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capital of the State of Paraná. The joint of Paraná river and
Uruguay river forms the La Plata River on which margins the
conference took place.
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Introduction

Our main concern of this work was to understand OCHA as a
Homotopy Algebra in the context of Markl's minimal models
operad.

Since the OCHA operad OC∞ �ts the conditions of a minimal
operad, we would like to show that

OC∞ → OC

is a quasi-isomorphism, where OC is the operad generated by top
dimensional generators of the Swiss-Cheese Operad.

We will show, however, that the above quism is only a quism of
modules over L∞ (the operad of L∞-algebras).
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Strong Homotopy Algebras

Let us �x a ground �eld k of characteristic zero. Let A be a vector
space endowed with a product

m : A⊗ A→ A which is associative.

If V is any vector space and

A
Φ−→ V is an isomorphism,

then V has an associative algebra structure that is recognized by
the isomorphism Φ.
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Now assume both A and V are (co)chain complexes. For (co)chain
maps f , g : A→ V , we de�ne homotopy equivalence:

f ∼ g ⇔ f − g = dV h + hdA

where h : A→ V is a (co)chain homotopy operator of degree
|h| = −|d | = ±1.

We say that A and V are homotopy equivalent if there exists chain
maps φ : A→ V and ψ : V → A such that:

φψ ∼ IdV and ψφ ∼ IdA
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Suppose the complex A has an associative product that is
compatible with the di�erential, (i.e. A is a DG algebra) and V is
homotopy equivalent to A. The complex V does not necessarily
have a DG algebra structure.

Generaly speaking, a Strong Homotopy Algebra is an algebraic
structure on a (co)chain complex that is invariant under homotopy
equivalences.

Remark:
The precise de�nition of Strong Homotopy Algebras includes
conditions of invariance for morphisms.
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History (very brief overview)

60's - Stashe�: A∞-algebras related to H-spaces having the
homotopy type of loop spaces.

70's - Boardman and Vogt: Homotopy invariant algebraic
strucutures for topological spaces.

70's - May: Operads related to iterated loop spaces.

Intense development of deformation theory of algebraic
strucutures by Gerstenhaber and his shcool.

80's - Schlessinger and Stashe�: Strong homotopy Lie algebras in
deformation theory.

90's - Several authors: Renaiscence of Operads: Koszul Duality for
algebraic operads (Ginzburg and Kapranov).

2000 - Markl: Homotopy Algebras via Minimal Model Operads.
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A∞-algebras

An A∞-algebra consists of a cochain complex (A, d) endowed with
a familly of multilinear maps:

m2 : A⊗ A −→ A, m3 : A⊗3 −→ A, . . . , mn : A⊗n −→ A, . . .

such that m2 is associative up to homotopy with m3 playing the
role of homotopy operator.
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The higher maps mn n > 3 satisfy coherence relations up to
homotopy:
The coherence relations are such that, considering

D = d + m2 + m3 + m4 + . . .

as a coderivation in the tensor coalgebra T c(A),
D ∈ Coder(T c(A)) is a di�erential:

D2 = 0
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Associative algebras and A∞ algebras have a
geometrical/topological description in the language of Operads.

Associative algebras are algebras over the Homology little intervals
operad. A∞-algebras are algebras over the cell chain complex of the
compacti�ed con�guration space of points in the closed interval.

Those compacti�ed con�guration spaces are polytopes known as
Associahedra.
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L∞-Algebras

An L∞-algebra consists of a cochain complex (L, d) endowed with
a familly of multilinear maps: ln : L⊗n → L, n > 1

The maps ln are graded symmetric and viewing

D = d + l2 + l3 + l4 + . . .

as a coderivation in the symmetric coalgebra Sc(L),
D ∈ Coder(Sc(L)) is a di�erential:

D2 = 0
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Remark
Degrees and sings issues are being omitted in this talk. They are
crucial for computations but not for conceptual descriptions.
Di�erent degree/signs conventios are equivalent through
(de)suspension. For a gentle description of A∞ and L∞ algebras via
coderivations (with degree/signs issues considered in detail) see
(Doubek, Zima, Markl, arXiv:0705.3719).
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The operad of Lie algebras and the operad of L∞ algebras also
have a nice geometrical description.

Lie algebras are algebras over the suboperad of the Homology little
discs operad generated by top dimensional homology classes of
D(2).

L∞-algebras are algebras over the �rst row of the E 1 term of the
spectral sequence associated to the compacti�ed con�guration
space of points in the sphere.
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Minimal Operads

A Minimal Operad is a diferential graded operad that is free as an
operad and such that the image of the di�erential consists of
decomposable elements.

Given a DG-operad P, a Minimal Model of P is an operadMP
that is minimal and quasi-isomorphic to P.
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The following theorem says that minimal operads are co�brant
objects in the category of operads.

Theorem
For each quasi-isomorphism φ : S → Q and for each morphism

f :M→Q from a minimal operadM into Q, there exists a

morphism h :M→ S such that φ ◦ h ∼ f .

S
φ

��
M

∃h
>>}}}}}}}}

f // Q
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Corollary

Algebras over Minimal Operads are Homotopy Invariant.

Let P be a DG operad. According Markl (math/9907138), a
Strong Homotopy P-Algebra is an algebra over a minimal model
operadMP of P.

Example

The Operads for A∞ and L∞ algebras are minimal minimal models
of the operads for associative and Lie algebras respectivelly.
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The Swiss-Cheese Operad

The Swiss-Cheese Operad is a 2-colored operad given by discs and
half discs whose composition law is similar to the composition law
of the little discs operad.

Its set of colors is {c, o}. The suboperad corresponding to the color
c is just the usual little discs operad, while the suboperad
corresponding to the color o is de�ned by all possible ways of
imbedding disjoint unions of discs and half discs in the standard
half disc by translations and dilations.
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The composition law for the Swiss-Cheese Operad is de�ned
analogously to the composition law for the little discs operad, and
is schematically described in the following �gure:

=i

i
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Open-Closed Homotopy Algebras

An OCHA is a pair of DG spaces (L,A) with multilinear maps:

ln : L⊗n → L, n > 1 and np,q : L⊗p ⊗ A⊗q → A, p + q > 1

The OCHA coherence relations are such that, for

l = l1 + l2 + l3 + · · ·+ ln + · · ·

n = n0,1 + n1,0 + n1,1 + n0,2 + · · ·+ np,q + · · ·

D = l + n ∈ Coder(Sc(L)⊗ T c(A)), D is a di�erential:

D2 = 0
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The OCHA operad OC∞ in de�ned through Partially Planar Trees:

. . .

ln   = 

1 2 . . . n

n        =p,q

1 p
...

. . . 1 . . .q
...

where wiggly edges are spatial and straight edges are planar.

OC∞ is the DG 2-colored operad generated by all trees {ln}n>2 and
{np,q}p+q>1 and diferential operator given by:

dT =
∑
T ′→T

±T ′

where T ′ is such that, the tree T can be obtained from T ′ by
collapsing a internal edge into a vertex.
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Schematically and without going into the details involving signs:

d

n        =p,q

1 p
...

. . . 1 . . .q
...

 =
∑
± +

∑
±

The compacti�ed con�guration space of points in the closed disc is
a manifold with corners denoted C (p, q). The �rst row of its
associated spectral sequence can be described in terms of trees
with di�erential given by the above operator d . More precisely:

The ideal N∞ of OC∞ generated by trees with planar roots is
isomorphic, as a cochain complex, to the �rst row of the E 1 term
of the spectral sequence associated to {C (p, q)}p+q>1.

Eduardo Hoefel OCHA and the Swiss-Cheese Operad



The next �gures illustrate the manifolds C (p, q), and their
boundary strata labeled by partially planar trees, for small p and q.
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New results

The following are the main results of (Hoefel, arXiv:0710.3546).

Proposition

For any q > 0, H(N∞(_, q)) and H(D) are isomorphic as

L-modules.

Proof

• N∞(p, q) is the �rst row of the Spec. Seq. of C (p, q).

• C (p, q) can be deformation retracted into a stratum
di�eomorphic to C (p) =
{compacti�ed con�g. space of points in the complex plane}.

• {C (p)}p>1 is homotopy equivalent (as operads) to {D(p)}p>1.
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Corollary

The homology H(N∞) is the ideal of H(OC∞) generated by

n1,0 and n0,2.

The top dimensional generators of the homology swiss-cheese
operad are: {Lie bracket = l2, n1,0, n0,2}, and
H(OC∞) = H(L∞ ⊕N∞) = L ⊕ H(N∞).

From the above corollary we see that H(OC∞) is precisely the
operad generated by the top dimensional classes of the Homology
Swiss-Cheese operad which we denote by OC.
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Notice that OC = 〈l2, n1,0, n0,2〉 is a suboperad of OC∞. In
(arXiv:0710.3546) we exhibit a retract η : OC∞ → OC that reduces
to the identity map on cohomology but cannot be a morphism of
operads.

In fact: the manifold corresponding to n1,1 is contractible, so
η(n1,0) = 0, for any quism η. But, n1,0 •1 l2 is not zero in OC. The
OCHA relation corresponding to the Manifold C (2, 0) (known as
�The Eye�) prevents η from respecting the operad structure.
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However, the retract η does preserve the L∞ module structure and
we can state our main result:

Theorem
The DG 2-colored operad OC∞ is quasi-isomorphic to OC as

modules over the L∞ operad.

Question

Is η : OC∞ → OC a quasi-isomorphism of Strong Homotopy
Operads if we consider the DG operads OC∞ and OC as
SHoperads ?
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Example of OCHA

From the fact that the OCHA operad OC∞ is given by the �rst row
of the spectral sequences of {C (n)} and of {C (p, q)}, there is an
OCHA structure on the space of relative 2-loops.
Let (X ,A) be any pair of topological spaces with A ⊆ X and a base
point ∗ ∈ A. The space of relative double based loops on (X ,A)

Ω2(X ,A) = Map∗{(D2, S1), (X ,A)}

and the space of double based loops on X

Ω2(X ) = Map∗{(D2, S1), (X , ∗)}

form a pair: (Ω2(X ,A),Ω2X ) that is an algebra over the
swiss-cheese operad.
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Since the swiss-cheese operad is homotopy equivalent (as operads)
to the operad {C (n)} ∪ {C (p, q)} and the OCHA operad OC∞ is
de�ned by appropriate singular chains on {C (n)} ∪ {C (p, q)},

So, there is an OCHA structure on singular chains:

(C∗(Ω2(X ,A)),C∗(Ω2X ))

with operations ln and np,q induced by the relative fundamental

classes of the manifolds with corners {C (n)} and {C (p, q)}.
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