Ohain Rules

Proof and Application

Operads and the chain rule for Goodwillie calculus

Michael Ching

Department of Mathematics University of Georgia

14 November 2008 Universidad de Buenos Aires Buenos Aires, Argentina

Chain Rules o oo Proof and Application

Acknowledgements

Joint work with:

- Greg Arone (University of Virginia): chain rules
- Andrew Blumberg (Stanford University): application to algebraic K-theory

Chain Rules

Proof and Application

Introduction

This is a talk about Goodwillie's calculus of homotopy functors:

- chain rules: derivatives of FG in terms of derivatives of F and derivatives of G
 - stable case (e.g. Spec): "simple"
 - unstable case (e.g. Top_{*}): more difficult
- application to algebraic K-theory of ring spectra

Chain Rules

Proof and Application

Review of Calculus of Functors

Taylor Tower of a Functor Derivatives of a Functor

Chain Rules

Stable Case Unstable Case

Proof and Application

Key Step in Proof Application to Algebraic K-Theory

Functors

Study functors $F : \mathcal{C} \to \mathcal{D}$ where:

- C and D are 'appropriate' categories with a notion of (weak) homotopy equivalence: e.g.
 - Top_{*} (based spaces)
 - Spec (spectra)
 - A_{∞} -/ E_{∞} -ring spectra
 - chain complexes of *R*-modules
- F preserves equivalences (F is a homotopy functor)

$$X \xrightarrow{\sim} Y \implies FX \xrightarrow{\sim} FY$$

• F preserves filtered homotopy colimits

Taylor Tower of a Homotopy Functor

Theorem (Goodwillie) $F : C \to D$: homotopy functor $X \in C$ For each map $Y \to X$ in C there is a sequence:

$$F(Y) \to \cdots \to P_n^X F(Y) \to P_{n-1}^X F(Y) \to \cdots \to P_0^X F(Y) = F(X)$$

such that:

- the functor $P_n^X F : \mathcal{C}_X \to \mathcal{D}$ is n-excisive
- the map $F \rightarrow P_n^X F$ is universal

This is the Taylor tower of *F* expanded at *X*.

Convergence of the Taylor Tower

$$F(Y) \rightarrow \cdots \rightarrow P_n^X F(Y) \rightarrow P_{n-1}^X F(Y) \rightarrow \cdots \rightarrow P_0^X F(Y) = F(X)$$

Definition The Taylor tower for F expanded at X converges at Y if

$$F(Y) \simeq \operatorname{holim}_n P_n^X F(Y)$$

Typically, the tower converges when $Y \to X$ is sufficiently highly connected (if $C = \text{Top}_*$ or Spec).

Layers of the Taylor Tower

The layers of the Taylor tower of *F*:

$$D_n^X F = \operatorname{hofib}(P_n^X F \to P_{n-1}^X F)$$

- $D_n^X F$ represents the nth term in the Taylor tower for *F* expanded at *X*
- $D_n^X F$ is a homogeneous degree *n* functor

To simplify things, we consider only Taylor towers expanded at X = * and write:

$$P_nF := P_n^*F$$
$$D_nF := D_n^*F$$

Derivatives of a Homotopy Functor

Theorem (Goodwillie)

• $F : \text{Spec} \rightarrow \text{Spec}$

$$D_nF(X)\simeq (\partial_nF\wedge X^{\wedge n})_{h\Sigma_n}$$

•
$$F: \operatorname{Top}_* \to \operatorname{Top}_*$$

$$D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge (\Sigma^{\infty} X)^{\wedge n})_{h \Sigma_n}$$

 $\partial_n F$ is a spectrum with Σ_n -action, the nth derivative of F

The Chain Rule Problem

Questions Given $\mathcal{C} \xrightarrow{G} \mathcal{D} \xrightarrow{F} \mathcal{E}$:

- how does $\partial_*(FG)$ depend on $\partial_*(F)$ and $\partial_*(G)$?
- how does $\{P_n(FG)\}$ depend on $\{P_nF\}$ and $\{P_nG\}$?

Our Answers:

- explicit formula for $\partial_n(FG)$ based on operads and modules
- approach to finding $P_n(FG)$

Previous Work on the Chain Rule

Theorem (Klein-Rognes, 2002) $F, G: \operatorname{Top}_* \to \operatorname{Top}_*, F(*) = G(*) = *$ $\partial_1(FG) \simeq \partial_1(F) \wedge \partial_1(G)$

(They also do the case $G(*) \neq *$, etc...)

Chain Rule for Ordinary Calculus

Given $f, g : \mathbb{R} \to \mathbb{R}$, what is $(fg)_n$ (the nth Taylor coefficient of fg)?

$$f(gx) = \sum_{k\geq 1} \frac{f_k(\sum_{j\geq 1} g_j x^j/j!)^k}{k!}$$

Theorem (Faà di Bruno's Formula)

$$(fg)_n = \sum_{n_1+\cdots+n_k=n} f_k g_{n_1} \dots g_{n_k}$$

Chain rule if Middle Category is Stable

Theorem (C. 2007)

$$F, G: \text{Spec} \to \text{Spec}, F(*) = G(*) = *$$

 $\partial_n(FG) \simeq \bigvee_{n_1 + \dots + n_k = n} \partial_k F \wedge \partial_{n_1} G \wedge \dots \wedge \partial_{n_k} G$

or

$$\partial_*(FG) \simeq \partial_*F \circ \partial_*G$$

This is the composition product of symmetric sequences used to define operads.

Chain Rule if Middle Category is Unstable

Key Fact about Calculus for Topological Spaces:

 The derivatives of the identity functor *I* : Top_{*} → Top_{*} are non-trivial:

$$\partial_n I \simeq \bigvee_{(n-1)!} S^{1-n}$$

This means:

$$\partial_*(FI) = \partial_*F \neq \partial_*F \circ \partial_*I$$

Instead we want:

 $\partial_*(FG) = \partial_*F \circ_{\partial_*I} \partial_*G$ (compare $M \otimes_R N$)

Chain Rule if Middle Category is Unstable

Theorem (Arone-C. 2008)

1. There is an operad structure on ∂_{*}I (the derivatives of the identity functor on based spaces):

$$\partial_* I \circ \partial_* I \to \partial_* I$$

2. Given $F : \text{Top}_* \to \text{Top}_*$, the derivatives of F have a $\partial_* I$ -bimodule structure:

$$\partial_*F\circ\partial_*I\to\partial_*F,\quad \partial_*I\circ\partial_*F\to\partial_*F$$

3. $F, G: \operatorname{Top}_* \to \operatorname{Top}_*, F(*) = G(*) = *:$

 $\partial_*(\mathit{FG}) \simeq \partial_* \mathit{F} \circ_{\partial_* \mathit{I}} \partial_* \mathit{G}$

Cosimplicial Cobar Construction

- $F, G : \operatorname{Top}_* \to \operatorname{Top}_*$
- $(\Sigma^\infty, \Omega^\infty)$ adjunction between Top_* and Spec

Define a cosimplicial object:

$$F\Omega^{\infty}\Sigma^{\infty}G \quad \stackrel{\rightarrow}{\leftarrow} \quad F\Omega^{\infty}\Sigma^{\infty}\Omega^{\infty}\Sigma^{\infty}G\cdots$$

using the unit and counit of the adjunction

$$1 \to \Omega^\infty \Sigma^\infty \qquad \Sigma^\infty \Omega^\infty \to 1$$

One of the one of the

Proof and Application

Key Proposition

$$P_n(FG) o \operatorname{Tot} \left(egin{array}{c} P_n(F\Omega^\infty \Sigma^\infty \Omega^\infty \Sigma^\infty G) \ \uparrow \downarrow \uparrow \ P_n(F\Omega^\infty \Sigma^\infty G) \end{array}
ight)$$

Proposition

This map is an equivalence for all n.

Proof.

Induction on Taylor tower of F reduces to homogeneous case. Then use formula for $D_n F$.

Cobar Construction for Derivatives

We see that $\partial_*(FG)$ is given by a cobar construction:

$$\partial_*(FG) \simeq \operatorname{Tot} \left(egin{array}{c} \partial_*(F\Omega^\infty) \circ \partial_*(\Sigma^\infty \Omega^\infty) \circ \partial_*(\Sigma^\infty G) \ & \uparrow \downarrow \uparrow \ & \partial_*(F\Omega^\infty) \circ \partial_*(\Sigma^\infty G) \end{array}
ight)$$

Example

- F = G = I: \implies operad structure on $\partial_* I$.
- G = I: \implies right $\partial_* I$ -module structure on $\partial_* F$.
- F = I: \implies left $\partial_* I$ -module structure on $\partial_* G$.

Algebraic K-Theory of Ring Spectra

- *R*-alg: augmented associative *R*-algebras (= A_∞-ring spectra over/under *R*)
- K : R-alg \rightarrow Spec, K(A) = algebraic K-theory of finite cell A-modules
- (Basterra-Mandell): the (Σ[∞], Ω[∞]) adjunction between *R*-alg and Spec(*R*-alg) = *R*-bimod is given by

•
$$\Sigma^{\infty}(A) = TAQ_R(A)$$

•
$$\Omega^{\infty}(M) = R \vee M$$

Taylor Tower of K-Theory

Apply Key Proposition with F = K and $G = I_{R-alg}$:

$$\mathcal{P}_n(\mathcal{K}) o \mathsf{Tot} \left(egin{array}{c} \mathcal{P}_n(\mathcal{K}\Omega^\infty\Sigma^\infty\Omega^\infty\Sigma^\infty) \ \uparrow \downarrow \uparrow \ \mathcal{P}_n(\mathcal{K}\Omega^\infty\Sigma^\infty) \end{array}
ight)$$

We need:

- Taylor tower of KΩ[∞] (calculated by Lindenstrauss-McCarthy)
- Taylor tower of $\Sigma^{\infty}\Omega^{\infty}$ (easy)
- how these interact (hard)

Chain Rules

Proof and Application

$$P_2(K)$$

• For *P*₁(*K*) recover Dundas-McCarthy result:

 $P_1(K)(A) \simeq THH(R, \Sigma TAQ_R(A))$

$$P_2(K)(A) \simeq \operatorname{holim} \left(egin{array}{c} W_2(R, \Sigma \mathit{TAQ}_R(A)) \ & \downarrow \ & \downarrow \ & W_2(R, \Sigma^2 \mathit{TAQ}_R(A)^{\wedge 2}) \end{array}
ight)$$

where

- W₂ comes from Taylor tower of KΩ[∞] (Lindenstrauss-McCarthy)
- the vertical maps are induced by the coface maps in the cosimplicial object