Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces
 J.P. May

November 10, 2008

Simplicial sets and subdivision
(Any new results are due to Rina Foygel)
$\boldsymbol{\Delta} \equiv$ standard simplicial category.
$\Delta[n]$ is represented on $\boldsymbol{\Delta}$ by \mathbf{n}.

It is $N \underline{\mathbf{n}}$, where $\underline{\mathbf{n}}$ is the poset $\{0,1, \cdots, n\}$.
$\operatorname{Sd} \Delta[n] \equiv \Delta[n]^{\prime} \equiv N s d \underline{\mathbf{n}}$, where
$s d \underline{\mathbf{n}} \equiv \underline{\mathbf{n}}^{\prime} \equiv \operatorname{monos} / \mathbf{n}$.
$S d K \equiv K \otimes_{\Delta} \Delta^{\prime}$.

Lemma $1 S d K \cong$ SdL does not imply $K \cong L$ but does imply $K_{n} \cong L_{n}$ as sets, with corresponding simplices having corresponding faces.

Regular simplicial complexes

A nondegenerate $x \in K_{n}$ is regular if the subcomplex $[x]$ it generates is the pushout of

$$
\Delta[n] \stackrel{\delta^{n}}{ } \Delta[n-1] \xrightarrow{d_{n} x}\left[d_{n} x\right] .
$$

K is regular if all x are so.

Theorem 1 For any K, Sd K is regular.

Theorem 2 If K is regular, then $|K|$ is a regular CW complex: $\left(e^{n}, \partial e^{n}\right) \cong\left(D^{n}, S^{n-1}\right)$ for all closed n-cells e.

Theorem 3 If X is a regular CW complex, then X is triangulable; that is X is homeomorphic to some $|i(K)|$.

Properties of simplicial sets K

Let $x \in K_{n}$ be a nondegenerate simplex of K.

A: For all x, all faces of x are nondegenerate.

B: For all x, x has $n+1$ distinct vertices.

C: Any $n+1$ distinct vertices are the vertices of at most one x.

Lemma $2 K$ has B iff for all x and all monos

$$
\alpha, \beta: \mathbf{m} \longrightarrow \mathbf{n}, \alpha^{*} x=\beta^{*} x \text { implies } \alpha=\beta .
$$

Lemma 3 If K has B, then K has A.

No other general implications among A, B, C.

Properties A, B, C and subdivision

Lemma $4 K$ has A iff SdK has A.

Lemma $5 K$ has A iff SdK has B.

Lemma $6 K$ has B iff SdK has C.

Characterization of simplicial complexes

Lemma $7 K$ has A iff $S d^{2} K$ has C, and then $\mathrm{Sd}^{2} K$ also has B.

Lemma $8 K$ has B and C iff $K \in \operatorname{Im}(i)$.

Theorem $4 K$ has A iff $S d^{2} K \in \operatorname{Im}(i)$.

Subdivision and horn-filling

Lemma 9 If SdK is a Kan complex, then K is discrete.

Lemma 10 If K does not have A, then SdK cannot be a quasicategory.

Relationship of the properties to categories
Theorem 5 If K has A, then $S d K \in \operatorname{Im}(N)$.

Proof: Check the Segal maps criterion.

Definition $1 A$ category \mathscr{C} satisfies A, B, or C if $N \mathscr{C}$ satisfies A, B, or C.

Lemma $11 \mathscr{C}$ has A iff for any $i: C \longrightarrow D$ and $r: D \longrightarrow C$ such that $r \circ i=i d, C=D$ and $i=r=i d$. (Retracts are identities.)

Lemma $12 \mathscr{C}$ has B iff for any $i: C \longrightarrow D$ and $r: D \longrightarrow C, C=D$ and $i=r=i d$.

Lemma $13 \mathscr{C}$ has B and C iff \mathscr{C} is a poset.

Definition 2 Define a category $T \mathscr{C}$:

Objects: nondegenerate simplices of $N \mathscr{C}$. e.g.

$$
\begin{aligned}
& \underline{C}=C_{0} \longrightarrow C_{1} \longrightarrow \cdots \longrightarrow C_{q} \\
& \underline{D}=D_{0} \longrightarrow C_{1} \longrightarrow \cdots \longrightarrow D_{r}
\end{aligned}
$$

Morphisms: maps $\underline{C} \longrightarrow \underline{D}$ are maps $\alpha: \mathbf{q} \longrightarrow \mathbf{r}$ in Δ such that $\alpha^{*} \mathbf{D}=\mathbf{C}$ (implying α is mono).

Quotient category sd \mathscr{C} with the same objects:

$$
\alpha \circ \beta_{1} \sim \alpha \circ \beta_{2}: \underline{C} \longrightarrow \underline{D}
$$

if $\sigma \circ \beta_{1}=\sigma \circ \beta_{2}$ for a surjection $\sigma: \mathbf{p} \longrightarrow \mathbf{q}$ such that $\alpha^{*} \mathbf{D}=\sigma^{*} \mathbf{C}\left(\alpha: \mathbf{p} \longrightarrow \mathbf{r}, \beta_{i}: \mathbf{q} \longrightarrow \mathbf{p}\right)$.

$$
\left(\beta_{i}^{*} \alpha^{*} \underline{D}=\beta_{i}^{*} \sigma^{*} \underline{C}=\underline{C}, \quad i=1,2\right)
$$

(Anderson, Thomason, Fritsch-Latch, del Hoyo)

Lemma 14 For any $\mathscr{C}, T \mathscr{C}$ has B.

Corollary 1 For any \mathscr{C}, sd \mathscr{C} has B.

Lemma $15 \mathscr{C}$ has B iff $s d \mathscr{C}$ is a poset.

Theorem 6 For any $\mathscr{C}, s d^{2} \mathscr{C}$ is a poset.

Compare with K has A iff $S d^{2} K \in \operatorname{Im}(i)$.

Del Hoyo: Equivalence $\varepsilon: s d \mathscr{C} \longrightarrow \mathscr{C}$.
(Relate to equivalence $\varepsilon: S d K \longrightarrow K ?$)

Left adjoint τ_{1} to N (Gabriel-Zisman).

Objects of $\tau_{1} K$ are the vertices.

Think of 1 -simplices y as maps

$$
d_{1} y \longrightarrow d_{0} y
$$

form the free category they generate, and impose the relations

$$
\begin{gathered}
s_{0} x=i d_{x} \quad \text { for } x \in K_{0} \\
d_{1} z=d_{0} z \circ d_{2} z \quad \text { for } z \in K_{2} .
\end{gathered}
$$

The counit $\varepsilon: \tau_{1} N \mathscr{A} \longrightarrow \mathscr{A}$ is an isomorphism.
$\tau_{1} K$ depends only on the 2-skeleton of K. When
$K=\partial \Delta[n]$ for $n>2$, the unit $\eta: K \longrightarrow N \tau_{1} K$
is the inclusion $\partial \Delta[n] \longrightarrow \Delta[n]$.

Direct combinatorial proof:

Theorem 7 For any $\mathscr{C}, s d \mathscr{C} \cong \tau_{1} S d N \mathscr{C}$.
Corollary $2 \varepsilon=\tau_{1} \varepsilon: s d \mathscr{C} \longrightarrow \tau_{1} N \mathscr{C} \cong \mathscr{C}$.

Corollary $3 \mathscr{C}$ has A iff $S d N \mathscr{C} \cong N s d \mathscr{C}$.

Remark 1 Even for posets P and Q, $s d P \cong s d Q$ does not imply $P \cong Q$.

In the development above, there is a counterexample to the converse of each implication that is not stated to be iff.

Sheds light on Thomason model structure.

Alexandrov and finite spaces

Alexandrov space, abbreviated A-space:

ANY intersection of open sets is open.

Finite spaces are A-spaces.
T_{0}-space: topology distinguishes points.

Kolmogorov quotient $K(A)$. McCord:
$A \longrightarrow K(A)$ is a homotopy equivalence.

Space $=T_{0}-A$-space from now on
T_{1} finite spaces are discrete,
but any finite X has a closed point.

Define

$$
U_{x} \equiv \cap\{U \mid x \in U\}
$$

$\left\{U_{x}\right\}$ is unique minimal basis for the topology.

$$
x \leq y \equiv x \in U_{y} ; \quad \text { that is, } \quad U_{x} \subset U_{y}
$$

Transitive and reflexive; $T_{0} \Longrightarrow$ antisymmetric.

For a poset X, define $U_{x} \equiv\{y \mid x \leq y\}$: basis for a $T_{0}-A$-space topology on the set X.
$f: X \longrightarrow Y$ is continuous $\Longleftrightarrow f$ preserves order.

Theorem 8 The category \mathscr{P} of posets is isomorphic to the category \mathscr{A} of $T_{0}-A$-spaces.

Finite spaces: $f: X \longrightarrow X$ is a homeomorphism iff f is one-to-one or onto.

Can describe n-point topologies by restricted kind of $n \times n$-matrix and enumerate them.

Combinatorics: count the isomorphism classes of posets with n points; equivalently count the homeomorphism classes of spaces with n points. HARD! For $n=4, X=\{a, b, c, d\}, 33$ topologies, with bases as follows:

1	all
2	$a, b, c,(a, b),(a, c),(b, c),(a, b, c)$
3	$a, b, c,(a, b),(a, c),(b, c),(a, b, c),(a, b, d)$
4	$a, b, c,(a, b),(a, c),(b, c),(a, d),(a, b, c),(a, b, d),(a, c, d)$
5	$a, b,(a, b)$
6	$a, b,(a, b),(a, b, c)$
7	$a, b,(a, b),(a, c, d)$
8	$a, b,(a, b),(a, b, c),(a, b, d)$
9	$a, b,(a, b),(a, c),(a, b, c)$
10	$a, b,(a, b),(a, c),(a, b, c),(a, c, d)$
11	$a, b,(a, b),(a, c),(a, b, c),(a, b, d)$
12	a, b, (a,b), (c,d), (a,c,d), (b,c,d)
13	$a, b,(a, b),(a, c),(a, d),(a, b, c),(a, b, d)$
14	$a, b,(a, b),(a, c),(a, d),(a, b, c),(a, b, d),(a, c, d)$
15	
16	$a,(a, b)$
17	$a,(a, b),(a, b, c)$
18	$a,(b, c),(a, b, c)$
19	$a,(a, b),(a, c, d)$
20	$a,(a, b),(a, b, c),(a, b, d)$
21	$a,(b, c),(a, b, c),(b, c, d)$
22	$a,(a, b),(a, c),(a, b, c)$
23	$a,(a, b),(a, c),(a, b, c),(a, b, d)$
24	$a,(c, d),(a, b),(a, c, d)$
25	$a,(a, b),(a, c),(a, d),(a, b, c),(a, b, d),(a, c, d)$
26	$a,(a, b, c)$
27	$a,(b, c, d)$
28	(a, b)
29	(a,b), (c,d)
30	(a,b), (a,b,c)
31	$(a, b),(a, b, c),(a, b, d)$
32	(a,b,c)
33	none

Homotopies and homotopy equivalence

$f, g: X \longrightarrow Y: f \leq g$ if $f(x) \leq g(x) \forall x \in X$.
Proposition $1 X, Y$ finite. $f \leq g$ implies $f \simeq g$.

Proposition 2 If $y \in U \subset X$ with U open (or closed) implies $U=X$, then X is contractible.

If X has a unique maximum or minimal point, X is contractible. Each U_{x} is contractible.

Definition 3 Let X be finite.
(a) $x \in X$ is upbeat if there is a $y>x$ such that $z>x$ implies $z \geq y$.
(b) $x \in X$ is downbeat if there is a $y<x$ such that $z<x$ implies $z \leq y$.

Upbeat:

Downbeat: upside down.
X is minimal if it has no upbeat or downbeat points. A core of X is a subspace Y that is minimal and a deformation retract of X.

Stong:

Theorem 9 Any finite X has a core.

Theorem 10 If $f \simeq i d: X \longrightarrow X$, then $f=i d$.

Corollary 4 Minimal homotopy equivalent finite spaces are homeomorphic.

REU results of Alex Fix and Stephen Patrias

Can now count homotopy types with n points.

Hasse diagram $\operatorname{Gr}(X)$ of a poset X : directed graph with vertices $x \in X$ and an edge $x \rightarrow y$ if $y<x$ but there is no other z with $x \leq z \leq y$.

Translate minimality of X to a property of $G r(X)$ and count the number of such graphs.

Find a fast enumeration algorithm.

Run it on a computer.

Get number of homotopy types with n points.

Compare with number of homeomorphism types.

n	\simeq	\cong
1	1	1
2	2	2
3	3	5
4	5	16
5	9	63
6	20	318
7	56	2,045
8	216	16,999
9	1,170	183,231
10	9,099	$2,567,284$
11	101,191	$46,749,427$
12	$1,594,293$	$1,104,891,746$

Exploit known results from combinatorics.

Astonishing conclusion:

Theorem 11 (Fix and Patrias) The number of homotopy types of finite T_{0}-spaces is asymptotically equivalent to the number of homeomorphism types of finite T_{0}-spaces.

$\underline{T_{0}-A \text {-spaces and simplicial complexes }}$

Category \mathscr{A} of $T_{0}-A$-spaces ($=$ posets);

Category \mathscr{B} of simplicial complexes.

McCord:

Theorem 12 There is a functor $\mathscr{K}: \mathscr{A} \longrightarrow \mathscr{B}$ and a natural weak equivalence

$$
\psi:|\mathscr{K}(X)| \longrightarrow X .
$$

The n-simplices of $\mathscr{K}(X)$ are

$$
\left\{x_{0}, \cdots, x_{n} \mid x_{0}<\cdots<x_{n}\right\}
$$

and $\psi(u)=x_{0}$ if u is an interior point of the simplex spanned by $\left\{x_{0}, \cdots, x_{n}\right\}$.

Let $S d K$ be the barycentric subdivision of a simplicial complex K; let b_{σ} be the barycenter of a simplex σ.

Theorem 13 There is a functor $\mathscr{X}: \mathscr{B} \longrightarrow \mathscr{A}$ and a natural weak equivalence

$$
\phi:|K| \longrightarrow \mathscr{X}(K) .
$$

The points of $\mathscr{X}(K)$ are the barycenters b_{σ} of simplices of K and $b_{\sigma}<b_{\tau}$ if $\sigma \subset \tau$.
$\mathscr{K}(\mathscr{X}(K))=$ Sd K and

$$
\phi_{K}=\psi_{\mathscr{X}(K)}:|K| \cong|S d K| \longrightarrow \mathscr{X}(K) .
$$

Problem: not many maps between finite spaces!

Solution: subdivision: $\operatorname{Sd} X \equiv \mathscr{X}(\mathscr{K}(X))$.

Theorem 14 There is a natural weak equiv.

$$
\xi: S d X \longrightarrow X
$$

Classical result and an implied analogue:

Theorem 15 Let $f:|K| \longrightarrow|L|$ be continuous, where K and L are simplicial complexes, K finite. For some large n, there is a simplicial map $g: K^{(n)} \longrightarrow L$ such that $f \simeq|g|$.

Theorem 16 Let $f:|\mathscr{K}(X)| \longrightarrow|\mathscr{K}(Y)|$ be continuous, where X and Y are $T_{0}-A$-spaces, X finite. For some large n there is a continuous map $g: X^{(n)} \longrightarrow Y$ such that $f \simeq|\mathscr{K}(g)|$.

Definition 4 Let X be a space. Define the non-Hausdorff cone $\mathbb{C} X$ by adjoining a new point + and letting the proper open subsets of $\mathbb{C} X$ be the non-empty open subsets of X.

Define the non-Hausdorff suspension $\mathbb{S} X$ by adjoining two points + and - such that $\mathbb{S} X$ is the union under X of two copies of $\mathbb{C} X$.

Let $S X$ be the unreduced suspension of X.

Definition 5 Define a natural map

$$
\gamma=\gamma_{X}: S X \longrightarrow \mathbb{S} X
$$

by $\gamma(x, t)=x$ if $-1<t<1$ and $\gamma(\pm 1)= \pm$.

Theorem 17γ is a weak equivalence.
Corollary $5 \mathbb{S}^{n} S^{0}$ is a minimal finite space with $2 n+2$ points, and it is weak equivalent to S^{n}.

The height $h(X)$ of a poset X is the maximal length h of a chain $x_{1}<\cdots<x_{h}$ in X.

$$
h(X)=\operatorname{dim}|\mathscr{K}(X)|+1
$$

Barmak and Minian:

Proposition 3 Let $X \neq *$ be a minimal finite space. Then X has at least $2 h(X)$ points. It has exactly $2 h(X)$ points if and only if it is homeomorphic to $\mathbb{S}^{h(X)-1} S^{0}$.

Corollary 6 If $|\mathscr{K}(X)|$ is homotopy equivalent to a sphere S^{n}, then X has at least $2 n+2$ points, and if it has exactly $2 n+2$ points it is homeomorphic to $\mathbb{S}^{n} S^{0}$.

Remark 2 If X has six elements, then $h(X)$ is 2 or 3. There is a six point finite space that is weak homotopy equivalent to S^{1} but is not homotopy equivalent to $\mathbb{S} S^{0}$.

Really finite H-spaces

Let X be a finite space and an H-space with unit $e: x \rightarrow e x$ and $x \rightarrow x e$ are each homotopic to the identity. Stong:

Theorem 18 If X is minimal, these maps are homeomorphisms and e is both a maximal and a minimal point of X, so $\{e\}$ is a component.

Theorem $19 X$ is an H-space with unit e iff e is a deformation retract of its component in X. Therefore X is an H-space iff a component of X is contractible. If X is a connected H-space, X is contractible.

Hardie, Vermeulen, Witbooi:
Let $\mathbb{T}=\mathbb{S} S^{0}, \mathbb{T}^{\prime}=S d \mathbb{T}$.
Brute force write it down proof (8×8 matrix)
Example 1 There is product $\mathbb{T}^{\prime} \times \mathbb{T}^{\prime} \longrightarrow \mathbb{T}$ that realizes the product on S^{1} after realization.

Finite groups and finite spaces

X, Y finite T_{0}-spaces and G-spaces. Stong:

Theorem $20 X$ has an equivariant core, namely a sub G-space that is a core and a G-deformation retract of X.

Corollary 7 Let X be contractible. Then X is G-contractible and has a point fixed by every self-homeomorphism.

Corollary 8 If $f: X \longrightarrow Y$ is a G-map and a homotopy equivalence, then it is a G-homotopy equivalence.

Quillen's conjecture

G finite, p prime.
$\mathscr{S}_{p}(G)$: poset of non-trivial p-subgroups of G, ordered by inclusion.
G acts on $\mathscr{S}_{p}(G)$ by conjugation.
$\mathscr{A}_{p}(G)$: Sub G-poset of p-tori.
p-torus \equiv elementary Abelian p-group.
$r_{p}(G)$ is the rank of a maximal p-torus in G.

Vertical maps ψ are weak equivalences.

Proposition 4 If G is a p-group, $\mathscr{A}_{p}(G)$ and $\mathscr{S}_{p}(G)$ are contractible.

Note: genuinely contractible, not just weakly.
Proposition $5 i: \mathscr{A}_{p}(G) \longrightarrow \mathscr{S}_{p}(G)$ is a weak equivalence.

Example 2 If $G=\Sigma_{5}, \mathscr{A}_{p}(G)$ and $\mathscr{S}_{p}(G)$ are not homotopy equivalent.
$P \in \mathscr{S}_{p}(G)$ is normal iff P is a G-fixed point.
Theorem 21 If $\mathscr{S}_{p}(G)$ or $\mathscr{A}_{p}(G)$ is contractible, then G has a non-trivial normal p-subgroup. Conversely, if G has a non-trivial normal p-subgroup, then $\mathscr{S}_{p}(G)$ is contractible, hence $\mathscr{A}_{p}(G)$ is weakly contractible.

Conjecture 1 (Quillen) If $\mathscr{A}_{p}(G)$ is weakly contractible, then G contains a non-trivial normal p-subgroup.

Easy: True if $r_{P}(G) \leq 2$.

Quillen: True if G is solvable.

Aschbacker and Smith: True if $p>5$ and G has no component $U_{n}(q)$ with $q \equiv-1(\bmod p)$ and q odd.
(Component of G : normal subgroup that is simple modulo its center).

Horrors: proof from the classification theorem.

Their 1993 article summarizes earlier results.

And as far as Jon Alperin and I know, that is where the problem stands. Finite space version may not help with the proof, but is intriquing.

