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A Very Powerful Statement

VP: Given a proper class of structures of the same type, there
is at least an elementary embedding between two of them.

This statement is equivalent to the following:

VP’: No locally presentable category contains a large discrete
full subcategory.

VP”: Given any family of objects Xi of a locally presentable
category indexed by the ordinals, there exists a morphism
Xi → Xj for some ordinals i < j .
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Some Implications

Assuming VP, every orthogonality class in a locally
presentable category is small and reflective.
[Adámek and Rosický, 1996]

Assuming VP, for every cohomology theory E∗ there is a
map f such that the class of f -equivalences coincides with
the class of E∗-equivalences. Therefore, VP implies the
existence of cohomological localizations.
[C–Scevenels–Smith, 2005]

Let K be a locally presentable category with a stable model
category structure. Assuming VP, every triangulated
subcategory of Ho(K) closed under products is reflective.
[C–Gutiérrez–Rosický, 2008]

Buenos Aires November 13, 2008



Some Implications

Assuming VP, every orthogonality class in a locally
presentable category is small and reflective.
[Adámek and Rosický, 1996]

Assuming VP, for every cohomology theory E∗ there is a
map f such that the class of f -equivalences coincides with
the class of E∗-equivalences. Therefore, VP implies the
existence of cohomological localizations.
[C–Scevenels–Smith, 2005]

Let K be a locally presentable category with a stable model
category structure. Assuming VP, every triangulated
subcategory of Ho(K) closed under products is reflective.
[C–Gutiérrez–Rosický, 2008]

Buenos Aires November 13, 2008



Some Implications

Assuming VP, every orthogonality class in a locally
presentable category is small and reflective.
[Adámek and Rosický, 1996]

Assuming VP, for every cohomology theory E∗ there is a
map f such that the class of f -equivalences coincides with
the class of E∗-equivalences. Therefore, VP implies the
existence of cohomological localizations.
[C–Scevenels–Smith, 2005]

Let K be a locally presentable category with a stable model
category structure. Assuming VP, every triangulated
subcategory of Ho(K) closed under products is reflective.
[C–Gutiérrez–Rosický, 2008]

Buenos Aires November 13, 2008



Using VP

Theorem Suppose given a functor Q : K → T where K is
locally presentable, T has products, and Q is essentially
surjective on cones. If VP holds, then every full subcategory
L ⊆ T closed under products is weakly reflective.

Proof Write L as the union of an ascending chain of full small subcategories
indexed by the ordinals, L =

⋃
i∈Ord Li , and let Li be the closure of Li under

products. For an object X of T , let Xi denote the product of all the codomains
of morphisms from X to objects of Li . Then the canonical morphism
fi : X → Xi is a weak reflection of X onto Li . Now, in order to prove that L is
weakly reflective, it suffices to find an ordinal i such that, (X ↓ L)(fi , fj) 6= ∅ for
all j ≥ i . Suppose the contrary. Then there is a sequence of ordinals
i0 < i1 < i2 < · · · < is < · · · , where s ranges over all the ordinals, such that
(X ↓ L)(fis , fit ) = ∅ if s < t . Since Q is essentially surjective on cones, there is
a sequence gi : K → Ki in K such that Qgi ∼= fi for all i . Then
(K ↓ K)(gis , git ) = ∅ if s < t , contradicting VP.
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Using VP

Theorem Let K be a locally presentable category with a stable
model category structure. Assuming VP, every triangulated
subcategory L of Ho(K) closed under products is reflective.

Proof Since Ho(K) has products and coproducts, idempotents split, and L is
closed under retracts. From the previous theorem it follows that L is weakly
reflective. Moreover, since L is triangulated, every pair of parallel arrows in L
has a weak equalizer that lies in L. In this situation, it follows by a standard
argument that L is reflective.

Corollary Assuming VP, if E∗ is any cohomology theory in the
homotopy category of spectra, then the class of E∗-local
spectra (i.e., the subcategory of spectra X such that [A,X ] = 0
for all E∗-acyclic spectra A) is reflective.
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Warning

There are triangulated subcategories of triangulated categories
(with models) closed under products but not reflective, even
assuming VP.

Thus, the assumption that the model category is locally
presentable cannot be removed. (Perhaps it is sufficient to
assume that the triangulated category be well-generated.)

Namely, consider the homotopy category of chain complexes of
small modules over the large ring freely generated by all the
ordinals. Then the inclusion of the full subcategory of acyclic
complexes (which is closed under products and coproducts)
does neither admit a right adjoint nor a left adjoint.
[C–Neeman, 2008]
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Another Consequence

Theorem Let K be a stable combinatorial monoidal model
category. If VP holds, then every localizing ideal of Ho(K) is
principal and coreflective.
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Trying to Get Rid of VP

VP is known to be a large-cardinal principle. It cannot be
proved using the usual ZFC axioms of Set Theory.

It implies the existence of measurable cardinals, and is implied
by the existence of huge cardinals.
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Trying to Get Rid of VP

Try to prove or disprove the following claim:

In a locally presentable category, every epireflection is an
f -localization for some single morphism f .

On one hand, this claim follows from VP.

On the other hand, a counterexample can be displayed
assuming that measurable cardinals do not exist. Namely,
in the category of groups, if one localizes with respect to
the morphisms Zκ/Z<κ → {0}, where κ ranges over all
ordinals, then the resulting localization is an epireflection
and it is an f -localization for a single f if and only if there
exists a measurable cardinal.

What happens in between?
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Transverse Sets

Definition Let A be a class of objects in a category C. A set H
of objects of C is called transverse to A if every object of A has
a subobject in H ∩A. (That is, if for every object A ∈ A there is
an object H ∈ H ∩A and a monomorphism H → A.)

Theorem
Let L be an epireflection on a balanced category C.
(a) If there exists a set H of objects in C transverse to the

class of objects that are not L-local, then there is a
morphism f such that L is an f -localization.

(b) If C is co-well-powered and every morphism can be
factored as an epimorphism followed by a monomorphism,
then the converse holds, that is, if L is an f -localization for
some f , then there is a set H transverse to the class of
objects that are not L-local.
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Transverse Sets

Sketch proof

To prove (a), let f be the coproduct of the morphisms
{ηH : H → LH | H ∈ H}, where η denotes the unit of the reflection. Then the
f -local objects are precisely the L-local objects; that is, L is an f -localization.

For the converse, suppose that L is an f -localization for some morphism
f : P → Q. Since L is an epireflection, we may assume that f is an
epimorphism. Let H be the set of all quotients of P. Then H is transverse to
the class of objects that are not L-local.

Thus, under which assumptions on C and L are there
transverse sets to the class of objects that are not L-local?

Buenos Aires November 13, 2008



Transverse Sets

Sketch proof

To prove (a), let f be the coproduct of the morphisms
{ηH : H → LH | H ∈ H}, where η denotes the unit of the reflection. Then the
f -local objects are precisely the L-local objects; that is, L is an f -localization.
For the converse, suppose that L is an f -localization for some morphism
f : P → Q. Since L is an epireflection, we may assume that f is an
epimorphism. Let H be the set of all quotients of P. Then H is transverse to
the class of objects that are not L-local.

Thus, under which assumptions on C and L are there
transverse sets to the class of objects that are not L-local?

Buenos Aires November 13, 2008



Transverse Sets

Sketch proof

To prove (a), let f be the coproduct of the morphisms
{ηH : H → LH | H ∈ H}, where η denotes the unit of the reflection. Then the
f -local objects are precisely the L-local objects; that is, L is an f -localization.
For the converse, suppose that L is an f -localization for some morphism
f : P → Q. Since L is an epireflection, we may assume that f is an
epimorphism. Let H be the set of all quotients of P. Then H is transverse to
the class of objects that are not L-local.

Thus, under which assumptions on C and L are there
transverse sets to the class of objects that are not L-local?

Buenos Aires November 13, 2008



A Very Quick Tutorial on Set Theory

The language of set theory is the first-order language
whose only nonlogical symbols are equality and a binary
relation symbol ∈.

The language consists of formulas built up in finitely many
steps from the atomic formulas x = y and x ∈ y , where x
and y are members of a set of variables, using logical
connectives and quantifiers.

A model is a set or a proper class M in which the
formalized ZFC axioms are true when the binary relation
symbol ∈ is interpreted as membership.

A model M is transitive if every element of an element of M
is an element of M.
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A Very Quick Tutorial on Set Theory

For a model M, a set or a proper class C is definable in M if
there is a formula ϕ(x , x1, . . . , xn) and elements a1, . . . ,an
in M such that C is the class of elements c ∈ M such that
ϕ(c,a1, . . . ,an) is satisfied in M. We then say that C is
defined by ϕ in M with parameters a1, . . . ,an.

A formula ϕ(x , x1, . . . , xn) is absolute between two models
N ⊆ M with respect to a collection of parameters a1, . . . ,an
in N if, for each c ∈ N, ϕ(c,a1, . . . ,an) is satisfied in N if
and only if it is satisfied in M. For example, formulas in
which all quantifiers are bounded (that is, of the form
∃x ∈ a or ∀x ∈ a) are absolute between any two transitive
models.
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A Very Quick Tutorial on Set Theory

A formula is called absolute with respect to a1, . . . ,an if it is
absolute between any transitive model M that contains
a1, . . . ,an and the universe V . We call a set or a proper
class X absolute if membership of X is defined by an
absolute formula with respect to some parameters.

A submodel N of a model M is elementary if all formulas
are absolute between N and M with respect to every set of
parameters in N.

An embedding of V into a model M is an elementary
embedding if its image is an elementary submodel of M.
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A Very Quick Tutorial on Set Theory

If j : V → M is a nontrivial elementary embedding with M
transitive, then M contains all the ordinals and there is a
least ordinal κ moved by j , that is, j(α) = α for all α < κ,
and j(κ) > κ. Such a κ is called the critical point of j , and
is necessarily a measurable cardinal.

Conversely, if there is a measurable cardinal, then there is
a nontrivial elementary embedding j : V → M where M is a
transitive model.

If j : V → M is an elementary embedding, then for every
set X the restriction j � X : X → j(X ) is the function that
sends each element x ∈ X to j(x).
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A Very Quick Tutorial on Set Theory

Definition
A cardinal κ is supercompact if and only if for every set X there
is an elementary embedding j of the universe V into a transitive
model M with critical point κ, such that X ∈ M, j(κ) > rank(X ),
and j � X : X → j(X ) is in M.
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Absolute Categories

Definition
A subcategory C of sets is absolute if there is a formula
ϕ(x , y , z, x1, . . . , xn) which is absolute with respect to some
parameters a1, . . . ,an and such that, for any two sets A, B and
any function f : A→ B, the sentence ϕ(A,B, f ,a1, . . . ,an) is
satisfied if and only if A and B are objects of C and the function
f is in C(A,B).

Definition
We say that a subcategory C of sets supports elementary
embeddings if, for every elementary embedding j : V → M and
all objects X of C, the restriction j � X : X → j(X ) is a morphism
of C.
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Absolute Categories

Theorem
Every locally presentable category is absolute and preserves
elementary embeddings.

Theorem
Let C be a subcategory of sets and let A be a class of objects
in C. Suppose that C supports elementary embeddings and
there are absolute formulas defining C and A with parameters
whose rank is smaller than a supercompact cardinal κ. If
X ∈ A, then there is a subobject of X in A of rank less than κ.
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Proof

Let ϕ be an absolute formula defining C with parameters ~a = {a1, . . . , an} of
rank less than κ, and let ψ be an absolute formula defining A with
parameters ~b = {b1, . . . , bm} of rank less than κ. Fix an object X ∈ A and let
j : V → M be an elementary embedding with critical point κ such that X and
the restriction j � X are in M, and j(κ) > rank(X ). Notice that a1, . . . , an and
b1, . . . , bm are in M, since in fact j(ar ) = ar for all r and j(bs) = bs for all s.

Since C supports elementary embeddings, j � X : X → j(X ) is a
monomorphism in C. The assumption that ϕ and ψ are absolute guarantees
that ϕ(X , j(X ), j � X ,~a) and ψ(X , ~b) hold in M. Hence, in M, j(X ) has a
subobject (namely X ) which satisfies ψ and has rank less than j(κ).
Therefore the following sentence with the parameters X , ~a, ~b, κ is true in M:

∃y ∃f (f : y → j(X )∧(f is injective)∧ϕ(y , j(X ), f ,~a)∧ψ(y , ~b)∧rank(y) < j(κ)).

As j is an elementary embedding, the following holds in V :

∃y ∃f (f : y → X ∧ (f is injective) ∧ ϕ(y ,X , f ,~a) ∧ ψ(y , ~b) ∧ rank(y) < κ).

Since morphisms whose underlying function is injective are monomorphisms,
this says that X has a subobject in A of rank less than κ.
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Absolute Categories

Corollary
Let L be an epireflection on a locally presentable category C.
Suppose that both C and the class of L-local objects can be
defined by absolute formulas with parameters whose rank is
smaller than a supercompact cardinal κ. Then L is an
f -localization for some single morphism f .

Theorem
Assume the existence of arbitrarily large supercompact
cardinals. Then each absolute orthogonality class L in a locally
presentable category is small, hence reflective.

Buenos Aires November 13, 2008



Absolute Categories

Corollary
Let L be an epireflection on a locally presentable category C.
Suppose that both C and the class of L-local objects can be
defined by absolute formulas with parameters whose rank is
smaller than a supercompact cardinal κ. Then L is an
f -localization for some single morphism f .

Theorem
Assume the existence of arbitrarily large supercompact
cardinals. Then each absolute orthogonality class L in a locally
presentable category is small, hence reflective.

Buenos Aires November 13, 2008



The Lévy Hierarchy

Recall that a formula is absolute if it contains no unbounded
quantifiers (∃x is unbounded, while ∃x ∈ a is bounded by a).

A formula is Σ1 if it has the form ∃x ϕ, where ϕ is absolute.
A formula is Π1 if it has the form ∀y ϕ, where ϕ is absolute.
A formula is Σ2 if it has the form ∃x ∀y ϕ where ϕ is absolute.
A formula is Π2 if it has the form ∀x ∃y ϕ where ϕ is absolute.
. . .
A formula is Σn if it has the form ∃x ϕ where ϕ is Πn−1.
A formula is Πn if it has the form ∀y ϕ where ϕ is Σn−1.

Examples Groups, rings, R-modules or simplicial sets are
defined by absolute formulas. Topological spaces are defined
by a Σ2 formula. Acyclic spectra for a cohomology theory are
defined by a Π2 formula.
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The Lévy Hierarchy

Consider the following sequence of statements, where n ≥ 1:

VP(n): Given a proper class of structures of the same type
defined by a Σn formula, there is at least an elementary
embedding between two of them.

Then:

VP(1) is equivalent to the existence of arbitrarily large
supercompact cardinals.

VP holds if and only if VP(n) holds for all n.

If VP(n) holds, then each full subcategory L defined by a
Σn formula in a locally presentable category has a small
dense subcategory. Therefore, if L is closed under limits,
then it is reflective.
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