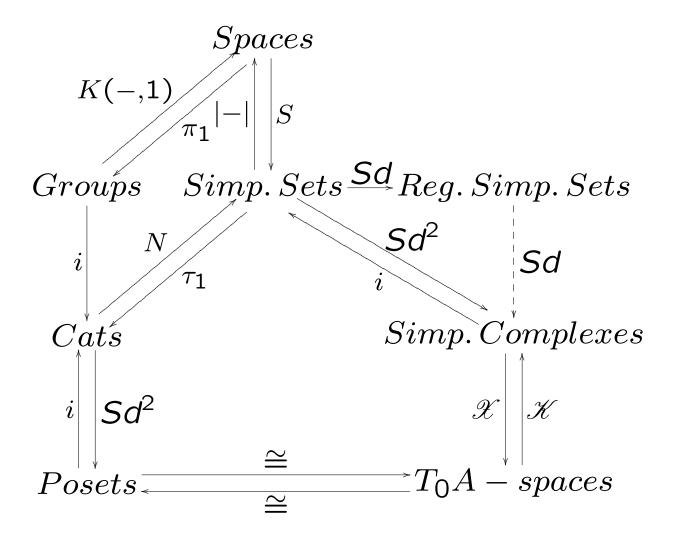
Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces

J.P. May

November 10, 2008



Simplicial sets and subdivision

(Any new results are due to Rina Foygel)

 $\Delta \equiv$ standard simplicial category.

 $\Delta[n]$ is represented on Δ by n.

It is $N\underline{\mathbf{n}}$, where $\underline{\mathbf{n}}$ is the poset $\{0, 1, \dots, n\}$.

 $Sd\Delta[n] \equiv \Delta[n]' \equiv Nsd\underline{\mathbf{n}}$, where

 $sd\underline{\mathbf{n}} \equiv \underline{\mathbf{n}}' \equiv monos/\mathbf{n}.$

 $SdK \equiv K \otimes_{\Delta} \Delta'$.

Lemma 1 $SdK \cong SdL$ does not imply $K \cong L$ but does imply $K_n \cong L_n$ as sets, with corresponding simplices having corresponding faces.

Regular simplicial complexes

A nondegenerate $x \in K_n$ is regular if the subcomplex [x] it generates is the pushout of

$$\Delta[n] \stackrel{\delta^n}{\longleftarrow} \Delta[n-1] \stackrel{d_nx}{\longrightarrow} [d_nx].$$

K is regular if all x are so.

Theorem 1 For any K, SdK is regular.

Theorem 2 If K is regular, then |K| is a regular CW complex: $(e^n, \partial e^n) \cong (D^n, S^{n-1})$ for all closed n-cells e.

Theorem 3 If X is a regular CW complex, then X is triangulable; that is X is homeomorphic to some |i(K)|.

Properties of simplicial sets K

Let $x \in K_n$ be a nondegenerate simplex of K.

A: For all x, all faces of x are nondegenerate.

B: For all x, x has n+1 distinct vertices.

C: Any n + 1 distinct vertices are the vertices of at most one x.

Lemma 2 K has B iff for all x and all monos $\alpha, \beta: \mathbf{m} \longrightarrow \mathbf{n}, \ \alpha^* x = \beta^* x \text{ implies } \alpha = \beta.$

Lemma 3 If K has B, then K has A.

No other general implications among A, B, C.

Properties A, B, C and subdivision

Lemma 4 K has A iff SdK has A.

Lemma 5 K has A iff SdK has B.

Lemma 6 K has B iff SdK has C.

Characterization of simplicial complexes

Lemma 7 K has A iff Sd^2K has C, and then Sd^2K also has B.

Lemma 8 K has B and C iff $K \in Im(i)$.

Theorem 4 K has A iff $Sd^2K \in Im(i)$.

Subdivision and horn-filling

Lemma 9 If SdK is a Kan complex, then K is discrete.

Lemma 10 If K does not have A, then SdK cannot be a quasicategory.

Relationship of the properties to categories

Theorem 5 If K has A, then $SdK \in Im(N)$.

Proof: Check the Segal maps criterion.

Definition 1 A category \mathscr{C} satisfies A, B, or C if $N\mathscr{C}$ satisfies A, B, or C.

Lemma 11 \mathscr{C} has A iff for any $i: C \longrightarrow D$ and $r: D \longrightarrow C$ such that $r \circ i = id$, C = D and i = r = id. (Retracts are identities.)

Lemma 12 \mathscr{C} has B iff for any $i: C \longrightarrow D$ and $r: D \longrightarrow C$, C = D and i = r = id.

Lemma 13 \mathscr{C} has B and C iff \mathscr{C} is a poset.

Definition 2 Define a category $T\mathscr{C}$:

Objects: nondegenerate simplices of $N\mathscr{C}$. e.g.

$$\underline{C} = C_0 \longrightarrow C_1 \longrightarrow \cdots \longrightarrow C_q$$

$$\underline{D} = D_0 \longrightarrow C_1 \longrightarrow \cdots \longrightarrow D_r$$

Morphisms: maps $\underline{C} \longrightarrow \underline{D}$ are maps $\alpha : \mathbf{q} \longrightarrow \mathbf{r}$ in Δ such that $\alpha^* \mathbf{D} = \mathbf{C}$ (implying α is mono).

Quotient category $sd\mathscr{C}$ with the same objects:

$$\alpha \circ \beta_1 \sim \alpha \circ \beta_2 : \underline{C} \longrightarrow \underline{D}$$

if $\sigma \circ \beta_1 = \sigma \circ \beta_2$ for a surjection $\sigma: \mathbf{p} \longrightarrow \mathbf{q}$ such that $\alpha^* \mathbf{D} = \sigma^* \mathbf{C}$ ($\alpha: \mathbf{p} \longrightarrow \mathbf{r}, \beta_i: \mathbf{q} \longrightarrow \mathbf{p}$).

$$(\beta_i^* \alpha^* \underline{D} = \beta_i^* \sigma^* \underline{C} = \underline{C}, \quad i = 1, 2)$$

(Anderson, Thomason, Fritsch-Latch, del Hoyo)

Lemma 14 For any &, T& has B.

Corollary 1 For any \mathscr{C} , $sd\mathscr{C}$ has B.

Lemma 15 $\mathscr C$ has B iff $sd\mathscr C$ is a poset.

Theorem 6 For any \mathscr{C} , $sd^2\mathscr{C}$ is a poset.

Compare with K has A iff $Sd^2K \in Im(i)$.

Del Hoyo: Equivalence ε : $sd\mathscr{C} \longrightarrow \mathscr{C}$.

(Relate to equivalence ε : $SdK \longrightarrow K$?)

Left adjoint τ_1 to N (Gabriel–Zisman).

Objects of $\tau_1 K$ are the vertices.

Think of 1-simplices y as maps

$$d_1y \longrightarrow d_0y$$
,

form the free category they generate, and impose the relations

$$s_0 x = id_x$$
 for $x \in K_0$

$$d_1z = d_0z \circ d_2z$$
 for $z \in K_2$.

The counit ε : $\tau_1 N \mathscr{A} \longrightarrow \mathscr{A}$ is an isomorphism.

 $au_1 K$ depends only on the 2-skeleton of K. When

$$K = \partial \Delta[n]$$
 for $n > 2$, the unit $\eta: K \longrightarrow N\tau_1 K$

is the inclusion $\partial \Delta[n] \longrightarrow \Delta[n]$.

Direct combinatorial proof:

Theorem 7 For any \mathscr{C} , $sd\mathscr{C} \cong \tau_1 SdN\mathscr{C}$.

Corollary 2 $\varepsilon = \tau_1 \varepsilon$: $sd\mathscr{C} \longrightarrow \tau_1 N\mathscr{C} \cong \mathscr{C}$.

Corollary 3 $\mathscr C$ has A iff $SdN\mathscr C\cong Nsd\mathscr C$.

Remark 1 Even for posets P and Q, $sdP \cong sdQ$ does not imply $P \cong Q$.

In the development above, there is a counterexample to the converse of each implication that is not stated to be iff.

Sheds light on Thomason model structure.

Alexandrov and finite spaces

Alexandrov space, abbreviated A-space:

ANY intersection of open sets is open.

Finite spaces are A-spaces.

 T_0 -space: topology distinguishes points.

Kolmogorov quotient K(A). McCord:

 $A \longrightarrow K(A)$ is a homotopy equivalence.

Space = T_0 -A-space from now on

 T_1 finite spaces are discrete,

but any finite X has a closed point.

Define

$$U_x \equiv \cap \{U | x \in U\}$$

 $\{U_x\}$ is unique minimal basis for the topology.

$$x \leq y \equiv x \in U_y$$
; that is, $U_x \subset U_y$

Transitive and reflexive; $T_0 \Longrightarrow$ antisymmetric.

For a poset X, define $U_x \equiv \{y | x \leq y\}$: basis for a T_0 -A-space topology on the set X.

 $f: X \longrightarrow Y$ is continuous $\iff f$ preserves order.

Theorem 8 The category \mathscr{P} of posets is isomorphic to the category \mathscr{A} of T_0 -A-spaces.

Finite spaces: $f: X \longrightarrow X$ is a homeomorphism iff f is one-to-one or onto.

Can describe n-point topologies by restricted kind of $n \times n$ -matrix and enumerate them.

Combinatorics: count the isomorphism classes of posets with n points; equivalently count the homeomorphism classes of spaces with n points. HARD! For n=4, $X=\{a,b,c,d\}$, 33 topologies, with bases as follows:

```
all
2
     a, b, c, (a,b), (a,c), (b,c), (a,b,c)
3
     a, b, c, (a,b), (a,c), (b,c), (a,b,c), (a,b,d)
4
     a, b, c, (a,b), (a,c), (b,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
5
     a, b, (a,b)
6
     a, b, (a,b), (a,b,c)
7
     a, b, (a,b), (a,c,d)
     a, b, (a,b), (a,b,c), (a,b,d)
8
9
     a, b, (a,b), (a,c), (a,b,c)
     a, b, (a,b), (a,c), (a,b,c), (a,c,d)
10
     a, b, (a,b), (a,c), (a,b,c), (a,b,d)
11
12
     a, b, (a,b), (c,d), (a,c,d), (b,c,d)
     a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d)
13
     (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
14
15
     а
16
     a, (a,b)
     a, (a,b), (a,b,c)
17
18
     a, (b,c), (a,b,c)
19
     a, (a,b), (a,c,d)
20
     a, (a,b), (a,b,c), (a,b,d)
     a, (b,c), (a,b,c), (b,c,d)
21
     a, (a,b), (a,c), (a,b,c)
22
     a, (a,b), (a,c), (a,b,c), (a,b,d)
23
     a, (c,d), (a,b), (a,c,d)
24
     a, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
25
26
     a, (a,b,c)
27
     a, (b,c,d)
28
     (a,b)
     (a,b), (c,d)
29
30
     (a,b), (a,b,c)
     (a,b), (a,b,c), (a,b,d)
31
32
     (a,b,c)
33
     none
```

Homotopies and homotopy equivalence

 $f, g: X \longrightarrow Y: f \leq g \text{ if } f(x) \leq g(x) \ \forall \ x \in X.$

Proposition 1 X, Y finite. $f \leq g$ implies $f \simeq g$.

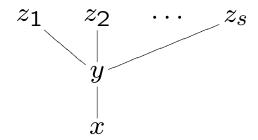
Proposition 2 If $y \in U \subset X$ with U open (or closed) implies U = X, then X is contractible.

If X has a unique maximum or minimal point, X is contractible. Each U_x is contractible.

Definition 3 Let X be finite.

- (a) $x \in X$ is upbeat if there is a y > x such that z > x implies $z \ge y$.
- (b) $x \in X$ is downbeat if there is a y < x such that z < x implies $z \le y$.

Upbeat:



Downbeat: upside down.

X is minimal if it has no upbeat or downbeat points. A *core* of X is a subspace Y that is minimal and a deformation retract of X.

Stong:

Theorem 9 Any finite X has a core.

Theorem 10 If $f \simeq id: X \longrightarrow X$, then f = id.

Corollary 4 Minimal homotopy equivalent finite spaces are homeomorphic.

REU results of Alex Fix and Stephen Patrias

Can now count homotopy types with n points.

Hasse diagram Gr(X) of a poset X: directed graph with vertices $x \in X$ and an edge $x \to y$ if y < x but there is no other z with $x \le z \le y$.

Translate minimality of X to a property of Gr(X) and count the number of such graphs.

Find a fast enumeration algorithm.

Run it on a computer.

Get number of homotopy types with n points.

Compare with number of homeomorphism types.

n	~	2
1	1	1
2	2	2
3	3	5
4	5	16
5	9	63
6	20	318
7	56	2,045
8	216	16,999
9	1,170	183,231
10	9,099	2,567,284
11	101,191	46,749,427
12	1,594,293	1,104,891,746

Exploit known results from combinatorics.

Astonishing conclusion:

Theorem 11 (Fix and Patrias) The number of homotopy types of finite T_0 -spaces is asymptotically equivalent to the number of homeomorphism types of finite T_0 -spaces.

T_0 -A-spaces and simplicial complexes

Category \mathscr{A} of T_0 -A-spaces (= posets);

Category \mathscr{B} of simplicial complexes.

McCord:

Theorem 12 There is a functor $\mathcal{K}: \mathcal{A} \longrightarrow \mathcal{B}$ and a natural weak equivalence

$$\psi: |\mathscr{K}(X)| \longrightarrow X.$$

The n-simplices of $\mathcal{K}(X)$ are

$$\{x_0, \cdots, x_n | x_0 < \cdots < x_n\},\$$

and $\psi(u) = x_0$ if u is an interior point of the simplex spanned by $\{x_0, \dots, x_n\}$.

Let SdK be the barycentric subdivision of a simplicial complex K; let b_{σ} be the barycenter of a simplex σ .

Theorem 13 There is a functor $\mathscr{X}:\mathscr{B}\longrightarrow\mathscr{A}$ and a natural weak equivalence

$$\phi: |K| \longrightarrow \mathscr{X}(K).$$

The points of $\mathscr{X}(K)$ are the barycenters b_{σ} of simplices of K and $b_{\sigma} < b_{\tau}$ if $\sigma \subset \tau$.

$$\mathscr{K}(\mathscr{X}(K)) = \operatorname{Sd} K \text{ and}$$

$$\phi_K = \psi_{\mathscr{X}(K)} \colon |K| \cong |\operatorname{Sd} K| \longrightarrow \mathscr{X}(K).$$

Problem: not many maps between finite spaces!

Solution: subdivision: $SdX \equiv \mathcal{X}(\mathcal{K}(X))$.

Theorem 14 There is a natural weak equiv.

$$\xi$$
: $SdX \longrightarrow X$.

Classical result and an implied analogue:

Theorem 15 Let $f: |K| \longrightarrow |L|$ be continuous, where K and L are simplicial complexes, K finite. For some large n, there is a simplicial map $g: K^{(n)} \longrightarrow L$ such that $f \simeq |g|$.

Theorem 16 Let $f: |\mathcal{K}(X)| \longrightarrow |\mathcal{K}(Y)|$ be continuous, where X and Y are T_0 -A-spaces, X finite. For some large n there is a continuous map $g: X^{(n)} \longrightarrow Y$ such that $f \simeq |\mathcal{K}(g)|$.

Definition 4 Let X be a space. Define the non-Hausdorff cone $\mathbb{C}X$ by adjoining a new point + and letting the proper open subsets of $\mathbb{C}X$ be the non-empty open subsets of X.

Define the non-Hausdorff suspension $\mathbb{S}X$ by adjoining two points + and - such that $\mathbb{S}X$ is the union under X of two copies of $\mathbb{C}X$.

Let SX be the unreduced suspension of X.

Definition 5 Define a natural map

$$\gamma = \gamma_X : SX \longrightarrow \mathbb{S}X$$

by $\gamma(x,t) = x \text{ if } -1 < t < 1 \text{ and } \gamma(\pm 1) = \pm .$

Theorem 17 γ is a weak equivalence.

Corollary 5 $\mathbb{S}^n S^0$ is a minimal finite space with 2n+2 points, and it is weak equivalent to S^n .

The height h(X) of a poset X is the maximal length h of a chain $x_1 < \cdots < x_h$ in X.

$$h(X) = \dim |\mathcal{K}(X)| + 1.$$

Barmak and Minian:

Proposition 3 Let $X \neq *$ be a minimal finite space. Then X has at least 2h(X) points. It has exactly 2h(X) points if and only if it is homeomorphic to $\mathbb{S}^{h(X)-1}S^0$.

Corollary 6 If $|\mathcal{K}(X)|$ is homotopy equivalent to a sphere S^n , then X has at least 2n + 2 points, and if it has exactly 2n + 2 points it is homeomorphic to $\mathbb{S}^n S^0$.

Remark 2 If X has six elements, then h(X) is 2 or 3. There is a six point finite space that is weak homotopy equivalent to S^1 but is not homotopy equivalent to S^0 .

Really finite H-spaces

Let X be a finite space and an H-space with unit e: $x \to ex$ and $x \to xe$ are each homotopic to the identity. Stong:

Theorem 18 If X is minimal, these maps are homeomorphisms and e is both a maximal and a minimal point of X, so $\{e\}$ is a component.

Theorem 19 X is an H-space with unit e iff e is a deformation retract of its component in X. Therefore X is an H-space iff a component of X is contractible. If X is a connected H-space, X is contractible.

Hardie, Vermeulen, Witbooi:

Let
$$\mathbb{T} = \mathbb{S}S^0$$
, $\mathbb{T}' = Sd\mathbb{T}$.

Brute force write it down proof (8 \times 8 matrix)

Example 1 There is product $\mathbb{T}' \times \mathbb{T}' \longrightarrow \mathbb{T}$ that realizes the product on S^1 after realization.

Finite groups and finite spaces

X, Y finite T_0 -spaces and G-spaces. Stong:

Theorem 20 X has an equivariant core, namely a sub G-space that is a core and a G-deformation retract of X.

Corollary 7 Let X be contractible. Then X is G-contractible and has a point fixed by every self-homeomorphism.

Corollary 8 If $f: X \longrightarrow Y$ is a G-map and a homotopy equivalence, then it is a G-homotopy equivalence.

Quillen's conjecture

G finite, p prime.

 $\mathscr{S}_p(G)$: poset of non-trivial p-subgroups of G, ordered by inclusion.

G acts on $\mathscr{S}_p(G)$ by conjugation.

 $\mathscr{A}_p(G)$: Sub G-poset of p-tori.

p-torus \equiv elementary Abelian p-group.

 $r_p(G)$ is the rank of a maximal p-torus in G.

$$|\mathscr{K}\mathscr{A}_p(G)| \xrightarrow{|\mathscr{K}(i)|} |\mathscr{K}\mathscr{S}_p(G)|$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\mathscr{A}_p(G) \xrightarrow{i} \mathscr{S}_p(G)$$

Vertical maps ψ are weak equivalences.

Proposition 4 If G is a p-group, $\mathscr{A}_p(G)$ and $\mathscr{S}_p(G)$ are contractible.

Note: genuinely contractible, not just weakly.

Proposition 5 $i: \mathscr{A}_p(G) \longrightarrow \mathscr{S}_p(G)$ is a weak equivalence.

Example 2 If $G = \Sigma_5$, $\mathscr{A}_p(G)$ and $\mathscr{S}_p(G)$ are not homotopy equivalent.

 $P \in \mathscr{S}_p(G)$ is normal iff P is a G-fixed point.

Theorem 21 If $\mathscr{S}_p(G)$ or $\mathscr{A}_p(G)$ is contractible, then G has a non-trivial normal p-subgroup. Conversely, if G has a non-trivial normal p-subgroup, then $\mathscr{S}_p(G)$ is contractible, hence $\mathscr{A}_p(G)$ is weakly contractible.

Conjecture 1 (Quillen) If $\mathscr{A}_p(G)$ is weakly contractible, then G contains a non-trivial normal p-subgroup.

Easy: True if $r_P(G) \leq 2$.

Quillen: True if G is solvable.

Aschbacker and Smith: True if p > 5 and G has no component $U_n(q)$ with $q \equiv -1 \pmod{p}$ and q odd.

(Component of G: normal subgroup that is simple modulo its center).

Horrors: proof from the classification theorem.

Their 1993 article summarizes earlier results.

And as far as Jon Alperin and I know, that is where the problem stands. Finite space version may not help with the proof, but is intriquing.