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Abstract

These slides are slightly modified from a talk presented at the 2008
Algebraic Topology Conference in Buenos Aires. We give a bicategorical
perspective on invertibility beginning with Morita theory and duality, and
then describing generalized Brauer groups and Azumaya objects. We
develop the theory of invertibility in triangulated bicategories and give a
characterization of Azumaya objects therein.
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Brauer Group of a Field

Let R be a field, and A an R-algebra.

If A is simple with center R, then A = Mn(D) for some
division ring D (Wedderburn).

The Brauer group is defined by introducing an equivalence relation:
Mn(D) ∼ Mm(D) for all m, n.

If A is a central, simple R-algebra, then
A⊗ Aop ∼ R; the set of similarity classes
of central simple R-algebras is a group under ⊗R .

This is the Brauer group, Br(R).
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Brauer Group of a Commutative Ring

Let R be a commutative ring, and A an R-algebra.

A is central if the center of A is equal to R.

A is separable if A is projective as a module over Ae = A⊗R Aop.

A is faithfully-projective if A is finitely-generated and projective
as an R-module, and if,
for any R-module M, A⊗R M = 0⇒ M = 0.
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Brauer Group of a Commutative Ring

Theorem

The following are equivalent for an R-algebra A:

1 A is central and separable over R.

2 A is faithfully-projective over R and

µ : Ae
∼=−→ HomR(A,A) is an isomorphism.

3 Ae is Morita equivalent to R.

4 There is an R-algebra B such that A⊗R B is Morita equivalent to R.

These conditions define an Azumaya algebra over R.
The Brauer group of R is the group of Azumaya R-algebras: Br(R).
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Goals

Brauer, Azumaya in derived and topological settings

Understand invertibility in practice

Azumaya objects in triangulated bicategories

Topologically motivated development of localization
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Outline

Prelude: Brauer Groups For Fields and Rings

1 Bicategory of Algebras and Bimodules

2 Azumaya Objects

3 Invertibility in Triangulated Bicategories
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Outline

1 Bicategory of Algebras and Bimodules
Bicategory
Additional Structure
Duality and Invertibility

2 Azumaya Objects

3 Invertibility in Triangulated Bicategories
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A Bicategory is a Weak 2-Category

A bicategorical context provides:

organizational framework

conceptual advantage

Definition by example; Modules over a commutative ring, R: MR

0-cells: R-algebras

1-cells: bimodules MR(A,B) is the category of (B,A)-bimodules

2-cells: bimodule morphisms

The horizontal composite of 1-cells is given by the tensor product

N ⊗B M : A
M−→B

N−→C
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Additional Structure

Work in a closed autonomous monoidal bicategory

Right-adjoints to M ⊗A − and −⊗B M
given by Source-Hom and Target-Hom

M : A→B

Notation:
B(M ⊗A X ,Z ) ∼= B(X ,HomB(M,Z ))

B(Y ⊗B M,W ) ∼= B(Y ,HomA(M,Y ))
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Additional Structure

Work in a closed autonomous monoidal bicategory

MR has

⊗R on 0-, 1-, and 2-cells; a symmetric monoidal product

An involution (−)op

For M ∈MR(A,B), this gives

Mop ∈MR(Bop,Aop)

Mr ∈MR(A⊗R Bop,R)

M` ∈MR(R,Aop ⊗ B)

. . . compatibility axioms
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Further Examples

Let R be a commutative DG-algebra or ring spectrum.

Other examples of interest

ChR

ChR(A,B) is the category of DG-(B,A)-bimodules

DR

DR(A,B) is the homotopy category of (B,A)-bimodules
Note: Use ⊗ and Hom to denote the derived tensor and hom.
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Duality and Invertibility

Duality in a closed bicategory generalizes duality in a closed monoidal
category.
A pair of 1-cells (X ,Y ) X : A→B and Y : B→A
is a dual pair if

unit: B → X ⊗A Y
counit: Y ⊗B X → A.
satisfying the triangle
identities

equivalently:

(X ,Y ) defines an adjunction
(−⊗B X ) a (−⊗A Y ).

(X ,Y ) defines an adjunction
(Y ⊗B −) a (X ⊗A −).

A dual pair, (X ,Y ) is invertible if the induced functors are an equivalence;
if and only if the unit/counit are isomorphisms

Remark : (X ,Y ) is an invertible pair if and only if (Y ,X ) is invertible.
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Duality and Invertibility

Lemmas

X is right-dualizable if and only if the coevaluation
X ⊗A HomA(X ,A)→ HomA(X ,X ) is an isomorphism.
Any right dual of X is isomorphic to HomA(X ,A).

X is left-dualizable if and only if the coevaluation
HomB(X ,B)⊗ X → HomB(X ,X ) is an isomorphism.
Any left dual of X is isomorphic to HomB(X ,B).

If X is right-dualizable and
the action map B → HomA(X ,X ) is an isomorphism, then
the evaluation X ⊗A HomB(X ,B)→ B is an isomorphism.

If X is left-dualizable and
the action map A→ HomB(X ,X ) is an isomorphism, then
the evaluation HomA(X ,A)⊗B X → A is an isomorphism.
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Outline

1 Bicategory of Algebras and Bimodules

2 Azumaya Objects
Definition
The Brauer Group

3 Invertibility in Triangulated Bicategories
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Azumaya Objects
Invertibility in Practice

Let A be a 0-cell of a closed autonomous monoidal bicategory
with unit R. Recall Ar : Ae→R.

The following are equivalent

0 Ar is invertible (Ar ,HomAe (Ar ,A
e)) (HomR(Ar ,R),Ar )

1 eval: HomAe (Ar ,A
e)⊗R Ar

∼=−→ Ae e.g. MR

coeval: Ar ⊗Ae HomAe (Ar ,A
e)

∼=−→ HomAe (Ar ,Ar ) (separable)

action: R
∼=−→ HomAe (Ar ,Ar ) (central)

2 eval: Ar ⊗Ae HomR(Ar ,R)
∼=−→ R

coeval: HomR(Ar ,R)⊗R Ar
∼=−→ HomR(Ar ,Ar )

(faithfully-projective)

action: Ae
∼=−→ HomR(Ar ,Ar )

These conditions define an Azumaya object, A.
Note: in the case of MR, the ‘‘action’’ and ‘‘coeval’’ isomorphisms of part 1 imply that ‘‘eval’’ is

also an isomorphism. We do not yet know how generally this holds.
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Azumaya Objects
Invertibility in Practice

Let A be a 0-cell of a closed autonomous monoidal bicategory D with unit
R.

Theorem

A is an Azumaya object if and only if there is a 0-cell B such that Br is
left-dualizable and A⊗R B 'Morita R.

Proof : Diagram chase

D(R,−)
−⊗RAr

//

((QQQQQQQQQQQQQQQQQQQQQQQQ D(Ae ,−)
HomAe (Ar ,−)

oo

−⊗Ae (Ae⊗RBr )

��

D(Ae ⊗R Be ,−)

Hom

OO

'

hhQQQQQQQQQQQQQQQQQQQQQQQQ

If Br is left-dualizable,
the vertical counit is an
isomorphism. (Lemma)
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The Brauer Group

Let R be the unit of a closed autonomous monoidal bicategory D .

[A] is the equivalence class of A under Morita equivalence.

[A] ∈ Br(R) if there is a 0-cell B with A⊗R B 'Morita R.

This is a group, the Brauer group of R.

The Azumaya objects of D are those A for which [A] ∈ Br(R) and Ar is
left-dualizable.

Question: Is there an example for which Ar ⊗R Br is invertible, but Ar and
Br are not?
Note: In Mr , this cannot happen; we do not yet know if it can happen more generally. This issue is the

same as that raised following the definition of Azumaya objects.
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Outline

1 Bicategory of Algebras and Bimodules

2 Azumaya Objects

3 Invertibility in Triangulated Bicategories
Triangulated Bicategories
Localization
Baker-Lazarev Factorization
Invertibility in Triangulated Bicategories
Corollaries
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Triangulated Bicategories

Let D be a closed autonomous monoidal bicategory, and
each D(A,B) is a triangulated category such that:

The functors X ⊗A −, −⊗B X , HomA(X ,−), HomB(X ,−) are exact.

axioms relating Σ and units, autonomous structure . . .

For the remainder of the talk, we suppose D has such a triangulated
structure.

D [Z ,W ]∗ denotes the graded Abelian group of 2-cells Z →W .
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Localization
In a Triangulated Bicategory

Let T : A→B be a 1-cell in D .

Definition (T -acyclic)

M is T⊗-acyclic if T ⊗A M = 0. (push-forward)

M ′ is T⊗-acyclic if M ′ ⊗B T = 0. (pull-back)

Definition (T -local)

N is T⊗-local if D [M,N]∗ = 0 for all T⊗-acyclic M.

N ′ is T⊗-local if D [M ′,N ′]∗ = 0 for all T⊗-acyclic M ′.

Notation:
The subcategory of T⊗-local 1-cells C→A is D(C ,A)〈T⊗〉

The subcategory of T⊗-local 1-cells B→C is D(B,C )〈T⊗〉
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Baker-Lazarev Factorization

The adjunctions induced by T : A→B factor through the T -local
categories [Baker-Lazarev 2004]

D(B,−)
−⊗BT

//

<<
<<

<<

��
<<

<<
<

D(A,−)
HomA(T ,−)

oo

HomA(T ,−)

����
��

��
��

��
��

�

D(B,−)〈T⊗〉

localization<<<<<<

^^<<<<<< −⊗BT

@@�������������

D(−,A)
T⊗A− //

<<
<<

<<

��
<<

<<
<

D(−,B)
HomB(T ,−)

oo

HomB(T ,−)

����
��

��
��

��
��

�

D(−,A)〈T⊗〉

localization<<<<<<

]]<<<<<< T⊗A−

AA�������������

Proposition (Baker-Lazarev 2004)

If T is right-dualizable and the action B
∼=−→ HomA(T ,T ) is an

isomorphism, then D(−,A)〈T⊗〉 ' D(−,B). (Lemma)
Likewise for left-dualizability.
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Invertibility in Triangulated Bicategories

Invertibility and Localization

The following are equivalent for a 1-cell T : A→B in D :

0 T is invertible

1 T is right-dualizable

action: B
∼=−→ HomA(T ,T )

A is T⊗-local

2 T is left-dualizable
action: A

∼=−→ HomB(T ,T )
B is T⊗-local
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Corollaries
Practical Applications

Let A be a 0-cell of D and take T = Ar : Ae→R.
Baker-Lazarev: D = spectra

Corollary

The following are equivalent:

0 Ar is Azumaya (as defined previously)

1 Ar is right-dualizable

action: R
∼=−→ HomAe (Ar ,Ar ) = THHR(A,A)

Ae is Ar⊗-local

2 Ar is left-dualizable

action: Ae
∼=−→ HomR(Ar ,Ar )

R is Ar
⊗-local

Example: Morava K (1) is Azumaya over K̂U2 (Baker-Lazarev).
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Corollaries
Practical Applications

Let R be a commutative differential graded algebra (Rickard)
or a commutative ring spectrum (Schwede-Shipley).
Recall: DR(A,B) is the homotopy category of (B,A)-bimodules.

Corollary

Let T : A→R be a 1-cell of DR , and let E = HomA(T ,T ).
Let T̃ be the induced 1-cell A→E .
If T has the following two properties, then T̃ provides an equivalence
DR(A) ' DR(E ).

T is right-dualizable

T generates the triangulated category DR(A).

DR(A) = DR(A,R); DR(E ) = DR(E ,R)

T right-dualizable ⇒ T̃ is right-dualizable
T generates DR(A) ⇒ A is T⊗-local.

For general D , need to
know E and T̃ : A→E
exist.
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Conclusion
Ideas for Future Work

Compare with Picard group calculations for K (n)-local and E (n)-local
spheres (Hopkins-Mahowald-Sadofsky, Hovey-Sadofsky)

Study relative Brauer group, Br(S ,R), for ring map S → R. (Vitale)

Categorical description of 3-stage spectra
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Conclusion
Summary

Morita theory: Study of equivalence and invertibility in bicategory

General bicategories: Description of invertibility generalizes classical
work with Azumaya algebras

Triangulated bicategories: Factorization relates localization and
invertibility

Conceptual unification of algebraic and topological theory
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