The Baum-Connes conjecture for the dual of $SU_q(2)$

Christian Voigt

Westfälische Wilhelms-Universität Münster cvoigt@math.uni-muenster.de www.math.uni-muenster.de/u/cvoigt

> VASBI 2006 Valladolid Sepember 6, 2006

The Baum-Connes conjecture

Christian Voigt

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

$$\mu: K^{\mathsf{top}}_*(G) \to K_*(C^*_{\mathsf{red}}(G))$$

is an isomorphism.

$$\mu: K^{\mathsf{top}}_*(G) \to K_*(C^*_{\mathsf{red}}(G))$$

is an isomorphism.

Here

$$K^{\mathrm{top}}_*(G) = K^G_*(\mathcal{E}G)$$

is the equivariant K-homology of the universal proper G-space.

$$\mu: K^{\mathsf{top}}_*(G) \to K_*(C^*_{\mathsf{red}}(G))$$

is an isomorphism.

Here

$$K^{\rm top}_*(G) = K^G_*(\mathcal{E}G)$$

is the equivariant K-homology of the universal proper G-space.

The conjecture is true in many cases - no counterexample is known.

$$\mu: K^{\mathsf{top}}_*(G) \to K_*(C^*_{\mathsf{red}}(G))$$

is an isomorphism.

Here

$$K^{\mathrm{top}}_*(G) = K^G_*(\mathcal{E}G)$$

is the equivariant K-homology of the universal proper G-space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt

・ロン ・回 と ・ 国 と ・ 国 と

4

Meyer and Nest have reformulated the Baum-Connes conjecture using the language of triangulated categories and derived functors. This yields Meyer and Nest have reformulated the Baum-Connes conjecture using the language of triangulated categories and derived functors. This yields

- ▶ a better understanding of the (classical) conjecture
- a framework to define and investigate assembly maps in other situations

Meyer and Nest have reformulated the Baum-Connes conjecture using the language of triangulated categories and derived functors. This yields

- ▶ a better understanding of the (classical) conjecture
- a framework to define and investigate assembly maps in other situations

In particular, Meyer and Nest formulate and prove a generalization of the Baum-Connes conjecture for duals of compact groups.

Christian Voigt

・ロン ・回 と ・ 国 と ・ 国 と

4

In this talk, we explain how to prove the corresponding conjecture for the dual of the quantum SU(2)-group of Woronowicz.

In this talk, we explain how to prove the corresponding conjecture for the dual of the quantum SU(2)-group of Woronowicz.

This is a *true* quantum group - no classical algebraic topology is available anymore.

In this talk, we explain how to prove the corresponding conjecture for the dual of the quantum SU(2)-group of Woronowicz.

This is a *true* quantum group - no classical algebraic topology is available anymore.

Why is one interested in such a result?

- serves as an interesting "test case" for the machinery of Meyer-Nest
- yields a conceptual approach to compute certain K-theory groups
- might lead to new insights in the theory of quantum groups

Christian Voigt

(4日) (日)

æ

_ र ≣ ▶

If G is a locally compact *abelian* group, then the dual of G is the group \hat{G} of all continuous group homomorphisms $\chi: G \to U(1) \subset \mathbb{C}$.

個 と く ヨ と く ヨ と

If G is a locally compact *abelian* group, then the dual of G is the group \hat{G} of all continuous group homomorphisms $\chi: G \to U(1) \subset \mathbb{C}$.

Theorem (Pontrjagin duality) The dual group of \hat{G} is canonically isomorphic to G.

If G is a locally compact *abelian* group, then the dual of G is the group \hat{G} of all continuous group homomorphisms $\chi: G \to U(1) \subset \mathbb{C}$.

Theorem (Pontrjagin duality)

The dual group of \hat{G} is canonically isomorphic to G.

Historically, the operator algebra approach to quantum groups grew out of attempts to generalize the Pontrjagin duality theorem to non-abelian locally compact groups.

同 ト イヨ ト イヨト

- Duality for compact groups Tannaka (1938)
- Kac algebras Kac-Vainerman, Enock-Schwartz (1973)
- ▶ *SU*_q(2) Woronowicz (1987)
- examples of locally compact quantum groups Woronowicz

- Duality for compact groups Tannaka (1938)
- Kac algebras Kac-Vainerman, Enock-Schwartz (1973)
- ▶ *SU*_q(2) Woronowicz (1987)
- examples of locally compact quantum groups Woronowicz

Definition (Kustermans-Vaes (1999))

A locally compact quantum group is a C^* -algebra H together with a comultiplication $\Delta : H \to M(H \otimes H)$ and left and right Haar integrals.

Christian Voigt

(4日) (日)

æ

_ र ≣ ▶

Examples

A basic example is the algebra C₀(G) of functions on a locally compact group G. The comultiplication Δ : C₀(G) → C_b(G × G) is given by

$$\Delta(f)(s,t)=f(st)$$

and the integrals are given by left/right Haar measure.

Examples

A basic example is the algebra C₀(G) of functions on a locally compact group G. The comultiplication Δ : C₀(G) → C_b(G × G) is given by

$$\Delta(f)(s,t)=f(st)$$

and the integrals are given by left/right Haar measure.

► Another basic example is the reduced group C*-algebra C^{*}_{red}(G) of G. The comultiplication is given by

$$\Delta(\lambda_t) = \lambda_t \otimes \lambda_t$$

and the left and right Haar integral ϕ satisfies $\phi(f) = f(e)$ where $f \in C_c(G) \subset C^*_{red}(G)$ and $e \in G$ is the identity.

Pontrjagin duality

Christian Voigt

æ

For every locally compact quantum group H one can construct a dual quantum group \hat{H} .

-≣->

For every locally compact quantum group H one can construct a dual quantum group \hat{H} .

Theorem (Pontrjagin duality)

The dual quantum group of \hat{H} is canonically isomorphic to H.

For every locally compact quantum group H one can construct a dual quantum group \hat{H} .

Theorem (Pontrjagin duality)

The dual quantum group of \hat{H} is canonically isomorphic to H.

Remark

If G is a locally compact group then the quantum groups $C_0(G)$ and $C^*_{red}(G)$ are dual to each other. If in addition G is abelian then $C^*_{red}(G) \cong C_0(\hat{G})$ where \hat{G} is the dual group.

The quantum group $SU_q(2)$

Christian Voigt

- 4 回 🕨 4 国 🕨 - 4 国 🕨

4

回 と く ヨ と く ヨ と

-1

We will work with

個 と く ヨ と く ヨ と

We will work with

▶ its algebra $\mathcal{O}(SU_q(2))$ of polynomial functions

個 と く ヨ と く ヨ と

We will work with

▶ its algebra $\mathcal{O}(SU_q(2))$ of polynomial functions

▶ its C^* -algebra $C(SU_q(2))$ of continuous functions

同 ト イヨ ト イヨト

Definition

Fix $q \in (0,1]$. The unital *-algebra $\mathcal{O}(SU_q(2))$ (over \mathbb{C}) is generated by elements α and γ satisfying the relations

$$\begin{split} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma, \\ &\alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + q^2\gamma\gamma^* = 1. \end{split}$$

伺 と く き と く き と

Definition

Fix $q \in (0,1]$. The unital *-algebra $\mathcal{O}(SU_q(2))$ (over \mathbb{C}) is generated by elements α and γ satisfying the relations

$$\begin{split} &\alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha, \quad \gamma\gamma^* = \gamma^*\gamma, \\ &\alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + q^2\gamma\gamma^* = 1. \end{split}$$

These relations are equivalent to saying that the fundamental matrix

$$\begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

is unitary.

The comultiplication $\Delta : \mathcal{O}(SU_q(2)) \to \mathcal{O}(SU_q(2)) \otimes \mathcal{O}(SU_q(2))$ is defined by

$$\Delta \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \otimes \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

・日・ ・ ヨ・ ・ ヨ・

The comultiplication $\Delta : \mathcal{O}(SU_q(2)) \to \mathcal{O}(SU_q(2)) \otimes \mathcal{O}(SU_q(2))$ is defined by

$$\Delta \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \otimes \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

The *counit* ϵ and the *antipode* S of $\mathcal{O}(SU_q(2))$ are defined by the formulas

$$\epsilon \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad S \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha^* & \gamma^* \\ -q\gamma & \alpha \end{pmatrix}$$

白 と く ヨ と く ヨ と

-1

on generators.
The comultiplication $\Delta : \mathcal{O}(SU_q(2)) \to \mathcal{O}(SU_q(2)) \otimes \mathcal{O}(SU_q(2))$ is defined by

$$\Delta \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \otimes \begin{pmatrix} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

The *counit* ϵ and the *antipode* S of $\mathcal{O}(SU_q(2))$ are defined by the formulas

$$\epsilon \begin{pmatrix} lpha & -q\gamma^* \\ \gamma & lpha^* \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad S \begin{pmatrix} lpha & -q\gamma^* \\ \gamma & lpha^* \end{pmatrix} = \begin{pmatrix} lpha^* & \gamma^* \\ -q\gamma & lpha \end{pmatrix}$$

個 と く ヨ と く ヨ と …

on generators.

In this way $\mathcal{O}(SU_q(2))$ becomes a Hopf-*-algebra.

The *-algebra $\mathcal{O}(SU_q(2))$ can be completed uniquely to a C^* -algebra $\mathcal{C}(SU_q(2))$. This yields a (locally) compact quantum group.

個 と く ヨ と く ヨ と …

The *-algebra $\mathcal{O}(SU_q(2))$ can be completed uniquely to a C^* -algebra $\mathcal{C}(SU_q(2))$. This yields a (locally) compact quantum group.

For q = 1 one obtains in this way the algebras O(SU(2)) and C(SU(2)) of polynomial and continuous functions on SU(2), respectively.

イロト イヨト イヨト イヨト

The *-algebra $\mathcal{O}(SU_q(2))$ can be completed uniquely to a C^* -algebra $\mathcal{C}(SU_q(2))$. This yields a (locally) compact quantum group.

- For q = 1 one obtains in this way the algebras O(SU(2)) and C(SU(2)) of polynomial and continuous functions on SU(2), respectively.
- The antipode does not extend to $C(SU_q(2))$ for $q \neq 1$

In addition to $SU_q(2)$ we need...

Christian Voigt

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

4

The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection $\pi : C(SU_q(2)) \to C(T)$ given by

$$\pi \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$$

▲ 同 ▶ | ▲ 臣 ▶

글 > - 글

The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection $\pi : C(SU_q(2)) \to C(T)$ given by

$$\pi \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$$

The (standard) Podleś sphere is the homogenous space $SU_q(2)/T$ given by the algebra of coinvariants

$$C(SU_q(2)/T) = \{x \in C(SU_q(2)) | (\mathsf{id} \otimes \pi) \Delta(x) = x \otimes 1\}$$

個 と く ヨ と く ヨ と

under right translations.

The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection $\pi : C(SU_q(2)) \to C(T)$ given by

$$\pi \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$$

The (standard) Podleś sphere is the homogenous space $SU_q(2)/T$ given by the algebra of coinvariants

$$C(SU_q(2)/T) = \{x \in C(SU_q(2)) | (\mathsf{id} \otimes \pi) \Delta(x) = x \otimes 1\}$$

under right translations.

We remark that for $q \in (0,1)$ one has $C(SU_q(2)/T) \cong \mathbb{K}^+$. There is an algebraic version $\mathcal{O}(SU_q(2)/T)$ as well.

...coming back to the Baum-Connes conjecture

Christian Voigt

□ > 《 E > 《 E >

2

The formulation of a Baum-Connes conjecture for quantum groups is based on the work of Meyer and Nest.

The formulation of a Baum-Connes conjecture for quantum groups is based on the work of Meyer and Nest.

We are interested in the *dual quantum group* \hat{G} for $G = SU_q(2)$.

The formulation of a Baum-Connes conjecture for quantum groups is based on the work of Meyer and Nest.

We are interested in the *dual quantum group* \hat{G} for $G = SU_q(2)$.

...what is the Baum-Connes conjecture in this situation?

Christian Voigt

- 4 回 🕨 4 国 🕨 - 4 国 🕨

큰

• objects in KK^H are all separable H- C^* -algebras.

- objects in KK^H are all separable H- C^* -algebras.
- morphism sets are the bivariant Kasparov K-groups KK^H(A, B), and composition of morphisms is given by Kasparov product.

- objects in KK^H are all separable H- C^* -algebras.
- morphism sets are the bivariant Kasparov K-groups KK^H(A, B), and composition of morphisms is given by Kasparov product.
- The (inverse of the) suspension Σ(A) = C₀(ℝ) ⊗ A yields the translation functor.

- objects in KK^H are all separable H- C^* -algebras.
- morphism sets are the bivariant Kasparov K-groups KK^H(A, B), and composition of morphisms is given by Kasparov product.
- The (inverse of the) suspension Σ(A) = C₀(ℝ) ⊗ A yields the translation functor.
- Distinguished *triangles* are all triangles isomorphic to mapping cone triangles

$$\Sigma(B) \to C_f \to A \to B$$

・ロン ・回 と ・ ヨ と ・ ヨ と

for equivariant *-homomorphisms $f : A \rightarrow B$.

The Baum-Connes conjecture

Christian Voigt

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

The Baum-Connes conjecture

In the sequel we let $q \in (0,1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

In the sequel we let $q \in (0,1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

The discrete quantum group \hat{G} is torsion-free. The proper homogenous \hat{G} -algebra corresponding to the trivial subgroup is $C^*(G)$. We write \mathcal{P} for the localizing subcategory of $KK^{\hat{G}}$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^* -algebra and the coaction inherited from $C^*(G)$. In the sequel we let $q \in (0,1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

The discrete quantum group \hat{G} is torsion-free. The proper homogenous \hat{G} -algebra corresponding to the trivial subgroup is $C^*(G)$. We write \mathcal{P} for the localizing subcategory of $KK^{\hat{G}}$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^* -algebra and the coaction inherited from $C^*(G)$.

Definition

A torsion-free discrete quantum group Γ satisfies the strong Baum-Connes conjecture if $\mathcal{P}=\mathcal{K}\mathcal{K}^{\Gamma}.$

In the sequel we let $q \in (0,1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

The discrete quantum group \hat{G} is torsion-free. The proper homogenous \hat{G} -algebra corresponding to the trivial subgroup is $C^*(G)$. We write \mathcal{P} for the localizing subcategory of $KK^{\hat{G}}$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^* -algebra and the coaction inherited from $C^*(G)$.

Definition

A torsion-free discrete quantum group Γ satisfies the strong Baum-Connes conjecture if $\mathcal{P}=\mathcal{K}\mathcal{K}^{\Gamma}.$

Theorem

Let $G = SU_q(2)$. Then \hat{G} satisfies the strong Baum-Connes conjecture.

同 ト イヨ ト イヨ ト

Outline of the proof

Christian Voigt

・ロト ・四ト ・ヨト ・ヨト

4

The idea is to mimick the proof of Meyer-Nest in the case q = 1.

回 と く ヨ と く ヨ と

The idea is to mimick the proof of Meyer-Nest in the case q = 1.

Let us concentrate on the essential part of the argument.

Theorem We have $\mathbb{C} \in \mathcal{P} \subset KK^{\hat{G}}$.

The idea is to mimick the proof of Meyer-Nest in the case q = 1.

Let us concentrate on the essential part of the argument.

Theorem We have $\mathbb{C} \in \mathcal{P} \subset KK^{\hat{G}}$.

Theorem (Baaj-Skandalis)

The reduced crossed product functor $KK^{\hat{G}} \rightarrow KK^{G}$ is an equivalence of categories.

As a consequence, in order to prove $\mathbb{C} \in \mathcal{P}$ it suffices to show $C(G) \in \langle \mathbb{C} \rangle \in KK^G$.

Outline of the proof

Christian Voigt

・ロト ・四ト ・ヨト ・ヨト

4

We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show

Theorem We have $C(G/T) \cong \mathbb{C} \oplus \mathbb{C}$ in KK^G .

In the case q = 1 this follows from equivariant *Poincaré duality* for G/T. This duality result is no longer available for $q \neq 1$.

We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show

Theorem We have $C(G/T) \cong \mathbb{C} \oplus \mathbb{C}$ in KK^G .

In the case q = 1 this follows from equivariant *Poincaré duality* for G/T. This duality result is no longer available for $q \neq 1$.

We need two results concerning the equivariant K-theory and K-homology of the Podleś sphere G/T.

Christian Voigt

- 4 回 🕨 4 国 🕨 - 4 国 🕨

æ

The group T acts on the homogenous space G/T from the left. We want to determine the T-equivariant K-groups of the algebra C(G/T).

The group T acts on the homogenous space G/T from the left. We want to determine the T-equivariant K-groups of the algebra C(G/T).

Natural elements in $K_0^T(C(G/T))$ are given by the $\mathcal{O}(G/T)$ -modules

$$\Gamma(G \times_T \mathbb{C}_k) = \{x \in \mathcal{O}(SU_q(2)) | (\mathrm{id} \otimes \pi) \Delta(x) = x \otimes z^{-k}\}$$

for $k \in \mathbb{Z}$.

It follows from *Hopf-Galois theory* that these modules are finitely generated and projective.

Geometrically, $\Gamma(G \times_T \mathbb{C}_k)$ corresponds to an *induced bundle* on G/T.

・回 ・ ・ ヨ ・ ・ ヨ ・

Theorem For $G = SU_q(2)$ there is a commutative diagram

where the upper horizontal map λ is an isomorphism.

Here $W = \mathbb{Z}/2\mathbb{Z}$ is the (classical) Weyl group. The map λ in this diagram is the left R(T)-linear map defined by

$$\lambda(1\otimes z^k)=\mathsf{\Gamma}(G\times_T\mathbb{C}_k)$$

Theorem For $G = SU_a(2)$ there is a commutative diagram

where the upper horizontal map λ is an isomorphism.

Here $W = \mathbb{Z}/2\mathbb{Z}$ is the (classical) Weyl group. The map λ in this diagram is the left R(T)-linear map defined by

$$\lambda(1\otimes z^k)=\Gamma(G\times_T\mathbb{C}_k)$$

The proof is a (lengthy) computation involving the equivariant Chern character $ch_0^T : K_0^T \to HP_0^T$.
Remark

It follows that the group K^T₀(C(G/T)) is a free R(T)-module generated by Γ(G ×_T C₀) and Γ(G ×_T C₋₁).

A⊒ ▶ ∢ ∃

Remark

- It follows that the group K₀^T(C(G/T)) is a free R(T)-module generated by Γ(G ×_T C₀) and Γ(G ×_T C₋₁).
- ► The Weyl group W acts on K^T_{*}(C(G/T)). This action does not come from an action of W on the C*-algebra C(G/T).

Equivariant Fredholm modules for the Podleś sphere

Christian Voigt

(本部) (本語) (本語)

2

We want to describe a family $(\mathcal{E}_I, \phi_I, F_I)$ of even *G*-equivariant Fredholm modules over C(G/T) for $I \in \mathbb{Z}$.

We want to describe a family $(\mathcal{E}_I, \phi_I, F_I)$ of even *G*-equivariant Fredholm modules over C(G/T) for $I \in \mathbb{Z}$.

▶ the Hilbert space $\mathcal{E}_I = \mathcal{E}_I^+ \oplus \mathcal{E}_I^-$ is the completion of

$$\Gamma(G \times_T \mathbb{C}_{l-1}) \oplus \Gamma(G \times_T \mathbb{C}_{l+1})$$

with respect to the scalar product induced by $L^2(G)$.

We want to describe a family $(\mathcal{E}_I, \phi_I, F_I)$ of even *G*-equivariant Fredholm modules over C(G/T) for $I \in \mathbb{Z}$.

▶ the Hilbert space $\mathcal{E}_I = \mathcal{E}_I^+ \oplus \mathcal{E}_I^-$ is the completion of

$$\Gamma(G \times_T \mathbb{C}_{l-1}) \oplus \Gamma(G \times_T \mathbb{C}_{l+1})$$

with respect to the scalar product induced by $L^{2}(G)$.

► The representation φ_l of C(G/T) is induced by left multiplication on the induced bundles.

Equivariant Fredholm modules for the Podleś sphere

According to Frobenius reciprocity one has

$$\Gamma(G \times_T \mathbb{C}_j) = \bigoplus_{m=0}^{\infty} V_{|j|/2+m}$$

where V_j denotes the irreducible representation of $SU_q(2)$ of dimension 2j + 1. The operator F_l is defined by the matrix

$$F_l = \begin{pmatrix} 0 & S \\ S^* & 0 \end{pmatrix}$$

where $S : \Gamma(G \times_T \mathbb{C}_{l+1}) \to \Gamma(G \times_T \mathbb{C}_{l-1})$ is the natural isometry.

Equivariant Fredholm modules for the Podleś sphere

According to Frobenius reciprocity one has

$$\Gamma(G \times_T \mathbb{C}_j) = \bigoplus_{m=0}^{\infty} V_{|j|/2+m}$$

where V_j denotes the irreducible representation of $SU_q(2)$ of dimension 2j + 1. The operator F_l is defined by the matrix

$$F_l = \begin{pmatrix} 0 & S \\ S^* & 0 \end{pmatrix}$$

where $S : \Gamma(G \times_T \mathbb{C}_{l+1}) \to \Gamma(G \times_T \mathbb{C}_{l-1})$ is the natural isometry.

Proposition

This data defines an equivariant Fredholm module $F_I = (\mathcal{E}_I, \phi_I, F_I)$ over C(G/T) for every $I \in \mathbb{Z}$.

Remark

These Fredholm modules represent *twisted Dirac operators* on G/T. For I = 0 the corresponding Dirac operator has been defined and studied by Dabrowski-Sitarz.

白 ト く ヨ ト く ヨ ト

Remark

These Fredholm modules represent *twisted Dirac operators* on G/T. For I = 0 the corresponding Dirac operator has been defined and studied by Dabrowski-Sitarz.

Theorem

The Kasparov product $\Gamma(G \times_T \mathbb{C}_k) \circ F_l \in KK_0^G(\mathbb{C}, \mathbb{C}) = R(G)$ is given by

$$\Gamma(G \times_T \mathbb{C}_k) \circ F_l = \begin{cases} V_{(k+l-1)/2} & \text{for } k+l > 0\\ 0 & \text{for } k+l = 0\\ -V_{-(k+l-1)/2} & \text{for } k+l < 0 \end{cases}$$

for all $k, l \in \mathbb{Z}$.

... completing the proof of the main theorem

Christian Voigt

□ > 《 E > 《 E >

-2

... completing the proof of the main theorem

▶ Define elements $\alpha \in KK_0^G(C(G/T), \mathbb{C}^{|W(G)|})$ by

 $\alpha = \mathit{F}_{\mathsf{0}} \oplus \mathit{F}_{-1}$

and $\beta \in KK_0^G(\mathbb{C}^{|W(G)|}, C(G/T))$ by

 $\beta = \Gamma(G \times_T \mathbb{C}_1) \oplus -\Gamma(G \times_T \mathbb{C}_0)$

... completing the proof of the main theorem

▶ Define elements $\alpha \in KK_0^G(C(G/T), \mathbb{C}^{|W(G)|})$ by

 $\alpha = F_0 \oplus F_{-1}$

and $\beta \in KK_0^G(\mathbb{C}^{|W(G)|}, C(G/T))$ by

$$\beta = \Gamma(G \times_T \mathbb{C}_1) \oplus -\Gamma(G \times_T \mathbb{C}_0)$$

Compute β ∘ α = 1 using the previous theorem and α ∘ β = 1 using in addition induction, UCT for KK^T and the description of K^T_{*}(C(G/T)) obtained before. □

Christian Voigt

æ

The K-theory of the C*-algebra $C(SU_q(2))$ was computed by Masuda-Nakagami-Watanabe.

Using the validity of the Baum-Connes conjecture for the dual of $SU_q(2)$ one reobtains their result easily.

個 と く ヨ と く ヨ と

The K-theory of the C*-algebra $C(SU_q(2))$ was computed by Masuda-Nakagami-Watanabe.

Using the validity of the Baum-Connes conjecture for the dual of $SU_q(2)$ one reobtains their result easily.

Theorem

Let $q \in (0,1]$. For $G = SU_q(2)$ the K-theory of C(G) is given by

$$K_0(C(G)) = \mathbb{Z}, \qquad K_1(C(G)) = \mathbb{Z}.$$

The K-theory of the C*-algebra $C(SU_q(2))$ was computed by Masuda-Nakagami-Watanabe.

Using the validity of the Baum-Connes conjecture for the dual of $SU_q(2)$ one reobtains their result easily.

Theorem

Let $q \in (0,1]$. For $G = SU_q(2)$ the K-theory of C(G) is given by

$$K_0(C(G)) = \mathbb{Z}, \qquad K_1(C(G)) = \mathbb{Z}.$$

Proof. In $KK^{\mathbb{Z}}$ one has

$$\begin{array}{ccc} \Sigma C_0(\mathbb{Z}) & \longrightarrow & C_0(\mathbb{R}) \stackrel{i}{\longrightarrow} & C_0(\mathbb{Z}) \stackrel{1-S}{\longrightarrow} & C_0(\mathbb{Z}) \\ & & & & & \downarrow^D & & & \\ & & & & \downarrow^D & & & \\ \Sigma C_0(\mathbb{Z}) & \longrightarrow & \Sigma \mathbb{C} \stackrel{i}{\longrightarrow} & C_0(\mathbb{Z}) \stackrel{1-S}{\longrightarrow} & C_0(\mathbb{Z}) \end{array}$$

Applying the crossed product functor yields

$$\begin{array}{c} \Sigma C_0(\mathbb{Z}) \rtimes \mathbb{Z} & \longrightarrow C_0(\mathbb{R}) \rtimes \mathbb{Z} \longrightarrow C_0(\mathbb{Z}) \rtimes \mathbb{Z} & \longrightarrow C_0(\mathbb{Z}) \rtimes \mathbb{Z} \\ \downarrow \cong & \downarrow \cong & \downarrow \cong & \downarrow \cong \\ \Sigma \mathbb{C} & \longrightarrow \Sigma C(T) \longrightarrow \mathbb{C} & \stackrel{1-z}{\longrightarrow} \mathbb{C} \end{array}$$

in KK^T .

We apply the induction functor ind_T^G and obtain an exact sequence

$$0 \longrightarrow K_1(C(G)) \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2 \longrightarrow K_0(C(G)) \longrightarrow 0$$

Identify $K_0^T(C(G/T))$ with the free R(T)-module generated by $1 \otimes 1$ and $1 \otimes z$ in $R(T) \otimes_{R(G)} R(T)$. It follows that multiplication by z corresponds to the matrix

$$\begin{pmatrix} 0 & -1 \\ 1 & z^{-1}+z \end{pmatrix}$$

in $M_2(R(T))$. Hence

$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

represents the map induced by 1 - z in $End(\mathbb{Z}^2)$. One checks that $ker(1 - z) = \{(k, -k) | k \in \mathbb{Z}\} \cong \mathbb{Z}$ and $Coker(1 - z) \cong \mathbb{Z}$.

Remarks

Christian Voigt

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

The Baum-Connes conjecture for a torsion-free discrete group G implies the Kadison-Kaplansky conjecture: There are no nontrivial idempotents in C^{*}_{red}(G).
This is not true for discrete quantum groups, C(SU_q(2)) contains lots of nontrivial idempotents.

The Baum-Connes conjecture for a torsion-free discrete group G implies the Kadison-Kaplansky conjecture: There are no nontrivial idempotents in C^{*}_{red}(G).
This is not true for discrete quantum groups, C(SU_q(2)) contains lots of nontrivial idempotents.

The method of the above proof should also work for q-deformations of other classical Lie groups.