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The Baum-Connes conjecture

Let G be a second countable locally compact group. The
Baum-Connes conjecture asserts that the assembly map

µ : K top
∗ (G ) → K∗(C

∗
red(G ))

is an isomorphism.

Here
K top
∗ (G ) = KG

∗ (EG )

is the equivariant K -homology of the universal proper G -space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt



The Baum-Connes conjecture

Let G be a second countable locally compact group. The
Baum-Connes conjecture asserts that the assembly map

µ : K top
∗ (G ) → K∗(C

∗
red(G ))

is an isomorphism.

Here
K top
∗ (G ) = KG

∗ (EG )

is the equivariant K -homology of the universal proper G -space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt



The Baum-Connes conjecture

Let G be a second countable locally compact group. The
Baum-Connes conjecture asserts that the assembly map

µ : K top
∗ (G ) → K∗(C

∗
red(G ))

is an isomorphism.

Here
K top
∗ (G ) = KG

∗ (EG )

is the equivariant K -homology of the universal proper G -space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt



The Baum-Connes conjecture

Let G be a second countable locally compact group. The
Baum-Connes conjecture asserts that the assembly map

µ : K top
∗ (G ) → K∗(C

∗
red(G ))

is an isomorphism.

Here
K top
∗ (G ) = KG

∗ (EG )

is the equivariant K -homology of the universal proper G -space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt



The Baum-Connes conjecture

Let G be a second countable locally compact group. The
Baum-Connes conjecture asserts that the assembly map

µ : K top
∗ (G ) → K∗(C

∗
red(G ))

is an isomorphism.

Here
K top
∗ (G ) = KG

∗ (EG )

is the equivariant K -homology of the universal proper G -space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?

Christian Voigt



Recapitulation and motivation

Meyer and Nest have reformulated the Baum-Connes conjecture
using the language of triangulated categories and derived functors.
This yields

I a better understanding of the (classical) conjecture

I a framework to define and investigate assembly maps in other
situations

In particular, Meyer and Nest formulate and prove a generalization
of the Baum-Connes conjecture for duals of compact groups.
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Recapitulation and motivation

In this talk, we explain how to prove the corresponding conjecture
for the dual of the quantum SU(2)-group of Woronowicz.

This is a true quantum group - no classical algebraic topology is
available anymore.

Why is one interested in such a result?

I serves as an interesting ”test case” for the machinery of
Meyer-Nest

I yields a conceptual approach to compute certain K -theory
groups

I might lead to new insights in the theory of quantum groups

Christian Voigt



Recapitulation and motivation

In this talk, we explain how to prove the corresponding conjecture
for the dual of the quantum SU(2)-group of Woronowicz.

This is a true quantum group - no classical algebraic topology is
available anymore.

Why is one interested in such a result?

I serves as an interesting ”test case” for the machinery of
Meyer-Nest

I yields a conceptual approach to compute certain K -theory
groups

I might lead to new insights in the theory of quantum groups

Christian Voigt



Recapitulation and motivation

In this talk, we explain how to prove the corresponding conjecture
for the dual of the quantum SU(2)-group of Woronowicz.

This is a true quantum group - no classical algebraic topology is
available anymore.

Why is one interested in such a result?

I serves as an interesting ”test case” for the machinery of
Meyer-Nest

I yields a conceptual approach to compute certain K -theory
groups

I might lead to new insights in the theory of quantum groups

Christian Voigt



Recapitulation and motivation

In this talk, we explain how to prove the corresponding conjecture
for the dual of the quantum SU(2)-group of Woronowicz.

This is a true quantum group - no classical algebraic topology is
available anymore.

Why is one interested in such a result?

I serves as an interesting ”test case” for the machinery of
Meyer-Nest

I yields a conceptual approach to compute certain K -theory
groups

I might lead to new insights in the theory of quantum groups

Christian Voigt



Locally compact quantum groups

If G is a locally compact abelian group, then the dual of G is the
group Ĝ of all continuous group homomorphisms
χ : G → U(1) ⊂ C.

Theorem (Pontrjagin duality)

The dual group of Ĝ is canonically isomorphic to G.

Historically, the operator algebra approach to quantum groups
grew out of attempts to generalize the Pontrjagin duality theorem
to non-abelian locally compact groups.
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The dual group of Ĝ is canonically isomorphic to G.

Historically, the operator algebra approach to quantum groups
grew out of attempts to generalize the Pontrjagin duality theorem
to non-abelian locally compact groups.

Christian Voigt



Locally compact quantum groups

If G is a locally compact abelian group, then the dual of G is the
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Locally compact quantum groups

I Duality for compact groups - Tannaka (1938)

I Kac algebras - Kac-Vainerman, Enock-Schwartz (1973)

I SUq(2) - Woronowicz (1987)

I examples of locally compact quantum groups - Woronowicz

Definition (Kustermans-Vaes (1999))

A locally compact quantum group is a C ∗-algebra H together with
a comultiplication ∆ : H → M(H ⊗ H) and left and right Haar
integrals.
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Locally compact quantum groups

Examples

I A basic example is the algebra C0(G ) of functions on a locally
compact group G . The comultiplication
∆ : C0(G ) → Cb(G × G ) is given by

∆(f )(s, t) = f (st)

and the integrals are given by left/right Haar measure.

I Another basic example is the reduced group C ∗-algebra
C ∗

red(G ) of G . The comultiplication is given by

∆(λt) = λt ⊗ λt

and the left and right Haar integral φ satisfies φ(f ) = f (e)
where f ∈ Cc(G ) ⊂ C ∗

red(G ) and e ∈ G is the identity.
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Pontrjagin duality

For every locally compact quantum group H one can construct a
dual quantum group Ĥ.

Theorem (Pontrjagin duality)

The dual quantum group of Ĥ is canonically isomorphic to H.

Remark
If G is a locally compact group then the quantum groups C0(G )
and C ∗

red(G ) are dual to each other.

If in addition G is abelian then C ∗
red(G ) ∼= C0(Ĝ ) where Ĝ is the

dual group.
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The quantum group SUq(2)

The quantum group SUq(2) is a deformation of the compact Lie
group SU(2).

We will work with

I its algebra O(SUq(2)) of polynomial functions

I its C ∗-algebra C (SUq(2)) of continuous functions
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The quantum group SUq(2)

Definition
Fix q ∈ (0, 1]. The unital ∗-algebra O(SUq(2)) (over C) is
generated by elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ,

α∗α + γ∗γ = 1, αα∗ + q2γγ∗ = 1.

These relations are equivalent to saying that the fundamental
matrix (

α −qγ∗

γ α∗

)
is unitary.

Christian Voigt
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The quantum group SUq(2)

The comultiplication ∆ : O(SUq(2)) → O(SUq(2))⊗O(SUq(2)) is
defined by

∆

(
α −qγ∗

γ α∗

)
=

(
α −qγ∗

γ α∗

)
⊗

(
α −qγ∗

γ α∗

)

The counit ε and the antipode S of O(SUq(2)) are defined by the
formulas

ε

(
α −qγ∗

γ α∗

)
=

(
1 0
0 1

)
, S

(
α −qγ∗

γ α∗

)
=

(
α∗ γ∗

−qγ α

)
on generators.
In this way O(SUq(2)) becomes a Hopf-∗-algebra.
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The quantum group SUq(2)

The ∗-algebra O(SUq(2)) can be completed uniquely to a
C ∗-algebra C (SUq(2)). This yields a (locally) compact quantum
group.

I For q = 1 one obtains in this way the algebras O(SU(2)) and
C (SU(2)) of polynomial and continuous functions on SU(2),
respectively.

I The antipode does not extend to C (SUq(2)) for q 6= 1

In addition to SUq(2) we need...
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The Podleś sphere

The maximal torus T = S1 ⊂ SUq(2) is given by the projection
π : C (SUq(2)) → C (T ) given by

π

(
α −qγ∗

γ α∗

)
=

(
z 0
0 z−1

)

The (standard) Podleś sphere is the homogenous space SUq(2)/T
given by the algebra of coinvariants

C (SUq(2)/T ) = {x ∈ C (SUq(2))|(id⊗π)∆(x) = x ⊗ 1}

under right translations.
We remark that for q ∈ (0, 1) one has C (SUq(2)/T ) ∼= K+. There
is an algebraic version O(SUq(2)/T ) as well.
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...coming back to the Baum-Connes conjecture

The formulation of a Baum-Connes conjecture for quantum groups
is based on the work of Meyer and Nest.

We are interested in the dual quantum group Ĝ for G = SUq(2).

...what is the Baum-Connes conjecture in this situation?
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The equivariant Kasparov category

The equivariant Kasparov category KKH of a (second countable,
regular) locally compact quantum group H is the following
triangulated category.

I objects in KKH are all separable H-C ∗-algebras.

I morphism sets are the bivariant Kasparov K -groups
KKH(A,B), and composition of morphisms is given by
Kasparov product.

I The (inverse of the) suspension Σ(A) = C0(R)⊗ A yields the
translation functor.

I Distinguished triangles are all triangles isomorphic to mapping
cone triangles

Σ(B) → Cf → A → B

for equivariant ∗-homomorphisms f : A → B.
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The Baum-Connes conjecture

In the sequel we let q ∈ (0, 1] and write G = SUq(2) as well as Ĝ
for its dual.
The discrete quantum group Ĝ is torsion-free. The proper
homogenous Ĝ -algebra corresponding to the trivial subgroup is

C ∗(G ). We write P for the localizing subcategory of KK Ĝ

generated by algebras of the form C ∗(G )⊗ A where A is some
C ∗-algebra and the coaction inherited from C ∗(G ).

Definition
A torsion-free discrete quantum group Γ satisfies the strong
Baum-Connes conjecture if P = KKΓ.

Theorem
Let G = SUq(2). Then Ĝ satisfies the strong Baum-Connes
conjecture.
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The Baum-Connes conjecture

In the sequel we let q ∈ (0, 1] and write G = SUq(2) as well as Ĝ
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Outline of the proof

The idea is to mimick the proof of Meyer-Nest in the case q = 1.

Let us concentrate on the essential part of the argument.

Theorem
We have C ∈ P ⊂ KK Ĝ .

Theorem (Baaj-Skandalis)

The reduced crossed product functor KK Ĝ → KKG is an
equivalence of categories.

As a consequence, in order to prove C ∈ P it suffices to show
C (G ) ∈ 〈C〉 ∈ KKG .
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Outline of the proof

We have C (G ) ∈ 〈C (G/T )〉 in KKG - this follows from (the
validity of) the Baum-Connes conjecture for T̂ and induction.
Hence it suffices to show

Theorem
We have C (G/T ) ∼= C⊕ C in KKG .

In the case q = 1 this follows from equivariant Poincaré duality for
G/T . This duality result is no longer available for q 6= 1.

We need two results concerning the equivariant K -theory and
K -homology of the Podleś sphere G/T .
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Christian Voigt



K -theory of the Podleś sphere

The group T acts on the homogenous space G/T from the left.
We want to determine the T -equivariant K -groups of the algebra
C (G/T ).

Natural elements in KT
0 (C (G/T )) are given by the

O(G/T )-modules

Γ(G ×T Ck) = {x ∈ O(SUq(2))|(id⊗π)∆(x) = x ⊗ z−k}

for k ∈ Z.

It follows from Hopf-Galois theory that these modules are finitely
generated and projective.

Geometrically, Γ(G ×T Ck) corresponds to an induced bundle on
G/T .
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K -theory of the Podleś sphere

Theorem
For G = SUq(2) there is a commutative diagram

R(T )⊗R(G) R(T ) λ //

E
��

KT
∗ (C (G/T ))

i
��⊕

w∈W R(T )
∼= // KT

∗ (C (W ))

where the upper horizontal map λ is an isomorphism.

Here W = Z/2Z is the (classical) Weyl group. The map λ in this
diagram is the left R(T )-linear map defined by

λ(1⊗ zk) = Γ(G ×T Ck)

The proof is a (lengthy) computation involving the equivariant
Chern character chT

0 : KT
0 → HPT

0 .
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K -theory of the Podleś sphere

Remark

I It follows that the group KT
0 (C (G/T )) is a free R(T )-module

generated by Γ(G ×T C0) and Γ(G ×T C−1).

I The Weyl group W acts on KT
∗ (C (G/T )). This action does

not come from an action of W on the C ∗-algebra C (G/T ).
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Equivariant Fredholm modules for the Podleś sphere

We want to describe a family (El , φl ,Fl) of even G-equivariant
Fredholm modules over C (G/T ) for l ∈ Z.

I the Hilbert space El = E+
l ⊕ E−l is the completion of

Γ(G ×T Cl−1)⊕ Γ(G ×T Cl+1)

with respect to the scalar product induced by L2(G ).

I The representation φl of C (G/T ) is induced by left
multiplication on the induced bundles.
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Equivariant Fredholm modules for the Podleś sphere

I According to Frobenius reciprocity one has

Γ(G ×T Cj) =
∞⊕

m=0

V|j |/2+m

where Vj denotes the irreducible representation of SUq(2) of
dimension 2j + 1. The operator Fl is defined by the matrix

Fl =

(
0 S
S∗ 0

)
where S : Γ(G ×T Cl+1) → Γ(G ×T Cl−1) is the natural
isometry.

Proposition

This data defines an equivariant Fredholm module Fl = (El , φl ,Fl)
over C (G/T ) for every l ∈ Z.
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Equivariant Fredholm modules for the Podleś sphere

Remark
These Fredholm modules represent twisted Dirac operators on
G/T . For l = 0 the corresponding Dirac operator has been defined
and studied by Dabrowski-Sitarz.

Theorem
The Kasparov product Γ(G ×T Ck) ◦ Fl ∈ KKG

0 (C, C) = R(G ) is
given by

Γ(G ×T Ck) ◦ Fl =


V(k+l−1)/2 for k + l > 0

0 for k + l = 0

−V−(k+l−1)/2 for k + l < 0

for all k, l ∈ Z.
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... completing the proof of the main theorem

I Define elements α ∈ KKG
0 (C (G/T ), C|W (G)|) by

α = F0 ⊕ F−1

and β ∈ KKG
0 (C|W (G)|,C (G/T )) by

β = Γ(G ×T C1)⊕−Γ(G ×T C0)

I Compute β ◦ α = 1 using the previous theorem and α ◦ β = 1
using in addition induction, UCT for KKT and the description
of KT

∗ (C (G/T )) obtained before. �
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K-theory of C (SUq(2))

The K -theory of the C ∗-algebra C (SUq(2)) was computed by
Masuda-Nakagami-Watanabe.
Using the validity of the Baum-Connes conjecture for the dual of
SUq(2) one reobtains their result easily.

Theorem
Let q ∈ (0, 1]. For G = SUq(2) the K-theory of C (G ) is given by

K0(C (G )) = Z, K1(C (G )) = Z.

Proof. In KKZ one has

ΣC0(Z) // C0(R)
i //

D

��

C0(Z)
1−S

// C0(Z)

ΣC0(Z) // ΣC i // C0(Z)
1−S

// C0(Z)
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K-theory of C (SUq(2))

Applying the crossed product functor yields

ΣC0(Z) o Z //

∼=
��

C0(R) o Z //

∼=
��

C0(Z) o Z //

∼=
��

C0(Z) o Z
∼=

��

ΣC // ΣC (T ) // C
1−z

// C

in KKT .
We apply the induction functor indG

T and obtain an exact sequence

0 // K1(C (G )) // Z2 // Z2 // K0(C (G )) // 0
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K-theory of C (SUq(2))

Identify KT
0 (C (G/T )) with the free R(T )-module generated by

1⊗ 1 and 1⊗ z in R(T )⊗R(G) R(T ). It follows that multiplication
by z corresponds to the matrix(

0 −1
1 z−1 + z

)
in M2(R(T )). Hence (

1 1
−1 −1

)
represents the map induced by 1− z in End(Z2). One checks that
ker(1− z) = {(k,−k)|k ∈ Z} ∼= Z and Coker(1− z) ∼= Z.
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Remarks

I The Baum-Connes conjecture for a torsion-free discrete group
G implies the Kadison-Kaplansky conjecture: There are no
nontrivial idempotents in C ∗

red(G ).
This is not true for discrete quantum groups, C (SUq(2))
contains lots of nontrivial idempotents.

I The method of the above proof should also work for
q-deformations of other classical Lie groups.
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