Invertibility in Bicategories

Niles Johnson

University of Chicago http://www.math.uchicago.edu/~niles

November 2008 Algebraic Topology Conference, Buenos Aires

Niles Johnson (U. Chicago)

These slides are slightly modified from a talk presented at the 2008 Algebraic Topology Conference in Buenos Aires. We give a bicategorical perspective on invertibility beginning with Morita theory and duality, and then describing generalized Brauer groups and Azumaya objects. We develop the theory of invertibility in triangulated bicategories and give a characterization of Azumaya objects therein. Let R be a field, and A an R-algebra.

- If A is simple with center R, then $A = M_n(D)$ for some division ring D (Wedderburn).
- The Brauer group is defined by introducing an equivalence relation: $M_n(D) \sim M_m(D)$ for all m, n.
- If A is a central, simple R-algebra, then A ⊗ A^{op} ~ R; the set of similarity classes of central simple R-algebras is a group under ⊗_R.
- This is the Brauer group, Br(R).

Let R be a commutative ring, and A an R-algebra.

- A is central if the center of A is equal to R.
- A is separable if A is projective as a module over $A^e = A \otimes_R A^{op}$.
- A is faithfully-projective if A is finitely-generated and projective as an R-module, and if, for any R-module M, $A \otimes_R M = 0 \Rightarrow M = 0$.

Theorem

The following are equivalent for an R-algebra A:

- A is central and separable over R.
- A is faithfully-projective over R and µ : A^e [≅]→ Hom_R(A, A) is an isomorphism.
- A^e is Morita equivalent to R.
- There is an R-algebra B such that $A \otimes_R B$ is Morita equivalent to R.

These conditions define an Azumaya algebra over R. The Brauer group of R is the group of Azumaya R-algebras: Br(R). Brauer, Azumaya in derived and topological settings

- Understand invertibility in practice
- Azumaya objects in triangulated bicategories
- Topologically motivated development of localization

Prelude: Brauer Groups For Fields and Rings

1 Bicategory of Algebras and Bimodules

2 Azumaya Objects

3 Invertibility in Triangulated Bicategories

Outline

1 Bicategory of Algebras and Bimodules

- Bicategory
- Additional Structure
- Duality and Invertibility

Azumaya Objects

A Bicategory is a Weak 2-Category

- A bicategorical context provides:
 - organizational framework
 - conceptual advantage

Definition by example; Modules over a commutative ring, $R: M_R$

- 0-cells: R-algebras
- 1-cells: bimodules $\mathcal{M}_R(A, B)$ is the category of (B, A)-bimodules
- 2-cells: bimodule morphisms

The horizontal composite of 1-cells is given by the tensor product

$$N \otimes_B M : A \xrightarrow{M} B \xrightarrow{N} C$$

Work in a closed autonomous monoidal bicategory

Right-adjoints to $M \otimes_A - \text{and} - \otimes_B M$ given by Source-Hom and Target-Hom

 $M: A \rightarrow B$

Notation:

 $\mathscr{B}(M \otimes_A X, Z) \cong \mathscr{B}(X, \operatorname{Hom}_B(M, Z))$

$$\mathscr{B}(Y \otimes_B M, W) \cong \mathscr{B}(Y, \operatorname{Hom}_A(M, Y))$$

Work in a closed autonomous monoidal bicategory

 \mathcal{M}_R has

- \otimes_R on 0-, 1-, and 2-cells; a symmetric monoidal product
- An involution $(-)^{op}$
- For $M \in \mathcal{M}_R(A, B)$, this gives
 - $M^{op} \in \mathscr{M}_R(B^{op}, A^{op})$
 - $M_r \in \mathscr{M}_R(A \otimes_R B^{op}, R)$
 - $M_{\ell} \in \mathscr{M}_{R}(R, A^{op} \otimes B)$
 - ... compatibility axioms

Let R be a commutative DG-algebra or ring spectrum.

Other examples of interest Ch_R Ch_R(A, B) is the category of DG-(B, A)-bimodules D_R D_R(A, B) is the homotopy category of (B, A)-bimodules Note: Use ⊗ and Hom to denote the derived tensor and hom.

Duality and Invertibility

Duality in a closed bicategory generalizes duality in a closed monoidal category.

A pair of 1-cells (X, Y) is a *dual pair* if

$$X : A \rightarrow B \text{ and } Y : B \rightarrow A$$

equivalently:

• unit: $B \to X \otimes_A Y$ counit: $Y \otimes_B X \to A$. satisfying the triangle identities

- (X, Y) defines an adjunction $(-\otimes_B X) \dashv (-\otimes_A Y).$
- (X, Y) defines an adjunction $(Y \otimes_B -) \dashv (X \otimes_A -).$

A dual pair, (X, Y) is *invertible* if the induced functors are an equivalence; if and only if the unit/counit are isomorphisms

Remark: (X, Y) is an invertible pair if and only if (Y, X) is invertible.

Duality and Invertibility

Lemmas

- X is right-dualizable if and only if the coevaluation $X \otimes_A \operatorname{Hom}_A(X, A) \to \operatorname{Hom}_A(X, X)$ is an isomorphism. Any right dual of X is isomorphic to $\operatorname{Hom}_A(X, A)$.
- X is left-dualizable if and only if the coevaluation Hom_B(X, B) ⊗ X → Hom_B(X, X) is an isomorphism. Any left dual of X is isomorphic to Hom_B(X, B).
- If X is right-dualizable and the action map $B \to \operatorname{Hom}_A(X, X)$ is an isomorphism, then the evaluation $X \otimes_A \operatorname{Hom}_B(X, B) \to B$ is an isomorphism.
- If X is left-dualizable and the action map A → Hom_B(X, X) is an isomorphism, then the evaluation Hom_A(X, A) ⊗_B X → A is an isomorphism.

Bicategory of Algebras and Bimodules

2 Azumaya Objects

- Definition
- The Brauer Group

Invertibility in Triangulated Bicategories

Azumaya Objects Invertibility in Practice

Let A be a 0-cell of a closed autonomous monoidal bicategory with unit R. Recall $A_r : A^e \rightarrow R$.

The following are equivalent

• A_r is invertible $(A_r, \operatorname{Hom}_{A^e}(A_r, A^e))$ $(\operatorname{Hom}_R(A_r, R), A_r)$

eval: $A_r \otimes_{A^e} \operatorname{Hom}_R(A_r, R) \xrightarrow{\cong} R$ (faithfully-projective) coeval: $\operatorname{Hom}_R(A_r, R) \otimes_R A_r \xrightarrow{\cong} \operatorname{Hom}_R(A_r, A_r)$ action: $A^e \xrightarrow{\cong} \operatorname{Hom}_R(A_r, A_r)$

These conditions define an Azumaya object, A.

Note: in the case of \mathscr{M}_R , the ''action'' and ''coeval'' isomorphisms of part 1 imply that ''eval'' is

also an isomorphism. We do not yet know how generally this holds.

Niles Johnson (U. Chicago)

Invertibility in Bicategories

Let A be a 0-cell of a closed autonomous monoidal bicategory ${\mathcal D}$ with unit R.

Theorem

A is an Azumaya object if and only if there is a 0-cell B such that B_r is left-dualizable and $A \otimes_R B \simeq_{Morita} R$.

Proof: Diagram chase

The Brauer Group

Let R be the unit of a closed autonomous monoidal bicategory \mathcal{D} .

- [A] is the equivalence class of A under Morita equivalence.
- $[A] \in Br(R)$ if there is a 0-cell B with $A \otimes_R B \simeq_{Morita} R$.
- This is a group, the *Brauer group* of *R*.

The Azumaya objects of \mathscr{D} are those A for which $[A] \in Br(R)$ and A_r is left-dualizable.

Question: Is there an example for which $A_r \otimes_R B_r$ is invertible, but A_r and B_r are not?

Note: In \mathcal{M}_r , this cannot happen; we do not yet know if it can happen more generally. This issue is the same as that raised following the definition of Azumaya objects.

Bicategory of Algebras and Bimodules

2 Azumaya Objects

Invertibility in Triangulated Bicategories

- Triangulated Bicategories
- Localization
- Baker-Lazarev Factorization
- Invertibility in Triangulated Bicategories
- Corollaries

Let \mathscr{D} be a closed autonomous monoidal bicategory, and each $\mathscr{D}(A, B)$ is a triangulated category such that:

- The functors $X \otimes_A -$, $\otimes_B X$, $Hom_A(X, -)$, $Hom_B(X, -)$ are exact.
- axioms relating Σ and units, autonomous structure ...

For the remainder of the talk, we suppose ${\mathscr D}$ has such a triangulated structure.

 $\mathscr{D}[Z,W]_*$ denotes the graded Abelian group of 2-cells $Z \to W$.

Localization In a Triangulated Bicategory

Let $T : A \rightarrow B$ be a 1-cell in \mathcal{D} .

Definition (*T*-acyclic)

M is T_{\otimes} -acyclic if $T \otimes_A M = 0$. (push-forward)

M' is T^{\otimes} -acyclic if $M' \otimes_B T = 0$. (pull-back)

Definition (T-local)

N is
$$T_{\otimes}$$
-local if $\mathscr{D}[M, N]_* = 0$ for all T_{\otimes} -acyclic *M*.

N' is T^{\otimes} -local if $\mathscr{D}[M', N']_* = 0$ for all T^{\otimes} -acyclic M'.

Notation:

The subcategory of
$$T_{\otimes}$$
-local 1-cells $C \rightarrow A$ is $\mathscr{D}(C, A)_{\langle T_{\otimes} \rangle}$

The subcategory of T^{\otimes} -local 1-cells $B \rightarrow C$ is $\mathscr{D}(B, C)_{(T^{\otimes})}$

Niles Johnson (U. Chicago)

Baker-Lazarev Factorization

The adjunctions induced by $T : A \rightarrow B$ factor through the *T*-local categories [Baker-Lazarev 2004]

Proposition (Baker-Lazarev 2004)

If T is right-dualizable and the action $B \xrightarrow{\cong} \operatorname{Hom}_A(T, T)$ is an isomorphism, then $\mathscr{D}(-, A)_{\langle T_{\otimes} \rangle} \simeq \mathscr{D}(-, B)$. (Lemma) Likewise for left-dualizability.

Niles Johnson (U. Chicago)

Invertibility and Localization

The following are equivalent for a 1-cell $T : A \rightarrow B$ in \mathcal{D} :

- T is invertible
- T is right-dualizable action: $B \xrightarrow{\cong} \operatorname{Hom}_A(T, T)$ A is T_{\otimes} -local
- ② *T* is left-dualizable action: $A \xrightarrow{\cong} Hom_B(T, T)$ *B* is *T*[⊗]-local

Corollaries Practical Applications

Let A be a 0-cell of \mathscr{D} and take $T = A_r : A^e \rightarrow R$. Baker-Lazarev: \mathscr{D} = spectra

Corollary

The following are equivalent:

- A_r is Azumaya (as defined previously)
- A_r is right-dualizable action: $R \xrightarrow{\cong} Hom_{A^e}(A_r, A_r) = THH_R(A, A)$ A^e is $A_{r\otimes}$ -local

Example: Morava K(1) is Azumaya over \widehat{KU}_2 (Baker-Lazarev).

Corollaries Practical Applications

Let *R* be a commutative differential graded algebra (Rickard) or a commutative ring spectrum (Schwede-Shipley). Recall: $\mathcal{D}_R(A, B)$ is the homotopy category of (*B*, *A*)-bimodules.

Corollary

Let $T : A \rightarrow R$ be a 1-cell of \mathscr{D}_R , and let $E = \operatorname{Hom}_A(T, T)$.

Let T be the induced 1-cell $A \rightarrow E$.

If T has the following two properties, then \overline{T} provides an equivalence $\mathscr{D}_R(A) \simeq \mathscr{D}_R(E)$.

- T is right-dualizable
- T generates the triangulated category $\mathscr{D}_R(A)$.

 $\mathscr{D}_R(A) = \mathscr{D}_R(A, R); \ \mathscr{D}_R(E) = \mathscr{D}_R(E, R)$

T right-dualizable $\Rightarrow \tilde{T}$ is right-dualizable T generates $\mathscr{D}_R(A) \Rightarrow A$ is T_{\otimes} -local.

Niles Johnson (U. Chicago)

For general \mathscr{D} , need to know E and $\widetilde{T} : A \rightarrow E$ exist.

- Compare with Picard group calculations for K(n)-local and E(n)-local spheres (Hopkins-Mahowald-Sadofsky, Hovey-Sadofsky)
- Study relative Brauer group, Br(S, R), for ring map $S \rightarrow R$. (Vitale)
- Categorical description of 3-stage spectra

- Morita theory: Study of equivalence and invertibility in bicategory
- General bicategories: Description of invertibility generalizes classical work with Azumaya algebras
- Triangulated bicategories: Factorization relates localization and invertibility
- Conceptual unification of algebraic and topological theory