Operads and the chain rule for Goodwillie calculus

Michael Ching

Department of Mathematics
University of Georgia

14 November 2008
Universidad de Buenos Aires
Buenos Aires, Argentina

Acknowledgements

Joint work with:

- Greg Arone (University of Virginia): chain rules
- Andrew Blumberg (Stanford University): application to algebraic K-theory

Introduction

This is a talk about Goodwillie's calculus of homotopy functors:

- chain rules: derivatives of $F G$ in terms of derivatives of F and derivatives of G
- stable case (e.g. Spec): "simple"
- unstable case (e.g. Top $_{*}$): more difficult
- application to algebraic K-theory of ring spectra

Plan

Review of Calculus of Functors
Taylor Tower of a Functor
Derivatives of a Functor

Chain Rules
Stable Case
Unstable Case

Proof and Application
Key Step in Proof
Application to Algebraic K-Theory

Functors

Study functors $F: \mathcal{C} \rightarrow \mathcal{D}$ where:

- \mathcal{C} and \mathcal{D} are 'appropriate' categories with a notion of (weak) homotopy equivalence: e.g.
- Top ${ }_{*}$ (based spaces)
- Spec (spectra)
- $A_{\infty}-/ E_{\infty}$-ring spectra
- chain complexes of R-modules
- F preserves equivalences (F is a homotopy functor)

$$
X \xrightarrow{\sim} Y \quad \Longrightarrow \quad F X \xrightarrow{\sim} F Y
$$

- F preserves filtered homotopy colimits

Taylor Tower of a Homotopy Functor

Theorem (Goodwillie)

$F: \mathcal{C} \rightarrow \mathcal{D}$: homotopy functor
$X \in \mathcal{C}$
For each map $Y \rightarrow X$ in \mathcal{C} there is a sequence:
$F(Y) \rightarrow \cdots \rightarrow P_{n}^{X} F(Y) \rightarrow P_{n-1}^{X} F(Y) \rightarrow \cdots \rightarrow P_{0}^{X} F(Y)=F(X)$
such that:

- the functor $P_{n}^{X} F: \mathcal{C}_{X} \rightarrow \mathcal{D}$ is n-excisive
- the map $F \rightarrow P_{n}^{X} F$ is universal

This is the Taylor tower of F expanded at X.

Convergence of the Taylor Tower

$F(Y) \rightarrow \cdots \rightarrow P_{n}^{X} F(Y) \rightarrow P_{n-1}^{X} F(Y) \rightarrow \cdots \rightarrow P_{0}^{X} F(Y)=F(X)$
Definition
The Taylor tower for F expanded at X converges at Y if

$$
F(Y) \simeq \operatorname{holim}_{n} P_{n}^{X} F(Y)
$$

Typically, the tower converges when $Y \rightarrow X$ is sufficiently highly connected (if $\mathcal{C}=\mathrm{Top}_{*}$ or Spec).

Layers of the Taylor Tower

The layers of the Taylor tower of F :

$$
D_{n}^{X} F=\operatorname{hofib}\left(P_{n}^{X} F \rightarrow P_{n-1}^{X} F\right)
$$

- $D_{n}^{X} F$ represents the $\mathrm{n}^{\text {th }}$ term in the Taylor tower for F expanded at X
- $D_{n}^{X} F$ is a homogeneous degree n functor

To simplify things, we consider only Taylor towers expanded at $X=*$ and write:

$$
\begin{aligned}
& P_{n} F:=P_{n}^{*} F \\
& D_{n} F:=D_{n}^{*} F
\end{aligned}
$$

Derivatives of a Homotopy Functor

Theorem (Goodwillie)

- F : Spec \rightarrow Spec

$$
D_{n} F(X) \simeq\left(\partial_{n} F \wedge X^{\wedge n}\right)_{n \Sigma_{n}}
$$

- $F:$ Top $_{*} \rightarrow$ Top $_{*}$

$$
D_{n} F(X) \simeq \Omega^{\infty}\left(\partial_{n} F \wedge\left(\Sigma^{\infty} X\right)^{\wedge n}\right)_{h \Sigma_{n}}
$$

$\partial_{n} F$ is a spectrum with Σ_{n}-action, the $n^{\text {th }}$ derivative of F

The Chain Rule Problem

Questions Given $\mathcal{C} \xrightarrow{G} \mathcal{D} \xrightarrow{F} \mathcal{E}$:

- how does $\partial_{*}(F G)$ depend on $\partial_{*}(F)$ and $\partial_{*}(G)$?
- how does $\left\{P_{n}(F G)\right\}$ depend on $\left\{P_{n} F\right\}$ and $\left\{P_{n} G\right\}$?

Our Answers:

- explicit formula for $\partial_{n}(F G)$ based on operads and modules
- approach to finding $P_{n}(F G)$

Previous Work on the Chain Rule

Theorem (Klein-Rognes, 2002)
$F, G: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}, F(*)=G(*)=*$

$$
\partial_{1}(F G) \simeq \partial_{1}(F) \wedge \partial_{1}(G)
$$

(They also do the case $G(*) \neq *$, etc...)

Chain Rule for Ordinary Calculus

Given $f, g: \mathbb{R} \rightarrow \mathbb{R}$, what is $(f g)_{n}$ (the $\mathrm{n}^{\text {th }}$ Taylor coefficient of fg)?

$$
f(g x)=\sum_{k \geq 1} \frac{f_{k}\left(\sum_{j \geq 1} g_{j} x^{j} / j!\right)^{k}}{k!}
$$

Theorem (Faà di Bruno's Formula)

$$
(f g)_{n}=\sum_{n_{1}+\cdots+n_{k}=n} f_{k} g_{n_{1}} \ldots g_{n_{k}}
$$

Chain rule if Middle Category is Stable

Theorem (C. 2007)
$F, G: \operatorname{Spec} \rightarrow \operatorname{Spec}, F(*)=G(*)=*$

$$
\partial_{n}(F G) \simeq \bigvee_{n_{1}+\cdots+n_{k}=n} \partial_{k} F \wedge \partial_{n_{1}} G \wedge \ldots \wedge \partial_{n_{k}} G
$$

or

$$
\partial_{*}(F G) \simeq \partial_{*} F \circ \partial_{*} G
$$

This is the composition product of symmetric sequences used to define operads.

Chain Rule if Middle Category is Unstable

Key Fact about Calculus for Topological Spaces:

- The derivatives of the identity functor $I: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$ are non-trivial:

$$
\partial_{n} I \simeq \bigvee_{(n-1)!} S^{1-n}
$$

This means:

$$
\partial_{*}(F I)=\partial_{*} F \neq \partial_{*} F \circ \partial_{*} I
$$

Instead we want:

$$
\partial_{*}(F G)=\partial_{*} F \circ_{\partial_{*} I} \partial_{*} G \quad\left(\text { compare } M \otimes_{R} N\right)
$$

Chain Rule if Middle Category is Unstable

Theorem (Arone-C. 2008)

1. There is an operad structure on $\partial_{*} I$ (the derivatives of the identity functor on based spaces):

$$
\partial_{*} I \circ \partial_{*} I \rightarrow \partial_{*} I
$$

2. Given $F: \operatorname{Top}_{*} \rightarrow \mathrm{Top}_{*}$, the derivatives of F have a ∂_{*} I-bimodule structure:

$$
\partial_{*} F \circ \partial_{*} I \rightarrow \partial_{*} F, \quad \partial_{*} I \circ \partial_{*} F \rightarrow \partial_{*} F
$$

3. $F, G: \operatorname{Top}_{*} \rightarrow \operatorname{Top}_{*}, F(*)=G(*)=*$:

$$
\partial_{*}(F G) \simeq \partial_{*} F \circ_{\partial_{*} I} \partial_{*} G
$$

Cosimplicial Cobar Construction

- $F, G:$ Top $_{*} \rightarrow$ Top $_{*}$
- $\left(\Sigma^{\infty}, \Omega^{\infty}\right)$ adjunction between Top $_{*}$ and Spec

Define a cosimplicial object:

$$
F \Omega^{\infty} \Sigma^{\infty} G \quad \stackrel{F}{\leftrightarrows} \quad F \Omega^{\infty} \Sigma^{\infty} \Omega^{\infty} \Sigma^{\infty} G \ldots
$$

using the unit and counit of the adjunction

$$
1 \rightarrow \Omega^{\infty} \Sigma^{\infty} \quad \Sigma^{\infty} \Omega^{\infty} \rightarrow 1
$$

Key Proposition

$$
P_{n}(F G) \rightarrow \operatorname{Tot}\left(\begin{array}{c}
\\
P_{n}\left(F \Omega^{\infty} \Sigma^{\infty} \Omega^{\infty} \Sigma^{\infty} G\right) \\
\uparrow \downarrow \uparrow \\
P_{n}\left(F \Omega^{\infty} \Sigma^{\infty} G\right)
\end{array}\right)
$$

Proposition

This map is an equivalence for all n.

Proof.

Induction on Taylor tower of F reduces to homogeneous case. Then use formula for $D_{n} F$.

Cobar Construction for Derivatives

We see that $\partial_{*}(F G)$ is given by a cobar construction:

$$
\partial_{*}(F G) \simeq \operatorname{Tot}\left(\begin{array}{c}
\\
\partial_{*}\left(F \Omega^{\infty}\right) \circ \partial_{*}\left(\Sigma^{\infty} \Omega^{\infty}\right) \circ \partial_{*}\left(\Sigma^{\infty} G\right) \\
\uparrow \downarrow \uparrow \\
\partial_{*}\left(F \Omega^{\infty}\right) \circ \partial_{*}\left(\Sigma^{\infty} G\right)
\end{array}\right)
$$

Example

- $F=G=I: \Longrightarrow$ operad structure on $\partial_{*} I$.
- $G=I: \Longrightarrow$ right $\partial_{*} I$-module structure on $\partial_{*} F$.
- $F=I: \Longrightarrow$ left $\partial_{*} I$-module structure on $\partial_{*} G$.

Algebraic K-Theory of Ring Spectra

- R-alg: augmented associative R-algebras (= A_{∞}-ring spectra over/under R)
- $K: R$-alg \rightarrow Spec, $K(A)=$ algebraic K-theory of finite cell A-modules
- (Basterra-Mandell): the ($\Sigma^{\infty}, \Omega^{\infty}$) adjunction between R-alg and $\operatorname{Spec}(R$-alg $)=R$-bimod is given by
- $\Sigma^{\infty}(A)=T A Q_{R}(A)$
- $\Omega^{\infty}(M)=R \vee M$

Taylor Tower of K-Theory

Apply Key Proposition with $F=K$ and $G=I_{R \text {-alg }}$:

$$
P_{n}(K) \rightarrow \operatorname{Tot}\left(\begin{array}{c}
\uparrow \\
P_{n}\left(K \Omega^{\infty} \Sigma^{\infty} \Omega^{\infty} \Sigma^{\infty}\right) \\
\uparrow \downarrow \uparrow \\
P_{n}\left(K \Omega^{\infty} \Sigma^{\infty}\right)
\end{array}\right)
$$

We need:

- Taylor tower of $K \Omega^{\infty}$ (calculated by Lindenstrauss-McCarthy)
- Taylor tower of $\Sigma^{\infty} \Omega^{\infty}$ (easy)
- how these interact (hard)

$P_{2}(K)$

- For $P_{1}(K)$ recover Dundas-McCarthy result:

$$
P_{1}(K)(A) \simeq T H H\left(R, \Sigma T A Q_{R}(A)\right)
$$

$$
P_{2}(K)(A) \simeq \operatorname{holim}\left(\begin{array}{c}
W_{2}\left(R, \Sigma T A Q_{R}(A)\right) \\
\downarrow \downarrow \\
W_{2}\left(R, \Sigma^{2} T A Q_{R}(A)^{\wedge 2}\right)
\end{array}\right)
$$

where

- W_{2} comes from Taylor tower of $K \Omega^{\infty}$ (Lindenstrauss-McCarthy)
- the vertical maps are induced by the coface maps in the cosimplicial object

