ( σr is a chain
of simplices of K. Let α be a point in the closed simplex S. Then sK(α) ∈ σr ⊆ |K|
and |ϕ|sK(α) ∈ ϕ(σr) ⊆ |L|. On the other hand, |ϕ′|(α) ∈ {ϕ(σ1), ϕ(σ2), . . . , ϕ(σr)} and
then sL|ϕ′|(α) ∈ ϕ(σr). Therefore, the linear homotopy H : |K ′| × I → |L|, (α, t) 7→
(1− t)|ϕ|sK(α) + tsL|ϕ′|(α) is well defined and continuous. Then |ϕ|sK ≃ sL|ϕ′| and, by
1.4.7,

µL|ϕ| = µX (L)s
−1
L |ϕ| ≃ µX (L)|ϕ′|s−1

K =

= X (ϕ)µX (K)s
−1
K = X (ϕ)µK .

Remark 1.4.14. An explicit homotopy between µL|ϕ| and X (ϕ)µK is H̃ = µLH(s−1
K ×1I).

If K1 ⊆ K and L1 ⊆ L are subcomplexes and ϕ(K1) ⊆ L1 then H̃(|K1| × I) ⊆ X (L1) ⊆
X (L).
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From the 2-out-of-3 property and the fact that a map homotopic to a weak homotopy
equivalence is also a weak homotopy equivalence, one deduces the following

Corollary 1.4.15. Let ϕ : K → L be a simplicial map between finite simplicial complexes.
Then |ϕ| is a homotopy equivalence if and only if X (ϕ) : X (K)→ X (L) is a weak homotopy
equivalence.

From now on we will call McCord maps to both K-McCord maps and X -McCord maps,
and it will be clear from the context which we are referring to.

Two topological spaces X and Y , not necessarily finite, are weak homotopy equivalent
(or they are said to have the same weak homotopy type) if there exists a sequence of spaces
X = X0,X1, . . . ,Xn = Y such that there are weak homotopy equivalences Xi → Xi+1 or
Xi+1 → Xi for every 0 ≤ i ≤ n − 1. Clearly this defines an equivalence relation. If two

topological spaces X and Y are weak homotopy equivalent, we write X
we≈ Y . If X and Y

are homotopy equivalent we write X
he≃ Y .

If two topological spaces X and Y are weak homotopy equivalent, there exists a CW-
complex Z and weak homotopy equivalences Z → X and Z → Y . CW-complexes are
weak homotopy equivalent if and only if they are homotopy equivalent. As we have seen,
for finite spaces, weak homotopy equivalences are not in general homotopy equivalences.
Moreover, there exist weak homotopy equivalent finite spaces such that there is no weak
homotopy equivalence between them.

Example 1.4.16. The non-Hausdorff suspension S(D3) (see the paragraph below Defi-
nition 2.7.1) of the discrete space with three elements and its opposite S(D3)

op have the
same weak homotopy type, because there exist weak homotopy equivalences

S(D3)← |K(S(D3))| = |K(S(D3)
op)| → S(D3)

op.

•

��
��
��

//
//

//

JJJJJJJJJJ •

tttttttttt

��
��
��

//
//

//

• • •

S(D3)

• • •

•

//////

������

tttttttttt •

JJJJJJJJJJ

//////

������

S(D3)
op

However there is no weak homotopy equivalence between S(D3) and S(D3)
op. In fact

one can check that every map S(D3) → S(D3)
op factors through its image, which is a

subspace of S(D3)
op with trivial fundamental group or isomorphic to Z. We exhibit a

more elegant proof in 8.4.22.

From Theorems 1.4.6 and 1.4.12 we immediately deduce the following result.

Corollary 1.4.17.

(a) Let X and Y be finite T0-spaces. Then, X
we≈ Y if and only if |K(X)| he≃ |K(Y )|.

(b) Let K and L be finite simplicial complexes. Then, |K| he≃ |L| if and only if X (K)
we≈

X (L).
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McCord’s Theorem 1.4.2 is one of the most useful tools to distinguish weak homotopy
equivalences. Most of the times, we will apply this result to maps f : X → Y with
Y finite, using the open cover given by the minimal basis of Y . The particular case of
Theorem 1.4.2 for X,Y finite and T0 and the cover {Uy}y∈Y is also a particular case of the
celebrated Quillen’s Theorem A applied to categories which are finite posets (see [32, 33]).

The simplicial version of Quillen’s Theorem A follows from this particular case for
posets and it states that if ϕ : K → L is a simplicial map and |ϕ|−1(σ) is contractible for
every closed simplex σ ∈ |L|, then |ϕ| is a homotopy equivalence (see [32], page 93).

Using this result, we prove a similar result to Theorem 1.4.2. A topological space is said
to be homotopically trivial if all its homotopy groups are zero. In virtue of Whitehead’s
Theorem, homotopically trivial CW-complexes are contractible.

Proposition 1.4.18. Let f : X → Y be a map between finite T0-spaces such that f−1(c) ⊆
X is homotopically trivial for every chain c of Y . Then f is a weak homotopy equivalence.

Proof. If c is a chain of Y or, equivalently, a simplex of K(Y ), then |K(f)|−1(c) =
|K(f−1(c))|, which is contractible since f−1(c) is homotopically trivial. By Theorem A,
|K(f)| is a homotopy equivalence and then f is a weak homotopy equivalence.

In fact, if the hypothesis of Proposition 1.4.18 hold, then f−1(Uy) is homotopically
trivial for every y ∈ Y and, by McCord Theorem, f is a weak homotopy equivalence.
Therefore the proof of Proposition 1.4.18 is apparently superfluous. However, the proof
of the first fact is a bit twisted, because it uses the very Proposition 1.4.18. If f : X → Y
is such that f−1(c) is homotopically trivial for every chain c of Y , then each restriction
f |f−1(Uy) : f−1(Uy)→ Uy satisfies the same hypothesis. Therefore, by Proposition 1.4.18,

f |f−1(Uy) is a weak homotopy equivalence and then f−1(Uy) is homotopically trivial.
In Section 4.3 we will prove, as an application of the simple homotopy theory of finite

spaces, a simple homotopy version of Quillen’s Theorem A for simplicial complexes.
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Chapter 2

Basic topological properties of finite

spaces

2.1 Homotopy and contiguity

Recall that two simplicial maps ϕ,ψ : K → L are said to be contiguous if for every simplex
σ ∈ K, ϕ(σ) ∪ ψ(σ) is a simplex of L. Two simplicial maps ϕ,ψ : K → L lie in the same
contiguity class if there exists a sequence ϕ = ϕ0, ϕ1, . . . , ϕn = ψ such that ϕi and ϕi+1

are contiguous for every 0 ≤ i < n.
If ϕ,ψ : K → L lie in the same contiguity class, the induced maps in the geometric

realizations |ϕ|, |ψ| : |K| → |L| are homotopic. For more datails we refer the reader to
[36].

In this Section we study the relationship between contiguity classes of simplicial maps
and homotopy classes of the associated maps between finite spaces.

Lemma 2.1.1. Let f, g : X → Y be two homotopic maps between finite T0-spaces. Then
there exists a sequence f = f0, f1, . . . , fn = g such that for every 0 ≤ i < n there is a point
xi ∈ X with the following properties:

1. fi and fi+1 coincide in X r {xi}, and
2. fi(xi) ≺ fi+1(xi) or fi+1(xi) ≺ fi(xi).

Proof. Without loss of generality, we may assume that f = f0 ≤ g by 1.2.6. Let A = {x ∈
X | f(x) 6= g(x)}. If A = ∅, f = g and there is nothing to prove. Suppose A 6= ∅ and
let x = x0 be a maximal point of A. Let y ∈ Y be such that f(x) ≺ y ≤ g(x) and define
f1 : X → Y by f1|Xr{x} = f |Xr{x} and f1(x) = y. Then f1 is continuous for if x′ > x,
x′ /∈ A and therefore

f1(x
′) = f(x′) = g(x′) ≥ g(x) ≥ y = f1(x).

Repeating this construction for fi and g, we define fi+1. By finiteness of X and Y this
process ends.

Proposition 2.1.2. Let f, g : X → Y be two homotopic maps between finite T0-spaces.
Then the simplicial maps K(f),K(g) : K(X)→ K(Y ) lie in the same contiguity class.

17
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Proof. By the previous lemma, we can assume that there exists x ∈ X such that f(y) =
g(y) for every y 6= x and f(x) ≺ g(x). Therefore, if C is a chain in X, f(C) ∪ g(C) is a
chain on Y . In other words, if σ ∈ K(X) is a simplex, K(f)(σ) ∪ K(g)(σ) is a simplex in
K(Y ).

Proposition 2.1.3. Let ϕ,ψ : K → L be simplicial maps which lie in the same contiguity
class. Then X (ϕ) ≃ X (ψ).

Proof. Assume that ϕ and ψ are contiguous. Then the map f : X (K) → X (L), defined
by f(σ) = ϕ(σ) ∪ ψ(σ) is well-defined and continuous. Moreover X (ϕ) ≤ f ≥ X (ψ), and
then X (ϕ) ≃ X (ψ).

2.2 Minimal pairs

In this Section we generalize Stong’s ideas on homotopy types to the case of pairs (X,A)
of finite spaces (i.e. a finite space X and a subspace A ⊆ X). As a consequence, we will
deduce that every core of a finite T0-space can be obtained by removing beat points from
X. Here we introduce the notion of strong collapse which plays a central role in Chapter
5.

Definition 2.2.1. A pair (X,A) of finite T0-spaces is a minimal pair if all the beat points
of X are in A.

The next result generalizes the result of Stong (the case A = ∅) studied in Section 1.3
and its proof is very similar to the original one.

Proposition 2.2.2. Let (X,A) be a minimal pair and let f : X → X be a map such that
f ≃ 1X rel A. Then f = 1X .

Proof. Suppose that f ≤ 1X and f |A = 1A. Let x ∈ X. If x ∈ X is minimal, f(x) = x. In
general, suppose we have proved that f |Ûx

= 1|Ûx
. If x ∈ A, f(x) = x. If x /∈ A, x is not a

down beat point of X. However y < x implies y = f(y) ≤ f(x) ≤ x. Therefore f(x) = x.
The case f ≥ 1X is similar, and the general case follows from 1.2.6.

Corollary 2.2.3. Let (X,A) and (Y,B) be minimal pairs, f : X → Y , g : Y → X such
that gf ≃ 1X rel A, gf ≃ 1Y rel B. Then f and g are homeomorphisms.

Definition 2.2.4. If x is a beat point of a finite T0-space X, we say that there is an
elementary strong collapse from X to X r x and write X ցցe X r x. There is a strong
collapse X ցց Y (or a strong expansion Y րր X) if there is a sequence of elementary
strong collapses starting in X and ending in Y .

Stong’s results show that two finite T0-spaces are homotopy equivalent if and only if
there exists a sequence of strong collapses and strong expansions from X to Y (since the
later is true for homeomorphic spaces).

Corollary 2.2.5. Let X be a finite T0-space and let A ⊆ X. Then, X ցց A if and only
if A is a strong deformation retract of X.
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Proof. If X ցց A, A ⊆ X is a strong deformation retract. This was already proved by
Stong (see Section 1.3). Conversely, suppose A ⊆ X is a strong deformation retract.
Perform arbitrary elementary strong collapses removing beat points which are not in A.
Suppose X ցց Y ⊇ A and that all the beat points of Y lie in A. Then (Y,A) is a minimal
pair. Since A and Y are strong deformation retracts of X, the minimal pairs (A,A) and
(Y,A) are in the hypothesis of Corollary 2.2.3. Therefore A and Y are homeomorphic and
so, X ցց Y = A.

Example 2.2.6. The space X
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is contractible, but the point x is not a strong deformation retract of X, because (X, {x})
is a minimal pair.

Corollary 2.2.7. Let (X,A) be a minimal pair such that A is a minimal finite space and
f ≃ 1(X,A) : (X,A)→ (X,A). Then f = 1X .

If X and Y are homotopy equivalent finite T0-spaces, the associated polyhedra |K(X)|
and |K(Y )| also have the same homotopy type. However the converse is obviously false,
since the associated polyhedra are homotopy equivalent if and only if the finite spaces are
weak homotopy equivalent.

In Chapter 5 we will study the notion of strong homotopy types of simplicial complexes
which have a very simple description and corresponds exactly to the concept of homotopy
types of the associated finite spaces.

2.3 T1-spaces

We will prove that Hausdorff spaces do not have in general the homotopy type of any
finite space. Recall that a topological space X satisfies the T1-separation axiom if for any
two distinct points x, y ∈ X there exist open sets U and V such that x ∈ U , y ∈ V , y /∈ U ,
x /∈ V . This is equivalent to saying that the points are closed in X. All Hausdorff spaces
are T1, but the converse is false.

If a finite space is T1, then every subset is closed and so, X is discrete.

Since the core Xc of a finite space X is the disjoint union of the cores of its connected
components, we can deduce the following

Lemma 2.3.1. Let X be a finite space such that Xc is discrete. Then X is a disjoint
union of contractible spaces.

Theorem 2.3.2. Let X be a finite space and let Y be a T1-space homotopy equivalent to
X. Then X is a disjoint union of contractible spaces.
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Proof. Since X ≃ Y , Xc ≃ Y . Let f : Xc → Y be a homotopy equivalence with homotopy
inverse g. Then gf = 1Xc by 1.3.6. Since f is a one to one map from Xc to a T1-space, it
follows that Xc is also T1 and therefore discrete. Now the result follows from the previous
lemma.

Remark 2.3.3. The proof of the previous Theorem can be done without using 1.3.6, showing
that any map f : X → Y from a finite space to a T1-space must be locally constant.

Corollary 2.3.4. Let Y be a connected and non contractible T1-space. Then Y does not
have the same homotopy type as any finite space.

Proof. Follows immediately from the previous Theorem.

For example, for any n ≥ 1, the n-dimensional sphere Sn does not have the homotopy
type of any finite space. Although, Sn does have, as any finite polyhedron, the same weak
homotopy type as some finite space.

2.4 Loops in the Hasse diagram and the fundamental group

In this Section we give a full description of the fundamental group of a finite T0-space
in terms of its Hasse diagram. This characterization is induced from the well known
description of the fundamental group of a simplicial complex. The Hasse diagram of a
finite T0-space X will be denoted H(X), and E(H(X)) will denote the set of edges of the
digraph H(X).

Recall that an edge path in a simplicial complex K, is a sequence (v0, v1), (v1, v2), . . . ,
(vr−1, vr) in which {vi, vi+1} is a simplex for every i. If an edge path contains a subse-
quence (vi, vi+1), (vi+1, vi+2) where {vi, vi+1, vi+2} is a simplex, we can replace it by the
subsequence (vi, vi+2) to obtain an equivalent edge path. The equivalence classes of edge
paths are the morphisms of a grupoid called the edge-path grupoid of K, which is de-
noted by E(K). The full subcategory of edge paths with origin and end v0 is the edge
path-group E(K, v0) which is isomorphic to the fundamental group π1(|K|, v0) (see [36]
for more details).

Definition 2.4.1. Let (X,x0) be a finite pointed T0-space. An ordered pair of points
e = (x, y) is called an H-edge of X if (x, y) ∈ E(H(X)) or (y, x) ∈ E(H(X)). The point
x is called the origin of e and denoted x = o(e), the point y is called the end of e and
denoted y = e(e). The inverse of an H-edge e = (x, y) is the H-edge e−1 = (y, x).

An H-path in (X,x0) is a finite sequence (possibly empty) of H-edges ξ = e1e2 . . . en
such that e(ei) = o(ei+1) for all 1 ≤ i ≤ n − 1. The origin of a non empty H-path ξ is
o(ξ) = o(e1) and its end is e(ξ) = e(en). The origin and the end of the empty H-path is
o(∅) = e(∅) = x0. If ξ = e1e2 . . . en, we define ξ = e−1

n e−1
n−1 . . . e

−1
1 . If ξ, ξ′ are H-paths such

that e(ξ) = o(ξ′), we define the product H-path ξξ′ as the concatenation of the sequence
ξ followed by the sequence ξ′.

An H-path ξ = e1e2 . . . en is said to be monotonic if ei ∈ E(H(X)) for all 1 ≤ i ≤ n or
e−1
i ∈ E(H(X)) for all 1 ≤ i ≤ n.
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A loop at x0 is an H-path that starts and ends in x0. Given two loops ξ, ξ′ at x0, we say
that they are close if there exist H-paths ξ1, ξ2, ξ3, ξ4 such that ξ2 and ξ3 are monotonic
and the set {ξ, ξ′} coincides with {ξ1ξ2ξ3ξ4, ξ1ξ4}.

We say that two loops ξ, ξ′ at x0 are H-equivalent if there exists a finite sequence of
loops ξ = ξ1, ξ2, . . . , ξn = ξ′ such that any two consecutive are close. We denote by 〈ξ〉 the
H-equivalence class of a loop ξ and H (X,x0) the set of these classes.

Theorem 2.4.2. Let (X,x0) be a pointed finite T0-space. Then the product 〈ξ〉〈ξ′〉 = 〈ξξ′〉
is well defined and induces a group structure on H (X,x0).

Proof. It is easy to check that the product is well defined, associative and that 〈∅〉 is the
identity. In order to prove that the inverse of 〈e1e2 . . . en〉 is 〈e−1

n e−1
n−1 . . . e

−1
1 〉 we need to

show that for any composable H-paths ξ, ξ′ such that o(ξ) = e(ξ′) = x0 and for any H-edge
e, composable with ξ, one has that 〈ξee−1ξ′〉 = 〈ξξ′〉. But this follows immediately from
the definition of close loops since e and e−1 are monotonic.

Theorem 2.4.3. Let (X,x0) be a pointed finite T0-space. Then the edge-path group
E(K(X), x0) of K(X) with base vertex x0 is isomorphic to H (X,x0).

Proof. Let us define

ϕ : H (X,x0) −→ E(K(X), x0),

〈e1e2 . . . en〉 7−→ [e1e2 . . . en],

〈∅〉 7−→ [(x0, x0)],

where [ξ] denotes the class of ξ in E(K(X), x0).

To prove that ϕ is well defined, let us suppose that the loops ξ1ξ2ξ3ξ4 and ξ1ξ4 are
close, where ξ2 = e1e2 . . . en, ξ3 = e′1e

′
2 . . . e

′
m are monotonic H-paths. By induction, it

can be proved that [ξ1ξ2ξ3ξ4] = [ξ1e1e2 . . . en−j(o(en−j+1), e(en))ξ3ξ4] for 1 ≤ j ≤ n. In
particular [ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))ξ3ξ4].

Analogously,

[ξ1(e(ξ1), e(en))ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4]

and then

[ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4] = [ξ1(e(ξ1), e(en))(e(en), e(ξ1))ξ4] =

= [ξ1(e(ξ1), e(ξ1))ξ4] = [ξ1ξ4].

If ξ = (x0, x1)(x1, x2) . . . (xn−1, xn) is an edge path in K(X) with xn = x0, then xi−1

and xi are comparable for all 1 ≤ i ≤ n. In this case, we can find monotonic H-paths
ξ1, ξ2, . . . , ξn such that o(ξi) = xi−1, e(ξi) = xi for all 1 ≤ i ≤ n. Let us define

ψ : E(K(X), x0) −→H (X,x0),

[ξ] 7−→ 〈ξ1ξ2 . . . ξn〉.
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This definition does not depend on the choice of the H-paths ξi since if two choices
differ only for i = k then ξ1 . . . ξk . . . ξn and ξ1 . . . ξ

′
k . . . ξn are H-equivalent because both

of them are close to ξ1 . . . ξkξ
−1
k ξ′k . . . ξn.

The definition of ψ does not depend on the representative. Suppose that ξ′(x, y)(y, z)ξ′′

and ξ′(x, z)ξ′′ are simply equivalent edge paths in K(X) that start and end in x0, where
ξ and ξ′ are edge paths and x, y, z are comparable.

In the case that y lies between x and z, we can choose the monotonic H-path corre-
sponding to (x, z) to be the juxtaposition of the corresponding to (x, y) and (y, z), and so
ψ is equally defined in both edge paths.

In the case that z ≤ x ≤ y we can choose monotonic H-paths α, β from x to y and
from z to x, and then α will be the corresponding H-path to (x, y), αβ that corresponding
to (y, z) and β to (x, z). It only remains to prove that 〈γ′ααβγ′′〉 = 〈γ′βγ′′〉 for H-paths
γ′ and γ′′, which is trivial.

The other cases are analogous to the last one.

It remains to verify that ϕ and ψ are mutually inverses, but this is clear.

Since E(K(X), x0) is isomorphic to π1(|K(X)|, x0) (cf. [36]), we obtain the following
result.

Corollary 2.4.4. Let (X,x0) be a pointed finite T0-space, then H (X,x0) = π1(X,x0).

Remark 2.4.5. Since every finite space is homotopy equivalent to a finite T0-space, this
computation of the fundamental group can be applied to any finite space.

2.5 Euler characteristic

If the homology of a topological space X is finitely generated as a graded group, the
Euler characteristic of X is defined by χ(X) =

∑
n≥0

(−1)nrank(Hn(X)). If Z is a compact

CW-complex, its homology is finitely generated and χ(Z) =
∑
n≥0

(−1)nαn where αn is the

number of n-cells of Z. A weak homotopy equivalence induces isomorphisms in homology
groups and therefore weak homotopy equivalent spaces have the same Euler characteristic.

Since any finite T0-space X is weak homotopy equivalent to the geometric realization
of K(X), whose simplices are the non empty chains of X, the Euler characteristic of X is

χ(X) =
∑

C∈C(X)

(−1)#C+1 (2.1)

where C(X) is the set of non empty chains of X and #C is the cardinality of C.

We will give a basic combinatorial proof of the fact that the Euler characteristic is a
homotopy invariant in the setting of finite spaces, using only the formula 2.1 as definition.

Theorem 2.5.1. Let X and Y be finite T0-spaces with the same homotopy type. Then
χ(X) = χ(Y ).

22



2.5. EULER CHARACTERISTIC

Proof. Let Xc and Yc be cores of X and Y . Then, there exist two sequences of finite T0-
spaces X = X0 ⊇ . . . ⊇ Xn = Xc and Y = Y0 ⊇ . . . ⊇ Ym = Yc, where Xi+1 is constructed
from Xi by removing a beat point and Yi+1 is constructed from Yi, similarly. Since X and
Y are homotopy equivalent, Xc and Yc are homeomorphic. Thus, χ(Xc) = χ(Yc).

It suffices to show that the Euler characteristic does not change when a beat point is
removed. Let P be a finite poset and let p ∈ P be a beat point. Then there exists q ∈ P
such that if r is comparable with p then r is comparable with q.

Hence we have a bijection

ϕ : {C ∈ C(P ) | p ∈ C, q /∈ C} −→ {C ∈ C(P ) | p ∈ C, q ∈ C},
C 7−→ C ∪ {q}.

Therefore

χ(P )− χ(P r {p}) =
∑

p∈C∈CP

(−1)#C+1 =
∑

q /∈C∋p

(−1)#C+1 +
∑

q∈C∋p

(−1)#C+1 =

=
∑

q /∈C∋p

(−1)#C+1 +
∑

q /∈C∋p

(−1)#ϕ(C)+1 =
∑

q /∈C∋p

(−1)#C+1 +
∑

q /∈C∋p

(−1)#C = 0.

The Euler characteristic of finite T0-spaces is intimately related to the Möbius function
of posets, which is a generalization of the classical Möbius function of number theory. We
will say just a few words about this. For proofs and applications we refer the reader to
[16].

Given a finite poset P , we define the incidence algebra A(P ) of P as the set of functions
P × P → R such that f(x, y) = 0 if x � y with the usual structure of R-vector space and
the product given by

fg(x, y) =
∑

z∈P

f(x, z)g(z, y).

The element ζP ∈ A(P ) defined by ζP (x, y) = 1 if x ≤ y and 0 in other case, is
invertible in A(P ). The Möbius fuction µP ∈ A(P ) is the inverse of ζP .

The Theorem of Hall states that if P is a finite poset and x, y ∈ P , then µP (x, y) =∑
n≥0

(−1)n+1cn, where cn is the number of chains of n-elements which start in x and end in

y.

Given a finite poset P , P̂ = P ∪ {0, 1} denotes the poset obtained when adjoining a
minimum 0 and a maximum 1 to P . In particular, Equation 2.1 and the Theorem of Hall,
give the following

Corollary 2.5.2. Let P be a finite poset. Then

χ̃(P ) = µP̂ (0, 1),

where χ̃(P ) = χ(P )− 1 denotes the reduced Euler characteristic of the finite space P .
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One of the motivations of the Möbius function is the following inversion formula.

Theorem 2.5.3 (Möbius inversion formula). Let P be a finite poset and let f, g : P → R.
Then

g(x) =
∑

y≤x

f(y) if and only if f(x) =
∑

y≤x

µP (y, x)g(y).

Analogously,

g(x) =
∑

y≥x

f(y) if and only if f(x) =
∑

y≥x

µP (y, x)g(y).

Beautiful applications of these formulae are: (1) the Möbius inversion of number theory
which is obtained when applying Theorem 2.5.3 to the order given by divisibility of the
integer numbers; (2) the inclusion-exclusion formula obtained from the power set of a set
ordered by inclusion.

2.6 Automorphism groups of finite posets

It is well known that any finite group G can be realized as the automorphism group of a
finite poset. In 1946 Birkhoff [9] proved that if the order of G is n, G can be realized as the
automorphisms of a poset with n(n+ 1) points. In 1972 Thornton [39] improved slightly
Birkhoff’s result: He obtained a poset of n(2r+1) points, when the group is generated by
r elements.

We present here a result which appears in [5]. Following Birkhoff’s and Thornton’s
ideas, we exhibit a simple proof of the following fact which improves their results

Theorem 2.6.1. Given a group G of finite order n with r generators, there exists a poset
X with n(r + 2) points such that Aut(X) ≃ G.

Proof. Let {h1, h2, . . . , hr} be a set of r generators of G. We define the poset X =
G× {−1, 0, . . . , r} with the following order

• (g, i) ≤ (g, j) if −1 ≤ i ≤ j ≤ r

• (ghi,−1) ≤ (g, j) if 1 ≤ i ≤ j ≤ r

Define φ : G → Aut(X) by φ(g)(h, i) = (gh, i). It is easy to see that φ(g) : X → X
is order preserving and that it is an automorphism with inverse φ(g−1). Therefore φ
is a well defined homomorphism. Clearly φ is a monomorphism since φ(g) = 1 implies
(g,−1) = φ(g)(e,−1) = (e,−1).

It remains to show that φ is an epimorphism. Let f : X → X be an automorphism.
Since (e,−1) is minimal in X, so is f(e,−1) and therefore f(e,−1) = (g,−1) for some
g ∈ G. We will prove that f = φ(g).

Let Y = {x ∈ X | f(x) = φ(g)(x)}. Y is non-empty since (e,−1) ∈ Y . We prove first
that Y is an open subspace of X. Suppose x = (h, i) ∈ Y . Then the restrictions

f |Ux, φ(g)|Ux : Ux → Uf(x)
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Figure 2.1: U(g,r).

are isomorphisms. On the other hand, there exists a unique automorphism Ux → Ux

since the unique chain of i+ 2 elements must be fixed by any such automorphism. Thus,
f |−1

Ux
φ(g)|Ux = 1Ux , and then f |Ux = φ(g)|Ux , which proves that Ux ⊆ Y . Similarly we

see that Y ⊆ X is closed. Assume x = (h, i) /∈ Y . Since f ∈ Aut(X), it preserves
the height ht(y) of any point y. In particular ht(f(x)) = ht(x) = i + 1 and therefore
f(x) = (k, i) = φ(kh−1)(x) for some k ∈ G. Moreover k 6= gh since x /∈ Y . As above,
f |Ux = φ(kh−1)|Ux , and since kh−1 6= g we conclude that Ux ∩ Y = ∅.

We prove now that X is connected. It suffices to prove that any two minimal el-
ements of X are in the same connected component. Given h, k ∈ G, we have h =
khi1hi2 . . . him for some 1 ≤ i1, i2 . . . im ≤ r. On the other hand, (khi1hi2 . . . his ,−1)
and (khi1hi2 . . . his+1 ,−1) are connected via (khi1hi2 . . . his ,−1) < (khi1hi2 . . . his , r) >
(khi1hi2 . . . his+1 ,−1). This implies that (k,−1) and (h,−1) are in the same connected
component.

Finally, since X is connected and Y is closed, open and nonempty, Y = X, i.e. f =
φ(g). Therefore φ is an epimorphim, and then G ≃ Aut(X).

If the generators h1, h2, . . . , hr are non-trivial, the open sets U(g,r) look as in Figure
2.1. In that case it is not hard to prove that the finite space X constructed above is weak
homotopy equivalent to a wedge of n(r − 1) + 1 circles, or in other words, that the order
complex of X is homotopy equivalent to a wedge of n(r − 1) + 1 circles. The space X
deformation retracts to the subspace Y = G×{−1, r} of its minimal and maximal points.
A retraction is given by the map f : X → Y , defined as f(g, i) = (g, r) if i ≥ 0 and
f(g,−1) = (g,−1). Now the order complex K(Y ) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler Characteristic.
This complex has 2n vertices and n(r + 1) edges, which means that it has the homotopy
type of a wedge of 1− χ(K(Y )) = n(r − 1) + 1 circles.

On the other hand, note that in general the automorphism group of a finite space,
does not say much about its homotopy type as we state in the following
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Remark 2.6.2. Given a finite group G and a finite space X, there exists a finite space Y
which is homotopy equivalent to X and such that Aut(Y ) ≃ G.

We make this construction in two steps. First, we find a finite T0-space X̃ homotopy
equivalent to X and such that Aut(X̃) = 0. To do this, assume that X is T0 and consider
a linear extension x1, x2, . . . , xn of the poset X. Now, for each 1 ≤ k ≤ n attach a chain
of length kn to X with minimum xn−k+1. The resulting space X̃ deformation retracts to
X and every automorphism f : X̃ → X̃ must fix the unique chain C1 of length n2 (with
minimum x1). Therefore f restricts to a homeomorphism X̃ r C1 → X̃ r C1 which must
fix the unique chain C2 of length n(n− 1) of X̃ r C1 (with minimum x2). Applying this
reasoning repeatedly, we conclude that f fixes every point of X̃ . On the other hand, we
know that there exists a finite T0-space Z such that Aut(Z) = G.

Now the space Y is constructed as follows. Take one copy of X̃ and of Z, and put
every element of Z under x1 ∈ X̃. Clearly Y deformation retracts to X̃. Moreover, if
f : Y → Y is an automorphism, f(x1) /∈ Z since f(x1) cannot be comparable with x1 and
distinct from it. Since there is only one chain of n2 elements in X̃, it must be fixed by f .
In particular f(x1) = x1, and then f |Z : Z → Z. Thus f restricts to automorphisms of X̃
and of Z and therefore Aut(Y ) ≃ Aut(Z) ≃ G.

2.7 Joins, products, quotients and wedges

In this Section we will study some basic constructions of finite spaces, simplicial complexes
and general topological spaces. We will investigate the relationship between the simplicial
and the finite space constructions and we will see how they are related to the homotopy
and weak homotopy type of the spaces involved.

Recall that the simplicial join K∗L of two simplicial complexes K and L is the complex

K ∗ L = K ∪ L ∪ {σ ∪ τ | σ ∈ K, τ ∈ L}.

The cone aK of a simplicial complex K is the join of K with a vertex a /∈ K. It is well
known that for finite simplicial complexes K and L, the geometric realization |K ∗ L| is
homeomorphic to the topological join |K| ∗ |L|. If K is the 0-complex with two vertices,
|K ∗L| = |K| ∗ |L| = S0 ∗ |L| = Σ|L| is the suspension of |L|. Here, S0 denotes the discrete
space on two points (0-sphere).

There is an analogous construction for finite spaces.

Definition 2.7.1. The (non-Hausdorff) join X ⊕ Y of two finite T0-spaces X and Y is
the disjoint union X ⊔ Y keeping the giving ordering within X and Y and setting x ≤ y
for every x ∈ X and y ∈ Y .

Special cases of joins are the non-Hausdorff cone C(X) = X ⊕ D0 and the non-
Hausdorff suspension S(X) = X ⊕ S0 of any finite T0-space X. Here D0 denotes the
singleton (0-cell).

Remark 2.7.2. K(X ⊕ Y ) = K(X) ∗ K(Y ).
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Given a point x in a finite T0-space X, the star Cx of x consists of the points which
are comparable with x, i.e. Cx = Ux ∪ Fx. Note that Cx is always contractible since
1Cx ≤ f ≥ g where f : Cx → Cx is the map which is the identity on Fx and the constant
map x on Ux, and g is the constant map x. The link of x is the subspace Ĉx = Cxr{x}. In
case we need to specify the ambient space X, we will write ĈX

x . Note that Ĉx = Ûx ⊕ F̂x.

Proposition 2.7.3. Let X and Y be finite T0-spaces. Then X ⊕ Y is contractible if and
only if X or Y is contractible.

Proof. Assume X is contractible. Then there exists a sequence of spaces

X = Xn ) Xn−1 ) . . . ) X1 = {x1}

with Xi = {x1, x2, . . . , xi} and such that xi is a beat point of Xi for every 2 ≤ i ≤ n.
Then xi is a beat point of Xi ⊕ Y for each 2 ≤ i ≤ n and therefore, X ⊕ Y deformation
retracts to {x1} ⊕ Y which is contractible. Analogously, if Y is contractible, so is X ⊕ Y .

Now suppose X ⊕ Y is contractible. Then there exists a sequence

X ⊕ Y = Xn ⊕ Yn ) Xn−1 ⊕ Yn−1 ) . . . ) X1 ⊕ Y1 = {z1}

with Xi ⊆ X, Yi ⊆ Y , Xi ⊕ Yi = {z1, z2 . . . , zi} such that zi is a beat point of Xi ⊕ Yi for
i ≥ 2.

Let i ≥ 2. If zi ∈ Xi, zi is a beat point of Xi unless it is a maximal point of Xi and Yi

has a minimum. In the same way, if zi ∈ Yi, zi is a beat point of Yi or Xi has a maximum.
Therefore, for each 2 ≤ i ≤ n, either Xi−1 ⊆ Xi and Yi−1 ⊆ Yi are deformation retracts
(in fact, one inclusion is an identity and the other inclusion is strict), or one of them, Xi

or Yi, is contractible. This proves that X or Y is contractible.

In 4.2.19 we will prove a result which is the analogous of 2.7.3 for collapsible finite
spaces.

If X and Y are finite spaces, the preorder corresponding to the topological product
X × Y is the product of the preorders of X and Y (Remark 1.1.2), i.e. (x, y) ≤ (x′, y′)
if and only if x ≤ x′ and y ≤ y′. If X and Y are two topological spaces, not necessarily
finite, and A is strong deformation retract of a X, then A × Y is a strong deformation
retract of X × Y .

Proposition 2.7.4. Let Xc and Yc be cores of finite spaces X and Y . Then Xc × Yc is a
core of X × Y .

Proof. Since Xc ⊆ X is a strong deformation retract, so is Xc× Y ⊆ X × Y . Analogously
Xc×Yc is a strong deformation retract of Xc×Y and then, so is Xc×Yc ⊆ X×Y . We have
to prove that the product of minimal finite spaces is also minimal. Let (x, y) ∈ Xc×Yc. If
there exist x′ ∈ Xc with x′ ≺ x and y′ ∈ Yc with y′ ≺ y, (x, y) covers at least two elements
(x′, y) and (x, y′). If x is minimal in Xc, Û(x,y) is homeomorphic to Ûy. Analogously if y
is minimal. Therefore, (x, y) is not a down beat point. Similarly, Xc × Yc does not have
up beat points. Thus, it is a minimal finite space.
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In particular X × Y is contractible if and only if each space X and Y is contractible.
In fact this result holds in general, when X and Y are not necessarily finite.

Recall that the product of two non-empty spaces is T0 if and only if each space is.

Proposition 2.7.5. Let X and Y be finite T0-spaces. Then |K(X ×Y )| is homeomorphic
to |K(X)| × |K(Y )|.
Proof. Let pX : X × Y → X and pY : X × Y → Y be the canonical projections. Define
f : |K(X × Y )| → |K(X)| × |K(Y )| by f = |K(pX)| × |K(pY )|. In other words, if α =
k∑

i=0
ti(xi, yi) ∈ |K(X × Y )| where (x0, y0) < (x1, y1) < . . . < (xk, yk) is a chain in X × Y ,

define f(α) = (
k∑

i=0
tixi,

k∑
i=0

tiyi).

Since |K(pX )| and |K(pY )| are continuous, so is f . |K(X×Y )| is compact and |K(X)|×
|K(Y )| is Hausdorff, so we only need to show that f is a bijection. Details will be left to
the reader. An explicit formula for g = f−1 is given by

g(

k∑

i=0

uixi,

l∑

i=0

viyi) =
∑

i,j

tij(xi, yj),

where tij = max{0,min{u0 +u1 + . . .+ui, v0 +v1 + . . . vj}−max{u0 +u1 + . . .+ui−1, v0 +
v1 + . . . vj−1}}. The idea is very simple. Consider the segments U0, U1, . . . , Uk ⊆ I = [0, 1],
each Ui of length ui, Ui = [u0 + u1 + . . . + ui−1, u0 + u1 + . . . + ui]. Analogously, define
Vj = [v0 + v1 + . . .+ vj−1, v0 + v1 + . . .+ vj] ⊆ I for 0 ≤ j ≤ l. Then tij is the length of the
segment Ui∩Vj. It is not hard to see that g : |K(X)|×|K(Y )| → |K(X×Y )| is well defined
since support(

∑
i,j
tij(xi, yj)) is a chain and

∑
tij =

∑
i,j
length(Ui∩Vj) =

∑
i
length(Ui) = 1.

Moreover, the compositions gf and fg are the corresponding identities.

If X is a finite T0-space, and A ⊆ X is a subspace, the quotient X/A need not be T0.
For example, if X is the chain of three elements 0 < 1 < 2 and A = {0, 2}, X/A is the
indiscrete space of two elements. We will exhibit a necessary and sufficient condition for
X/A to be T0. Recall that A denotes the closure of A.

Let X be a finite space and A ⊆ X a subspace. We will denote by q : X → X/A
the quotient map, qx the class in the quotient of an element x ∈ X and denote by
A = {x ∈ X | ∃a ∈ A with x ≤ a} =

⋃
a∈A

Ua ⊆ X, the open hull of A.

Lemma 2.7.6. Let x ∈ X. If x ∈ A, Uqx = q(Ux ∪A). If x /∈ A, Uqx = q(Ux).

Proof. Suppose x ∈ A. Since q−1(q(Ux ∪ A)) = Ux ∪A ⊆ X is open, q(Ux ∪A) ⊆ X/A is
open and contains qx. Therefore Uqx ⊆ q(Ux ∪ A). The other inclusion follows from the
continuity of q since x ∈ A.

If x /∈ A, q−1(q(Ux)) = Ux, so q(Ux) is open and therefore Uqx ⊆ q(Ux). The other
inclusion is trivial.

Proposition 2.7.7. Let X be a finite space and A ⊆ X a subspace. Let x, y ∈ X, then
qx ≤ qy in the quotient X/A if and only if x ≤ y or there exist a, b ∈ A such that x ≤ a
and b ≤ y.
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Proof. Assume qx ≤ qy. If y ∈ A, there exists b ∈ A with b ≤ y and by the previous
lemma qx ∈ Uqy = q(Uy ∪ A). Therefore x ∈ Uy ∪ A and then x ≤ y or x ≤ a for some
a ∈ A. If y /∈ A, qx ∈ Uqy = q(Uy). Hence, x ∈ Uy.

Conversely if x ≤ y or there are some a, b ∈ A such that x ≤ a and b ≤ y, then qx ≤ qy
or qx ≤ qa = qb ≤ qy.

Proposition 2.7.8. Let X be a finite T0-space and A ⊆ X. The quotient X/A is not T0

if and only if there exists a triple a < x < b with a, b ∈ A and x /∈ A.

Proof. Suppose there is not such triple and that qx ≤ qy, qy ≤ qx. Then x ≤ y or there
exist a, b ∈ A with x ≤ a, b ≤ y, and, on the other hand, y ≤ x or there are some a′, b′ ∈ A
such that y ≤ a′, b′ ≤ x. If x ≤ y and y ≤ x, then x = y. In other case, both x and y are
in A. Therefore, qx = qy. This proves that X/A is T0. Conversely, if there exists a triple
a < x < b as above, qa ≤ qx ≤ qb = qa, but qa 6= qx. Therefore, X/A is not T0.

The non-existence of a triple as above is equivalent to saying that A = A ∩A, i.e.:

X/A is T0 if and only if A = A ∩A.

For example open or closed subsets satisfy this condition.

Now we want to study how the functors X and K behave with respect to quotients.

Example 2.7.9. Let X = CD2 = {x, a, b} and let A = {a, b} be the subspace of minimal
elements.

x•
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��
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55

a• •b
Then, X/A is the Sierpinski space and |K(X)|/|K(A)| is homeomorphic to S1. Therefore
|K(X)|/|K(A)| and |K(X/A)| are not homotopy equivalent. However X ′/A′ = S0⊕S0 and
then |K(X ′)|/|K(A′)| and |K(X ′/A′)| are both homeomorphic to a circle. The application
K does not preserve quotients in general. In 7.2.2 we prove that if A is a subspace of a
finite T0-space X, |K(X ′)|/|K(A′)| and |K(X ′/A′)| are homotopy equivalent.

A particular case of a quotient X/A is the one-point union or wedge. If X and Y are
topological spaces with base points x0 ∈ X, y0 ∈ Y , then the wedge X ∨Y is the quotient
X⊔Y/A with A = {x0, y0}. Clearly, if X and Y are finite T0-spaces, A = {x0, y0} ⊆ X⊔Y
satisfies A = A ∩ A and then X ∨ Y is also T0. Moreover, if x, x′ ∈ X, then x covers x′

in X if and only if x covers x′ in X ∨ Y . The same holds for Y , and if x ∈ X r {x0},
y ∈ Y r {y0} then x does not cover y in X ∨ Y and y does not cover x. Thus, the Hasse
diagram of X ∨ Y is the union of the Hasse diagrams of X and Y , identifying x0 and y0.

If X ∨ Y is contractible, then X and Y are contractible. This holds for general topo-
logical spaces. Let i : X → X ∨ Y denote the canonical inclusion and r : X ∨ Y → X the
retraction which sends all of Y to x0. If H : (X ∨Y )× I → X ∨Y is a homotopy between
the identity and a constant, then rH(i × 1I) : X × I → X shows that X is contractible.
The following example shows that the converse is not true for finite spaces.
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Example 2.7.10. The space X of Example 2.2.6 is contractible, but the union at x of
two copies of X is a minimal finite space, and in particular it is not contractible.
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However, from Corollary 4.2.26 we will deduce that X ∨X is homotopically trivial, or
in other words, it is weak homotopy equivalent to a point. This is the first example we
exhibit of a finite space which has trivial homotopy groups but which is not contractible.
These spaces play a fundamental rol in the theory of finite spaces.

In Proposition 4.2.25 we will prove that if X and Y are finite T0-spaces, there is a
weak homotopy equivalence |K(X)| ∨ |K(Y )| → X ∨ Y .
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Chapter 3

Minimal finite models

In 2.3 we proved that in general, if K is a finite simplicial complex, there is no finite space
with the homotopy type of |K|. However, the theory of McCord, shows how to use finite
spaces to model compact polyhedra finding for each finite complex K a weak homotopy
equivalent finite space X (K). In this Chapter we will study finite models of polyhedra in
this sense and we will describe the minimal finite models of some known Hausdorff spaces,
i.e. weak homotopy equivalent finite spaces of minimum cardinality.

Definition 3.0.1. Let X be a space. We say that a finite space Y is a finite model of X
if it is weak homotopy equivalent to X. We say that Y is a minimal finite model if it is a
finite model of minimum cardinality.

For example, the singleton is the unique minimal finite model of every contractible
space. Moreover, it is the unique minimal finite model of every homotopically trivial
space, i.e. with trivial homotopy groups.

Since every finite space is homotopy equivalent to its core, which is a smaller space,
we have the following

Remark 3.0.2. Every minimal finite model is a minimal finite space.

Since K(X) = K(Xop), if X is a minimal finite model of a space Y , then so is Xop.

Example 3.0.3. The 5-point T0-space X, whose Hasse diagram is
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has an associated polyhedron |K(X)|, which is homotopy equivalent to S1∨S1. Therefore,
X is a finite model of S1 ∨ S1. In fact, it is a minimal finite model since every space with
less than 5 points is either contractible, or non connected or weak homotopy equivalent to
S1. However, this minimal finite model is not unique since Xop is another minimal finite
model not homeomorphic to X.

We will generalize this result later, when we characterize the minimal finite models of
graphs.
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Note that, by Whitehead Theorem, if X is a finite model of a polyhedron Y , then Y
is homotopy equivalent to |K(X)|.

Generalizing the Definition made in Section 2.7, we define the non-Hausdorff suspen-
sion S(X) of a topological space X as the space X∪{+,−} whose open sets are those of X
together with X ∪{+}, X ∪{−} and X ∪{+,−}. If X is a finite space, the non-Hausdorff
suspension of X is the join S(X) = X ⊕ S0. The non-Hausdorff suspension of order n is
defined recursively by Sn(X) = S(Sn−1(X)). For convenience we define S0(X) = X.

The following result is due to McCord [26].

Proposition 3.0.4. The finite space Sn(S0) is a finite model of the n-dimensional sphere
Sn for every n ≥ 0.

Proof. By 2.7.2, |K(Sn(S0))| = |K(S0⊕S0⊕ . . .⊕S0)| = |K(S0)| ∗ |K(S0)| ∗ . . . ∗ |K(S0)| =
S0 ∗ S0 ∗ . . . ∗ S0 = Sn.
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In [23] P. May conjectures that Sn(S0) is a minimal finite model of Sn. We will show
that this conjecture is true. In fact, we prove a stronger result. Namely, we will see that
any space with the same homotopy groups as Sn has at least 2n+ 2 points. Moreover, if
it has exactly 2n+ 2 points then it has to be homeomorphic to SnS0.

3.1 Minimal finite models of the spheres

The height h(X) of a finite poset X is one less that the maximum cardinality of a chain
of X. Therefore h(X) coincides with the dimension of the associated complex K(X).

Theorem 3.1.1. Let X 6= ∗ be a minimal finite space. Then X has at least 2h(X) + 2
points. Moreover, if X has exactly 2h(X)+2 points, then it is homeomorphic to Sh(X)(S0).

Proof. Let x0 < x1 < . . . < xh be a chain in X of length h = h(X). Since X is a minimal
finite space, xi is not an up beat point for any 0 ≤ i < h. Then, for every 0 ≤ i < h there
exists yi+1 ∈ X such that yi+1 > xi and yi+1 � xi+1. We assert that the points yi (for
0 < i ≤ h) are all distinct from each other and also different from the xj ( 0 ≤ j ≤ h).

Since yi+1 > xi, it follows that yi+1 6= xj for all j ≤ i. But yi+1 6= xj for all j > i
because yi+1 � xi+1.

If yi+1 = yj+1 for some i < j, then yi+1 = yj+1 ≥ xj ≥ xi+1, which is a contradiction.
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Since finite spaces with minimum or maximum are contractible and X 6= ∗ is a minimal
finite space, it cannot have a minimum. Then there exists y0 ∈ X such that y0 � x0.
Therefore, y0 must be distinct from the other 2h+ 1 points and #X ≥ 2h+ 2.

Let us suppose now that X has exactly 2h+ 2 points, i.e.

X = {x0, x1, . . . , xh, y0, y1, . . . , yh}.

Because of the maximality of the chain x0 < . . . < xh, we get that xi and yi are
incomparable for all i.

We show that yi < xj and yi < yj for all i < j by induction in j.

For j = 0 there is nothing to prove. Let 0 ≤ k < h and assume the statement holds
for j = k. As xk+1 is not a down beat point, there exists z ∈ X such that z < xk+1, and
z � xk. Since xk+1 and yk+1 are incomparable, it follows that z 6= yk+1. By induction we
know that every point in X, with the exception of yk and yk+1, is greater than xk+1 or
less than xk. Then z = yk and so, yk < xk+1. Analogously, yk+1 is not a down beat point
and there exists w ∈ X such that w < yk+1 and w � xk. Again by induction, and because
yk+1 � xk+1, we deduce that w must be yk and then yk < yk+1. Furthermore, if i < k,
then yi < xk < xk+1 and yi < xk < yk+1.

We proved that, for any i < j, we have that yi < xj , yi < yj, xi < xj and xi < yj.
Moreover, for any 0 ≤ i ≤ h, xi and yi are incomparable.

This is exactly the order of Sh(S0). Therefore X is homeomorphic to Sh(S0).

Theorem 3.1.2. Any space with the same homotopy groups as Sn has at least 2n + 2
points. Moreover, Sn(S0) is the unique space with 2n+ 2 points with this property.

Proof. The case n = 1 is trivial. In the other cases, let us suppose that X is a finite space
with minimum cardinality such that πk(X,x) = πk(S

n, s) for all k ≥ 0. Then X must be
a minimal finite space and so is T0.

By the Hurewicz Theorem, Hn(|K(X)|) = πn(|K(X)|) = πn(Sn) 6= 0. This implies
that the dimension of the simplicial complex K(X) must be at least n, which means that
the height of X is at least n. The result now follows immediately from the previous
theorem.

Corollary 3.1.3. The n-sphere has a unique minimal finite model and it has 2n+2 points.

Remark 3.1.4. After obtaining these results, we found another article of McCord (Singular
homology and homotopy groups of finite spaces, Notices of the American Mathematical
Society, vol. 12(1965)) with a result (Theorem 2) without proof, from which the first
part of 3.1.2 could be deduced. McCord’s result can be easily deduced from our stronger
theorem 3.1.1 (which also implies the uniqueness of these minimal models).

Furthermore, we think that the proof of 3.1.1 itself is interesting because it relates the
combinatorial methods of Stong’s theory with McCord’s point of view.
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3.2 Minimal finite models of graphs

Remark 3.2.1. IfX is a connected finite T0-space of height one, |K(X)| is a connected graph,
i.e. a CW complex of dimension one. Therefore, the weak homotopy type ofX is completely
determined by its Euler characteristic. More precisely, if χ(X) = #X −#E(H(X)) = n,

then X is a finite model of
1−n∨
i=1

S1. Recall that E(H(X)) denotes the set of edges of the

Hasse diagram of X.

Proposition 3.2.2. Let X be a connected finite T0-space and let x0, x ∈ X, x0 6= x such
that x is neither maximal nor minimal in X. Then the inclusion map of the associated
simplicial complexes K(X r {x}) ⊆ K(X) induces an epimorphism

i∗ : E(K(X r {x}), x0)→ E(K(X), x0)

between their edge-path groups.

Proof. We have to check that every closed edge path in K(X) with base point x0 is
equivalent to another edge path that does not go through x. Let us suppose that y ≤ x
and (y, x)(x, z) is an edge path in K(X). If x ≤ z then (y, x)(x, z) ≡ (y, z). In the case
that z < x, since x is not maximal in X, there exists w > x. Therefore (y, x)(x, z) ≡
(y, x)(x,w)(w, x)(x, z) ≡ (y,w)(w, z). The case y ≥ x is analogous.

In this way, one can eliminate x from the writing of any closed edge path with base
point x0.

Note that the space X r {x} of the previous proposition is also connected. An al-
ternative proof of the previous proposition is given by the Van Kampen Theorem. Let
Cx = Ux ∪Fx be the star of x. Since x is not maximal or minimal, the link Ĉx = Cx r {x}
is connected. Then Van Kampen gives an epimorphism π1(|K(X r x)|) ∗ π1(|K(Cx)|) →
π1(|K(X)|). But K(Cx) = xK(Ĉx) is a cone, and then π1(|K(Cx)|) = 0. Therefore,
i∗ : π1(|K(X r x)|)→ π1(|K(X)|) is an epimorphism.

The result above shows one of the advantages of using finite spaces instead of simplicial
complexes. The conditions of maximality or minimality of points in a finite space are hard
to express in terms of simplicial complexes.

Remark 3.2.3. If X is a finite T0-space, then h(X) ≤ 1 if and only if every point in X is
maximal or minimal.

Corollary 3.2.4. Let X be a connected finite space. Then there exists a connected T0-
subspace Y ⊆ X of height at most one such that the fundamental group of X is a quotient
of the fundamental group of Y .

Proof. We can assume that X is T0 because X has a core. Now, the result follows imme-
diately from the previous proposition.

Remark 3.2.5. Note that the fundamental group of a connected finite T0-space of height
at most one is finitely generated by 3.2.1. Therefore, path-connected spaces whose funda-
mental group does not have a finite set of generators do not admit finite models.
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Corollary 3.2.6. Let n ∈ N. If X is a minimal finite model of
n∨

i=1
S1, then h(X) = 1.

Proof. Let X be a minimal finite model of
n∨

i=1
S1. Then there exists a connected T0-sub-

space Y ⊆ X of height one, x ∈ Y and an epimorphism from π1(Y, x) to π1(X,x) =
n∗

i=1
Z.

Since h(Y ) = 1, Y is a model of a graph, thus π1(Y, x) =
m∗

i=1
Z for some integer m.

Note that m ≥ n.

There are m edges of H(Y ) which are not in a maximal tree of the underlying non
directed graph of H(Y ) (i.e. K(Y )). Therefore, we can remove m − n edges from H(Y )
in such a way that it remains connected and the new space Z obtained in this way is a

model of
n∨

i=1
S1.

Note that #Z = #Y ≤ #X, but since X is a minimal finite model, #X ≤ #Z and
then X = Y has height one.

If X is a minimal finite model of
n∨

i=1
S1 and we call i = #{y ∈ X | y is maximal},

j = #{y ∈ X | y is minimal}, then #X = i+ j and #E(H(X)) ≤ ij. Since χ(X) = 1− n,
we have that n ≤ ij − (i+ j) + 1 = (i− 1)(j − 1).

We can now state the main result of this Section.

Theorem 3.2.7. Let n ∈ N. A finite T0-space X is a minimal finite model of
n∨

i=1
S1 if

and only if h(X) = 1, #X = min{i+ j | (i−1)(j−1) ≥ n} and #E(H(X)) = #X+n−1.

Proof. We have already proved that if X is a minimal finite model of
n∨

i=1
S1, then h(X) = 1

and #X ≥ min{i + j | (i − 1)(j − 1) ≥ n}. If i and j are such that n ≤ (i − 1)(j − 1),
we can consider Y = {x1, x2, . . . , xi, y1, y2, . . . yj} with the order yk ≤ xl for all k, l,

which is a model of
(i−1)(j−1)∨

k=1

S1. Then we can remove (i − 1)(j − 1) − n edges from

H(X) to obtain a connected space of cardinality i + j which is a finite model of
n∨

k=1

S1.

Therefore #X ≤ #Y = i + j. This is true for any i, j with n ≤ (i − 1)(j − 1), then
#X = min{i + j | (i − 1)(j − 1) ≥ n}. Moreover, #E(H(X)) = #X + n − 1 because
χ(X) = 1− n.

In order to show the converse of the theorem we only need to prove that the conditions
h(X) = 1, #X = min{i + j | (i − 1)(j − 1) ≥ n} and #E(H(X)) = #X + n − 1 imply
that X is connected, because in this case, by 3.2.1, the first and third conditions would

say that X is a model of
n∨

i=1
S1, and the second condition would say that it has the right

cardinality.

Suppose X satisfies the conditions of above and let Xl, 1 ≤ l ≤ k, be the connected
components of X. Let us denote by Ml the set of maximal elements of Xl and let ml =
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XlrMl. Let i =
k∑

r=1
#Ml, j =

k∑
r=1

#ml. Since i+j = #X = min{s+t | (s−1)(t−1) ≥ n},
it follows that (i− 2)(j − 1) < n = #E(H(X))−#X +1 = #E(H(X))− (i+ j)+1. Hence
ij −#E(H(X)) < j − 1. This means that K(X) differs from the complete bipartite graph
(∪ml,∪Ml) in less than j − 1 edges. Since there are no edges from mr to Ml if r 6= l,

j − 1 >

k∑

l=1

#Ml(j −#ml) ≥
k∑

l=1

(j −#ml) = (k − 1)j.

Therefore k = 1 and the proof is complete.

Remark 3.2.8. Since the minimum min{i+ j | (i− 1)(j − 1) ≥ n} is attained for i = j or

i = j + 1, the cardinality of a minimal finite model of
n∨

i=1
S1 is

min{2⌈√n+ 1⌉, 2
⌈

1 +
√

1 + 4n

2

⌉
+ 1}.

Note that a space may admit many minimal finite models as we can see in the following
example.

Example 3.2.9. Any minimal finite model of
3∨

i=1
S1 has 6 points and 8 edges. So, they

are, up to homeomorphism
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In fact, using our characterization, it is not hard to prove the following

Proposition 3.2.10.
n∨

i=1
S1 has a unique minimal finite model if and only if n is a square.

Note that since any graph is a K(G, 1), the minimal finite models of a graph X are,
in fact, the smallest spaces with the same homotopy groups as X.
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Chapter 4

Simple homotopy types and finite

spaces

J.H.C. Whitehead’s theory of simple homotopy types is inspired by Tietze’s theorem in
combinatorial group theory, which states that any finite presentation of a group could be
deformed into any other by a finite sequence of elementary moves, which are now called
Tietze transformations. Whitehead translated these algebraic moves into the well-known
geometric moves of elementary collapses and expansions of finite simplicial complexes.
His beautiful theory turned out to be fundamental for the development of piecewise-linear
topology: The s-cobordism theorem, Zeeman’s conjecture [45], the applications of the
theory in surgery, Milnor’s classical paper on Whitehead Torsion [28] and the topological
invariance of torsion are some of its major uses and advances.

In this Chapter we show how to use finite topological spaces to study simple homotopy
types using the relationship between finite spaces and simplicial complexes

We have seen that if two finite T0-spacesX,Y are homotopy equivalent, their associated
simplicial complexes K(X),K(Y ) are also homotopy equivalent. Furthermore, Osaki [31]
showed that in this case, the latter have the same simple homotopy type. Nevertheless,
we noticed that the converse of this result is not true in general: There are finite spaces
with different homotopy types whose associated simplicial complexes have the same simple
homotopy type. Starting from this point, we were looking for the relation that X and
Y should satisfy for their associated complexes to be simple homotopy equivalent. More
specifically, we wanted to find an elementary move in the setting of finite spaces (if it
existed) which corresponds exactly to a simplicial collapse of the associated polyhedra.

We discovered this elementary move when we were looking for a homotopically trivial
finite space (i.e. weak homotopy equivalent to a point) which was non-contractible. In
order to construct such a space, we developed a method of reduction, i.e. a method that
allows us to reduce a finite space to a smaller weak homotopy equivalent space. This
method of reduction together with the homotopically trivial and non-contractible space
(of 11 points) that we found are exhibited in Section 4.2. Suprisingly, this method, which
consists of removing a weak point of the space (see Definition 4.2.2), turned out to be the
key to solve the problem of translating simplicial collapses into this setting.

We will say that two finite spaces are simple homotopy equivalent if we can obtain one
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CHAPTER 4. SIMPLE HOMOTOPY TYPES AND FINITE SPACES

of them from the other by adding and removing weak points. If Y is obtained from X by
only removing weak points, we say that X collapses to Y and write X ց Y . The first
main result of this Chapter is the following

Theorem 4.2.12.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simple homotopy equivalent
if and only if K(X) and K(Y ) have the same simple homotopy type. Moreover, if
X ց Y then K(X)ց K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy
equivalent if and only if X (K) and X (L) have the same simple homotopy type. More-
over, if K ց L then X (K)ց X (L).

In particular, the functors K and X induce a one-to-one correspondence between simple
equivalence classes of finite spaces and simple homotopy types:

{Finite T0 − Spaces}/�ց
K // {Finite Simplicial Complexes}/�ցX

oo

We are now able to study finite spaces using all the machinery of Whitehead’s simple
homotopy theory for CW-complexes. But also, what is more important, we can use finite
spaces to strengthen the classical theory. The elementary move in this setting is much
simpler to handle and describe because it consists of adding or removing just one single
point. Applications of this theorem will appear constantly in the next Chapters.

In the Third Section of this Chapter we investigate the class of maps between finite
spaces which induce simple homotopy equivalences between their associated simplicial
complexes. To this end, we introduce the notion of a distinguished map. Similarly to
the classical case, the class of simple equivalences between finite spaces can be generated,
in a certain way, by expansions and a kind of formal homotopy inverses of expansions.
Remarkably this class, denoted by S, is also generated by the distinguished maps. The
second main result of this Chapter is the following

Theorem 4.3.12.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence if
and only if K(f) : K(X)→ K(Y ) is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then ϕ is a
simple homotopy equivalence if and only if X (ϕ) is a simple equivalence.

Many of the results of this Chapter were originally published in [8], but here we exhibit
more applications and shorter proofs in some cases.

4.1 Whitehead’s simple homotopy types

At the end of the 1930’s, J.H.C. Whitehead, started to study homotopy types of polyhedra
from a combinatorial point of view. An elementary simplicial collapse of a finite simplicial
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complex K is a fundamental move that transforms K into another complex L. This
move leads to the notion of simple homotopy types of simplicial complexes. It is easy to
prove that simple homotopy equivalent complexes have homotopy equivalent geometric
realizations. In 1939, Whitehead asked whether the converse of this result held. It was
Whitehead himself who, in 1950 proved that the answer of his question was negative.
Moreover, he found the obstruction for this implication to hold, which is now called the
Whitehead group of the complex. During the development of his theory, Whitehead had
to overcome a lot of difficulties intrinsic from the rigid structure of simplicial complexes.
These obstacles finally led him to the definition of CW-complexes.

In this Section we will recall some basic notions on simplicial complexes and simple
homotopy theory for complexes and we will fix the notations that we will use henceforth.
The standard references for this are Whitehead’s papers [44, 42, 43], Milnor’s article [28]
and M.M.Cohen’s book [14].

If K is a simplicial complex and v is a vertex of K, the (simplicial) star of v in K is
the subcomplex st(v) ⊆ K of simplices σ ∈ K such that vσ ∈ K. The link of v in K is
the subcomplex lk(v) ⊆ st(x) of the simplices which do not contain v.

A complex K and a vertex v ∈ K.

The star st(v) of v.

The link lk(v) of v.

More generally, if σ is a simplex of K, its star st(σ) is the subcomplex of K whose
simplices are the simplices σ′ ∈ K such that σσ′ ∈ K. The link lk(σ) is the subcomplex
of st(σ) of the simplices which are disjoint with σ.

If σ is a simplex of K, σ̇ denotes its boundary and σc denotes the subcomplex of K of
the simplices which do not contain σ. The stellar subdivision of K at the simplex σ is the

39
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complex aσ̇lk(σ) + σc where a is a vertex which is not in K. The first barycentric subdi-
vision K ′ of K can be obtained from K by performing a sequence of stellar subdivisions
(see [18]).

A complex K and a simplex σ ∈ K. The stellar subdivision of K at σ.

Let L be a subcomplex of a finite simplicial complex K. There is an elementary
simplicial collapse from K to L if there is a simplex σ of K and a vertex a of K not in
σ such that K = L ∪ aσ and L ∩ aσ = aσ̇. This is equivalent to saying that there are
only two simplices σ, σ′ of K which are not in L and such that σ′ is the unique simplex
containing σ properly. In this case we say that σ is a free face of σ′. Elementary collapses
will be denoted, as usual, K ցe L.

ցe ցe

Figure 4.1: A complex which collapses to the boundary of a 2-simplex

We say that K (simplicially) collapses to L (or that L expands to K) if there exists
a sequence K = K1,K2, . . . ,Kn = L of finite simplicial complexes such that Ki ցe Ki+1

for all i. This is denoted by K ց L or L ր K. Two complexes K and L have the same
simple homotopy type (or they are simple homotopy equivalent) if there is a sequence
K = K1,K2, . . . ,Kn = L such that Ki ց Ki+1 or Ki ր Ki+1 for all i. Following M.M.
Cohen’s notation, we denote this by K�ց L.

The notion of simple homotopy types is extended to CW-complexes. The Whitehead
group Wh(G) of a group G is a quotient of the first group of K-theory K1(Z(G)) (see [14]).
The Whitehead groupWh(X) of a connected CW-complexX is the Whitehead group of its
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fundamental group Wh(π1(X)). If two homotopy equivalent CW-complexes have trivial
Whitehead group, then they are simple homotopy equivalent, but if Wh(X) 6= 0, there
exists a CW-complex Y with the homotopy type of X and different simple homotopy type.

For example, if G is a free group, Wh(G) = 0. In particular, contractible CW-
complexes are simple homotopy equivalent.

Remark 4.1.1. IfK and L are subcomplexes of a finite simplicial complex, then K∪Lց K
if and only if Lց K ∩ L.

Remark 4.1.2. If K is a finite simplicial complex, then K�ցK ′. In fact we can perform
all the collapses and expansions involving complexes of dimension at most n+ 1 where n
is the dimension of K. In this case we say that K (n+ 1)-deforms to K ′. Moreover, this
is true not only for the barycentric subdivision, but for any stellar subdivision αK of K.

Suppose σ is a simplex of K and a is a vertex which is not in K. Then aσ̇ րe aσ ց σ
(see 4.2.10). Therefore aσ̇lk(σ)ր aσlk(σ)ց σlk(σ) and then

αK = aσ̇lk(σ) + σc ր aσlk(σ) + σc ց σlk(σ) + σc = K

where αK is the stellar subdivision at the simplex σ.

4.2 Simple homotopy types: The first main Theorem

The first mathematician who investigated the relationship between finite spaces and simple
homotopy types of polyhedra was T. Osaki [31]. He showed that if x ∈ X is a beat point,
K(X) collapses to K(Xr{x}). In particular, if two finite T0-spaces, X and Y are homotopy
equivalent, their associated simplicial complexes, K(X) and K(Y ), have the same simple
homotopy type. However, there exist finite spaces which are not homotopy equivalent but
whose associated complexes have the same simple homotopy type. Consider, for instance,
the spaces with the following Hasse diagrams.
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They are not homotopy equivalent because they are non-homeomorphic minimal finite
spaces. However their associated complexes are triangulations of S1 and therefore, have
the same simple homotopy type.

A more interesting example is the following.

Example 4.2.1 (The Wallet). Let W be a finite T0-space, whose Hasse diagram is the
one of Figure 4.2 below.

This finite space is not contractible since it does not have beat points, but it is not hard
to see that |K(W )| is contractible and therefore, it has the same simple homotopy type as
a point. In fact we will deduce from Proposition 4.2.3 that W is a homotopically trivial
space, i.e. all its homotopy groups are trivial. This example also shows that Whitehead
Theorem does not hold in the context of finite spaces, not even for homotopically trivial
spaces.
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Figure 4.2: W .

We introduce now the notion of a weak beat point which generalizes Stong’s definition
of beat points.

Definition 4.2.2. Let X be a finite T0-space. We will say that x ∈ X is a weak beat point
of X (or a weak point, for short) if either Ûx is contractible or F̂x is contractible. In the
first case we say that x is a down weak point and in the second, that x is an up weak point.

Note that beat points are in particular weak points since spaces with maximum or
minimum are contractible. Since the link Ĉx = Ûx ⊕ F̂x is a join, we conclude from 2.7.3
that x is a weak point if and only if Ĉx is contractible.

When x is a beat point of X, we have seen that the inclusion i : X r {x} →֒ X is a
homotopy equivalence. This is not the case if x is just a weak point. However, a slightly
weaker result holds.

Proposition 4.2.3. Let x be a weak point of a finite T0-space X. Then the inclusion map
i : X r {x} →֒ X is a weak homotopy equivalence.

Proof. We may suppose that x is a down weak point since the other case follows immedi-
ately from this one, considering Xop instead of X. Note that K(Xop) = K(X).

Given y ∈ X, the set i−1(Uy) = Uy r {x} has a maximum if y 6= x and is contractible
if y = x. Therefore i|i−1(Uy) : i−1(Uy) → Uy is a weak homotopy equivalence for every
y ∈ X. Now the result follows from Theorem 1.4.2 applied to the basis-like cover given by
the minimal basis of X.

As an application of the last proposition, we verify that the space W defined above,
is a non-contractible homotopically trivial space. As we pointed out in Example 4.2.1, W
is not contractible since it is a minimal finite space with more than one point. However,
it contains a weak point x (see Figure 4.2), since Ûx is contractible (see Figure 4.3).
Therefore W is weak homotopy equivalent to W r {x}. Now it is easy to see that this
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Figure 4.3: Ûx.
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Figure 4.4: W r {x}.

subspace is contractible, because it does have beat points, and one can get rid of them
one by one.

Definition 4.2.4. Let X be a finite T0-space and let Y ( X. We say that X collapses
to Y by an elementary collapse (or that Y expands to X by an elementary expansion)
if Y is obtained from X by removing a weak point. We denote X ցe Y or Y րe X. In
general, given two finite T0-spaces X and Y , we say that X collapses to Y (or Y expands
to X) if there is a sequence X = X1,X2, . . . ,Xn = Y of finite T0-spaces such that for each
1 ≤ i < n, Xi ցe Xi+1. In this case we write X ց Y or Y ր X. Two finite T0-spaces X
and Y are simple homotopy equivalent if there is a sequence X = X1,X2, . . . ,Xn = Y of
finite T0-spaces such that for each 1 ≤ i < n, Xi ց Xi+1 or Xi ր Xi+1. We denote in
this case X�ց Y , following the same notation that we adopted for simplicial complexes.

In contrast with the classical situation, where a simple homotopy equivalence is a
special kind of homotopy equivalence, we will see that homotopy equivalent finite spaces
are simple homotopy equivalent. In fact this follows almost immediately from the fact
that beat points are weak points.

It follows from Proposition 4.2.3 that simple homotopy equivalent finite spaces are
weak homotopy equivalent.

In order to prove Theorem 4.2.12, we need some previous results. The first one concerns
the homotopy type of the associated finite space X (K) of a simplicial cone K. Suppose
K = aL is a cone, i.e. K is the join of a simplicial complex L with a vertex a /∈ L. Since
|K| is contractible, it is clear that X (K) is homotopically trivial. The following lemma
shows that X (K) is in fact contractible (compare with [33]).

Lemma 4.2.5. Let K = aL be a finite cone. Then X (K) is contractible.

Proof. Define f : X (K) → X (K) by f(σ) = σ ∪ {a}. This function is order-preserving
and therefore continuous.

If we consider the constant map g : X (K) → X (K) that takes all X (K) into {a},
we have that 1X (K) ≤ f ≥ g. This proves that the identity is homotopic to a constant
map.

The following construction is the analogue to the mapping cylinder of general spaces
and the simplicial mapping cylinder of simplicial complexes.

Definition 4.2.6. Let f : X → Y be a map between finite T0-spaces. We define the
non-Hausdorff mapping cylinder B(f) as the following finite T0-space. The underlying set
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is the disjoint union X ⊔ Y . We keep the given ordering within X and Y and for x ∈ X,
y ∈ Y we set x ≤ y in B(f) if f(x) ≤ y in Y .

Lemma 4.2.7. Let f : X → Y be a map between finite T0-spaces such that f−1(Uy) is
contractible for every y ∈ Y . Then B(f)ց i(X) and B(f)ց j(Y ), where i : X →֒ B(f)
and j : Y →֒ B(f) are the canonical inclusions.

Proof. Label all the elements x1, x2, . . . , xn of X in such a way that xr ≤ xs implies r ≤ s
and define Yr = j(Y ) ∪ {i(x1), i(x2), . . . , i(xr)} ⊆ B(f) for each 0 ≤ r ≤ n. Then

F̂ Yr

i(xr) = {j(y) | y ≥ f(xr)}

is homeomorphic to the contractible space F Y
f(xr). It follows that Yr ցe Yr−1 for 1 ≤ r ≤ n,

and then B(f) = Yn collapses to j(Y ) = Y0. Notice that we have not yet used the
hypothesis on f .

Now order the elements y1, y2, . . . , ym of Y in such a way that yr ≤ ys implies r ≤ s
and define Xr = i(X) ∪ {j(yr+1), j(yr+2), . . . , j(ym)} ⊆ B(f) for every 0 ≤ r ≤ m. Then

Û
Xr−1

j(yr) = {i(x) | f(x) ≤ yr}

is homeomorphic to f−1(Uyr ), which is contractible by hypothesis. Thus Xr−1 ցe Xr for
1 ≤ r ≤ m and therefore B(f) = X0 collapses to i(X) = Xm.

Notice that in Definition 4.2.4 it is not explicit that homeomorphic finite T0-spaces
are simple homotopy equivalent. One could have added that to the definition, but it is
not needed since it can be deduced from it. If X and Y are disjoint homeomorphic finite
T0-spaces, then we can take a homeomorphism f : X → Y and the underlying set of B(f)
as the union of the dijoint sets X and Y . Then by Lemma 4.2.7, X ր B(f)ց Y . In the
case that X and Y are non-disjoint, one can choose a third space Z homeomorphic to X
and Y and disjoint from both of them. Therefore X�ց Z�ց Y .

Now we can positively deduce the following

Remark 4.2.8. Homotopy equivalent finite T0-spaces are simple homotopy equivalent. Sup-

pose X
he≃ Y and that Xc and Yc are cores of X and Y . Since beat points are weak points,

X ց Xc and Y ց Yc. On the other hand, Xc and Yc are homeomorphic and therefore,
Xc�ց Yc.

As we pointed out above, any finite simplicial complex K has the same simple homo-
topy type of its barycentric subdivision K ′. We prove next an analogous result for finite
spaces. Following [20], the barycentric subdivision of a finite T0-space X is defined by
X ′ = X (K(X)). Explicitly, X ′ consists of the non-empty chains of X ordered by inclu-
sion. It is shown in [20] that there is a weak homotopy equivalence h : X ′ → X which
takes each chain C to its maximum max(C).

Proposition 4.2.9. Let X be a finite T0-space. Then X and X ′ are simple homotopy
equivalent.
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Proof. It suffices to show that the map h : X ′ → X satisfies the hypothesis of Lemma 4.2.7.
This is clear since h−1(Ux) = {C | max(C) ≤ x} = (Ux)′ = X (xK(Ûx)) is contractible
by Lemma 4.2.5 (in fact, if a finite T0-space Y is contractible, so is Y ′ (see Corollary
5.0.18)).

Note also that the proof of Proposition 4.2.9 shows that h is a weak homotopy equiv-
alence. Moreover, any map in the hypothesis of Lemma 4.2.7 is a weak homotopy equiva-
lence by Theorem 1.4.2.

We will use the following easy lemma whose proof we omit.

Lemma 4.2.10. Let aK be a simplicial cone of a finite complex K. Then, K is collapsible
if and only if aK ց K.

Lemma 4.2.11. Let v be a vertex of a finite simplicial complex K. Then, lk(v) is col-
lapsible if and only if K ց K r v.

Proof. By Lemma 4.2.10, lk(v) is collapsible if and only if st(v) = vlk(v) ց lk(v) =
st(v) ∩ (K r v) if and only if K = st(v) ∪ (K r v)ց K r v.

Theorem 4.2.12.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simple homotopy equivalent
if and only if K(X) and K(Y ) have the same simple homotopy type. Moreover, if
X ց Y then K(X)ց K(Y ).

(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy
equivalent if and only if X (K) and X (L) have the same simple homotopy type. More-
over, if K ց L then X (K)ց X (L).

Proof. Let X be a finite T0-space and assume first that x ∈ X is a beat point. Then, there
exists x′ ∈ X and subspaces Y,Z ⊆ X such that Ĉx = Y ⊕{x′}⊕Z. The link lk(x) of the
vertex x in K(X) is collapsible, since lk(x) = K(Ĉx) = x′K(Y ⊕ Z). By Lemma 4.2.11,
K(X)ց K(X r {x}). In particular, if X is contractible, K(X) is collapsible.

Now suppose x ∈ X is a weak point. Then Ĉx is contractible and therefore lk(x) =
K(Ĉx) is collapsible. Again, by 4.2.11, K(X) ց K(X r {x}). We have then proved that
X ց Y implies K(X)ց K(Y ). In particular, X�ց Y implies K(X)�ցK(Y ).

Suppose now that K and L are finite simplicial complexes such that K ցe L. Then,
there exist σ ∈ K and a vertex a of K not in σ such that aσ ∈ K, K = L∪{σ, aσ} and aσ∩
L = aσ̇. It follows that σ is an up beat point of X (K), and since Û

X (K)r{σ}
aσ = X (aσ̇), by

Lemma 4.2.5, aσ is a down weak point of X (K)r{σ}. Therefore X (K) ցe X (K) r {σ} ցe
X (K) r {σ, aσ} = X (L). This proves the first part of (b) and the “moreover” part.

Let X, Y be finite T0-spaces such that K(X)�ցK(Y ). Then X ′ = X (K(X))�ց
X (K(Y )) = Y ′ and by Proposition 4.2.9, X�ց Y . Finally, if K, L are finite simplicial
complexes such that X (K)�ցX (L), K ′ = K(X (K))�ցK(X (L)) = L′ and therefore
K�ց L. This completes the proof.
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Corollary 4.2.13. The functors K, X induce a one-to-one correspondence between simple
equivalence classes of finite spaces and simple homotopy types of finite simplicial complexes

{Finite T0 − Spaces}/�ց

K // {Finite Simplicial Complexes}/�ցX
oo

The following diagrams illustrate the whole situation.

X
he≃ Y +3 X �ց Y +3

KS

��

X
we≈ Y

KS

��

K(X)�ցK(Y ) +3 |K(X)| we≈ |K(Y )| ks +3 |K(X)| he≃ |K(Y )|

X (K)
he≃ X (L) +3 X (K)�ցX (L) +3

KS

��

X (K)
we≈ X (L)
KS

��

K�ց L +3 |K| we≈ |L| ks +3 |K| he≃ |L|

The Wallet W satisfies W ց ∗, however W
he

≃/ ∗. Therefore X�ց Y ⇒/ X
he≃ Y .

Since |K| he≃ |L| ⇒/ K�ց L, X
we≈ Y ⇒/ X�ց Y . Note that, if X

we≈ Y and their
Whitehead group Wh(π1(X)) is trivial, then |K(X)| and |K(Y )| are simple homotopy
equivalent CW-complexes. It follows from Theorem 4.2.12 that X�ց Y . Thus, we have
proved

Corollary 4.2.14. Let X, Y be weak homotopy equivalent finite T0-spaces such that
Wh(π1(X)) = 0. Then X�ց Y .

Beat points defined by Stong provide an effective way of deciding whether two finite
spaces are homotopy equivalent. The problem becomes much harder when one deals with
weak homotopy types instead. There is no easy way to decide whether two finite spaces are
weak homotopy equivalent or not. However if two finite T0-spaces have trivial Whitehead
group, then they are weak homotopy equivalent if and only we can obtain one from the
other just by adding and removing weak points.

Another immediate consequence of the Theorem is the following

Corollary 4.2.15. Let X, Y be finite T0-spaces. If X ց Y , then X ′ ց Y ′.

Note that from Theorem 4.2.12 one also deduces the following well-known fact: If K
and L are finite simplicial complexes such that K ց L, then K ′ ց L′.
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4.2.1 Joins, products, wedges and collapsibility

The notion of collapsibility for finite spaces is closely related with the analogous notion
for simplicial complexes: We say that a finite T0-space is collapsible if it collapses to a
point. Observe that every contractible finite T0-space is collapsible, however the converse
is not true. The Wallet W introduced in Example 4.2.1 is collapsible and non-contractible.
Note that if a finite T0-space X is collapsible, its associated simplicial complex K(X) is
also collapsible. Moreover, if K is a collapsible complex, then X (K) is a collapsible finite
space. Therefore, if X is a collapsible finite space, its subdivision X ′ is also collapsible.

Remark 4.2.16. Note that if the link Ĉx of a point x ∈ X is collapsible, K(Ĉx) is also
collapsible and one has that K(X)ց K(X r {x}) by 4.2.11.

Example 4.2.17. Let W be the Wallet, and C(W ) its non-Hausdorff cone. By Remark
4.2.16, K(C(W ))ց K(W ) but C(W ) does not collapse to W .

Let us consider now a compact contractible polyhedron X with the property that any
triangulation of X is non-collapsible, for instance the Dunce Hat [45]. Let K be any
triangulation of X. The associated finite space X (K) is homotopically trivial because X
is contractible. However, X (K) is not collapsible since K ′ is not collapsible. In Figure 7.3
we exhibit a finite space of 15 points which is homotopically trivial and non-collapsible.

We have therefore the following strict implications in the context of finite spaces:

contractible ⇒ collapsible⇒ homotopically trivial.

Example 4.2.18. The following space X is another example of a collapsible space which
is not contractible.
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The space X ∪ {a} is contractible and collapses to X. Therefore contractibility is not
invariant under collapses.
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It is known that ifK and L are finite simplicial complexes and one of them is collapsible,
then K ∗ L is also collapsible. As far as we know the converse of this result is an open
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problem (see [41, (4.1)]). In the setting of finite spaces, the analogous result and its
converse hold.

Proposition 4.2.19. Let X and Y be finite T0-spaces. Then X ⊕ Y is collapsible if and
only if X or Y is collapsible.

Proof. We proceed as in Proposition 2.7.3, replacing beat points by weak points and
deformation retractions by collapses. Note that if xi is a weak point of Xi, then xi is also
a weak point of Xi ⊕ Y , since ĈXi⊕Y

xi
= ĈXi

xi
⊕ Y is contractible by Proposition 2.7.3.

On the other hand, if zi is a weak point of Xi ⊕ Yi and zi ∈ Xi, then by Proposition
2.7.3, zi is a weak point of Xi or Yi is contractible.

By the proof of Proposition 4.2.19 one also has the following

Proposition 4.2.20. Let X1,X2, Y1, Y2 be finite T0-spaces. If X1�ցX2 and Y1�ց Y2,
X1 ⊕ Y1�ցX2 ⊕ Y2.

These are a similar results for products.

Lemma 4.2.21. Let X and Y be finite T0-spaces. If X ց A, X × Y ց A× Y .

Proof. It suffices to show that if x ∈ X is a weak point of X, X × Y ց (X r {x}) × Y .
Suppose without loss of generality that x is a down weak point. If y ∈ Y ,

Û(x,y) = Ûx × Uy ∪ {x} × Ûy.

Let y0 ∈ Y be a minimal point. Then Û(x,y0) = Ûx × Uy0 is contractible since each
factor is contractible. Therefore, (x, y0) is a down weak point of X × Y . Now, let y1

be minimal in Y r {y0}. Then Û
X×Y r{(x,y0)}
(x,y1) = Ûx × UY

y1
∪ {x} × ÛY

y1
r {(x, y0)} =

Ûx × UY
y1
∪ {x} × ÛY r{y0}

y1 = Ûx × UY
y1

which again is contractible. Therefore (x, y1) is a
weak point in X × Y r {(x, y0)}. Following this reasoning we remove from X × Y all the
points of the form (x, y) with y ∈ Y .

In particular we deduce the following two results.

Proposition 4.2.22. Let X1,X2, Y1, Y2 be finite T0-spaces. If X1�ցX2 and Y1�ց Y2,
X1 × Y1�ցX2 × Y2.

Proposition 4.2.23. Let X and Y be collapsible finite T0-spaces. Then X × Y is col-
lapsible.

There is an analogous result of Proposition 4.2.23 for the associated complexes, which
relates the collapsibility of K(X × Y ) with the collapsibility of K(X) and K(Y ) (see [41]).

The following lemma, was used in the original proof of Theorem 4.2.12 in [8]. The
shorter proof we exhibit here does not use this result, but we will need it for the proof of
Proposition 4.2.25
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Lemma 4.2.24. Let L be a subcomplex of a finite simplicial complex K. Let T be a set
of simplices of K which are not in L, and let a be a vertex of K which is contained in no
simplex of T , but such that aσ is a simplex of K for every σ ∈ T . Finally, suppose that
K = L ∪ ⋃

σ∈T
{σ, aσ} (i.e. the simplices of K are those of L together with the simplices σ

and aσ for every σ in T ). Then Lր K.

Proof. Number the elements σ1, σ2, . . . , σn of T in such a way that for every i, j with i ≤ j,
#σi ≤ #σj. Here #σk denotes the cardinality of σk. Define Ki = L ∪

i⋃
j=1
{σj , aσj} for

0 ≤ i ≤ n. Let σ ( σi. If σ ∈ T , then σ, aσ ∈ Ki−1, since #σ < #σi. If σ /∈ T , then
σ, aσ ∈ L ⊆ Ki−1. This proves that aσi ∩Ki−1 = aσ̇i.

By induction, Ki is a simplicial complex for every i, and Ki−1 րe Ki. Therefore L =
K0 ր Kn = K.

Proposition 4.2.25. Let (X,x0) and (Y, y0) be finite T0-pointed spaces. Then, there
exists a weak homotopy equivalence |K(X)| ∨ |K(Y )| → X ∨ Y .

Proof. Let K(X) ∨K(Y ) ⊆ K(X ∨ Y ) be the simplicial complex which is the union of the
complexes K(X) and K(Y ) identifying the vertices x0 and y0. Then |K(X)| ∨ |K(Y )| is
homeomorphic to |K(X)∨K(Y )|. The McCord map µX∨Y : |K(X ∨Y )| → X ∨Y induces
a map f = µX∨Y i : |K(X)| ∨ |K(Y )| → X ∨ Y , where i : |K(X)| ∨ |K(Y )| →֒ |K(X ∨ Y )|
is the canonical inclusion. In order to prove that f is a weak homotopy equivalence, we
only need to prove that i is a homotopy equivalence. We show something stronger: there
is a simplicial expansion from K(X) ∨ K(Y ) to K(X ∨ Y ).

Take K = K(X ∨ Y ) and L = K(X) ∨ K(Y ). Let a = x0 = y0 and let T = {σ ∈
K | σ /∈ L and a /∈ σ}. If σ ∈ T , then every point of σ is comparable with a, and therefore
aσ ∈ K. By Lemma 4.2.24, Lր K.

Corollary 4.2.26. Let X and Y be finite T0-spaces. Then X ∨Y is homotopically trivial
if and only if both X and Y are.

Proof. If X and Y are homotopically trivial, the polyhedra |K(X)| and |K(Y )| are con-
tractible and therefore |K(X)|∨|K(Y )| is contractible. Thus, X∨Y is homotopically trivial
by Proposition 4.2.25. Conversely, if X ∨ Y is homotopically trivial, |K(X)| ∨ |K(Y )| is
contractible and then |K(X)| and |K(Y )| are contractible. Therefore, X and Y are homo-
topically trivial.

Suppose that X and Y are finite T0-spaces and x0 ∈ X, y0 ∈ Y are minimal points.
If X ∨ Y is collapsible it can be proved by induction that both X and Y are collapsible.
If z ∈ X ∨ Y is a weak point, z 6= x0 (the class of x0 in X ∨ Y ) unless X = ∗ or Y = ∗.
But the distinguished point x0 ∈ X ∨ Y could be a weak point with X 6= ∗ 6= Y if x0 ∈ X
or y0 ∈ Y is not minimal. It is not known in the general case whether X ∨ Y collapsible
implies that X and Y are collapsible. However, the converse is false as the next example
shows.

Example 4.2.27. The simplicial complex K of Example 9.1.8 is collapsible and therefore,
X (K) is collapsible. The space X (K) has a unique weak point σ corresponding to the
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unique free face of K. Then, the union X = X (K)∨X (K) of two copies of X (K) at x0 = σ
is homotopically trivial, but it has no weak points and then it is not collapsible. If x ∈
X (K) is distinct from x0, Ĉ

X
x deformation retracts into Ĉ

X (K)
x which is not contractible.

The point x0 ∈ X is not a weak point either, since its link ĈX
x0

is a join of non-connected
spaces.

4.3 Simple homotopy equivalences: The second main Theorem

In this Section we prove the second main result of the Chapter, which relates simple
homotopy equivalences of complexes with simple equivalences between finite spaces. Like
in the classical setting, the class of simple equivalences is generated by the elementary
expansions. However, in the context of finite spaces this class is also generated by the
distinguished maps, which play a key role in this theory.

Recall that a homotopy equivalence f : |K| → |L| between compact polyhedra is a
simple homotopy equivalence if it is homotopic to a composition of a finite sequence of
maps |K| → |K1| → . . . → |Kn| → |L|, each of them an expansion or a homotopy inverse
of one [14, 35].

We prove first that homotopy equivalences between finite spaces induce simple homo-
topy equivalences between the associated polyhedra.

Theorem 4.3.1. If f : X → Y is a homotopy equivalence between finite T0-spaces, then
|K(f)| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

Proof. Let Xc and Yc be cores of X and Y . Let iX : Xc → X and iY : Yc → Y be the
inclusions and rX : X → Xc, rY : Y → Yc retractions of iX and iY such that iXrX ≃ 1X

and iY rY ≃ 1Y .
Since rY fiX : Xc → Yc is a homotopy equivalence between minimal finite spaces, it

is a homeomorphism. Therefore K(rY fiX) : K(Xc) → K(Yc) is an isomorphism and then
|K(rY fiX)| is a simple homotopy equivalence. Since K(X) ց K(Xc), |K(iX )| is a simple
homotopy equivalence, and then the homotopy inverse |K(rX )| is also a simple homotopy
equivalence. Analogously |K(iY )| is a simple homotopy equivalence.

Finally, since f ≃ iY rY fiXrX , it follows that |K(f)| ≃ |K(iY )||K(rY fiX)||K(rX )| is a
simple homotopy equivalence.

In order to describe the class of simple equivalences, we will use a kind of maps that
was already studied in Lemma 4.2.7.

Definition 4.3.2. A map f : X → Y between finite T0-spaces is distinguished if f−1(Uy)
is contractible for each y ∈ Y . We denote by D the class of distinguished maps.

Note that by the Theorem of McCord 1.4.2, every distinguished map is a weak ho-
motopy equivalence and therefore induces a homotopy equivalence between the associated
complexes. We will prove in Theorem 4.3.4 that in fact the induced map is a simple
homotopy equivalence. From the proof of Proposition 4.2.3, it is clear that if x ∈ X is a
down weak point, the inclusion X r {x} →֒ X is distinguished.

Remark 4.3.3. The map h : X ′ → X defined by h(C) = max(C), is distinguished by the
proof of Proposition 4.2.9.
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Clearly, homeomorphisms are distinguished. However it is not difficult to show that
homotopy equivalences are not distinguished in general.

Theorem 4.3.4. Every distinguished map induces a simple homotopy equivalence.

Proof. Suppose f : X → Y is distinguished. Consider the non-Hausdorff mapping cylinder
B(f) and the canonical inclusions i : X →֒ B(f), j : Y →֒ B(f).

The following diagram

B(f)

X
- 

i
;;wwwwwwwww f // Y

1 Q

j
ccGGGGGGGGG

does not commute, but i ≤ jf and then i ≃ jf . Therefore |K(i)| ≃ |K(j)||K(f)|. By
Lemma 4.2.7 and Theorem 4.2.12, |K(i)| and |K(j)| are expansions (composed with iso-
morphisms) and then, |K(f)| is a simple homotopy equivalence.

In Proposition 6.2.9 we will prove that Theorem 4.3.4 also holds for a weaker notion
of distinguished map: if f : X → Y is a map between finite T0 spaces such that f−1(Uy)
is homotopically trivial for every y ∈ Y , then f induces a simple homotopy equivalence.

We have already shown that expansions, homotopy equivalences and distinguished
maps induce simple homotopy equivalences at the level of complexes. Note that if f, g, h
are three maps between finite T0-spaces such that fg ≃ h and two of them induce simple
homotopy equivalences, then so does the third.

Definition 4.3.5. Let C be a class of continuous maps between topological spaces. We
say that C is closed if it satisfies the following homotopy 2-out-of-3 property: For any
f, g, h with fg ≃ h, if two of the three maps are in C, then so is the third.

Definition 4.3.6. Let C be a class of continuous maps. The class C generated by C is the
smallest closed class containing C.

It is clear that C is always closed under composition and homotopy. The class of
simple homotopy equivalences between CW-complexes is closed and it is generated by
the elementary expansions. Note that every map in the class E of elementary expansions
between finite spaces induces a simple homotopy equivalence at the level of complexes and
therefore the same holds for the maps of E . Contrary to the case of CW-complexes, a
map between finite spaces which induces a simple homotopy equivalence, need not have
a homotopy inverse. This is the reason why the definition of E is not as simple as in the
setting of complexes. We will prove that E = D, the class generated by the distinguished
maps.

A map f : X → Y such that f−1(Fy) is contractible for every y, need not be distin-
guished. However we will show that f ∈ D. We denote by f op : Xop → Y op the map that
coincides with f in the underlying sets, and let Dop = {f | f op ∈ D}.

Lemma 4.3.7. Dop = D.
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Proof. Suppose that f : X → Y lies in Dop. Consider the following commutative diagram

X oo hX

f

��

X ′ = (Xop)′
hXop //

f ′

��

Xop

fop

��
Y oo hY

Y ′ = (Y op)′
hY op // Y op.

Here, f ′ denotes the map X (K(f)). Since D satisfies the 2-out-of-3 property and hXop ,
hY op , f op are distinguished by Remark 4.3.3, f ′ ∈ D. And since hX , hY are distinguished,
f ∈ D. This proves that Dop ⊆ D. The other inclusion follows analogously from the
opposite diagram.

Proposition 4.3.8. E = D, and this class contains all homotopy equivalences between
finite T0-spaces.

Proof. Every expansion of finite spaces is in E because it is a composition of maps in E .
Let f : X → Y be distinguished. By the proof of Theorem 4.3.4 there exist expansions

(eventually composed with homeomorphisms) i, j, such that i ≃ jf . Therefore f ∈ E .
If x ∈ X is a down weak point, the inclusion X r {x} →֒ X is distinguished. If x is an

up weak point, X r {x} →֒ X lies in D by the previous lemma and therefore E ⊆ D.
Suppose now that f : X → Y is a homotopy equivalence. From the proof of Theorem

4.3.1, fiX ≃ iY rY fiX where iX , iY are expansions and rY fiX is a homeomorphism. This
implies that f ∈ E = D.

We denote by S = E = D the class of simple equivalences between finite spaces. In the
rest of the paper we study the relationship between simple equivalences of finite spaces
and simple homotopy equivalences of polyhedra.

Given n ∈ N we denote by Kn the n-th barycentric subdivision of K.

Lemma 4.3.9. Let λ : Kn → K be a simplicial approximation to the identity. Then
X (λ) ∈ S.
Proof. It suffices to prove the case n = 1. Suppose λ : K ′ → K is a simplicial approxima-
tion of 1|K|. Then X (λ) : X (K)′ → X (K) is homotopic to hX (K), for if σ1 ( σ2 ( . . . ( σm

is a chain of simplices of K, then X (λ)({σ1, σ2, . . . , σm}) = {λ(σ1), λ(σ2), . . . , λ(σm)} ⊆
σm = hX (K)({σ1, σ2, . . . , σm}). By Remark 4.3.3, it follows that X (λ) ∈ S.

Lemma 4.3.10. Let ϕ,ψ : K → L be simplicial maps such that |ϕ| ≃ |ψ|. If X (ϕ) ∈ S,
then X (ψ) also lies in S.
Proof. There exists an approximation to the identity λ : Kn → K for some n ≥ 1, such
that ϕλ and ψλ lie in the same contiguity class. By Proposition 2.1.3, X (ϕ)X (λ) =
X (ϕλ) ≃ X (ψλ) = X (ψ)X (λ). By Lemma 4.3.9, X (λ) ∈ S and since X (ϕ) ∈ S, it follows
that X (ψ) ∈ S.

Theorem 4.3.11. Let K0,K1, . . . ,Kn be finite simplicial complexes and let

|K0|
f0 // |K1|

f1 // . . .
fn−1// |Kn|

be a sequence of continuous maps such that for each 0 ≤ i < n either
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(1) fi = |ϕi| where ϕi : Ki → Ki+1 is a simplicial map such that X (ϕi) ∈ S or

(2) fi is a homotopy inverse of a map |ϕi| with ϕi : Ki+1 → Ki a simplicial map such
that X (ϕi) ∈ S.

If ϕ : K0 → Kn is a simplicial map such that |ϕ| ≃ fn−1fn−2 . . . f0, then X (ϕ) ∈ S.

Proof. We may assume that f0 satisfies condition (1). Otherwise we define K̃0 = K0,

f̃0 = |1K0 | : |K̃0| → |K0| and then |ϕ| ≃ fn−1fn−2 . . . f0f̃0.

We proceed by induction on n. If n = 1, |ϕ| ≃ |ϕ0| where X (ϕ0) ∈ S and the result
follows from Lemma 4.3.10. Suppose now that n ≥ 1 and let K0,K1, . . . ,Kn,Kn+1 be
finite simplicial complexes and fi : |Ki| → |Ki+1| maps satisfying conditions (1) or (2),
f0 satisfying condition (1). Let ϕ : K0 → Kn+1 be a simplicial map such that |ϕ| ≃
fnfn−1 . . . f0. We consider two cases: fn satisfies condition (1) or fn satisfies condition
(2).

In the first case we define g : |K0| → |Kn| by g = fn−1fn−2 . . . f0. Let g̃ : Km
0 → Kn

be a simplicial approximation to g and let λ : Km
0 → K0 be a simplicial approximation to

the identity. Then |g̃| ≃ g|λ| = fn−1fn−2 . . . f1(f0|λ|) where f0|λ| = |ϕ0λ| and X (ϕ0λ) =
X (ϕ0)X (λ) ∈ S by Lemma 4.3.9. By induction, X (g̃) ∈ S, and then X (ϕng̃) ∈ S. Since
|ϕλ| ≃ fng|λ| ≃ fn|g̃| = |ϕng̃|, by Lemma 4.3.10, X (ϕλ) lies in S. Therefore X (ϕ) ∈ S.

In the other case, |ϕnϕ| ≃ fn−1fn−2 . . . f0 and by induction, X (ϕnϕ) ∈ S. Therefore
X (ϕ) also lies in S.

Theorem 4.3.12.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence if
and only if |K(f)| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then |ϕ| is
a simple homotopy equivalence if and only if X (ϕ) is a simple equivalence.

Proof. By definition, if f ∈ S, |K(f)| is a simple homotopy equivalence.

Let ϕ : K → L be a simplicial map such that |ϕ| is a simple homotopy equivalence.
Then there exist finite complexes K = K0,K1, . . . ,Kn = L and maps fi : |Ki| → |Ki+1|,
which are simplicial expansions or homotopy inverses of simplicial expansions, and such
that |ϕ| ≃ fn−1fn−2 . . . f0. By Theorem 4.2.12, simplicial expansions between complexes
induce expansions between the associated finite spaces and therefore, by Theorem 4.3.11,
X (ϕ) ∈ S.

Suppose now that f : X → Y is a map such that |K(f)| is a simple homotopy equiva-
lence. Then, f ′ = X (K(f)) : X ′ → Y ′ lies in S. Since fhX = hY f

′, f ∈ S.

Finally, if ϕ : K → L is a simplicial map such that X (ϕ) ∈ S, |ϕ′| : |K ′| → |L′| is
a simple homotopy equivalence. Here ϕ′ = K(X (ϕ)) is the barycentric subdivision of ϕ.
Let λK : K ′ → K and λL : L′ → L be simplicial approximations to the identities. Then
λLϕ

′ and ϕλK are contiguous. In particular |λL||ϕ′| ≃ |ϕ||λK | and then |ϕ| is a simple
homotopy equivalence.
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In the setting of finite spaces one has the following strict inclusions

{homotopy equivalences} ( S ( {weak equivalences}.

Clearly, if f : X → Y is a weak homotopy equivalence between finite T0-spaces with
trivial Whitehead group, f ∈ S.

4.3.1 Simple homotopy version of Quillen’s Theorem A

Results which carry local information to global information appear frequently in Alge-
braic Topology. The Theorem of McCord 1.4.2 roughly states that if a map is locally
a weak homotopy equivalence, then it is also a weak homotopy equivalence (globally).
In the following we prove a result of this kind for simplicial maps and simple homotopy
equivalences.

Let K and L be finite simplicial complexes and let ϕ : K → L be a simplicial map.
Given a simplex σ ∈ L, we denote by ϕ−1(σ) the full subcomplex of K spanned by the
vertices v ∈ K such that ϕ(v) ∈ σ.

Recall that the simplicial version of Quillen’s Theorem A, states that if ϕ : K → L
is a simplicial map and |ϕ|−1(σ) is contractible for every simplex σ ∈ L, then |ϕ| is a
homotopy equivalence (see [32], page 93). Note that |ϕ−1(σ)| = |ϕ|−1(σ). In particular, if
ϕ−1(σ) is collapsible for every σ ∈ L, |ϕ| is a homotopy equivalence. We prove that under
these hypothesis, |ϕ| is a simple homotopy equivalence.

First, we need to state a stronger version of Lemma 4.2.7. We keep the notation we
use there.

Lemma 4.3.13. Let f : X → Y be a map between finite T0-spaces such that f−1(Uy) is
collapsible for every y ∈ Y . Then K(B(f))ց K(i(X)).

Proof. We follow the proof and notation of Lemma 4.2.7. The set Û
Xr−1

j(yr) = {i(x) | f(x) ≤
yr} is homeomorphic to f−1(Uyr), which is collapsible by hypothesis. Therefore, Ĉ

Xr−1

j(yr)

is collapsible by 4.2.19 and, from Remark 4.2.16, K(Xr−1) ց K(Xr). Thus, K(B(f)) =
K(X0) collapses to K(i(X)) = K(Xm).

Theorem 4.3.14. Let ϕ : K → L be a simplicial map between finite simplicial complexes.
If ϕ−1(σ) is collapsible for every simplex σ of L, then |ϕ| is a simple homotopy equivalence.

Proof. Let σ ∈ L. We show first that X (ϕ)−1(Uσ) = X (ϕ−1(σ)). Let τ ∈ K. Then,
τ ∈ X (ϕ−1(σ)) if and only if τ is a simplex of ϕ−1(σ). But this is equivalent to saying
that for every vertex v of τ , ϕ(v) ∈ σ or, in other words, that ϕ(τ) ⊆ σ which means that
X (ϕ)(τ) ≤ σ. By Theorem 4.2.12, X (ϕ)−1(Uσ) is collapsible.

By Lemma 4.3.13, |K(i)| : |K ′| → |K(B(X (ϕ)))| is a simple homotopy equivalence, and
so is |K(j)| : |L′| → |K(B(X (ϕ)))|, where i : X (K) →֒ B(X (ϕ)) and j : X (L) →֒ B(X (ϕ))
are the inclusions. Since |K(i)| ≃ |K(j)||ϕ′ |, |ϕ′| is a simple homotopy equivalence and
then, so is |ϕ|.
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4.4. THE MULTIPLE NON-HAUSDORFF MAPPING CYLINDER

4.4 The multiple non-Hausdorff mapping cylinder

It is easy to prove that if K1 and K2 are simple homotopy equivalent finite CW-complexes,
there exists a third complex L such that K1 ր Lց K2. When CW-complexes are changed
by simplicial complexes or finite spaces, the structure becomes much more rigid, and the
result is not so trivial. In this Section we will prove that if X and Y are finite T0-spaces,
there exists a finite T0-space Z which collapses to both of them. One such space is the
multiple non-Hausdorff mapping cylinder of some maps which is a generalization of the
non-Hausdorff mapping cylinder defined in Definition 4.2.6.

Definition 4.4.1. Let X0,X1, . . . ,Xn be a sequence of finite T0-spaces and let f0, f1, . . . ,
fn−1 be a sequence of maps such that fi : Xi → Xi+1 or fi : Xi+1 → Xi. If fi : Xi → Xi+1

we say that fi goes right, and in other case we say that it goes left. We define the
multiple non-Hausdorff mapping cylinder B(f0, f1, . . . , fn−1;X0,X1, . . . ,Xn) as follows.

The underlying set is the disjoint union
n⊔

i=0
Xi. We keep the given ordering in each copy

Xi and for x and y in different copies, we set x < y in any of the following cases:

• If x ∈ X2i, y ∈ X2i+1 and f2i(x) ≤ y or x ≤ f2i(y).

• If x ∈ X2i, y ∈ X2i−1 and f2i−1(x) ≤ y or x ≤ f2i−1(y).

Note that the multiple non-Hausdorff mapping cylinder coincides with the ordinary
non-Hausdorff mapping cylinder (Definition 4.2.6) when n = 1 and the unique map goes
right.

Lemma 4.4.2. Let B = B(f0, f1, . . . , fn−1,X0,X1, . . . ,Xn). If f0 goes right or if f0 goes
left and it lies in Dop, then B ց B rX0.

Proof. If f0 goes right, B(f0) collapses to X1 (see the proof of Lemma 4.2.7). In fact,
the collapse B(f0) ց X1 is a strong collapse since the points removed are not only weak
points, but beat points. Since the points of X0 are not comparable with the points of
X2,X3, . . . Xn, the same elementary collapses can be performed in B. Then B ց BrX0.

Now, if f0 goes left and f op
0 ∈ D, then B(f op

0 )ց Xop
1 by 4.2.7. Thus, B(f op

0 )op ց X1.
On the other hand, B(f op

0 ) = B(f op
0 ;Xop

1 ,Xop
0 ) = B(f0;X0,X1)

op and then B(f0;X0,X1)
ց X1. By the same argument as before, B ց B rX0.

The following remark is an easy consecuence of the definition.

Remark 4.4.3.

B(f1, f2, . . . , fn−1;X1,X2, . . . ,Xn)op = B(f op
0 , f op

1 , . . . , f op
n−1;X

op
0 ,Xop

1 , . . . Xop
n ) rXop

0 .

Lemma 4.4.4. Let B = B(f0, f1, . . . , fn−1,X0,X1, . . . ,Xn). Suppose that

f2i ∈ D if f2i goes right.

f2i ∈ Dop if f2i goes left.

f2i+1 ∈ Dop if f2i+1 goes right.

f2i+1 ∈ D if f2i+1 goes left.

Then B ց Xn. If in addition n is even, B ց X0.
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Proof. By 4.4.2, B ց B rX0. By the previous remark,

B rX0 = B(f op
1 , f op

2 , . . . , f op
n−1;X

op
1 ,Xop

2 , . . . ,Xop
n )op.

By induction B(f op
1 , f op

2 , . . . , f op
n−1;X

op
1 ,Xop

2 ,Xop
n ) ց Xop

n . Therefore B ց B r X0 ց
Xn.

If n is even, B = B(fn−1, fn−2, . . . , f0;Xn,Xn−1, . . . ,X0)ց X0.

Theorem 4.4.5. Let X and Y be simple equivalent finite T0-spaces. Then, there exists a
finite T0-space Z such that X ր Z ց Ỹ , where Ỹ is homeomorphic to Y .

Proof. If X�ց Y , there exists a sequence of elementary expansions and collapses from
X to Y . An elementary expansion Xi րe Xi+1 induces an inclusion map Xi →֒ Xi+1

which lies in D or Dop depending on if the weak point removed is a down weak point or
an up weak point. In particular, there exists a sequence X = X0,X1,X2, . . . ,Xn = Y
of finite T0-spaces and a sequence f0, f1, . . . , fn−1 of maps such that fi : Xi → Xi+1 or
fi : Xi+1 → Xi and fi ∈ D ∪ Dop for every 0 ≤ i ≤ n− 1. Adding identities if needed, we
can assume that the maps are in the hypothesis of Lemma 4.4.4, and the result follows.
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Chapter 5

Strong homotopy types

The notion of collapse of finite spaces is directly connected with the concept of simplicial
collapse. In Chapter 2 we have studied the notion of elementary strong collapse which
is the fundamental move that describes homotopy types of finite spaces. In this Chapter
we will define the notion of strong collapse of simplicial complexes which leads to strong
homotopy types of complexes. This notion corresponds to the homotopy types of the
associated finite spaces, but we shall see that it also arises naturally from the concept of
contiguity classes.

Strong homotopy types of simplicial complexes have a beautiful caracterization which
is similar to the description of homotopy types of finite spaces given by Stong.

Definition 5.0.1. Let K be a finite simplicial complex and let v ∈ K be a vertex. We
denote by K r v the full subcomplex of K spanned by the vertices different from v. We
say that there is an elementary strong collapse from K to K r v if lk(v) is a simplicial
cone v′L. In this case we say that v is dominated (by v′) and we note K ցցe Kr v. There
is a strong collapse from a complex K to a subcomplex L if there exists a sequence of
elementary strong collapses that starts in K and ends in L. In this case we write K ցց L.
The inverse of a strong collapse is a strong expansion and two finite complexes K and L
have the same strong homotopy type if there is a sequence of strong collapses and strong
expansions that starts in K and ends in L.

Remark 5.0.2. Isomorphic complexes have the same strong homotopy type. Let K be a
finite simplicial complex and let v ∈ K be a vertex. Let v′ be a vertex which is not inK and
consider the complex L = K + v′stK(v) = K r v + v′vlkK(v). Since lkL(v′) = vlkK(v),
L ցց K. Moreover, by symmetry L ցց L r v = K̃. Clearly, there is an isomorphism
K → K̃ which sends v to v′ and fixes the other vertices. Thus, if K1 and K2 are isomorphic
simplicial complexes, we can obtain a third complex K3 whose vertices are different from
the vertices of K1 and K2 and such that Ki and K3 have the same strong homotopy type
for i = 1, 2.

If v ∈ K is dominated, lk(v) is collapsible and therefore st(v) = v(lk(v)) ց lk(v) =
st(v) ∩ (K r v). Then K = st(v) ∪ (K r v) ց K r v. Thus, the usual notion of collapse
is weaker than the notion of strong collapse.

Remark 5.0.3. A vertex v is dominated by a vertex v′ 6= v if and only if every maximal
simplex that contains v also contains v′.
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We will prove that this notion of collapse corresponds exactly to the notion of strong
collapse of finite spaces (i.e., strong deformation retracts).

If two simplicial maps ϕ,ψ : K → L lie in the same contiguity class, we will write
ϕ ∼ ψ. It is easy to see that if ϕ1, ϕ2 : K → L, ψ1, ψ2 : L→ M are simplicial maps such
that ϕ1 ∼ ϕ2 and ψ1 ∼ ψ2, then ψ1ϕ1 ∼ ψ2ϕ2.

Definition 5.0.4. A simplicial map ϕ : K → L is a strong equivalence if there exists
ψ : L→ K such that ψϕ ∼ 1K and ϕψ ∼ 1L. If there is a strong equivalence ϕ : K → L
we write K ∼ L.

The relation ∼ is clearly an equivalence.

Definition 5.0.5. A finite simplicial complex K is a minimal complex if it has no domi-
nated vertices.

Proposition 5.0.6. Let K be a minimal complex and let ϕ : K → K be simplicial map
which lies in the same contiguity class as the identity. Then ϕ is the identity.

Proof. We may assume that ϕ is contiguous to 1K . Let v ∈ K and let σ ∈ K be a
maximal simplex such that v ∈ σ. Then ϕ(σ) ∪ σ is a simplex, and by the maximality of
σ, ϕ(v) ∈ ϕ(σ)∪ σ = σ. Therefore every maximal simplex which contains v, also contains
ϕ(v). Hence, ϕ(v) = v, since K is minimal.

Corollary 5.0.7. A strong equivalence between minimal complexes is an isomorphism.

Proposition 5.0.8. Let K be a finite simplicial complex and v ∈ K a vertex dominated
by v′. Then, the inclusion i : K r v →֒ K is a strong equivalence. In particular, if two
complexes K and L have the same strong homotopy type, then K ∼ L.

Proof. Define a vertex map r : K → K r v which is the identity on K r v and such
that r(v) = v′. If σ ∈ K is a simplex with v ∈ σ, consider σ′ ⊇ σ a maximal simplex.
Therefore v′ ∈ σ′ and r(σ) = σ ∪ {v′} r {v} ⊆ σ′ is a simplex of K r v. Moreover
ir(σ)∪ σ = σ ∪ {v′} ⊆ σ′ is a simplex of K. This proves that r is simplicial and that ir is
contiguous to 1K . Therefore, i is a strong equivalence.

Definition 5.0.9. A core of a finite simplicial complex K is a minimal subcomplex K0 ⊆
K such that K ցց K0.

Theorem 5.0.10. Every complex has a core and it is unique up to isomorphism. Two
finite simplicial complexes have the same strong homotopy type if and only if their cores
are isomorphic.

Proof. A core of a complex can be obtained removing dominated points one at the time.
If K1 and K2 are two cores of K, they have the same strong homotopy type and by Propo-
sition 5.0.8, K1 ∼ K2. Since they are minimal, by Corollary 5.0.7 they are isomorphic.

Let K, L be two finite complexes. If they have the same strong homotopy type, then
also their cores K0 and L0 do. As above, we conclude that K0 and L0 are isomorphic.

Conversely, If K0 and L0 are isomorphic, then they have the same strong homotopy
type by Remark 5.0.2 and then K and L have the same strong homotopy type.
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If K and L are two complexes such that K ∼ L and K0 ⊆ K, L0 ⊆ L are their cores,
then K0 ∼ L0 and therefore K0 and L0 are isomorphic. Hence, we deduce the following

Corollary 5.0.11. Two finite simplicial complexes K and L have the same strong homo-
topy type if and only if K ∼ L.

Example 5.0.12. The following homogeneous 2-complex is collapsible (moreover it is
non-evasive [41]). However, it is a minimal complex and therefore it does not have the
strong homotopy type of a point.

Example 5.0.13. In contrast to the case of simple homotopy types, a complex and its
barycentric subdivision need not have the same strong homotopy type. The boundary of a
2-simplex and its barycentric subdivision are minimal non-isomorphic complexes, therefore
they do not have the same strong homotopy type.

Proposition 5.0.14. Strong equivalences are simple homotopy equivalences.

Proof. Let ϕ : K → L be a strong equivalence. Let K0 be a core of K and L0 a core
of L. Then, the inclusion i : K0 →֒ K is a strong equivalence and there exists a strong
equivalence r : L → L0 which is a homotopy inverse of the inclusion L0 →֒ L. Since K0

and L0 are minimal complexes, the strong equivalence rϕi is an isomorphism. Therefore,
|i|, |r| and |rϕi| are simple homotopy equivalences, and then so is |ϕ|.

Now we will study the relationship between strong homotopy types of simplicial com-
plexes and homotopy types of finite spaces. The following result is a direct consequence
of Propositions 2.1.2 and 2.1.3.

Theorem 5.0.15.

(a) If two finite T0-spaces are homotopy equivalent, their associated complexes have the
same strong homotopy type.

(b) If two finite complexes have the same strong homotopy type, the associated finite
spaces are homotopy equivalent.

Proof. Suppose f : X → Y is a homotopy equivalence between finite T0-spaces with
homotopy inverse g : Y → X. Then by Proposition 2.1.2, K(g)K(f) ∼ 1K(X) and
K(f)K(g) ∼ 1K(Y ). Thus, K(X) ∼ K(Y ).

If K and L are complexes with the same strong homotopy type, there exist ϕ : K → L
and ψ : L→ K such that ψϕ ∼ 1K and ϕψ ∼ 1L. By Proposition 2.1.3, X (ϕ) : X (K) →
X (L) is a homotopy equivalence with homotopy inverse X (ψ).
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In fact, we will give a more precise result:

Theorem 5.0.16.

(a) Let X be a finite T0-space and let Y ⊆ X. If X ցց Y , K(X) ցց K(Y ).

(b) Let K be a finite simplicial complex and let L ⊆ K. If K ցց L, X (K) ցց X (K).

Proof. If x ∈ X is a beat point, there exist a point x′ ∈ X and subspaces A,B such that
Ĉx = A ⊕ {x′} ⊕ B. Then lk(x) = K(Ĉx) = x′K(A ⊕ B) is a simplicial cone. Therefore,
K(X) ցց K(X) r x = K(X r {x}).

If K is a finite complex and v ∈ K is such that lk(v) = aL is a simplicial cone, we
define r : X (K)→ X (K r v) as follows:

r(σ) =

{
aσ r {v} if v ∈ σ
σ if v /∈ σ

Clearly r is a well defined order preserving map. Denote i : X (K r v) →֒ X (K) the
inclusion and define f : X (K)→ X (K),

f(σ) =

{
aσ if v ∈ σ
σ if v /∈ σ

Then ir ≤ f ≥ 1X (K) and both ir and f are the identity on X (K r v). Therefore
ir ≃ 1X (K) rel X (K r v) and then X (K) ցց X (K r v) by 2.2.5.

A complex is said to be strong collapsible if it strong collapses to a point or equivalently
if it has the strong homotopy type of a point.

Example 5.0.17. The complex K(W ) associated to the Wallet is a triangulation of the 2-
dimensional disk D2 which is collapsible because W is collapsible, but which is not strong
collapsible since W ′ is not contractible.

Figure 5.1: The geometric realization of K(W ).

Corollary 5.0.18. If X is a contractible finite T0-space, so is X ′.

Proof. If X is contractible, X ցց ∗, then K(X) ցց ∗ and therefore X ′ = X (K(X)) ցց ∗.
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5.1. STRONG COLLAPSIBILITY AND BARYCENTRIC SUBDIVISIONS

In the next Section we will prove the converse of Corollary 5.0.18. In particular, not
only W ′ is non-contractible, but all the iterated barycentric subdivisions of W .

Recall that it is not known whether K ∗ L is collapsible only if one of K or L is, but
the analogous result is true for strong collapsibility.

Proposition 5.0.19. Let K and L be two finite simplicial complexes. Then, K ∗ L is
strong collapsible if and only if K or L is strong collapsible.

Proof. Suppose v is a dominated vertex of K. Then lkK(v) is a cone and therefore
lkK∗L(v) = lkK(v) ∗ L is a cone. Therefore v is also dominated in K ∗ L. Thus, if K
strong collapses to a vertex v0, K ∗ L ցց v0L ցց v0.

Conversely, assume K ∗ L is strong collapsible. Let v ∈ K ∗ L be a dominated point
and suppose without loss of generality that v ∈ K. Then lkK∗L(v) = lkK(v) ∗L is a cone.
Therefore lkK(v) is a cone or L is a cone. If L is a cone, it is strong collapsible and we
are done. Suppose then that lkK(v) is a cone. Since (K r v) ∗ L = (K ∗ L) r v is strong
collapsible, by induction K r v or L is strong collapsible and since K ցց K r v, K or L
is strong collapsible.

5.1 Strong collapsibility and barycentric subdivisions

In general, for a finite T0-space X, X and X ′ do not have the same homotopy type. In
this Section we will prove that X is contractible if and only if its barycentric subdivision
X ′ is contractible. The first part of this result was proved in Corollary 5.0.18.

It is not true that if X is a minimal finite space, then so is X ′. The barycentric
subdivision W ′ of the Wallet is not a minimal finite space, although W is.

Proposition 5.1.1. Let X be a finite T0-space. Then X is a minimal finite space if and
only if K(X) is a minimal simplicial complex.

Proof. If X is not minimal, it has a beat point x and then K(X) ցց K(X r {x}) by
Theorem 5.0.16. Therefore K(X) is not minimal.

Conversely, suppose K(X) is not minimal. Then it has a dominated vertex x. Suppose
lk(x) = x′L for some x′ ∈ X, L ⊆ K(X). In particular, if y ∈ X is comparable with x,
y ∈ lk(x) and then yx′ ∈ lk(x). Thus, any point comparable with x is also comparable
with x′. By Proposition 1.3.9, X is not minimal.

Theorem 5.1.2. Let K be a finite simplicial complex. Then K is strong collapsible if and
only if K ′ is strong collapsible.

Proof. IfK ցց ∗, then X (K) ցց ∗ and K ′ = K(X (K)) ցց ∗ by Theorem 5.0.16. Suppose
now that K is a complex and that K ′ ցց ∗. Let L be a core of K. Then K ցց L and
by Theorem 5.0.16, K ′ ցց L′. Therefore L is minimal and L′ is strong collapsible. Let
L0 = L′, L1, L2, ..., Ln = ∗ be a sequence of subcomplexes of L′ such that there is an
elementary strong collapse from Li to Li+1 for every 0 ≤ i < n. We will prove by
induction in i that Li ⊆ L′ contains as vertices all the barycenters of the 0-simplices and
of the maximal simplices of L.
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Let σ = {v0, v1, . . . , vk} be a maximal simplex of L. By induction, the barycenter b(σ)
of σ is a vertex of Li. We claim that lkLib(σ) is not a cone. If σ is a 0-simplex, that link is
empty, so we assume σ has positive dimension. Since b(vj)b(σ) is a simplex of L, b(vj) ∈ Li

by induction and Li is a full subcomplex of L, then b(vj) ∈ lkLib(σ) for every 0 ≤ j ≤ k.
Suppose lkLib(σ) is a cone. In particular, there exists σ′ ∈ L such that b(σ′) ∈ lkLib(σ)
and moreover b(σ′)b(vj) ∈ lkLib(σ) for every j. Since σ is a maximal simplex, σ′ ( σ and
vj ∈ σ′ for every j. Then σ ⊆ σ′, which is a contradiction. Hence, b(σ) is not a dominated
vertex of Li and therefore, b(σ) ∈ Li+1.

Let v ∈ L be a vertex. By induction, b(v) ∈ Li. As above, if v is a maximal simplex
of L, lkLib(v) = ∅. Suppose v is not a maximal simplex of L. Let σ0, σ1, . . . , σk be the
maximal simplices of L which contain v. By induction b(σj) ∈ Li for every 0 ≤ j ≤ k,
and since Li ⊆ L is full, b(σj) ∈ lkLib(v). Suppose that lkLib(v) is cone. Then there
exists σ ∈ K such that b(σ) ∈ lkLib(v) and moreover, b(σ)b(σj) ∈ lkLib(v) for every j. In
particular, v ( σ and σ ⊆ σj for every j. Let v′ ∈ σ, v′ 6= v. Then v′ is contained in every
maximal simplex which contains v. This contradicts the minimality of L. Therefore b(v)
is not dominated in Li, which proves that b(v) ∈ Li+1.

Finally, Ln = ∗ contains all the barycenters of the vertices of L. Thus, L = ∗ and K
is strong collapsible.

Corollary 5.1.3. Let X be a finite T0-space. Then X is contractible if and only if X ′ is
contractible.

Proof. By Corollary 5.0.18, it only remains to show that if X ′ is contractible, so is X. Let
Y ⊆ X be a core of X. Then by Theorem 5.0.16 X ′ ցց Y ′. If X ′ is contractible, so is
Y ′. Again by Theorem 5.0.16, K(Y ′) = K(Y )′ is strong collapsible. By Theorem 5.1.2,
K(Y ) is strong collapsible. By Proposition 5.1.1, K(Y ) is a minimal complex and therefore
K(Y ) = ∗. Then Y is just a point, so X is contractible.

5.2 The m construction

We introduce an application which transforms a simplicial complex in another complex
with the same homotopy type. This construction is closely related to the Čech cohomology
of finite spaces. We will prove that this application can be used to obtain the core of a
simplicial complex.

Recall that if U is an open cover of a topological space X, the nerve of U is the
simplicial complex N(U) whose simplices are the finite subsets {U1, U2, . . . , Ur} of U such

that
r⋂

i=1
Ui is nonempty. If V is a refinement of U , there is a simplicial map N(V)→ N(U)

which is uniquely determined up to homotopy, and sends any vertex V ∈ N(V) to a
vertex U ∈ N(U) such that V ⊆ U . The Čech cohomology of X is the direct limit
Ȟn(X) = colim Hn(N(U)) taken over the family of covers of X preordered by refinement.

It is well known that if X is a CW-complex, the Čech cohomology coincides with the
singular cohomology of X. But this is not true in general. Given a finite space X, we
denote by U0 the open cover given by the minimal open sets of the maximal points of X.
Note that U0 refines every open cover of X. Therefore Ȟn(X) = Hn(N(U0)).
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Example 5.2.1. If X = S(S0) is the minimal finite model of S1, N(U0) is a 1-simplex
and therefore Ȟ1(X) = 0. On the other hand H1(X) = H1(S1) = Z.

If K is a finite simplicial complex, the cover U0 of X (K) satisfies that arbitrary in-
tersections of its elements is empty or homotopically trivial. Indeed, if σ1, σ2, . . . , σr are
maximal simplices of K, then ∩Uσi is empty or it is U∩σi . By Theorem 2 of [25], there is
a weak homotopy equivalence |N(U0)| → X (K). Therefore Ȟn(X (K)) = Hn(|N(U0)|) =
Hn(X (K)), so we proved

Proposition 5.2.2. Let K be a finite simplicial complex. Then Ȟn(X (K)) = Hn(X (K))
for every n ≥ 0.

Another proof of the last result can be given invoking a Theorem of Dowker [15].
Let V be the set of vertices of K and S the set of its maximal simplices. Define the
relation R ⊆ V × S by vRσ if v ∈ σ. Dowker consider two simplicial complexes. The
first has as simplices the finite subsets of V which are related with one element of S,
this is the original complex K. The second complex has as simplices the finite subsets
of S which are related with an element of V . This complex is isomorphic to N(X (U0)).
The Theorem of Dowker concludes that |K| and |N(X (U0))| are homotopy equivalent.
Therefore Hn(X (K)) = Hn(|K|) = Hn(|N(X (U0))|) = Ȟn(X (K)).

We now let aside the Čech cohomology to center our attention in the construction which
transforms K in the complex N(X (U0)). We will denote m(K) = N(X (U0)). Concretely,
the vertices of m(K) are the maximal simplices of K and the simplices of m(K) are the
sets of maximal simplices of K with nonempty intersection. The paragraph above shows
that if K is a finite simplicial complex, |K| and |m(K)| have the same homotopy type.
Given n ≥ 2, we define recursively mn(K) = m(mn−1(K)).

Example 5.2.3. Let K be the following simplicial complex

Since K has four maximal simplices, m(K) has four vertices, and it looks as follows
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For n ≥ 2, the complex mn(K) is the boundary of a 2-simplex.

If mr(K) = ∗ for some r ≥ 1, then |K| is contractible. But there are contractible
complexes such that mr(K) is not a point for every r. For instance, if K is the complex of
Example 5.0.12, m(K) has more vertices than K, but m2(K) is isomorphic to K. Therefore
mr(K) 6= ∗ for every r, although |K| is contractible.

We will see that in fact, there is a strong collapse from K to a complex isomorphic to
m2(K) and that there exists r such that mr(K) = ∗ if and only if K is strong collapsible.

Lemma 5.2.4. Let L be a full subcomplex of a finite simplicial complex K such that every
vertex of K which is not in L is dominated by some vertex in L. Then K ցց L.

Proof. Let v be a vertex of K which is not in L. By hypothesis, v is dominated and then
K ցց K r v. Now suppose w is a vertex of K r v which is not in L. Then, the link
lkK(w) in K is a simplicial cone aM with a ∈ L. Therefore, the link lkKrv(w) in K r v
is a(M r v). By induction K r v ցց L and then K ցց L.

Proposition 5.2.5. Let K be a finite simplicial complex. Then, there exists a complex L
isomorphic to m2(K) such that K ցց L.

Proof. A vertex of m2(K) is a maximal family Σ = {σ0, σ1, . . . , σr} of maximal simplices
of K with nonempty intersection. Consider a vertex map ϕ : m2(K) → K such that

ϕ(Σ) ∈
r⋂

i=0
σi. This is a simplicial map for if Σ0,Σ1, . . . ,Σr constitute a simplex of m2(K),

then there is a common element σ in all of them, which is a maximal simplex of K.
Therefore ϕ(Σi) ∈ σ for every 0 ≤ i ≤ r and then {ϕ(Σ1), ϕ(Σ2), . . . , ϕ(Σr)} is a simplex
of K.

The vertex map ϕ is injective. If ϕ(Σ1) = v = ϕ(Σ2) for Σ1 = {σ0, σ1, . . . , σr},
Σ2 = {τ0, τ1, . . . , τt}, then v ∈ σi for every 0 ≤ i ≤ r and v ∈ τi for every 0 ≤ i ≤ t.
Therefore Σ1 ∪Σ2 is a family of maximal simplices of K with nonempty intersection. By
the maximality of Σ1 and Σ2, Σ1 = Σ1 ∪ Σ2 = Σ2.

Suppose Σ0,Σ1, . . . ,Σr are vertices of m2(K) such that v0 = ϕ(Σ0), v1 = ϕ(Σ1), . . . ,
vr = ϕ(Σr) constitute a simplex of K. Let σ by a maximal simplex of K which contains
v0, v1, . . . , vr. Then, by the maximality of the families Σi, σ ∈ Σi for every i and therefore
{Σ0,Σ1, . . . ,Σr} is a simplex of m2(K).

This proves that L = ϕ(m2(K)) is a full subcomplex of K which is isomorphic to
m2(K).

Now, suppose v is a vertex of K which is not in L. Let Σ be the set of maximal
simplices of K which contain v. The intersection of the elements of Σ is nonempty, but Σ
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could be not maximal. Let Σ′ ⊇ Σ be a maximal family of maximal simplices of K with
nonempty intersection. Then v′ = ϕ(Σ′) ∈ L and if σ is a maximal simplex of K which
contains v, then σ ∈ Σ ⊆ Σ′. Hence, v′ ∈ σ. Therefore v is dominated by v′. By Lemma
5.2.4, K ցց L.

Lemma 5.2.6. A finite simplicial complex K is minimal if and only if m2(K) is isomor-
phic to K.

Proof. By Proposition 5.2.5, there exists a complex L isomorphic to m2(K) such that
K ցց L. Therefore, if K is minimal, L = K.

If K is not minimal, there exists a vertex v dominated by other vertex v′. If v is
contained in each element of a maximal family Σ of maximal simplices of K with nonempty
intersection, then the same occur with v′. Therefore, we can define the map ϕ of the proof
of Proposition 5.2.5 so that v is not in its image. Therefore, L = ϕ(m2(K)) is isomorphic
to m2(K) and has less vertices than K. Thus, m2(K) and K can not be isomorphic.

The sequence K,m2(K),m4(K),m6(K), . . . is a decreasing sequence of subcomplexes
of K (up to isomorphism). Therefore, there exists n ≥ 1 such that m2n(K) and m2n+2(K)
are isomorphic. Then K strongly collapses to a subcomplex L which is isomorphic to
m2n(K) and which is minimal. Thus, we have proved the following

Proposition 5.2.7. Given a finite simplicial complex K, there exists n ≥ 1 such that
mn(K) is isomorphic to the core of K.

Theorem 5.2.8. Let K be a finite simplicial complex. Then, K is strong collapsible if
and only if there exists n ≥ 1 such that mn(K) is a point.

Proof. If K is strong collapsible, its core is a point and then, there exists n such that
mn(K) = ∗ by the previous proposition. If mn(K) = ∗ for some n, then mn+1(K) is also a
point. Therefore there exists an even positive integer r such that mr(K) = ∗, and K ցց ∗
by Proposition 5.2.5.

Example 5.2.9. The following complex K is strong collapsible since m3(K) = ∗.

K m(K)
m2(K) m3(K)
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Chapter 6

Methods of reduction

A method of reduction of finite spaces is a technique that allows one to reduce the number
of points of a finite topological space preserving some properties of the original one.

An important example of reduction method is described by beat points defined by
Stong. The property that is preserved when removing a beat point is the homotopy type.
Stong method is effective in the sense that for any finite T0-space X, one can obtain a space
homotopy equivalent to X of minimum cardinality, by applying repeatedly the method of
removing beat points.

Throghout our work, we have found other methods of reduction. The most important
is probably the one described by weak points (see Chapter 4). However it is still an open
problem to find an effective reduction method for the weak homotopy type and the simple
homotopy type. This is a reason why it is so difficult to find minimal finite models.

6.1 Osaki’s reduction methods

The first examples of reduction methods where introduced by T. Osaki [31]. In these cases,
Osaki presents two methods that allow to find a quotient of a given finite space such that
the quotient map is a weak homotopy equivalence.

Theorem 6.1.1. (Osaki) Let X be a finite T0-space. Suppose there exists x ∈ X such
that Ux∩Uy is either empty or homotopically trivial for all y ∈ X. Then the quotient map
q : X → X/Ux is a weak homotopy equivalence.

Proof. Let y ∈ X. If Ux ∩ Uy = ∅, q−1(Uqy) = Uy. In other case, q−1(Uqy) = Ux ∪ Uy

(see Lemma 2.7.6). In order to apply McCord Theorem 1.4.2 to the minimal basis of
X/Ux, we only have to prove that if Ux ∩ Uy is homotopically trivial, then so is Ux ∪ Uy.
If Ux ∩ Uy is homotopically trivial, since Ux and Uy are contractible, we obtain from the

Mayer-Vietoris sequence, that H̃n(Ux ∪Uy) = 0 for every n ≥ 0 and from the Theorem of
Van-Kampen, Ux ∪ Uy is simply connected. By Hurewicz’s Theorem, it is homotopically
trivial. Therefore, Theorem 1.4.2 applies and q is a weak homotopy equivalence.

The process of obtaining X/Ux from X is called an open reduction. There is an
analogous result for the minimal closed sets Fx, i.e. the closures of the one point spaces
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{x}. This result follows from the previous one applied to the opposite Xop.

Theorem 6.1.2. (Osaki) Let X be a finite T0-space. Suppose there exists x ∈ X such
that Fx∩Fy is either empty or homotopically trivial for all y ∈ X. Then the quotient map
q : X → X/Fx is a weak homotopy equivalence.

The process of obtaining X/Fx from X is called a closed reduction.

Osaki asserts in [31] that he does not know whether by a sequence of reductions, each
finite T0-space can be reduced to the smallest space with the same homotopy groups.

We show with the following example that the answer to this question is negative.

Let X = {a1, b, a2, c, d, e} be the 6-point T0-space with the following order: c, d < a1;
c, d, e < b and d, e < a2. Let D3 = {c, d, e} be the 3-point discrete space and Y = SD3 =
{a, b, c, d, e} the non-Haussdorf suspension of D3.
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The function f : X → Y defined by f(a1) = f(a2) = a, f(b) = b, f(c) = c, f(d) = d

and f(e) = e is continuous because it preserves the order.

In order to prove that f is a weak homotopy equivalence we use the Theorem of
McCord 1.4.2. The sets Uy form a basis-like cover of Y . It is easy to verify that f−1(Uy)
is contractible for each y ∈ Y and, since Uy is also contractible, the map f |f−1(Uy) :

f−1(Uy)→ Uy is a weak homotopy equivalence for each y ∈ Y . Applying Theorem 1.4.2,
one proves that f is a weak homotopy equivalence. Therefore X and Y have the same
homotopy groups.

Another way to show that X and Y are weak homotopy equivalent is considering the
associated polyhedra |K(X)| and |K(Y )| which are homotopy equivalent to S1 ∨ S1.

On the other hand, it is easy to see that Osaki reduction methods cannot be applied to
the space X. Therefore his methods are not effective in this case since we cannot obtain,
by a sequence of reductions, the smallest space with the same homotopy groups as X.

6.2 γ-points and one-point reduction methods

In this Section we delve deeper into the study of one-point reductions of finite spaces, i.e.
methods which consist on removing just one point of the space in such a way that it does
not affect its homotopy, weak homotopy or simple homotopy type. Beat points and weak
points provide two important examples of one-point reductions.

Recall that x ∈ X is a weak point if and only if Ĉx is contractible. This motivates the
following definition.

Definition 6.2.1. A point x of a finite T0-space X is a γ-point if Ĉx is homotopically
trivial.
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Note that weak points are γ-points. It is not difficult to see that both notions coincide
in spaces of height less than or equal to 2. This is because any space of height 1 is
contractible if and only if it is homotopically trivial. However, this is false for spaces of
height greater than 2.

Let x be a γ-point of a finite T0-space X. We will show that the inclusion Xr{x} →֒ X
is a weak homotopy equivalence. Note that since Ûx and F̂x need not be homotopically
trivial, we cannot proceed as we did in Proposition 4.2.3. However, in this case, one has
the following pushout

|K(Ĉx)| //

��

|K(Cx)|

��
|K(X r {x})| // |K(X)|

Where |K(Ĉx)| → |K(Cx)| is a homotopy equivalence and |K(Ĉx)| → |K(Xr{x})| satisfies
the homotopy extension property. Therefore |K(X r {x})| → |K(X)| is a homotopy
equivalence. This proves the following

Proposition 6.2.2. If x ∈ X is a γ-point, the inclusion i : X r {x} →֒ X is a weak
homotopy equivalence.

This result improves an old result which appears for example in Walker’s Thesis [40,
Proposition 5.8], which asserts, in the language of finite spaces, that X r {x} →֒ X is a
weak homotopy equivalence provided Ûx or F̂x is homotopically trivial. By Proposition
6.2.11 below, it is clear that a point x is a γ-point if Ûx or F̂x is homotopically trivial, but
the converse is false.

We will show that the converse of Proposition 6.2.2 is true in most cases. First, we
need some results.

Proposition 6.2.3. Let x be a point of a finite T0-space X. The inclusion i : Xr{x} →֒ X
induces isomorphisms in all homology groups if and only if the subspace Ĉx is acyclic.

Proof. Apply the Mayer-Vietoris sequence to the triple (K(X);K(Cx),K(X r {x})).

Remark 6.2.4. If X and Y are non-empty finite T0-spaces with n and m connected com-
ponents respectively, the fundamental group π1(X⊕Y ) is a free product of (n−1)(m−1)
copies of Z. In particular if x ∈ X is neither maximal nor minimal, the fundamental group
of Ĉx = Ûx ⊕ F̂x is a free group.

Theorem 6.2.5. Let X be a finite T0-space, and x ∈ X a point which is neither maximal
nor minimal and such that X r {x} →֒ X is a weak homotopy equivalence. Then x is a
γ-point.

Proof. If X r {x} →֒ X is a weak homotopy equivalence, Ĉx is acyclic by Proposition
6.2.3. Then π1(Ĉx) is a perfect group and therefore trivial, by Remark 6.2.4. Now the
result follows from the Hurewicz Theorem.

The theorem fails if x is maximal or minimal as the next example shows.
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Example 6.2.6. Let X be an acyclic finite T0-space with nontrivial fundamental group.
Let S(X) = X ∪ {−1, 1} be its non-Hausdorff suspension. Then S(X) is also acyclic and
π1(S(X)) = 0. Therefore it is homotopically trivial. Hence, X ∪ {1} →֒ S(X) is a weak
homotopy equivalence. However −1 is not a γ-point of S(X).

Using the relativity principle of simple homotopy theory [14, (5.3)] one can prove that
if x is a γ-point, |K(X r {x})| → |K(X)| is a simple homotopy equivalence. In fact this
holds whenever X r {x} →֒ X is a weak homotopy equivalence.

Theorem 6.2.7. Let X be a finite T0-space and let x ∈ X. If the inclusion i : X r
{x} →֒ X is a weak homotopy equivalence, it induces a simple homotopy equivalence
|K(X r {x})| → |K(X)|. In particular X r {x}�ցX.

Proof. Since |K(X r {x})| is a strong deformation retract of |K(X)| and the open star of
x,

◦
st(x) = |K(X)| r |K(X r {x})|

is contractible, then by [14, (20.1)], the Whitehead Torsion τ(|K(X)|, |K(X r {x})|) =
0.

This result essentially shows that one-point reductions are not sufficient to describe
all weak homotopy types of finite spaces. Of course they are sufficient to reach all finite
models of spaces with trivial Whitehead group. On the other hand, note that the fact
that Xr{x} and X have the same weak homotopy type does not imply that the inclusion
X r {x} →֒ X is a weak homotopy equivalence.

Definition 6.2.8. If x ∈ X is a γ-point, we say that there is an elementary γ-collapse from
X to X r {x}. A finite T0-space X γ-collapses to Y if there is a sequence of elementary
γ-collapses that starts in X and ends in Y . We denote this by X ցγ Y . If X γ-collapses
to a point, we say that it is γ-collapsible.

In contrast to collapses, a γ-collapse does not induce in general a collapse between
the associated simplicial complexes. For example, if K is any triangulation of the Dunce
hat, C(X (K)) ցγ X (K), but aK ′ /ց K ′ since K ′ is not collapsible (see Lemma 4.2.10).
However, if X ցγ Y , then X�ց Y by Theorem 6.2.7 and then K(X) has the same simple
homotopy type as K(Y ).

Recall that f : X → Y is said to be distinguished if f−1(Uy) is contractible for every
y ∈ Y . Distinguished maps are simple homotopy equivalences (see Section 4.3). The
following result generalizes that fact.

Proposition 6.2.9. Let f : X → Y be a map between finite T0-spaces such that f−1(Uy)
is homotopically trivial for every y ∈ Y . Then f is a simple homotopy equivalence.

Proof. Consider the non-Hausdorff mapping cylinder B(f) with the inclusions i : X →֒
B(f), j : Y →֒ B(f). Using the same proof of Lemma 4.2.7, one can show that B(f) ցγ
i(X), while B(f) ցց j(Y ) (the latter is true for every map f without more asumptions
than its continuity). Then i and j are simple homotopy equivalences by Theorem 6.2.7,
and since jf = i, so is f .
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Note that in the hypothesis of the last Proposition, every space Z with f(X) ⊆ Z ⊆ Y
has the simple homotopy type of Y , because in this case f : X → Z also satisfies the
hypothesis of above.

Remark 6.2.10. The quotient maps of Theorems 6.1.1 and 6.1.2 are simple homotopy
equivalences.

We finish this Section analyzing the relationship between γ-collapsibility and joins.

Proposition 6.2.11. Let X and Y be finite T0-spaces. Then

(i) X ⊕ Y is homotopically trivial if X or Y is homotopically trivial.

(ii) X ⊕ Y is γ-collapsible if X or Y is γ-collapsible.

Proof. If X or Y is homotopically trivial, |K(X)| or |K(Y )| is contractible and then so is
|K(X)| ∗ |K(Y )| = |K(X ⊕ Y )|. Therefore X ⊕ Y is homotopically trivial.

The proof of (ii) follows as in Proposition 2.7.3. If xi ∈ Xi is a γ-point, ĈXi⊕Y
xi

=

ĈXi
xi
⊕ Y is homotopically trivial by item (i) and then xi is a γ-point of Xi ⊕ Y .

There is an analogous result for acyclic spaces that follows from the Künneth formula
for joins [27].

Note that the converse of these results are false. To see this, consider two finite
simply connected simplicial complexes K, L such that H2(|K|) = Z2, H2(|L|) = Z3 and
Hn(|K|) = Hn(|L|) = 0 for every n ≥ 3. Then X (K) and X (L) are not acyclic, but
X (K)⊕X (L), which is weak homotopy equivalent to |K| ∗ |L|, is acyclic by the Künneth
formula and, since it is simply connected (see [27] or Remark 6.2.4), it is homotopically
trivial.

A counterexample for the converse of item (ii) is the following.

Example 6.2.12. Let K be a triangulation of the Dunce hat. Then, X (K) is a ho-
motopically trivial finite space of height 2. The non-Hausdorff suspension S(X (K)) =
X (K) ∪ {−1, 1} is γ-collapsible since 1 is a γ-point and S(X (K)) r {1} has maximum.
However X (K) is not collapsible and then S(X (K)) is not collapsible by Proposition 4.2.19.
Moreover X (K) and S0 are not γ-collapsible either because their heights are less than or
equal to 2.
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Chapter 7

H-regular complexes and quotients

7.1 H-regular CW-complexes and their associated finite spaces

Recall that a CW-complex K is regular if for each (open) cell en, the characteristic map
Dn → en is a homeomorphism, or equivalently, the attaching map Sn−1 → K is a home-
omorphism onto its image ėn, the boundary of en. In this case, it can be proved that
the closure en of each cell is a subcomplex, which is equivalent to saying that ėn is a
subcomplex.

A cell e of a regular complex K is a face of a cell e′ if e ⊆ e′. This will be denoted by
e ≤ e′. The barycentric subdivision K ′ is the simplicial complex whose vertices are the
cells of K and whose simplices are the sets {e1, e2, . . . , en} such that ei is a face of ei+1.

We can define, as in the case of simplicial complexes, the face poset X (K) of a regular
complex K, which is the set of cells ordered by ≤. Note that K(X (K)) = K ′, which is
homeomorphic to K and therefore X (K) is a finite model of K, i.e. it has the same weak
homotopy type as K.

Example 7.1.1. The following figure (Figure 7.1) shows a regular structure for the real
projective plane RP 2. The edges are identified in the way indicated by the arrows. It has
three 0-cells, six 1-cells and four 3-cells. Therefore its face poset has 13 points (Figure
7.2).

a b

b a

c

Figure 7.1: RP 2.
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Figure 7.2: A finite model of RP 2.

In this Section we introduce the concept of h-regular complex, generalizing the notion
of regular complex. Given an h-regular complex K, one can define X (K) as before. In
general, K and K(X (K)) are not homeomorphic. However we prove that X (K) is a finite
model of K. We also study the relationship between collapses of h-regular complexes and
of finite spaces.

Definition 7.1.2. A CW-complex K is h-regular if the attaching map of each cell is a
homotopy equivalence with its image and the closed cells en are subcomplexes of K.

In particular, regular complexes are h-regular.

Proposition 7.1.3. Let K = L∪ en be a CW-complex such that ėn is a subcomplex of L.
Then en is contractible if and only if the attaching map ϕ : Sn−1 → ėn of the cell en is a
homotopy equivalence.

Proof. Suppose ϕ : Sn−1 → ėn is a homotopy equivalence. Since Sn−1 →֒ Dn has the
homotopy extension property, the characteristic map ψ : Dn → en is also a homotopy
equivalence.

Suppose now that en is contractible. The map ψ : Dn/Sn−1 → en/ėn is a homeomor-
phism and therefore it induces isomorphisms in homology and, since en is contractible,
by the long exact sequence of homology it follows that ϕ∗ : Hk(S

n−1) → Hk(ė
n) is an

isomorphism for every k.

If n ≥ 3, π1(ė
n) = π1(en) = 0 and by a theorem of Whitehead, ϕ is a homotopy

equivalence. If n = 2, ėn is just a graph and since ϕ∗ : H1(S
1)→ H1(ė

n) is an isomorphism,
the attaching map ϕ is a homotopy equivalence. Finally, if n = 1, since the cell is
contractible, ϕ is one-to-one and therefore a homeomorphism.

Corollary 7.1.4. A CW-complex is h-regular if and only if the closed cells are contractible
subcomplexes.

Example 7.1.5. The following are four different h-regular structures for the Dunce hat
which are not regular structures. In each example the edges are identified in the way
indicated by the arrows.
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For an h-regular complex K, we also define the associated finite space (or face poset)
X (K) as the poset of cells of K ordered by the face relation ≤, like in the regular case.
Note that since closed cells are subcomplexes, e ≤ e′ if and only if e ⊆ e′.

The proof of the following lemma is standard.

Lemma 7.1.6. Let K ∪ e be a CW-complex, let ψ : Dn → e be the characteristic map of
the cell e and let A be a subspace of ė. We denote Ce(A) = {ψ(x) | x ∈ Dnr{0}, ψ( x

‖x‖ ) ∈
A} ⊆ e. Then

1. If A ⊆ ė is open, Ce(A) ⊆ e is open.

2. A ⊆ Ce(A) is a strong deformation retract.

Theorem 7.1.7. If K is a finite h-regular complex, X (K) is a finite model of K.

Proof. We define recursivelly a weak homotopy equivalence fK : K → X (K).
Assume fKn−1 : Kn−1 → X (Kn−1) ⊆ X (K) is already defined and let x = ψ(a) be

a point in an n-cell en with characteristic map ψ : Dn → en. If a = 0 ∈ Dn, define
fK(x) = en. Otherwise, define fK(x) = fKn−1(ψ( a

‖a‖ )).

In particular note that if e0 ∈ K is a 0-cell, fK(e0) = e0 ∈ X (K). Notice also that if
L is a subcomplex of K, fL = fK|L.

We will show by induction on the number of cells of K, that for every cell e ∈ K,
f−1

K (Ue) is open and contractible. This will prove that fK is continuous and, by McCord’s
Theorem 1.4.2, a weak homotopy equivalence.

Let e be a cell of K. Suppose first that there exists a cell of K which is not contained
in e. Take a maximal cell e′ (with respect to the face relation ≤) with this property.
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Then L = K r e′ is a subcomplex and by induction, f−1
L (Ue) is open in L. It follows

that f−1
L (Ue) ∩ ė′ ⊆ ė′ is open and by the previous lemma, Ce′(f

−1
L (Ue) ∩ ė′) ⊆ e′ is open.

Therefore,

f−1
K (Ue) = f−1

L (Ue) ∪ Ce′(f
−1
L (Ue) ∩ ė′)

is open in K.

Moreover, since f−1
L (Ue) ∩ ė′ ⊆ Ce′(f

−1
L (Ue) ∩ ė′) is a strong deformation retract, so is

f−1
L (Ue) ⊆ f−1

K (Ue). By induction, f−1
K (Ue) is contractible.

In the case that every cell of K is contained in e, f−1
K (Ue) = e = K, which is open and

contractible.

As an application we deduce that the finite spaces associated to the h-regular structures
of the Dunce hat considered in Example 7.1.5 are all homotopically trivial. The first one
is a contractible space of 5 points, the second one is a collapsible and non-contractible
space of 13 points and the last two are non-collapsible spaces of 15 points since they do
not have weak points. Here we exhibit the Hasse diagram of the space associated to the
third h-regular structure of the Dunce hat.
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Figure 7.3: A homotopically trivial non-collapsible space of 15 points.

Example 7.1.8. Let K be the space which is obtained from a square by identifying all
its edges as indicated.

We verify that K is homotopy equivalent to S2 using techniques of finite spaces. Consider
the following h-regular structure of K

76



7.1. H-REGULAR CW-COMPLEXES AND THEIR ASSOCIATED FINITE SPACES

a b

b a

c

which consists of three 0-cells, three 1-cells and two 2-cells. The Hasse diagram of the
associated finite space X (K) is

•

>>
>>

>>
>>

LLLLLLLLLLLL •

��
��

��
��

77
77

77
7

•

==
==

==
==

•

��
��

��
��

•ab

��
��
��
�

66
66

66

c• •a •b

The 0-cell b is an up beat point of X (K) and the 1-cell ab is a down beat point of
X (K) r {b}. Therefore K is weak homotopy equivalent to X (K) r {b, ab} which is a
(minimal) finite model of S2 (see Chapter 3). In fact X (K) r {b, ab} = S0 ⊕ S0 ⊕ S0 is
weak homotopy equivalent to S0 ∗ S0 ∗ S0 = S2.

In Chapter 4 we proved that a collapse K ց L of finite simplicial complexes induces
a collapse X (K) ց X (L) between the associated finite spaces. This is not true when K
and L are regular complexes. Consider L = K(W ) the associated simplicial complex to
the Wallet W (see Figure 4.2), and K the CW-complex obtained from L by attaching a
regular 2-cell e2 with boundary K({a, b, c, d}) and a regular 3-cell e3 with boundary L∪e2.

Note that the complexK is regular and collapses to L, but X (K) = X (L)∪{e2, e3} does

not collapse to X (L) because Û
X (K)r{e2}
e3 = X (L) = W ′ is not contractible. However, one

can prove that a collapse K ց L between h-regular CW-complexes induces a γ-collapse
X (K) ցγ X (L).

Theorem 7.1.9. Let L be a subcomplex of an h-regular complex K. If K ց L, then
X (K) ցγ X (L).

Proof. Assume K = L ∪ en ∪ en+1. Then en is an up beat point of X (K). Since K ց L,
en+1 ց L ∩ en+1 = ėn+1 r en. In particular ėn+1 r en is contractible and then

Ĉ
X (K)r{en}
en+1 = X (ėn+1 r en)

is homotopically trivial. Therefore

X (K) ցe X (K) r {en} ցγ X (L).
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We study the relatonship between the weak homotopy equivalence fK : |K| → X (K)
defined in 7.1.7 and the McCord map µK : |K| → X (K). We will prove that both maps
coincide if we take convenient characteristic maps for the cells of the polyhedron |K|.

Let σ be an n-simplex of the simplicial complex K. Let ϕ : Sn−1 → σ̇ be a homeo-
morphism. Define the characteristic map ϕ : Dn → σ of the cell σ by

ϕ(x) =

{
(1− ‖ x ‖)b(σ)+ ‖ x ‖ ϕ( x

‖x‖ ) if x 6= 0

b(σ) if x = 0

Here b(σ) ∈ σ denotes the barycenter of σ. Clearly ϕ is continuous and bijective and
therefore a homeomorphism.

Definition 7.1.10. We say that the polyhedron |K| has a convenient cell structure (as a
CW-complex) if the characteristic maps of the cells are defined as above.

Proposition 7.1.11. Let K be a finite simplicial complex. Consider a convenient cell
structure for |K|. Then fK and µK coincide.

Proof. Let x ∈ |K|, contained in an open n-simplex σ. Let ϕ : Sn−1 → |K| be the
attaching map of the cell σ, and ϕ : Dn → σ its characteristic map. If x is the barycenter
of σ, fK(x) = fK(ϕ(0)) = σ ∈ X (K) and µK(x) = µX (K)s

−1
K (b(σ)) = µX (K)(σ) = σ.

Assume then that x = ϕ(y) with y 6= 0. Thus, fK(x) = fK(ϕ( y
‖y‖ )). Then, by an

inductive argument,

fK(x) = µK(ϕ(
y

‖ y ‖)) = µX (K)(s
−1
K ϕ(

y

‖ y ‖)).

On the other hand,

µK(x) = µX (K)s
−1
K (ϕ(y)) = µX (K)s

−1
K ((1− ‖ y ‖)b(σ)+ ‖ y ‖ ϕ(

y

‖ y ‖)) =

= µX (K)((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖)).

Finally, s−1
K ϕ( y

‖y‖ ) ∈ |(σ̇)′| and then,

µX (K)((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖)) = min(support((1− ‖ y ‖)σ+ ‖ y ‖ s−1
K ϕ(

y

‖ y ‖))) =

= min({σ}∪support(s−1
K ϕ(

y

‖ y ‖))) = min(support(s−1
K ϕ(

y

‖ y ‖))) = µX (K)(s
−1
K ϕ(

y

‖ y ‖)).

Thus, fK(x) = µK(X).

7.2 Quotients of finite spaces: An exact sequence for homology

groups

For CW-pairs, (Z,W ) there exists a long exact sequence of reduced homology groups

. . . // H̃n(W ) // H̃n(Z) // H̃n(Z/W ) // H̃n−1(W ) // . . .
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More generally, this holds for any good pair (Z,W); i.e., a pair of topological spaces Z
and W such that W is a closed subspace of Z which is a deformation retract of some
neighborhood in Z. When Z and W are finite spaces, one does not have such a sequence in
general. For a pair of finite spaces (X,A), Hn(X,A) and H̃n(X/A) need not be isomorphic
(see Example 2.7.9) . However, we will prove that if A is a subspace of a finite T0-space
X, there is a long exact sequence

. . . // H̃n(A′) // H̃n(X ′) // H̃n(X ′/A′) // H̃n−1(A
′) // . . .

of the reduced homology groups of the subdivisions of X and A and their quotient. In
fact, in this case we will prove that H̃n(X ′/A′) = Hn(X,A) = Hn(X ′, A′).

Recall that if W is a subcomplex of a CW-complex Z, Z/W is CW-complex with one
n-cell for every n-cell of Z which is not a cell of W and an extra 0-cell. The n-squeleton
(Z/W )n is the quotient Zn/W n. If en is a closed n-cell of Z which is not in W , there
is a corresponding closed n-cell q(en) in Z/W where q : Z → Z/W is the quotient map.
If ϕ : Sn−1 → Zn−1 is the attaching map of en and ϕ : Dn → en its characteristic
map, qϕ : Sn−1 → Zn−1/W n−1 and qϕ : Dn → q(en) are respectively, the attaching and
caracteristic maps of the corresponding cell ẽn in Z/W .

Theorem 7.2.1. Let K be a finite simplicial complex and let L ⊆ K be a full sub-
complex. Then |K|/|L| is an h-regular CW-complex and X (|K|/|L|) is homeomorphic to
X (K)/X (L).

Proof. Let σ be an n-simplex of K which is not a simplex of L. If σ intersects L, then σ∩
L = τ is a proper face of σ. In particular τ is contractible and therefore the corresponding
closed cell q(σ) = σ/τ ⊆ |K|/|L| is homotopy equivalent to σ which is contractible. Thus,
closed cells of |K|/|L| are contractible subcomplexes. By 7.1.4, |K|/|L| is h-regular.

Now, if τ and σ are simplices of K which are not in L, then τ̃ ≤ σ̃ in X (|K|/|L|) if
and only if q(τ ) = τ̃ ⊆ σ̃ = q(σ) if and only if τ is a face of σ in K if and only if τ ≤ σ in
X (K)/X (L). Finally, if τ ∈ L and σ /∈ L, τ̃ < σ̃ in X (|K|/|L|) if and only if q(τ) ⊂ q(σ)
if and only if σ ∩ L 6= ∅ if and only if τ < σ in X (K)/X (L). Therefore, X (|K|/|L|) and
X (K)/X (L) are homeomorphic.

Corollary 7.2.2. Let X be a finite T0-space and A ⊆ X a subspace. Then, the space
X (|K(X)|/|K(A)|) is homeomorphic to X ′/A′. In particular |K(X)|/|K(A)| and |K(X ′/A′)|
are homotopy equivalent.

Proof. Apply 7.2.1 to K = K(X) and the full subcomplex L = K(A).

Corollary 7.2.3. If A is a subspace of a finite T0-space X, Hn(X,A) = H̃n(X ′/A′) for
every n ≥ 0.

Proof. By the naturality of the long exact sequence of homology, the McCord map µX :
|K(X)| → X induces isomorphisms Hn(|K(X)|, |K(A)|) → Hn(X,A). Thus,

Hn(X,A) = Hn(|K(X)|, |K(A)|) = H̃n(|K(X)|/|K(A)|) = H̃n(|K(X ′/A′)|) = H̃n(X ′/A′).
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Example 2.7.9 shows that Hn(X,A) is not isomorphic to H̃n(X/A) in general.

Proposition 7.2.4. Let L be a full subcomplex of a finite simplicial complex K. Let fK :
|K| → X (K), fK/L : |K|/|L| → X (|K|/|L|) be the weak homotopy equivalences constructed
in Theorem 7.1.7 (for some characteristic maps of the cells of |K|). Let q : |K| → |K|/|L|
and q̃ : X (K)→ X (K)/X (L) be the quotient maps and let h : X (|K|/|L|)→ X (K)/X (L)
be the homeomorphism defined by h(σ̃) = q̃(σ). Then, the following diagram commutes

|K|
fK

��

q // |K|/|L|
hfK/L

��
X (K)

eq// X (K)/X (L).

Proof. Let x ∈ |K|, x ∈ en, an open n-simplex. We prove that q̃fK(x) = hfK/Lq(x)
by induction in n. Note that this is clear if x ∈ |L|, so we suppose x /∈ |L|. If n = 0,
hfK/Lq(e

0) = hfK/L(ẽ0) = h(ẽ0) = q̃(e0) = q̃fK(e0). Assume then that n > 0, x ∈ en. Let
ϕ : Sn−1 → |K| and ϕ : Dn → en be the attaching and characteristic maps of en. Since
en is not a simplex of L, en is a cell of |K|/|L| with attaching map qϕ : Sn−1 → |K|/|L|
and characteristic map qϕ : Dn → q(en). Let y in the interior of the disc Dn such that
x = ϕ(y). By definition of fK/L,

fK/L(q(x)) = fK/L((qϕ)(y))) =

{
fK/L((qϕ)( y

‖y‖ )) if y 6= 0

ẽn if y = 0

If y 6= 0, hfK/L(q(x)) = hfK/Lq(ϕ( y
‖y‖ )) = q̃fK(ϕ( y

‖y‖ )) = q̃fK(x) by induction. If y = 0,

hfK/L(x) = h(ẽn) = q̃(en) = q̃fK(x). This proves that q̃fK(x) = hfK/Lq(x).

Let ∂ : H̃n(|K|/|L|) → H̃n−1(|L|) be the connecting homomorphism of the long ex-
act sequence of reduced homology. Define ∂̃ = fL∗∂((hfK/L)∗)

−1 : H̃n(X (K)/X (L)) →
H̃n(X (L)). By the previous results, there exists a long exact sequence

. . . // H̃n(X (L))
i∗ // H̃n(X (K))

eq∗// H̃n(X (K)/X (L))
e∂ // H̃n−1(X (L)) // . . .

(7.1)

Corollary 7.2.5. Let A be a subspace of a finite T0-space X. There exists a long exact
sequence

. . . // H̃n(A′)
i∗ // H̃n(X ′)

eq∗ // H̃n(X ′/A′)
e∂ // H̃n−1(A

′) // . . . (7.2)

which is natural in the following sense: if g : (X,A) → (Y,B) is a map of pairs, there is
a commutative diagram

. . . // H̃n(A′)
i∗ //

g′∗
��

H̃n(X ′)
eq∗ //

g′∗
��

H̃n(X ′/A′)
e∂ //

g′∗
��

H̃n−1(A
′) //

g′∗
��

. . .

. . . // H̃n(B′)
i∗ // H̃n(Y ′)

eq∗ // H̃n(Y ′/B′)
e∂ // H̃n−1(B

′) // . . .

(7.3)
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where g′ = X (K(g)) is the induced map in the subdivisions.

Proof. Consider a convenient cell structure for |K(X)|. Taking K = K(X) and L = K(A)
in 7.1 one obtains the long exact sequence 7.2 with the connecting morphism ∂̃ defined as
above for the maps fK and fK/L induced by the cell structure of |K(X)|.

The first two squares of 7.3 commute before taking homology. We only have to prove
the commutativity of the third square.

Consider the following cube,

H̃n(|K(X)|/|K(A)|) ∂ //

hfK(X)/K(A)∗

((QQQQQQQQQQQQ

|K(g)|
∗

��

H̃n−1(|K(A)|)

|K(g)|∗

��

fK(A)∗

''NNNNNNNNNNN

H̃n(X ′/A′)
e∂ //

g′∗

��

H̃n−1(A
′)

g′∗

��

H̃n(|K(Y )|/|K(B)|) ∂ //

hfK(Y )/K(B)∗

((QQQQQQQQQQQQ
H̃n−1(|K(B)|)

fK(B)∗

''NNNNNNNNNNN

H̃n(Y ′/B′)
e∂ // H̃n−1(B

′)

(7.4)

The top and bottom faces of the cube commute by definition of ∂̃. The back face
commute by the naturality of the long exact sequence for CW-complexes. Therefore, to
prove that the front face commutes, we only have to check that the left and right faces
do. To achieve this, we prove that these two squares commute up to homotopy:

|K(A)|
fK(A) //

|K(g)|
��

A′

g′

��
|K(B)|

fK(B) // B′

|K(X)|/|K(A)|
hfK(X)/K(A) //

|K(g)|
��

X ′/A′

g′

��
|K(Y )|/|K(B)|

hfK(Y )/K(B) // Y ′/B′

For the first square this is clear, since the convenient cell structures for |K(X)| and
|K(Y )| induce convenient cell structures for the subcomplexes |K(A)| and |K(B)| and in
this case fK(A) = µK(A) and fK(B) = µK(B) by 7.1.11. For the second square we just
have to remember that there exists a homotopy H : µK(Y )|K(g)| ≃ g′µK(X) such that

H(|K(A)| × I) ⊆ B′ by 1.4.14 and this induces a homotopy H : |K(X)|/|K(A)| × I →
Y ′/B′ which is the homotopy between hfK(Y )/K(B)|K(g)| and g′hfK(X)/K(A) by 7.1.11 and
7.2.4.

Remark 7.2.6. There is an alternative way to prove the existence of the sequence 7.1 and
Corollary 7.2.5 above, which is in fact simpler than what we exhibit here. This proof does
not use the fact that X (K)/X (L) is a finite model of |K|/|L| when L is a full subcomplex
of K. However we chose that proof because Theorem 7.2.1 and Proposition 7.2.4 are
applicatons of the First Section of this Chapter which give stronger results and provide
an explicit formula for the weak homotopy equivalence |K|/|L| → X (K)/X (L).
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The idea of the alternative proof is as follows: if L is a full subcomplex of K, X (L)op is
a closed subspace of X (K)op which is a deformation retract of the nighborhood X (L)op ⊆
X (K)op. Therefore, there is a long exact sequence as in Proposition 7.1 but for the
opposite spaces X (L)op,X (K)op and X (K)op/X (L)op. Using the associated complexes of
these spaces we obtain the long exact sequence of Proposition 7.1 and the naturality of
Corollary 7.2.5 follows from the naturality of the sequence for the opposite spaces.
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Chapter 8

Actions, fixed points and a

conjecture of Quillen

8.1 Equivariant homotopy theory and the poset of nontrivial p-

subgroups of a group

Given a finite group G and a prime integer p, we denote by Sp(G) the poset of nontrivial
p-subgroups of G ordered by inclusion. In 1975, K. Brown [13] studies the relationship
between the topological properties of the simplicial complex K(Sp(G)) and the algebraic
properties of G, and proves a very interesting variation of Sylow’s Theorems for the Euler
characteristic of K(Sp(G)). In 1978, Daniel Quillen [33] investigates in depth topological
properties of this complex [33]. One of his results claims that if G has a nontrivial normal
p-subgroup, |K(Sp(G))| is contractible. He proves that the converse of this statement is
true for solvable groups and conjectures that it is true for all finite groups. This conjecture
is still open.

Apparently, Quillen was not aware of the theory of finite spaces by the time he wrote
[33]. In fact, he works with the associated complex K(Sp) without considering the intrinsic
topology of the poset Sp(G).

In 1984, Stong [38] investigates the equivariant homotopy theory of finite spaces and
its relationship with Quillen’s conjecture. He shows that G has a nontrivial p-subgroup if
and only if Sp(G) is a contractible finite space. Therefore, the conjecture can be restated
as:

Sp(G) is contractible if and only if it is homotopically trivial.

In this Section, we recall the basic results on equivariant homotopy theory of finite
spaces due to Stong [38] and their applications to the study of the poset Sp(G). At the
end of the Section, we exhibit an alternative proof of K. Brown’s result on the Euler
characteristic of Sp(G).

In the following, G will denote a finite group and p, a prime integer dividing the order
of G.

Example 8.1.1. For G = D6 =< s, r | s2 = r6 = srsr = 1 >, the dihedral group of order
12, and p = 2, the poset S2(D6) looks as follows
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< r3, s >

xx
xx

xx
xx

x

SSSSSSSSSSSSSSS
< r3, sr >

vvvvvvvvv

IIIIIIIII
< r3, sr2 >

JJJJJJJJJ

jjjjjjjjjjjjjjjj

< s > < sr3 > < sr > < r3 > < sr4 > < sr2 > < sr5 >

Theorem 8.1.2 (Quillen). If G has a nontrivial normal p-subgroup, |K(Sp(G))| is con-
tractible.

Proof. Suppose N is a nontrivial normal p-subgroup of G. Define f : Sp(G) → Sp(G) by
f(H) = NH = {nh | n ∈ N, h ∈ H}. NH is a subgroup of G sinceN ⊳ G. Moreover, NH
is a quotient of the semiderct product N ⋊H, where (n1, h1)(n2, h2) = (n1h1n2h

−1
1 , h1h2).

Since N and H are p-groups, so is NH. Therefore, f is well defined. Clearly f is order
preserving, and if cN denotes the constant map N , cN ≤ f ≥ 1Sp(G). Thus 1Sp(G) is
homotopic to a constant and then, Sp(G) is contractible. In particular, its associated
complex is contractible.

Note that in fact Quillen proved that if G has a nontrivial normal p-subgroup, Sp(G)
is a contractible finite space.

Conjecture 8.1.3 (Quillen). If |K(Sp(G))| is contractible, G has a nontrivial normal
p-subgroup.

By a G-space we will mean a topological space X with an action of G such that the
maps mg : X → X defined by mg(x) = gx are continuous for every g ∈ G. A G-map (or
equivariant map) between G-spaces X and Y is a continuous map f : X → Y such that
f(gx) = gf(x) for every g ∈ G and x ∈ X. A homotopy H : X × I → Y is a G-homotopy
(or equivariant homotopy) if H(gx, t) = gH(x, t) for every g ∈ G,x ∈ X, t ∈ I. A G-map
f : X → Y is a G-homotopy equivalence if there exists a G-map h : Y → X such that there
exists G-homotopies between hf and 1X and between fh and 1Y . A subspace A of a G-
space X is said to be G-invariant if ga ∈ A for every g ∈ G, a ∈ A. A G-invariant subspace
A ⊆ X is an equivariant strong deformation retract if there is an equivariant retraction
r : X → A such that ir is homotopic to 1X via a G-homotopy which is stationary at A.

If x is a point of a G-space X, Gx = {gx}g∈G denotes the orbit of x. The set of fixed
points by the action is denoted by XG = {x ∈ X | gx = x ∀g ∈ G}.

A finite T0-space which is a G-space will be called a finite T0-G-space.

Proposition 8.1.4. Let X be a finite T0-space, x ∈ X and let f : X → X be an auto-
morphism. If x and f(x) are comparable, x = f(x).

Proof. Assume without loss of generality that x ≤ f(x). Then, f i(x) ≤ f i+1(x) for
every i ≥ 0. By the finitness of X, the equality must hold for some i and since f is a
homeomorphism x = f(x).

Lemma 8.1.5. Let X be a finite T0-G-space. Then, there exists a core of X which is
G-invariant and an equivariant strong deformation retract of X.
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Proof. Suppose X is not minimal. Then, there exists a beat point x ∈ X. Without
loss of generality suppose x is a down beat point. Let y be the maximum of Ûx. Since
mg : X → X is a homeomorphism, gy is the maximum of Ûgx for every g ∈ G. Define the
retraction r : X → X r Gx by r(gx) = gy. This map is well defined since gy /∈ Gx by
Proposition 8.1.4 and since gx = hx implies gy = max Ûgx = max Ûhx = hy. Moreover, r
is a continuous G-map. The homotopy X× I → X corresponding to the path α : I → XX

given by α(t) = ir if 0 ≤ t < 1 and α(1) = 1X is a G-homotopy between ir and 1X relative
to X r Gx. Therefore X r Gx is an equivariant strong deformation retract of X. The
proof is concluded by an inductive argument.

Proposition 8.1.6. A contractible finite T0-G-space has a point which is fixed by the
action of G.

Proof. By Lemma 8.1.5 there is a core, i.e. a point, which is G-invariant.

Proposition 8.1.7. Let X and Y be finite T0-G-spaces and let f : X → Y be a G-map
which is a homotopy equivalence. Then f is an equivariant homotopy equivalence.

Proof. Let Xc and Yc be cores of X and Y which are equivariant strong deformation
retracts. Denote iX , iY and rX , rY the inclusions and equivariant strong deformation
retractions. Since f is a homotopy equivalence and a G-map, so is rY fiX : Xc → Yc.
Therefore, ryfiX is a G-isomorphism. Define the G-map g = iX(rY fiX)−1rY : Y → X,
then

fg = fiX(rY fiX)−1rY ≃ iY rY fiX(rY fiX)−1rY = iY rY ≃ 1Y ,

gf = iX(rY fiX)−1rY f ≃ iX(rY fiX)−1rY fiXrX = iXrX ≃ 1X .

All the homotopies being equivariant. Therefore f is an equivariant homotopy equivalence
with homotopy inverse g.

Remark 8.1.8. Two finite T0-G-spaces which are homotopy equivalent, need not have the
same equivariant homotopy type. Let X = S(S0). The group of automorphisms Aut(X)
acts on X in the usual way by f · x = f(x) and in the trivial way by f ◦ x = x. Denote
by X0 the Aut(X)-space with the first action and by X1, the second. Suppose there
exists an equivariant homotopy equivalence g : X0 → X1. Since X is minimal, g is a
homeomorphism. Let f : X → X be an automorphism distinct from the identity. Then,
gf(x) = g(f ·x) = f ◦g(x) = g(x) for every x ∈ X. Thus, f = 1X , which is a contradiction.

Theorem 8.1.9 (Stong). Let G be a finite group and let p be a prime integer. Then Sp(G)
is contractible if and only if G has a nontrivial normal p-subgroup.

Proof. The poset Sp(G) is a G-space with the action given by conjugation, g ·H = gHg−1.
If Sp(G) is contractible, by Proposition 8.1.6, there existsN ∈ Sp(G) such that gNg−1 = N
for every g ∈ G, i.e., N is a normal subgroup of G.

The converse can be deduced from the proof of Theorem 8.1.2.

In the light of Theorem 8.1.9, the conjecture may be restated as follows:

Restatement of Quillen’s conjecture (Stong): if Sp(G) is homotopically trivial, it
is contractible.
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In [33], Quillen shows that his conjecture 8.1.3 is true for solvable groups. To do this,
Quillen works with another poset Ap(G) which is weak homotopy equivalent to Sp(G),
and proves that if G does not have nontrivial normal p-subgroups, then Ap(G) has a
nonvanishing homology group. The finite space Ap(G) is the subspace of Sp(G) consisting
of the elementary abelian p-subgroups, i.e. abelian subgroups whose elements have all
order 1 or p.

Proposition 8.1.10. The inclusion Ap(G) →֒ Sp(G) is a weak homotopy equivalence.

Proof. By Theorem 1.4.2, it suffices to show that i−1(UH) = Ap(H) is contractible for
every H ∈ Sp(G). Since H is a nontrivial p-subgroup, its center Z is not trivial. Let
N ⊆ H be the subgroup of elements of order 1 or p. If T ∈ Ap(H), TN ∈ Ap(H) and
T ≤ TN ≥ N . Therefore, Ap(H) is contractible.

In [38], Stong shows that in general Ap(G) and Sp(G) are not homotopy equivalent,
however, if Ap(G) is contractible, there is a fixed point by the action of G and then Sp(G)
is contractible. Apparently it is unknown whether the converse of this results holds.

Example 8.1.11. Let Σ5 be the symmetric group on five letters. We give an alternative
proof of the well known fact that Σ5 has no nontrivial normal 2-subgroups.

The subgroup < (1234), (13) >⊆ Σ5 has order 8 and it is not abelian. All the other
subgroups of order 8 are isomorphic to this Sylow 2-subgroup and therefore, Σ5 has no
elementary abelian subgroups of order 8. Thus, the height of the poset A2(Σ5) is at most
one.

On the other hand, there is a subspace of A2(Σ5) with the following Hasse diagram

< (12), (34) >

OOOOOOOOOOO
< (12), (45) >

ooooooooooo

OOOOOOOOOOO
< (15), (34) >

ooooooooooo

OOOOOOOOOOO
< (23), (45) >

ooooooooooo

OOOOOOOOOOO
< (15), (23) >

ooooooooooo

< (12) > < (34) > < (45) > < (15) > < (23) >

Then the graph K(A2(Σ5)) has a cycle and therefore it is not contractible. Hence,
A2(Σ5) is not homotopically trivial and then neither is S2(Σ5). In particular, S2(Σ5) is
not contractible and then Σ5 does not have normal 2-subgroups which are nontrivial.

Now we exhibit an alternative proof of K. Brown’s result on Euler characteristic.

Proposition 8.1.12. Let H be a subgroup of G. Then, Sp(G)H is contractible.

Proof. If T ∈ Sp(G)H , TH ∈ Sp(G)H . Since T ≤ TH ≥ H, the constant map cH :
Sp(G)H → Sp(G)H is homotopic to the identity.

Note that if X is a finite T0-G-space, the subdivision X ′ is also a G-space with the
action given by g · {x0, x1, . . . , xn} = {gx0, gx1, . . . , gxn}.

Let P be a Sylow p-subgroup of G. The action of P on Sp(G) by conjugation induces
an action of P on Sp(G)′. Given c ∈ Sp(G)′, let Pc = {g ∈ P | gc = c} denote the isotropy
group (or stabilizer) of c. Define Y = {c ∈ Sp(G)′ | Pc 6= 0}.
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Lemma 8.1.13. χ(Sp(G)′, Y ) ≡ 0 mod(#P ).

Proof. Let C = {c0 < c1 < . . . < cn} ∈ Sp(G)′′ be a chain of Sp(G)′ which is not a chain
of Y . Then, there exists 0 ≤ i ≤ n such that ci /∈ Y . Therefore, if g and h are two
diferent elements of P , gci 6= hci. In other words, the orbit of ci under the action of P
has #P elements. Thus, the orbit of C also has #P elements. In particular, #P divides
χ(Sp(G)′, Y ) =

∑
i≥0

(−1)iαi, where αi is the number of chains of (i+ 1)-elements of Sp(G)′

which are not chains of Y .

Lemma 8.1.14. Y is homotopically trivial.

Proof. Let f : Y → Sp(P )op defined by f(c) = Pc, the isotropy group of c. By definition of
Y , Pc is a nontrivial subgroup of P and then f is a well defined function. If c0 ≤ c1, Pc0 ⊇
Pc1 . Thus, f is continuous. If 0 6= H ⊆ P , f−1(UH) = {c ∈ Y | H ⊆ Pc} = (Sp(G)H )′,
which is contractible by Proposition 8.1.12. From Theorem 1.4.2 we deduce that f is a
weak homotopy equivalence. Since Sp(P )op has minimum, Y is homotopically trivial.

In [33], Quillen proves that Y is homotopically trivial finding a third space Z which is
weak homotopy equivalent to Y and Sp(P ). Our proof is somewhat more direct.

Theorem 8.1.15 (K. Brown). χ(Sp(G)) ≡ 1 mod(#P ).

Proof. Since χ(Y ) = 1 by Lemma 8.1.14, χ(Sp(G)) = χ(Sp(G)′) = χ(Y )+χ(Sp(G)′, Y ) ≡
1 mod(#P ).

8.2 Equivariant simple homotopy types and Quillen’s conjecture

Stong’s result 8.1.6 says that if X is a finite T0-G-space which is contractible, then there
is a point which is fixed by G. This is not true if we change X by a polyhedron (see [30]).
There exists a contractible finite G-simplicial complex K with no fixed points. Therefore,
considering the associated finite space with the induced action of G, we obtain a finite T0-
G-space which is homotopically trivial and which has no fixed points. To prove Quillen’s
conjecture, one would need to show that if Sp(G) is homotopically trivial, then the action
of G by conjugation has a fixed point.

The proof of Proposition 8.1.6 and the previous results suggest that the hypothesis of
contractibilty can be replaced by a weaker notion. Combining these ideas with the simple
homotopy theory of finite spaces, we introduce the notion of G-collapse of finite spaces
and of simplicial complexes. These two concepts are strongly related similarly as in the
nonequivariant case.

Equivariant simple homotopy types of finite spaces allow us to attack the conjecture of
Quillen and to deepen into equivariant homotopy theory of finite spaces originally studied
by Stong. We obtain new formulations of the conjecture using these concepts, trying to
get closer to its proof.

As in the previous Section, G will denote a finite group.
Recall that there is a strong collapse from a finite T0-space X to a subspace Y if the

second one is obtained from the first by removing beat points. By our results on minimal
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pairs, this is equivalent to saying that Y ⊆ X is a strong deformation retract. We denote
this situation by X ցց Y .

If x is a beat point of a finite T0-G-space X, gx ∈ X is a beat point for every g ∈ G.
In this case we say that there is an elementary strong G-collapse from X to X r Gx.
Note that elementary strong G-collapses are strong collapses. A sequence of elementary
strong G-collapses is called a strong G-collapse and it is denoted by X ցցG Y . Strong
G-expansions are defined dually.

Proposition 8.2.1. Let X be a finite T0-G-space and Y ⊆ X a G-invariant subspace.
The following are equivalent:

i. X ցցG Y .

ii. Y ⊆ X is an equivariant strong deformation retract.

iii. Y ⊆ X is a strong deformation retract.

Proof. If there is an elementary strong G-collapse from X to Y , then by the proof of
Lemma 8.1.5, Y is an equivariant strong deformation retract of X.

If Y ⊆ X is a strong deformation retract and x ∈ X r Y is a beat point of X,
X ցցG X rGx = X1. In particular X1 ⊆ X is a strong deformation retract, and then, so
is Y ⊆ X1. By induction, X1 ցցG Y and then X ցցG Y .

Let X be a finite T0-G-space. A core of X which is G-invariant is called a G-core.
From Stong’s results (Lemma 8.1.5), it follows that every finite T0-G-space has a G-core.

Definition 8.2.2. Let X be a finite T0-G-space. If x ∈ X is a weak point, gx ∈ X is
also a weak point for every g ∈ G and we say that there is an elementary G-collapse from
X to X r Gx. Note that the resulting subspace X r Gx is G-invariant. A sequence of
elementary G-collapses is called a G-collapse and it is denoted X ցG Y . G-expansions are
defined dually. X is G-collapsible if it G-collapses to a point.

Note that strong G-collapses are G-collapses and that G-collapses are collapses. If the
action is trivial, G-collapses and collapses coincide.

A finite T0-G-space is strong collapsible if and only if it is G-strong collapsible. How-
ever, this is not true for collapsibility and G-collapsibility as the next example shows.

Example 8.2.3. Let X be the following finite space (cf. Figure 7.3 above Example 7.1.8)
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Consider the action of the two-element group Z2 over X that permutes 0 and 1 and fixes
every other element. The unique weak points of X are 0 and 1. X r {0} is collapsible but
X r {0, 1} is not. Therefore X is a collapsible finite space which is not G-collapsible.

The notion of G-collapse can be studied also in the setting of simplicial complexes.
Suppose K is a finite G-simplicial complex and σ ∈ K is a free face of σ′ ∈ K. Then

for every g ∈ G, gσ is a free face of gσ′, however it is not necessarily true that K collapses
to K r

⋃
g∈G

{gσ, gσ′}.

Example 8.2.4. Let σ′ be a 2-simplex and σ ( σ′ a 1-face of σ. Consider the action
of Z3 by rotation over K = σ′. Then σ is a free face of σ′, but σ′ does not collapse to
σ′ r

⋃
g∈Z3

{gσ, gσ′} which is the discrete complex with 3 vertices.

If σ is a free face of σ′ in the G-complex K, and g ∈ G is such that gσ = σ, then
σ ( gσ′ and therefore gσ′ = σ′. In other words, the isotropy group Gσ of σ is contained in
the isotropy group Gσ′ of σ′. The other inclusion does not hold in general as the previous
example shows.

Definition 8.2.5. Let K be a finite G-simplicial complex and let σ ∈ K be a free face
of σ′ ∈ K (σ ( σ′ is a collapsible pair). Consider the G-invariant subcomplex L =
K r

⋃
g∈G
{gσ, gσ′}. We say that there is an elementary G-collapse K ցGe L from K to L,

or that σ ( σ′ is a G-collapsible pair, if Gσ = Gσ′ . A sequence of elementary G-collapses
is called a G-collapse and denoted by K ցG L. A G-complex K is G-collapsible if it
G-collapses to a vertex.

Proposition 8.2.6. Let K be a finite G-simplicial complex and let σ ( σ′ be a collapsible
pair. The following are equivalent:

1. σ ( σ′ is a G-collapsible pair.

2. K ց L = K r
⋃

g∈G
{gσ, gσ′}.

Proof. Suppose σ is an n-simplex and that K ց L. Then, the set
⋃

g∈G
{gσ, gσ′} contains as

many n-simplices as (n+ 1)-simplices i.e., the sets G · σ = {gσ}g∈G and G · σ′ = {gσ′}g∈G

have the same cardinality. Therefore

#Gσ = #G/#G · σ = #G/#G · σ′ = #Gσ′ .

Since Gσ ⊆ Gσ′ , the equality holds.
Conversely, suppose σ ( σ′ is a G-collapsible pair. Then, the pairs gσ ( gσ′ can be

collapsed one at the time.

Therefore, G-collapses are collapses. The following is an extension of the classical result
of Whitehead (see [44] for example) which says that if K1,K2 ⊆ K are finite simplicial
complexes, then K1 ∪K2 ց K1 if and only if K2 ց K1 ∩K2 (with the same sequence of
collapses). The proof is straightforward.
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Remark 8.2.7. Let K be a finite G-simplicial complex and let K1,K2 ⊆ K be two G-
invariant subcomplexes such that K1∪K2 = K. Then, K ցG K1 if and only if K2 ցG K1∩
K2.

Remark 8.2.8. Let X be a finite T0-G-space. If X is G-collapsible, it collapses to a G-
invariant one-point subspace. In particular, the fixed point set XG is non-empty.

The following result is a direct consequence of Remark 8.2.8 and Theorem 8.1.9.

Proposition 8.2.9. For a finite group G and a prime number p, we have the following
equivalences:

1. G has a nontrivial normal p-subgroup.

2. Sp(G) is contractible.

3. Sp(G) is G-collapsible.

Now we will study the relationship between G-collapses of finite spaces and simplicial
G-collapses.

If X is a finite T0-G-space, there is a natural induced action on K(X). If we consider
G both as a discrete topological group and a discrete simplicial complex, there is a natural
isomorphism K(G × X) = G × K(X) and an action θ : G × X → X induces an action
K(θ) : G × K(X) = K(G × X) → K(X) Analogously, an action θ : G × K → K over a
finite simplicial complex K induces an action X (θ) : G×X (K) = X (G×K)→ X (K).

Unless we say the opposite, if X is a finite T0-G-space and K a finite G-simplicial
complex, we will assume the actions over K(X) and X (K) are the induced ones.

The main aim of this Section is to prove the equivariant version of Theorem 4.2.12.
The proof will be similar to the proof of the nonequivariant case.

Lemma 8.2.10. Let aK be a finite simplicial cone and suppose G acts on aK fixing the
vertex a. Then aK ցG a.

Proof. Let σ be a maximal simplex of K. Then σ ( aσ is a G-collapsible pair since
g · aσ = aσ implies gσ = σ. Therefore aK ցG aK r

⋃
g∈G
{gσ, g · aσ} = a(K r

⋃
g∈G
{gσ}).

The lemma follows from an inductive argument.

Lemma 8.2.11. Let X be a finite T0-G-space and let x ∈ X. The stabilizer Gx of x acts
on Ĉx and then on K(Ĉx). If K(Ĉx) is Gx-collapsible, K(X) ցG K(X rGx).

Proof. If σ ( σ′ is a Gx-collapsible pair in K(Ĉx), xσ ( xσ′ is Gx-collapsible in xK(Ĉx). In
this way, copying the elementary Gx-collapses of K(Ĉx) ցGx ∗, one obtains that K(Cx) =
xK(Ĉx) ցGx K(Ĉx)∪{x, x∗} ցGx K(Ĉx). Now we will show that since K(Cx) ցGx K(Ĉx),

⋃

g∈G

gK(Cx) ցG
⋃

g∈G

gK(Ĉx). (8.1)

Suppose K(Cx) = K0 ցGxe K1 ցGxe K2 ցGxe . . . ցGxe Kr = K(Ĉx). Notice that all
the simplices removed in these collapses contain the vertex x. If σ ( σ′ is theGx-collapsible
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pair collapsed in Ki ցGxe Ki+1 (along with the other simplices in the orbits of σ and σ′),
we afirm that σ ( σ′ is G-collapsible in

⋃
g∈G

gKi. Suppose σ ( gσ̃ with g ∈ G, σ̃ ∈ Ki.

Since x ∈ σ ( gσ̃, g−1x ∈ σ̃ and then x and g−1x are comparable. By Proposition 8.1.4
x = g−1x and therefore g ∈ Gx. Since Ki is Gx-invariant and σ is a free face of σ′ in Ki,
gσ̃ = σ′. Therefore, σ ( σ′ is a collapsible pair in

⋃
g∈G

gKi.

Let g ∈ G be such that gσ′ = σ′. By the same argument as above, x, gx ∈ σ′ and
then g ∈ Gx. Since σ ( σ′ is Gx-collapsible in Ki, gσ = σ, which proves that it is also
G-collapsible in

⋃
g∈G

gKi. Thus,

⋃

g∈G

gKi ցGe
⋃

g∈G

gKir
⋃

g∈G

{gσ, gσ′} =
⋃

g∈G

(gKir
⋃

h∈G

{ghσ, ghσ′}) =
⋃

g∈G

g(Kir
⋃

h∈G

{hσ, hσ′})

But hσ and hσ′ are simplices of Ki if and only if h ∈ Gx, then

⋃

g∈G

g(Ki r
⋃

h∈G

{hσ, hσ′}) =
⋃

g∈G

g(Ki r
⋃

h∈Gx

{hσ, hσ′}) =
⋃

g∈G

gKi+1.

So 8.1 is proved, i.e.,

⋃

g∈G

gK(Cx) ցG
⋃

g∈G

gK(Ĉx) = (
⋃

g∈G

gK(Cx)) ∩ K(X rGx).

By 8.2.7,

K(X) = (
⋃

g∈G

gK(Cx)) ∪K(X rGx) ցG K(X rGx).

Theorem 8.2.12.

(a) Let X be a finite T0-G-space and Y ⊆ X a G-invariant subspace. If X ցG Y ,
K(X) ցG K(Y ).

(b) Let K be a finite G-simplicial complex and L ⊆ K a G-invariant subcomplex. If
K ցG L, X (K) ցG X (K).

Proof. Suppose first that x ∈ X is a beat point. Then there exists y ∈ X, y 6= x such
that Cx ⊆ Cy. Therefore Gx ⊆ Gy by Proposition 8.1.4 and K(Ĉx) = yK(Ĉx r {y}). The
stabilizer Gx of x acts on Ĉx, and therefore on K(Ĉx), and fixes y. By Lemma 8.2.10,
K(Ĉx) ցGx y. By Lemma 8.2.11, K(X) ցG K(X rGx). In particular if X is contractible,
this says that K(X) is G-collapsible.

Suppose now that x ∈ X is a weak point. Then Cx is contractible and K(Cx) is
Gx-collapsible. Again from Lemma 8.2.11, we obtain that K(X) ցG K(X r Gx). This
proves the first part of the theorem for elementary G-collapses. The general case follows
immediately from this one.

To prove the second part of the theorem we can suppose that K elementary G-collapses
to L. Let σ ( σ′ be a G-collapsible pair in K such that L = K r {gσ, gσ′}g∈G. Then,
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σ ∈ X (K) is an up beat point and therefore X (K) ցGe X (K) r {gσ}g∈G. Now, σ′ ∈
X (K) r {gS}g∈G is a down weak point since σ′ r {σ, σ′} is a simplicial cone and then

Û
X (K)r{gσ}g∈G

σ′ = Û
X (K)r{σ}
σ′ = X (σ′ r{σ, σ′}) is contractible by Lemma 4.2.5. Therefore,

X (K) r {gσ}g∈G ցGe X (K) r {gσ, gσ′}g∈G = X (L) and X (K) ցG X (L).

Corollary 8.2.13. G has a nontrivial normal p-subgroup if and only if K(Sp(G)) is G-
collapsible.

Proof. If G has nontrivial normal p-subgroup, Sp(G) is G-collapsible by Proposition 8.2.9
and then K(Sp(G)) is G-collapsible by Theorem 8.2.12. Conversely, if K(Sp(G)) is G-
collapsible, there is a vertex of K(Sp(G)) fixed by G, i.e. a nontrivial p-subgroup of G,
which is fixed by the interior automorphisms of G.

Therefore Quillen’s conjecture is equivalent to the following statement: |K(Sp(G))| is
contractible if and only if K(Sp(G)) is G-collapsible.

The equivalence classes of the equivalence relations �ցG generated by the G-collapses
are called equivariant simple homotopy types in the setting of finite spaces and of simplicial
complexes. An easy modification of Proposition 4.2.9 shows that if X is a finite T0-G-
space, X and X ′ are equivariantly simple homotopy equivalent (see Proposition 8.2.24).
Therefore, we have the following Corollary of Theorem 8.2.12.

Corollary 8.2.14. Let X and Y be finite T0-G-spaces. Then X and Y have the same
equivariant simple homotopy type if and only if K(X) and K(Y ) have the same equivariant
simple homotopy type.

However, the analogous result for the functor X is not true (see Example 8.2.22).

Remark 8.2.15. Let X be a finite G-space. Then y ≤ x in the quotient space X/G if and
only if there exists g ∈ G such that y ≤ gx. In particular if X is T0, so is X/G.

The quotient map q : X → X/G is open, moreover q−1(q(Ux)) =
⋃

g∈G
gUx =

⋃
g∈G

Ugx.

Since q(Ux) ∋ x is an open set, Ux ⊆ q(Ux). The other inclusion follows from the continuity
of q. Therefore Ux = q(Ux). Now, y ≤ x if and only if y ∈ q−1(Ux) =

⋃
g∈G

Ugx if and only

if there exists g ∈ G with y ≤ gx.
Suppose X is T0, y ≤ x and x ≤ y. Then there exist g, h ∈ G such that y ≤ gx and

x ≤ hy. Hence, y ≤ gx ≤ ghy. By Proposition 8.1.4, y = gx = ghy and then y = x.

Proposition 8.2.16. Let X be a finite T0-G-space which strongly G-collapses to an in-
variant subspace Y . Then X/G strongly collapses to Y/G and XG strongly collapses to
Y G. In particular, if X is contractible, so are X/G and XG.

Proof. We can assume there is an elementary strong G-collapse from X to Y = X rGx
where x ∈ X is a beat point. Suppose x ∈ X is a down beat point and let y ≺ x. Then
y < x in X/G and if z < x there exists g such that gz < x. Therefore gz ≤ y and
z ≤ y. This proves that x ∈ X/G is a down beat point and X/G strongly collapses to
X/Gr {x} = Y/G.
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If x is not fixed by G, Y G = XG. If x ∈ XG, and g ∈ G, then gy < gx = x and
therefore gy ≤ y. Thus, gy = y. This proves that y is also fixed by G and then x is a
down beat point of XG. In particular, XG ցց Y G.

If in addition X is contractible, X strongly G-collapses to a G-core which is a point
and then X/G and XG are contractible.

In fact, the first part of the previous result holds for general spaces. If X is a G-
topological space and Y ⊆ X is an equivariant strong deformation retract, Y/G is a
strong deformation retract of X/G and so is Y G ⊆ XG. However if X is a G-topological
space which is contractible, XG need not be contractible. R. Oliver [30] proved that there
are groups which act on disks without fixed points.

Proposition 8.2.17. Let X be a finite T0-G-space which G-collapses to Y . Then XG

collapses to Y G. In particular, if X is G-collapsible, XG is collapsible.

Proof. Suppose X ցGe Y = XrGx. If x /∈ XG, Y G = XG. If x ∈ XG, ĈX
x is G-invariant

and contractible. By Proposition 8.2.16, ĈXG

x = (ĈX
x )G is contractible and then x is a

weak point of XG, which means that XG ց Y G.

The analogous for quotients is not true. There exist finite T0-G-spaces such that
X ցG Y but X/G does not collapse to Y/G, as the next example shows.

Example 8.2.18. Let X be the following Z2-space
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where Z2 acts by symmetry, 1 · i = i′ for every 0 ≤ i ≤ 4. Since 0 ∈ X is a weak point,
X Z2-collapses to Y = X r {0, 0′}. However X/Z2 does not collapse to Y/Z2. Moreover,
X/Z2 is contractible while Y/Z2 is the minimal finite model of the circle.

From Proposition 8.2.17 one easily deduces the next

Corollary 8.2.19. Let X and Y be equivariantly simple homotopy equivalent finite T0-
G-spaces. Then XG and Y G have the same simple homotopy type.

There is an analogous result of Proposition 8.2.17 for complexes.

Proposition 8.2.20. Let K be a finite G-simplicial complex which G-collapses to a sub-
complex L. Then KG collapses to LG. In particular, if K is G-collapsible, KG is collapsi-
ble.

Proof. Suppose that K ցGe L = K r
⋃

g∈G
{gσ, gσ′}, where σ ( σ′ is a G-collapsible pair.

If σ /∈ KG, LG = KG. If σ ∈ KG, then σ′ ∈ KG, because σ is a free face of σ′. Then
L = K r {σ, σ′} and LG = KG r {σ, σ′}. Since σ ( σ′ is a collapsible pair in KG,
KG ց LG.
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Corollary 8.2.21. If K and L are two finite G-simplicial complexes with the same equiv-
ariant simple homotopy type, KG and LG have the same simple homotopy type. In par-
ticular K has a vertex which is fixed by the action of G if and only if L has a vertex fixed
by G.

Example 8.2.22. Let K be a 1-simplex with the unique nontrivial action of Z2. The
barycentric subdivision K ′ has a vertex fixed by Z2 but KZ2 = ∅ therefore K and K ′

do not have the same equivariant simple homotopy type. On the other hand, X (K) and
X (K ′) are contractible, and therefore they have the same equivariant simple homotopy
type.

Corollary 8.2.23. A finite group G has a nontrivial normal p-subgroup if and only if
K(Sp(G)) is equivariantly simple homotopy equivalent to a point.

Proof. If G has a nontrivial normal p-subgroup, K(Sp(G)) is G-collapsible by Corollary
8.2.13. If K(Sp(G)) has trivial equivariant simple homotopy type, there is a vertex of
K(Sp(G)) fixed by the action of G, i.e. a normal p-subgroup of G.

Now we turn our attention to the simpler poset Ap(G).

Proposition 8.2.24. Let f : X → Y be a G-map between finite T0-G-spaces which is
distinguished. Then X and Y have the same equivariant simple homotopy type.

Proof. The non-Hausdorff mapping cylinder B(f) is a G-space with the action induced by
X and Y since if x < y, then f(x) ≤ y and therefore f(gx) = gf(x) ≤ gy for every g ∈ G.
Moreover, Y is a G-invariant strong deformation retract of B(f) and then B(f) ցցG Y .
On the other hand, B(f) ցG X. This follows from the proof of Lemma 4.2.7. Notice that
we can remove orbits of minimal points of Y in B(f) and collapse all B(f) into X.

Corollary 8.2.25. Ap(G) and Sp(G) have the same equivariant simple homotopy type.

Proof. The proof of Proposition 8.1.10 shows that the inclusion Ap(G) →֒ Sp(G) is a
distinguished map.

Corollary 8.2.26. If G has a nontrivial normal p-subgroup then it has a nontrivial normal
elementary abelian p-subgroup.

Proof. There is a simple algebraic proof of this fact, but we show a shorter one, using the
last result. Since Sp(G)�ցG Ap(G), by, Corollary 8.2.19, Sp(G)G�ցAp(G)G. Therefore,
if Sp(G)G 6= ∅, Ap(G)G is also nonempty.

If Sp(G) is contractible, K(Sp(G)) has the strong homotopy type of a point by Theorem
5.0.16. Conversely, if K(Sp(G)) is strong collapsible, Sp(G)′ is contractible by Theorem
5.0.16 and then there is a point of Sp(G)′ which is fixed by the action of G, i.e. a chain of
nontrivial normal p-subgroups of G. We summarize the results on the poset Sp(G) in the
following

Theorem 8.2.27. Let G be a finite group and p a prime integer. The following are
equivalent
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1. G has a nontrivial normal p-subgroup.

2. Sp(G) is a contractible finite space.

3. Sp(G) is G-collapsible.

4. Sp(G) has the equivariant simple homotopy type of a point.

5. K(Sp(G)) is G-collapsible.

6. K(Sp(G)) has the equivariant simple homotopy type of a point.

7. K(Sp(G)) has the strong homotopy type of a point.

8. Ap(G) has the equivariant simple homotopy type of a point.

9. K(Ap(G)) has the equivariant simple homotopy type of a point.

As a consequence of these equivalences, we obtain nine different formulations of Quillen’s
conjecture.

To finish this Section we prove a result on groups which at first sight seems to have no
connection with finite spaces.

Proposition 8.2.28. Let G be a finite group and suppose there exists a proper subgroup
H ( G such that for every nontrivial subgroup S of G, S ∩ H is nontrivial. Then G is
not a simple group.

Proof. Since H is a proper subgroup of G, G is nontrivial and therefore H = G ∩ H is
nontrivial. Consider the poset S(G) of nontrivial proper subgroups of G. Let cH : S(G)→
S(G) be the constant map H and define f : S(G)→ S(G) by f(S) = S ∩H. The map f
is well defined by hypothesis and it is clearly continuous. Moreover, 1S(G) ≥ f ≤ cH and
then S(G) is contractible.

On the other hand, G acts on S(G) by conjugation. Then, by Proposition 8.1.6, G has
a nontrivial proper normal subgroup.

Example 8.2.29. Let Q = {1,−1, i,−i, j,−j, k,−k} be the quaternion group, where
(−1)2 = 1, (−1)i = i(−1) = −i, (−1)j = j(−1) = −j, (−1)k = k(−1) = −k, i2 = j2 =
k2 = ijk = −1. Let H = {1,−1}. Then H is in the hypothesis of Proposition 8.2.28 since
−1 is a power of every nontrivial element of Q. Therefore, Q is not simple.

Remark 8.2.30. There are also purely algebraic proofs of Proposition 8.2.28. In fact is
easy to see that in the hypothesis of above,

⋂
g∈G

gHg−1 is a nontrivial normal subgroup of

G. However, our topological proof is also very simple.
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8.3 Reduced lattices

Recall that a poset P is said to be a lattice if every two points a and b have a join (or
supremum) a∨ b (i.e. Fa ∩Fb has a minimum) and a meet (or infimum) a∧ b (i.e. Ua ∩Ub

has maximum). If X is a finite lattice it has maximum and minimum, and therefore they
are not very interesting from the topological point of view. In this Section we will study
the spaces obtained by removing from a lattice its maximum and minimum.

Definition 8.3.1. A finite poset X is called a reduced lattice if X̂ = D0 ⊕ X ⊕D0 is a
lattice.

For example, if G is a finite group and p is a prime integer, Sp(G) is a reduced lattice.
The finite space S(G) defined in the proof of Proposition 8.2.28 is also a reduced lattice.
However, the minimal finite model of S1 is not.

A subset A of a poset P is lower bounded if there exists x ∈ P such that x ≤ a for
every a ∈ A. In that case x is called a lower bound of A. If the set of lower bounds
has a maximum x, we say that x is the infimum of A. The notions of upper bound and
supremum are defined dually.

Proposition 8.3.2. Let P be a finite poset. The following are equivalent:

1. P is a reduced lattice.

2. Every lower bounded set of P has an infimum and every upper bounded set has a
supremum.

3. Every lower bounded set {x, y} has infimum.

4. Every upper bounded set {x, y} has supremum.

Proof. Straightforward.

For instance, the associated space of a simplicial complex is a reduced lattice. If K is
a finite simplicial complex, and {σ, σ′} is lower bounded in X (K), the simplex σ ∩ σ′ is
the infimum of {σ, σ′}. It can be proved that if X is a finite T0-space, then there exists a
finite simplicial complex K such that X (K) = X if and only if X is a reduced lattice and
every element of X is the supremum of a unique set of minimal elements.

Proposition 8.3.3. If X is a reduced lattice and Y ⊆ X is a strong deformation retract,
Y is also a reduced lattice. In particular, if X is a reduced lattice, so is its core.

Proof. It suffices to consider the case that Y = X r {x}, where x ∈ X is a down beat
point. Let y ≺ x and let A = {a, b} be an upper bounded subset of Y . Then A has a
supremum z in X. If x is an upper bound of A in X, a < x and b < x and then a ≤ y,
b ≤ y. Therefore z 6= x and then z is the supremum of A in Y . By Proposition 8.3.2, Y
is a reduced lattice.

However the fact of being a reduced lattice is not a homotopy type invariant. It is
easy to find contractible spaces which are not reduced lattices. Reduced lattices do not
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describe all homotopy types of finite spaces. For example, since S(S0) is minimal and it
is not a reduced lattice, no reduced lattice is homotopy equivalent to S(S0). On the other
hand every finite space X has the weak homotopy type of a reduced lattice, e.g. X ′.

The following result is due to Stong.

Proposition 8.3.4 (Stong). Let G be a finite group and let p be a prime integer. Let A
be the set of nontrivial intersections of Sylow p-subgroups of G. Then A is G-invariant
and it is an equivariant strong deformation retract of Sp(G).

Proof. It is clear that A is G-invariant. Define the retraction r : Sp(G)→ A, that assigns
to each subgroup H ⊆ G, the intersection of all the Sylow p-subgroups containing H.
Then r is a continuous map, and ir ≥ 1Sp(G). By Proposition 8.2.1, A is an equivariant
strong deformation retract of Sp(G).

Proposition 8.3.4 motivates the following definition.

Definition 8.3.5. Let X be a reduced lattice. Define the subspace i(X) ⊆ X by
i(X) = {∧A | A is a lower bounded subset of maximal elements of X}. Analogously, de-
fine s(X) = {∨A | A is an upper bounded subset of minimal elements of X}. Here,

∧
A

denotes the infimum of A and
∨
A its supremum.

Following Stong’s proof of Proposition 8.3.4, one can prove that the retraction r : X →
i(X), which sends x to the infimum of the maximal elements of X that are greater than
x, is continuous and that i(X) is a strong deformation retract of X. Similarly, s(X) ⊆ X
is a strong deformation retract.

Example 8.3.6. Let n ≥ 2 and let Pn be the poset of proper positive divisors of n with
the order given by: a ≤ b if a divides b. If n is square free, Pn is homeomorphic to
X (σ̇) where σ is a (k − 1)-simplex, k being the number of primes dividing n. In fact, if
p1, p2, . . . , pk are the prime divisors of n, and σ = {p1, p2, . . . , pk} is a simplex, the map
f : Pn → X (σ̇) defined by f(d) = {pi | pi divides d}, is a homeomorphism. In particular,
|K(Pn)| = |(σ̇)′| is homeomorphic to the (k − 2)-dimensional sphere.

If n is not square free, we show that Pn is contractible. Note that Pn is a reduced
lattice with the infimum induced by the greatest common divisor. Since n is not square
free, the product of the prime divisors of n is a proper divisor of n and it is the maximum
of s(Pn). Thus, s(Pn) is contractible and then, so is Pn.

Proposition 8.3.7. Let X be a reduced lattice. The following are equivalent

1. X is a minimal finite space.

2. i(X) = s(X) = X.

Proof. If X is minimal, the unique strong deformation retract of X is X itself. Therefore
i(X) = s(X) = X. Conversely, suppose this equality holds and that x ∈ X is a down beat
point with y ≺ x. Since x ∈ X = s(X), x is the supremum of a set M of minimal elements
of X. Since x is not minimal, every element of M is strictly smaller than x, and therefore
y is an upper bound of M . This contradicts the fact that x =

∨
M . Then X does not

have down beat points and analogously it has no up beat point, so it is minimal.
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If X is a reduced lattice, i(X) is a strong deformation retract of X, which is a reduced
lattice by Proposition 8.3.3. Analgously s(i(X)) is a strong deformation retract of X and
it is a reduced lattice. The sequence

X ⊇ i(X) ⊇ si(X) ⊇ isi(X) ⊇ . . .

is well defined and it stabilizes in a space Y which is a strong deformation retract of X
and a minimal finite space by Proposition 8.3.7. Therefore, in order to obtain the core of
a reduced lattice, one can carry out alternatively the constructions i and s, starting from
anyone.

Example 8.3.8. Let K be the simplicial complex which consists of two 2-simplices with
a common 1-face. Since K is strong collapsible, so is X (K). Another way to see this is the
following: X (K) is a reduced lattice with two maximal elements, i(X (K)) has just three
points, and si(X (K)) is the singleton.
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•

Although there are many reduced lattices which are minimal finite spaces, a reduced
lattice X is a minimal finite model if and only if it is discrete. For if X is not discrete,
there is a point x ∈ X which is not minimal and we can apply Osaki’s open reduction
(Theorem 6.1.1) to obtain a smaller model X/Ux.

Let X be a finite T0-space and Y a reduced lattice. If f, g : X → Y are two maps which
coincide in the set Max(X) of maximal elements of X, then f ≃ g. Define h : X → Y
by h(x) =

∧{f(x′) | x′ ∈ Max(X) and x′ ≥ x}. Clearly h is continuous and h ≥ f .
Analogously h ≥ g and then f ≃ g.

If X and Y are two finite T0-spaces and f : X → Y is a continuous map, there
exists g : X → Y homotopic to f and such that g(Max(X)) ⊆ Max(Y ). Consider
g ∈ Max(Ff ) ⊆ Y X . Suppose there exists x ∈ Max(X) such that g(x) /∈ Max(Y ).
Then, there exists y > g(x), and the map g̃ : X → Y which coincides with g in X r {x}
and such that g̃(x) = y is continuous and g̃ > g, which is a contradiction. Therefore
g(Max(X)) ⊆Max(Y ).

We deduce that if X is a finite T0-space and Y is a reduced lattice, then #[X,Y ] ≤
(#Max(Y ))#Max(X). Here, [X,Y ] denotes the set of homotopy classes of maps X → Y .

8.4 Fixed points, Lefschetz number and the f∞(X)

In the previous Sections of this Chapter we studied fixed point sets of actions over finite
spaces. Now we turn our attention to fixed point sets of continuous maps between finite
spaces and their relationship with the fixed point sets of the associated simplicial maps.
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We will recall first some basic facts about Lefschetz Theorems and the fixed point theory
for finite posets. Some references for this are [4, 29]. Then we will prove a stronger version
of the Lefschetz Theorem for simplicial automorphisms.

We also introduce the construction f∞(X) of a map f : X → X which has applications
to the study of weak homotopy equivalences between minimal finite models.

If X is a topological space and f : X → X is a continuous map, we denote by
Xf = {x ∈ X | f(x) = x} the set of fixed points of f . For a simplicial map ϕ : K → K,
Kϕ denotes the full subcomplex spanned by the vertices fixed by ϕ.

Let M be a finitely generated Z-module, and T (M) its torsion submodule. An endo-
morphism ϕ : M →M induces a morphism ϕ : M/T (M)→M/T (M) between finite-rank
free Z-modules. The trace tr(ϕ) of ϕ is the trace of ϕ. If K is a compact polyhedron,
Hn(K) is finitely generated for every n ≥ 0. If f : K → K is a continuous map, the
Lefschetz number of f is defined by

λ(f) =
∑

n≥0

(−1)ntr(fn), (8.2)

where fn : Hn(K)→ Hn(K) are the induced morphisms in homology.
Notice that the Lefschetz number of the identity 1K : K → K coincides with the Euler

characteristic of K.
The Lefschetz Theorem states the following

Theorem 8.4.1. Let K be a compact polyhedron and let f : K → K be a continuous map.
Then, if λ(f) 6= 0, f has a fixed point.

In particular, if K is contractible, λ(f) = 1 for every map f : K → K and then f has
a fixed point. This generalizes the well-known Theorem of Brouwer for discs.

If X is a finite T0-space, its homology is finitely generated as well and therefore we
can define the Lefschetz number λ(f) of a map f : X → X as in 8.2. Note that λ(f) =
λ(|K(f)|) by Remark 1.4.7.

The Lefschetz Theorem version for finite spaces is the following

Theorem 8.4.2. Let X be a finite T0-space and f : X → X a continuous map. Then
λ(f) = χ(Xf ). In particular, if λ(f) 6= 0, Xf 6= ∅.

For details we refer the reader to [4, 29].

Proposition 8.4.3. Let ϕ : K → K be a simplicial automorphism. Then |K||ϕ| =
|(K ′)ϕ

′ |.
Proof. Let x ∈ |K ′| = |K|, x =

∑
αib(σi) is a convex combination of the barycenters of the

simplices σ0 ( σ1 ( . . . ( σk of K (αi > 0 for every i). Suppose x ∈ |(K ′)ϕ
′ |. Then b(σi)

is fixed by ϕ′ for every i, or equivalently ϕ(σi) = σi. If we see x ∈ |K|, x =
∑
αi

∑
v∈σi

v
#σi

and |ϕ|(x) =
∑
αi

∑
v∈σi

ϕ(v)
#σi

. Since ϕ(σi) = σi,
∑

v∈σi

ϕ(v)
#σi

=
∑

v∈σi

v
#σi

, and then |ϕ|(x) = x.

This proves one inclusion.
Conversely, suppose x ∈ |K||ϕ|. Then

∑
αi

∑
v∈σi

v
#σi

= x = |ϕ|(x) =
∑
αi

∑
v∈σi

ϕ(v)
#σi

.

Let v ∈ σi r σi−1. Then, the coordinate of v in x is αi + αi+1 + . . . + αk. Since ϕ is an
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isomorphism, the coordinate of ϕ(v) in |ϕ|(x) is also αi+αi+1+. . .+αk. If ϕ(v) ∈ σjrσj−1,
the coordinate of ϕ(v) in x is αj +αj+1 + . . .+αk. Since |ϕ(x)| = x, αi +αi+1 + . . .+αk =
αj + αj+1 + . . . + αk and then i = j. In particular ϕ(σi) ⊆ σi and then ϕ(σi) = σi for
every i. Therefore x ∈ |(K ′)ϕ

′ |, which proves the other inclusion.

Since Xf ⊆ X, K(Xf ) is the full subcomplex of K(X) spanned by the vertices fixed
by f . By definition, this subcomplex is K(X)K(f). Therefore we have,

Remark 8.4.4. Let X be a finite T0-space and let f : X → X be a continuous map. Then
K(Xf ) = K(X)K(f).

Corollary 8.4.5. Let K be a finite simplicial complex and ϕ : K → K a simplicial
automorphism. Then X (K)X (ϕ) is a finite model of |K||ϕ|.

Proof. By 8.4.3, |K||ϕ| = |(K ′)ϕ
′ | = |K(X (K))K(X (ϕ)) | and by 8.4.4, this coincides with

|K(X (K)X (ϕ))| which is weak homotopy equivalent to X (K)X (ϕ).

The following is a stronger version of Lefschetz Theorem 8.4.1 for simplicial automor-
phisms.

Corollary 8.4.6. Let K be a finite simplicial complex and let ϕ : K → K be a simplicial
automorphism. Then χ(|K||ϕ|) = λ(|ϕ|).

Proof. The diagram

|K|
µK

��

|ϕ|
// |K|

µK

��
X (K)

X (ϕ)
// X (K)

commutes up to homotopy and (µK∗)n : Hn(|K|) → Hn(X (K)) is an isomorphism for
every n ≥ 0. Then |ϕ|∗ = (µK∗)

−1X (ϕ)∗µK∗ : Hn(|K|) → Hn(|K|) and tr((|ϕ|∗)n) =
tr((X (ϕ)∗)n). Therefore λ(|ϕ|) = λ(X (ϕ)). By 8.4.5 and the finite space version of the
Lefschetz Theorem, χ(|K||ϕ|) = χ(X (K)X (ϕ)) = λ(X (ϕ)) = λ(|ϕ|).

In [30], R. Oliver proves the following result using “standard theorems from the ho-
mological theory of Zp actions”. Here we exhibit a completely different proof using the
results of above.

Proposition 8.4.7. (Oliver) Assume that Zn acts on a Q-acyclic finite simplicial complex
K. Then χ(|K|Zn) = 1.

Proof. Let g be a generator of Zn and ϕ : K → K the multiplication by g. Then
χ(|K|Zn) = χ(|K||ϕ|) = λ(|ϕ|) = 1, since K is Q-acyclic.

Suppose that X is a finite model of the circle and that f : X → X is a map. Then
f∗ : H1(X) → H1(X) is a map Z → Z. However, the only possible morphisms that can
appear in this way are 0, 1Z and −1Z. We prove this and a more general fact in the
following result.
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Proposition 8.4.8. Let f : X → X be an endomorphism of a finite T0-space X and let
n ≥ 0. Let f∗ : Hn(X; Q)→ Hn(X; Q) be the induced map in homology. If dimQHn(X; Q) =
r, f∗ is a complex matrix of order r well defined up to similarity. Suppose that λ ∈ C is
an eigenvalue of f∗. Then λ = 0 or λ is a root of unity.

Proof. Since X is finite, there exist s 6= t ∈ N such that f s = f t. Then f s
∗ = f t

∗ and
λs = λt.

Corollary 8.4.9. In the hipothesis of the previous proposition, −r ≤ tr(f∗) ≤ r. In
particular, since f∗ has integer entries, tr(f∗) ∈ {−r,−r + 1, . . . , r − 1, r}.

We say that a topological space X has the fixed point property if any map f : X → X
has a fixed point.

For instance, compact polyhedra or finite spaces with trivial reduced homology have
the fixed point property by the Lefschetz Theorems, but there are spaces with the fixed
point property without trivial homology (see Example 8.4.12).

The following is a well-known result:

Proposition 8.4.10. Let X be a finite T0-space, and let f, g : X → X be two homotopic
maps. Then, f has a fixed point if and only if g has a fixed point.

Proof. Without loss of generality, we can assume that g ≤ f . If f(x) = x, g(x) ≤ f(x) = x.
Then gi+1(x) ≤ gi(x) for every i ≥ 0 and then there exists i such that gi+1(x) = gi(x).
Therefore, gi(x) is a fixed point of g.

Corollary 8.4.11. The fixed point property is a homotopy type invariant of finite T0-
spaces.

Proof. Let X,Y be homotopy equivalent finite T0-spaces, X with the fixed point property.
Let f : X → Y be a homotopy equivalence with homotopy inverse g. Let h : Y → Y be
a continuous map. We show that h has a fixed point. The map ghf : X → X fixes some
point x ∈ X. Then f(x) ∈ Y is a fixed point of fgh : Y → Y . Since h ≃ fgh, h has a
fixed point.

A different proof of this result appears for example in [40], Corollary 3.16.

Example 8.4.12. (Baclawski and Björner) The fixed point property is not a weak ho-
motopy invariant, nor a simple homotopy invariant. In [4] Example 2.4, Baclawski and
Björner exhibit the regular CW-complex K which is the border of a piramid with square
base. Therefore X = X (K) is a finite model of S2. Let f : X → X be a continuous map.
If f is onto, it is an automorphism and then the vertex of the top of the piramid is fixed
by f since it is the unique point covered by 4 points. If f is not onto, K(f) : S2 → S2

is not onto and then K(f) is nullhomotopic. Therefore λ(f) = λ(|K(f)|) = 1 and then
Xf 6= ∅.
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On the other hand, the minimal finite model of S2
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is simple homotopy equivalent to X and does not have the fixed point property since the
simetry is fixed point free.

Now we introduce the construction f∞(X).

Definition 8.4.13. Let X be a finite T0-space and f : X → X a continuous map. We
define f∞(X) =

⋂
i≥1

f i(X) ⊆ X.

Remark 8.4.14. Given f : X → X, there exists n0 ∈ N such that n ≥ n0 implies fn(X) =
f∞(X). Let k ∈ N be the order of f |f∞(X) in the finite group Aut(f∞(X)). If n ≥ n0 and
k divides n, fn(X) = f∞(X) and fn|f∞(X) = 1f∞(X). In this case we will say that n ∈ N
is suitable for f .

Remark 8.4.15. f∞(X) = {x ∈ X | ∃ n ∈ N such that fn(x) = x}.

Proposition 8.4.16. Let X be a finite T0-space and let f, g : X → X be two homotopic
maps. Then f∞(X) is homotopy equivalent to g∞(X).

Proof. We can assume that g ≤ f . By Remark 8.4.14, there exists n ∈ N which is suitable
for f and g simultaneously. Then one can consider fn|g∞(X) : g∞(X) → f∞(X) and
gn|f∞(X) : f∞(X)→ g∞(X). Since

fn|g∞(X)g
n|f∞(X) ≤ f2n|f∞(X) = 1f∞(X),

fn|g∞(X)g
n|f∞(X) ≃ 1f∞(X). Analogously, gn|f∞(X)f

n|g∞(X) ≃ 1g∞(X).

Proposition 8.4.17. Let X be a finite T0-space and let Y ⊆ X be a subspace. Then there
exists a continuous map f : X → X such that f∞(X) = Y if and only if Y is a retract of
X.

Proof. If Y = f∞(X) for some f , choose n ∈ N suitable for f . Then fn : X → Y is a
retraction. Conversely, if r : X → Y is a retraction, r∞(X) = Y .
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Example 8.4.18. Let X be the following finite T0-space
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Define f : X → X such that 5 and 6 are fixed, f(1) = f(2) = f(3) = 2, f(4) = 3. Since
X is contractible and f(X) is a finite model of S1, f(X) is not a retract of X. However,
f∞(X) = {2, 5, 6} is a retract of X.

Remark 8.4.19. X has the fixed point property if and only if all its retracts have the fixed
point property with respect to automorphisms. The first implication holds in general: if
X is a topological space with the fixed point property, every retract of X also has that
property. Conversely, if f : X → X is a continuous map, f∞(X) is a retract of X and
f |f∞(X) : f∞(X) → f∞(X) is an automorphism. Then f |f∞(X) has a fixed point and
therefore f .

Stong proved that a homotopy equivalence between minimal finite spaces is a homeo-
morphism (Corollary 1.3.7). We prove an analogue for weak homotopy equivalences and
minimal finite models.

Proposition 8.4.20. Let X be a finite T0-space and let f : X → X be a weak homotopy
equivalence. Then the inclusion i : f∞(X) →֒ X is a weak homotopy equivalence. In
particular, if X is a minimal finite model, f is a homeomorphism.

Proof. Let n ∈ N be suitable for f . Then fn : X → f∞(X), and the compositions
fni = 1f∞(X), if

n = fn : X → X are weak homotopy equivalences. Therefore i is a weak
homotopy equivalence.

If X is a minimal finite model, f∞(X) ⊆ X cannot have less points than X, then
f∞(X) = X and f : X → X is onto. Therefore, it is a homeomorphism.

Observe that with the same proof of the last proposition, one can prove that if f :
X → X is a homotopy equivalence, then i : f∞(X) →֒ X is a homotopy equivalence. In
particular, if X is a representative of minimum cardinality of its homotopy type (ie, a
minimal finite space), f is a homeomorphism. This was already proved by Stong using
beat points, but this is a different proof which does not use this concept.

Corollary 8.4.21. Let X and Y be minimal finite models. Suppose there exist weak
homotopy equivalences f : X → Y and g : Y → X. Then f and g are homeomorphisms.

Proof. The composition gf : X → X is a weak homotopy equivalence and then a homeo-
morphism by Proposition 8.4.20. Analogously gf is a homeomorphism. Then the result
follows.
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Remark 8.4.22. In 1.4.16 we proved that there is no weak homotopy equivalence S(D3)→
S(D3)

op. We give here an alternative approach using the previous result and our descrip-
tion of the minimal finite models of graphs.

Suppose there exists a weak homotopy equivalence f : S(D3) → S(D3)
op. Then f op

is also a weak homotopy equivalence. Since S(D3) is a minimal finite model (see Section
3.2), so is S(D3)

op. By Corollary 8.4.21, S(D3) is homeomorphic to its opposite, which is
clearly absurd.

Proposition 8.4.23. Let X be a finite T0-space and f, g : X → X two maps. Then
(gf)∞(X) and (fg)∞(X) are homeomorphic.

Proof. Let x ∈ (gf)∞(X), then there exists n ∈ N such that (gf)n(x) = x. Therefore
(fg)n(f(x)) = f(x), and f(x) ∈ (fg)∞(X). Then f |(gf)∞(X) : (gf)∞(X) → (fg)∞(X).
Analogously g|(fg)∞(X) : (fg)∞(X) → (gf)∞(X). The compositions of these two maps
are the identities, and therefore, they are homeomorphisms.

Remark 8.4.24. Let X be a finite T0-space, and f : X → X a map. Then (f ′)∞(X ′) =
f∞(X)′. Recall that f ′ : X ′ → X ′ denotes the map X (K(f)). A chain x1 < x2 <
. . . < xk is in (f ′)∞(X ′) if and only if there exists n such that (f ′)n({x1, x2, . . . , xk}) =
{x1, x2, . . . , xk}. This is equivalent to saying that there exists n such that fn(xi) = xi for
every 1 ≤ i ≤ k or in other words, that {x1, x2, . . . , xk} ⊆ f∞(X).

To finish this Chapter, we introduce a nice generalization of the construction of f∞(X)
for the case of composable maps not necessarily equal nor with the same domain or
codomain.

Suppose X0
f0→ X1

f1→ . . . is a sequence of maps between finite spaces. Define Yn =
fn−1fn−2 . . . f0(X0) ⊆ Xn the image of the composition of the first n maps of the sequence.

Proposition 8.4.25. There exist n0 ∈ N such that Yn is homeomorphic to Yn0 for every
n ≥ n0.

Proof. Since (#Yn)n∈N is a decreasing sequence, there exists n1 ∈ N such that #Yn is
constant for n ≥ n1. Therefore fn : Yn → Yn+1 is a bijection for n ≥ n1.

Let Cn = {(x, x′) ∈ Yn × Yn | x ≤ x′}. The map fn : Yn → Yn+1 induces a one-to-one
function Fn : Cn → Cn+1, Fn(x, x′) = (fn(x), fn(x′)) for n ≥ n1. Therefore (#Cn)n≥n1

is increasing and bounded by (#Yn1)
2. Hence, there exists n0 ≥ n1 such that Fn is a

bijection and then fn : Yn → Yn+1 a homeomorphism for n ≥ n0.

The space Yn0 constructed above is well defined up to homeomorphism and it is denoted
by (fn)∞n∈N(X0). We show that in the case that all the spaces Xn are equal, i.e. Xn = X
for every n ≥ 0, (fn)∞n∈N(X) is a retract of X, as in the original case. Since X is finite,
there exists a subspace Y ⊆ X and an increasing sequence (ni)i∈N of positive integers such
that Yni = Y for every i ∈ N. Let gi = fni−1fni−2 . . . fn1|Yn1

: Yn1 → Yni . These maps
are permutations of the finite set Y , therefore there are two equal, say gi = gj with i < j.
Then fnj−1fnj−2 . . . fni |Yni

= 1Y , so Y is a retract of X.
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Chapter 9

The Andrews-Curtis Conjecture

One of the most important mathematical problems of all times is the Poincaré conjec-
ture which states that every compact simply connected 3-manifold without boundary is
homeomorphic to S3. Versions of the conjecture for greater dimensions were proved by
Smale, Stallings, Zeeman and Freedman. The problem was open for a century until G.
Perelman finally proved it some years ago. Perelman proof uses hard differential geometry
results. An alternative combinatorial proof of the Poincaré conjecture would be a great
achievement.

In [45], E. Zeeman shows that the Dunce hat D is not collapsible but D × I is a
collapsible polyhedron. Zeeman conjectures that the same holds for any contractible 2-
complex:

Conjecture 9.0.1 (Zeeman). If K is a contractible compact polyhedron, then K × I is
collapsible.

Zeeman proves in [45] that his conjecture implies the Poincaré conjecture. Conjecture
9.0.1 is still not proved nor disproved.

Let n ≥ 1. We say that a complex K n-deforms to another complex L if we can obtain
L from K by a sequence of collapses and expansions in such a way that all the complexes
involved in the deformation have dimension less than or equal to n.

The geometric Andrews-Curtis conjecture is weaker than Zeeman’s, but is also open.

Conjecture 9.0.2 (Andrews-Curtis). Any contractible compact 2-polyhedron 3-deforms
to a point.

The analogous version for greater dimensions is known to be true. More specifically,

Theorem 9.0.3 (Whitehead-Wall). Let n ≥ 3. If K and L are compact polyhedra of
dimension less than or equal to n, then K (n + 1)-deforms to L.

The Geometric Andrews-Curtis conjecture is equivalent to the so called Andrews-
Curtis conjecture which states that any balanced presentation of the trivial group can be
transformed into the trivial presentation by a sequence of Nielsen transformations (see
[2, 34] for further infomation).

In this Chapter we will define a large class of simplicial complexes called quasi con-
structible complexes which are built recursively by attaching smaller quasi constructible
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complexes. Using techniques of finite spaces we will prove that contractible quasi con-
structible complexes satisfy the Andrews-Curtis conjecture. Quasi constructible complexes
generalize the notion of constructible complexes which was deeply studied by M. Hachimori
in [19].

9.1 Quasi-constructible complexes

The content of this Section is in part motivated by the following example studied in
Chapter 7
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This space is the face poset of an h-regular structure of the Dunce hat and it has no
weak points. However, there are two maximal points a, b such that Ua∪Ub is contractible,
and therefore X րe Y = X ∪ {c} where a < c > b. Now, Y ց Y r {a, b}. Thus K(X)
3-deforms to K(Y r {a, b}) which has one point less that X.

For which complexes K it is possible to choose two maximal elements a, b such that
Ua ∪ Ub is contractible? and when is it possible to perform repeatedly those moves to
obtain a space with maximum and therefore collapsible?

Let X be a finite T0-space of height at most 2 and let a, b be two maximal elements of
X such that Ua ∪ Ub is contractible. Then we say that there is a qc-reduction from X to
Y r {a, b} where Y = X ∪ {c} with a < c > b. We say that X is qc-reducible if we can
obtain a space with a maximum by performing qc-reductions starting from X.

Note that a, b and c are all weak points of Y . Since spaces with maximum are collapsi-
ble, qc-reducible finite spaces are simple homotopy equivalent to a point. Furthermore, if
X is qc-reducible, all the spaces involved in the transfromation X�ց∗ are of height less
than or equal to 3. Therefore if X is qc-reducible, K(X) 3-deforms to a point.

Example 9.1.1. The following space is collapsible but not qc-reducible. In fact we can
not perform any qc-reduction starting from X.
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Proposition 9.1.2. Let X be a finite T0-space of height at most 2 and such that H2(X) =
0. Let a, b be two maximal elements of X. Then the following are equivalent:

1. Ua ∪ Ub is contractible.

2. Ua ∩ Ub is nonempty and connected.

3. Ua ∩ Ub is contractible.

Proof. The non-Hausdorff suspension S(Ua∩Ub) = (Ua∩Ub)∪{a, b} is a strong deformation
retract of Ua ∪ Ub. A retraction is given by r : Ua ∪ Ub → S(Ua ∩ Ub) with r(x) = a for
every x ∈ Ua rUb and r(x) = b for x ∈ Ub rUa. Therefore, by 2.7.3, Ua∪Ub is contractible
if and only if Ua ∩ Ub is contractible.

Since K(X) has dimension at most 2, H3(K(X),K(S(Ua ∩Ub))) = 0. By the long exact
sequence of homology, H2(K(S(Ua ∩Ub))) = 0 and then H1(Ua ∩Ub) = 0. Thus, if Ua ∩Ub

is nonempty and connected, it is contractible since ht(Ua ∩ Ub) ≤ 1.

Remark 9.1.3. If X is a contractible finite T0-space of height at most 2, it can be proved
by induction in #X that there exist two maximal elements a, b such that Ua ∪ Ub is
contractible. However when a qc-reduction is performed, the resulting space can be not
contractible.

Definition 9.1.4. A finite simplicial complex K of dimension at most 2 is said to be
quasi constructible if K has just one maximal simplex or, recursively, if it can be written
as K = K1 ∪K2 in such a way that

• K1 and K2 are quasi constructible,

• K1 ∩K2 is nonempty and connected, and

• no maximal simplex of K1 is in K2 and no maximal simplex of K2 is in K1.

The name of this complexes is suggested by the particular case of constructible com-
plexes studied in [19].

Definition 9.1.5. An homogeneous finite n-simplicial complex K is n-constructible if
n = 0, if K has just one maximal simplex or if K = K1 ∪ K2 where K1 and K2 are
n-constructible and K1 ∩K2 is (n− 1)-constructible.

A homogeneous 1-complex is 1-constructible if and only if it is connected. Therefore,
2-constructible complexes are quasi constructible. A wedge of two 2-simplices is quasi con-
structible but not 2-constructible. This example also shows that collapsible 2-complexes
need not be 2-constructible. However we prove that collapsible 2-complexes are quasi
constructible.

Lemma 9.1.6. Let K be a finite simplicial complex and let K1, K2 be two subcomplexes
such that K1 ∩K2 is a vertex v (i.e. K = K1

∨
v
K2). Then K is collapsible if and only if

K1 and K2 are collapsible.
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Proof. Suppose K1 6= v 6= K2. If K is collapsible and σ ⊆ σ′ is a collapsible pair of K
such that Kr{σ, σ′} is collapsible, then σ ( σ′ is a collapsible pair of K1 or K2. Without
loss of generality assume the first. Then (K1 r {σ, σ′})∨

v
K2 = K r {σ, σ′} is collapsible.

By induction K1 r {σ, σ′} and K2 are collapsible.
If K1 and K2 are collapsible, they collapse to any of their vertices. In particular

K1 ց v and K2 ց v. The collapses of K1 and K2 together show that K ց v.

Theorem 9.1.7. Let K be a finite simplicial complex of dimension less than or equal to
2. If K is collapsible, then it is quasi constructible.

Proof. If K is collapsible and not a point, there exist a collapsible pair σ ( aσ such
that L = K r {σ, aσ} is collapsible. By induction L is quasi constructible. K = L ∪ aσ
and L ∩ aσ = aσ̇ is connected. If no maximal simplex of L is a face of aσ, K is quasi
constructible as we want to prove. However this might not be the case.

If aσ is a 1-simplex and a is a maximal simplex of L, L = a and then K is a 1-simplex
which is quasi constructible.

Assume aσ is a 2-simplex and let b, c be the vertices of σ.
Consider this first case: ab is a maximal simplex of L but ac is not. We claim that

L r {ab} has two connected components. Certainly, since L is contractible, from the
Mayer-Vietoris sequence,

H̃1(L)→ H̃0(a ∪ b)→ H̃0(ab)⊕ H̃0(Lr {ab})→ H̃0(L)

we deduce that H̃0(Lr{ab}) = Z. Therefore, there exist subcomplexes L1 ∋ a and L2 ∋ b
of L such that L = L1

∨
a
ab

∨
b

L2.

By 9.1.6, L1 and L2 are collapsible and therefore quasi constructible.

Figure 9.1: L

Now, L1 and aσ are quasi constructible, L1 ∩ aσ = ac is connected and {ac} is not
maximal in L1 nor in aσ. Thus L1 ∪ aσ is quasi constructible. If L2 is just the point b,
K = L1∪aσ is quasi constructible. If L2 is not a point, {b} is not a maximal simplex of L2

and then K = (L1 ∪ aσ)∪L2 is quasi constructible since (L1 ∪ aσ) ∩L2 = b is connected.
The second case: ac is maximal in L but ab is not is analogous to the first.
The third case is: ab and ac are maximal simplices of L. As above L r {ab} and

L r {ac} have two connected components. Therefore, there exist subcomplexes L1, L2

and L3 of L such that a ∈ L1, b ∈ L2, c ∈ L3 and L = L2
∨
b

ab
∨
a
L1

∨
a
ac

∨
c
L3. Since
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L is collapsible, by 9.1.6, Li are also collapsible and by induction, quasi constructible. If
L1 6= a, L2 6= b and L2 6= c, we prove that K is quasi constructible as follows: aσ ∪ L1 is
quasi constructible since aσ ∩ L1 = a is connected and {a} is not maximal in aσ nor in
L1. Then (aσ ∪ L1) ∪ L2 is quasi constructible since (aσ ∪ L1) ∩ L2 = b is connected and
{b} is maximal in none of them. Similarly, K = (aσ ∪L1 ∪L2)∪L3 is quasi constructible.
If some of the complexes Li are just single points, this simplifies the proof since we can
remove those from the writing of K = aσ ∪ L1 ∪ L2 ∪ L3.

On the other hand, contractible 2-constructible complexes need not be collapsible as
the next example shows.

Example 9.1.8. The following example of a contractible 2-constructible and non-collapsible
complex is a slight modification of one defined by Hachimori (see [19], Section 5.4). Let
K be the 2-homogeneous simplicial complex of Figure 9.2.

4

5

6

7

2

3

2

1

1

2

3

Figure 9.2: K.

This complex is 2-constructible (in fact it is shellable). For instance, one can construct
it adjoining 2-simplices in the following order: 567, 457, 347, 237, 127, 167, 126, 236, 356, 235,
125, 145, 134. In each adjuntion both the complex and the 2-simplex are 2-constructible
and their intersection is 1-constructible. Moreover, K is collapsible.

Now take two copies K1 and K2 of K and identify the 1-simplex 13 of both copies. The
resulting complex L is contractible since K1 andK2 are contractible. Moreover, K1 andK2

are 2-constructible and their intersection is 1-constructible, therefore L is 2-constructible.
On the other hand, L is not collapsible since it does not have free faces.

We will see in 9.1.10 that quasi constructible complexes 3-deform to a point. In
particular this is true for this complex.

The notion of constructibility is in turn a generalization of the concept of shellability
[11]. Shellable complexes are collapsible.

Theorem 9.1.9. Let K be a finite simplicial complex of dimension less than or equal to
2. Then the following are equivalent:

1. K is quasi constructible and H2(|K|) = 0,
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2. X (K) is qc-reducible,

3. K is quasi constructible and contractible.

Proof. Let K be quasi constructible and suppose H2(|K|)=0. If K has just one maximal
simplex, X (K) has maximum and it is qc-reducible. Otherwise, K = K1 ∪K2 where K1

and K2 are quasi constructible and K1 ∩ K2 is connected and nonempty. Moreover the
maximal simplices of K1 are not in K2 and viceversa. Since H3(|K|, |Ki|) = 0, H2(|Ki|) =
0 and by an inductive argument, X (Ki) is qc-reducible for i = 1, 2. Carring out the
same qc-reductions in X (K) we obtain a space Y with two maximal elements a1 and
a2 such that Ua1 ∩ Ua2 = X (K1 ∩ K2) which is connected and nonempty. Moreover,
H2(Y ) = H2(X (K)) = 0 and therefore, by 9.1.2, a last qc-reduction transforms Y in a
space with maximum.

Now suppose that K is such that X (K) is qc-reducible. Then we can make qc-
reductions to obtain a space with maximum. If X (K) does not have maximum, in the
last step, before the last qc-reduction, one has a contractible space Y with two maximal
elements a1 and a2. Consider the simplicial complex K1 generated by all the maximal
simplices of K that were eventually replaced by a1 when performing the qc-reductions.
Define K2 similarly. Then, X (K1) and X (K2) are qc-reducible and by induction K1 and
K2 are quasi constructible. Moreover X (K1∩K2) = Ua1 ∩Ua2 is connected and nonempty
by 9.1.2 and then so is K1∩K2. Hence K is quasi constructible. On the other hand, since
X (K) is qc-reducible, it is homotopically trivial and therefore |K| is contractible.

In fact, the equivalence between 1 and 3 can be proved easily without going through
2 (see 9.1.11).

Recall that if K is a 2-complex, K 3-deforms to K ′. Therefore we have the following

Corollary 9.1.10. If K is quasi constructible and contractible, it 3-deforms to a point, i.e.
contractible quasi constructible complexes satisfy the geometric Andrews-Curtis conjecture
9.0.2.

Remark 9.1.11. By the Theorem of Van-Kampen, quasi constructible complexes are simply
connected. In particular, their reduced Euler characteristic is non-negative.

In the next we adapt an argument of Hachimori to show that there are many con-
tractible 2-complexes which are not quasi constructible. The results and their proof are
essentially the same as [19]. A vertex v of a finite complex K is a bridge if Kr v has more
connected components than K. Following Hachimori we say that a vertex v of a finite
2-simplicial complex K is splittable if the graph lk(v) has a bridge.

Remark 9.1.12. Suppose K = K1 ∪ K2 is a 2-complex such that no maximal simplex of
K1 is in K2 and viceversa. In this case K1 ∩ K2 is a graph. Assume that there exists a
vertex v which is a leaf of K1 ∩K2, i.e. lkK1∩K2(v) = v′ is a point. We prove that v is
splittable in K. Since vv′ ∈ K1 ∩ K2, vv

′ is not maximal in either of the subcomplexes
K1 and K2. Let vi ∈ Ki such that vv′vi ∈ Ki for i = 1, 2. The vertices v1 and v2 are
connected in lkK(v) via v′. Suppose that they are also connected in lkK(v) r v′. Then,
there exists w ∈ lkK(v) r v′ such that vw is a simplex of K1 and K2 simultaneously. This
contradicts the fact that lkK1∩K2(v) = v′. Therefore v′ is a bridge of lkK(v).
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Proposition 9.1.13. Let K be a contractible finite 2-simplicial complex with no bridges
and with at most one splittable point. If K is not a 2-simplex, then it is not quasi con-
structible.

Proof. Suppose that K is quasi constructible. Then there exists quasi constructible sub-
complexes K1 and K2 as in Definition 9.1.4. K1∩K2 is a connected graph with more than
one vertex, provided that K has no bridges. By the previous remark, it has at most one
leaf and therefore it is not a tree. In particular χ̃(K1 ∩K2) < 0. Since K is contractible,
by 9.1.11 we have that

0 = χ̃(K) = χ̃(K1) + χ̃(K2)− χ̃(K1 ∩K2) > 0,

which is a contradiction.

In particular we deduce that any triangulation of the Dunce hat is not quasi con-
structible, since it has just one splittable point.

Remark 9.1.14. Gillman and Rolfsen proved that the Poincaré conjecture is equivalent to
the Zeeman’s conjecture restricted to some complexes called standard spines (see [34]). In
particular, with the proof of Poincaré conjecture, the Geometric Andrews-Curtis conjec-
ture is known to be true for such complexes. It is easy to see that standard spines have
no bridges nor splittable points and therefore they are not quasi constructible. Therefore
our result enlarges the class of 2-complexes for which the conjecture is known to be valid.

Any triangulation of the Dunce hat is not quasi constructible and it is easy to see that
it is not a standard spine either since it has a splittable point.

It seems very natural to consider the dual notion of qc-reducibility in order to obtain
a larger class of complexes satisfying the Andrews-Curtis conjecture. However we will see
that if K is such that X (K)op is qc-reducible, then K is collapsible. IfX is a finite T0-space
of height at most 2 and a, b are two minimal elements such that Fa ∪ Fb is contractible.
Then we say that there is a qcop-reduction from X to Y r {a, b} where Y = X ∪ {c} with
a > c < b. We say that X is qcop-reducible if we can obtain a space with a minimum by
carrying out qcop-reductions begining from X, or, in other words, if Xop is qc-reducible.

If K is a finite simplicial complex and V is a subset of vertices of K, we will denote
by st(V ) ⊆ |K| the union of the open stars of the vertices in V , i.e.

st(V ) = (
⋃

v∈V

◦
st(v)),

where
◦
st(v) = |K|r |K r v| = ⋃

σ∋v

◦
σ ⊆ |K|.

We introduce the dual notion of quasi constructibility which is the following.

Definition 9.1.15. Let K = (VK , SK) be a finite simplicial complex of dimension at most
2. We say that a subset V ⊆ VK of vertices is quasiop constructible in K if #V = 1 or if,
recursivelly, V = V1 ∪ V2 with Vi quasiop constructible in K for i = 1, 2, V1 ∩ V2 = ∅ and
st(V1) ∩ st(V2) is a connected nonempty subspace of the geometric realization |K|.

The complex K is said to be quasiop constructible if VK is quasiop constructible in K.
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In order to understand the topology of st(V1) ∩ st(V2), we will generalize the result
that says that X (K) is a finite model of K, giving an alternative proof of this fact.

Proposition 9.1.16. Let K be a finite simplicial complex and let Y ⊆ SK be a subset of

simplices of K. Let X =
⋃

σ∈Y

◦
σ ⊆ |K| and let f : X → Y ⊆ X (K)op be the map defined by

f(x) = σ if x ∈ ◦
σ. Then, f is a weak homotopy equivalence.

Proof. We first note that f is continuous. If σ ∈ Y ,

f−1(Uσ) =
⋃

σ⊆τ∈Y

◦
τ = (

⋃

σ⊆τ∈SK

◦
τ) ∩X = X r |σc|

is open inX since σc is a subcomplex ofK. To prove that f is a weak homotopy equivalence
we use the Theorem of McCord 1.4.2. We only have to show that f−1(Uσ) is contractible.

In fact,
◦
σ is a strong deformation retract of f−1(Uσ). Let x ∈ ◦

τ with σ ⊆ τ ∈ Y ,

x = tα+ (1− t)β for some 0 < t ≤ 1, α ∈ ◦
σ and β ∈ (τ r σ)◦. Define r : f−1(Uσ)→ ◦

σ by
r(x) = α. Then r is a retraction and H : f−1(Uσ)× I → f−1(Uσ), H(x, s) = (1− s)x+ sα
defines a homotopy between 1f−1(Uσ) and ir.

Proposition 9.1.17. Let K be a finite T0-space of height at most 2. Then K is quasiop

constructible and contractible if and only if X (K) is qcop-reducible.

Proof. Suppose |K| is contractible. We prove that if V ⊆ VK is quasiop constructible
in K, then

⋃
v∈V

F{v} ⊆ X (K) is qcop-reducible. If #V = 1,
⋃

v∈V
F{v} has minimum and

there is nothing to do. Assume that V = V1 ∪ V2 where V1 and V2 are disjoint and
quasiop constructible in K, and st(V1) ∩ st(V2) is connected and nonempty. By induction⋃
v∈V1

F{v} and
⋃

v∈V2

F{v} are qcop-reducible. Then
⋃

v∈V
F{v} qcop-reduces to a space X with

two minimal elements a1 and a2. Moreover, Fa1 ∩ Fa2 = {σ ∈ SK | there exist v1 ∈
V1 and v2 ∈ V2 with v1, v2 ∈ σ} is weak homotopy equivalent to st(V1) ∩ st(V2) by
Proposition 9.1.16. In particular, Fa1 ∩ Fa2 is connected and nonempty, and since X (K)
is homotopically trivial, by Proposition 9.1.2, X is contractible. Therefore a last qcop-
reductions transforms X into a space with minimum, so

⋃
v∈V

F{v} is qcop-reducible. Now,

if in addition K is quasiop-constructible, VK is quasiop constructible in K and then X (K) =⋃
v∈VK

F{v} is qcop-reducible.

Conversely, let V ∈ VK be a subset of vertices of K. We will prove that if
⋃

v∈V
F{v} ⊆

X (K) is qcop-reducible, then V is quasiop constructible in K. If #V = 1 there is nothing to
prove. In other case, before the last step we will have reduced

⋃
v∈V

F{v} into a contractible

space X with two minimal points a1 and a2. Let Vi be the subset of V of vertices that were
eventually replaced by ai for i = 1, 2. Then

⋃
v∈Vi

F{v} is qcop-reducible and by induction

Vi is quasiop constructible for i = 1, 2. By Proposition 9.1.16, st(V1) ∩ st(V2) is weak
homotopy equivalent to Fa1 ∩Fa2 which is connected and nonempty by Proposition 9.1.2.
Then V is quasiop constructible in K.
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Finally, applying this result to V = VK we deduce that if X (K) is qcop-reducible, then
K is quasiop constructible. In this case X (K) is homotopically trivial and then |K| is
contractible.

In particular, we deduce that if K is quasiop constructible and contractible, it 3-
deforms to a point. Unfortunately, this does not enlarge the class of complexes satisfying
the Andrews-Curtis conjecture, since quasiop constructible complexes are collapsible as we
will see.

Lemma 9.1.18. Let K be a finite simplicial complex of dimension less than or equal to
2. If V ⊆ VK is quasiop constructible in K, then χ̃(st(V )) ≥ 0.

Proof. If #V = 1, st(V ) is contractible and then χ̃(st(V )) = 0. Suppose that V = V1∪V2

where V1 and V2 are disjoint, quasiop constructible in K and such that st(V1) ∩ st(V2) is
connected and nonempty. By induction,

χ̃(st(V )) = χ̃(st(V1)) + χ̃(st(V2))− χ̃(st(V1) ∩ st(V2)) ≥ −χ̃(st(V1) ∩ st(V2)).

By Proposition 9.1.16, st(V1) ∩ st(V2) is weak homotopy equivalent to V 1 ∩ V 2 ⊆
X (K) which is a finite T0-space of height at most 1. Since it is connected and nonempty,
χ̃(st(V1) ∩ st(V2)) = χ̃(V 1 ∩ V 2) ≤ 0 and then χ̃(st(V )) ≥ 0.

Theorem 9.1.19. Let K be a contractible quasiop constructible simplicial complex. Then
K is collapsible.

Proof. If K = ∗, there is nothing to do. Suppose VK = V1 ∪ V2 with V1 ∩ V2 = ∅, V1 and
V2 quasiop constructible in K and st(V1) ∩ st(V2) nonempty and connected. Since |K| is
contractible,

0 = χ̃(|K|) = χ̃(st(V1)) + χ̃(st(V2))− χ̃(st(V1) ∩ st(V2)).

By Lemma 9.1.18, χ̃(st(Vi)) ≥ 0 for i = 1, 2 and then χ̃(V 1∩V 2) = χ̃(st(V1)∩st(V2)) ≥
0. Moreover, V 1 ∩V 2 ⊆ X (K) is nonempty, connected and its height is less than or equal
to 1. Therefore, it is contractible. In particular, there exists a simplex σ ∈ K which is
a leaf (maybe the unique vertex) of the graph K(V 1 ∩ V 2). We claim that σ is not a
2-simplex, because if that was the case, it would have two of its vertices a, b in Vi and
the third c in Vj for i 6= j. Then {a, c} and {b, c} would be covered by σ in V 1 ∩ V 2

contradicting the fact that σ is a leaf of K(V 1 ∩ V 2). Thus σ is a 1-simplex.
Let a ∈ V1 and b ∈ V2 be the vertices of σ. Since σ is a leaf of K(V 1∩V 2), we consider

two different cases:

(1) V 1 ∩ V 2 = {σ} or

(2) σ ∈ K is a free face of a simplex σ′ = {a, b, c} ∈ K.

We study first the case (1). For i = 1, 2, let Ki be the full subcomplex of K spanned
by the vertices of Vi. Then K = K1 ∪K2 ∪ {σ} = K1

∨
a
σ

∨
b

K2. Since K is contractible,

then K1 and K2 are contractible as well. Moreover, since Vi is quasiop constructible in
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K, it is also quasiop constructible in Ki. Note that if V and V ′ are subsets of Vi, then
stKi(V ) ∩ stKi(V

′) = stK(V ) ∩ stK(V ′). Thus, K1 and K2 are contractible and quasiop

constructible. By induction, they are collapsible. Therefore K = K1
∨
a
σ

∨
b

K2 is also

collapsible.

Now we consider the second case (2). Let L = Kr{σ, σ′}. By hypothesis K ցe L. We
claim that L is quasiop constructible. To prove that, we will show first that V1 and V2 are
quasiop constructible in L. We prove by induction that if V ⊆ V1 is quasiop constructible
in K, then it also is in L. If #V = 1 this is trivial. Suppose V = V ′ ∪ V ′′ with V ′ and V ′′

disjoint, quasiop constructible in K and such that stK(V ′)∩stK(V ′′)
we≈ V ′X (K)∩V ′′X (K)

is
nonempty and connected. By induction V ′ and V ′′ are quasiop constructible in L. We have

to show that V ′X (L) ∩ V ′′X (L)
= (V ′X (K) ∩ V ′′X (K)

) r {σ, σ′} is nonempty and connected.

Since σ has only one vertex in V1, it cannot have a vertex in V ′ and other in V ′′.

Therefore, σ /∈ V ′X (K) ∩ V ′′X (K)
. If σ′ /∈ V ′X (K) ∩ V ′′X (K)

, then V ′X (L) ∩ V ′′X (L)
=

(V ′X (K) ∩ V ′′X (K)
) is nonempty and connected. If σ′ ∈ V ′X (K) ∩ V ′′X (K)

, then c ∈ V1

and σ′ covers just one element of V ′X (K) ∩ V ′′X (K)
, which is {a, c}. Hence, σ′ is a down

beat point of V ′X (K) ∩ V ′′X (K)
and in particular V ′X (L) ∩ V ′′X (L)

is homotopy equivalent

to V ′X (K) ∩ V ′′X (K)
. Then, it is nonempty and connected and therefore V is quasiop

constructible in L.

Since V1 is quasiop constructible in K it follows that it is quasiop constructible in L.
Analogously, V2 is quasiop constructible in L.

Now, by assumption stK(V1)∩stK(V2)
we≈ V1

X (K)∩V2
X (K)

is nonempty and connected.

Since σ is a free face of K, it is an up beat point of V1
X (K) ∩ V2

X (K)
. On the other hand,

σ′ is a down beat point of V1
X (K) ∩ V2

X (K)
r {σ} since there is a 1-face of σ′ with both

vertices in V1 or in V2. Hence, V1
X (L) ∩ V2

X (L)
= V1

X (K) ∩ V2
X (K)

r {σ, σ′} is a strong

deformation retract of V1
X (K) ∩ V2

X (K)
, and then it is connected and nonempty. Thus,

VL = V1 ∪ V2 is quasiop constructible in L, or in other words, L is quasiop constructible.

Since K ցe L, L is contractible and quasiop constructible. By induction L is collapsible
and therefore, so is K.

The converse of this result is false as we prove in the next example.

Example 9.1.20. The complex K studied in Example 9.1.8 is a collapsible homogeneous
2-complex with a unique free face. We prove that a complex satisfying these hypothesis
cannot be quasiop constructible.

Suppose that K is quasiop constructible. Since K has more than one vertex, VK can
be written as a disjoint union of quasiop constructible subsets V1 and V2 in K such that
V 1 ∪V 2 is contractible. The case (1) of the proof of Theorem 9.1.19 cannot ocurr since K
is homogeneous. Therefore, K(V 1 ∩ V 2) has dimension exactly 1 and it is a tree. Then,
it has at least two leaves, which must be 1-simplices and free faces of K. However this is
absurd since K has only one free face.

In this Thesis we have studied many methods of reduction and techniques that allow to
recognize homotopically trivial finite spaces. The methods that we introduced allowed us,
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among other things, to characterize the simple homotopy theory of polyhedra in terms of
finite spaces and to analize some known conjectures from a totally new viewpoint. We have
also shown that these procedures are not completely effective to describe weak homotopy
types of finite spaces. We will next exhibit a homotopically trivial finite space in which
these methods fail altogether.

Consider the following pentagon whose edges are identified as indicated by the arrows.

This is a contractible CW-complex since the attaching map of the 2-cell is a homotopy
equivalence S1 → S1. We give to this space an h-regular structure K as follows

Since K is contractible, X (K) is homotopically trivial finite space of 21 points by
Theorem 7.1.7. It is easy to check that X (K) has no weak points (nor γ-points). In fact
no h-regular CW-complex has down weak points and it is not hard to see that 1-cells are
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not up weak points in this example. We only have to show that F̂a, F̂b and F̂c are not
contractible, but this is clear since their associated graphs contain a cycle.

It is not possible to make a qc-reduction on X (K), since for any 2-cells e, e′ of K,
e ∩ e′ ⊆ K is not connected. It can be also proved that no qcop-reduction can be made in
X (K) since the subspaces Fa ∩ Fb, Fa ∩ Fc, Fb ∩ Fc ⊆ X (K) are nonconnected.

Osaki’s reduction methods 6.1.1, 6.1.2 are not applicable either.
Therefore, the methods studied in this work can not be used directly to reduce X (K),

however X (K) is homotopically trivial and then, it has the same simple homotopy type
of a point.
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