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Goal

Understanding K1 in the same
clear way we understand K0.
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Waldhausen categories

We use the following notation for the basic structure of a Waldhausen
category W:

Zero object ∗.
Weak equivalences A ∼→A′.
Cofiber sequences A�B�B/A.
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K0 of a Waldhausen category

The abelian group K0W is generated by the symbols
[A] for any object A in W.

These symbols satisfy the following relations:
[∗] = 0,
[A] = [A′] for any weak equivalence A ∼→A′,
[B/A] + [A] = [B] for any cofiber sequence A�B�B/A.
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K -theory of a Waldhausen category

The K -theory of a Waldhausen category W is a spectrum K W.

The spectrum K W was defined by Waldhausen by using the
S.-construction which associates a simplicial category wS.W to any
Waldhausen category.

A simplicial category is regarded as a bisimplicial set by taking
levelwise the nerve of a category.
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The nature of our algebraic model

A stable quadratic module C consists of a diagram of groups

Cab
0 ⊗ Cab

0
〈−,−〉−→ C1

∂−→ C0

such that
〈a, b〉 = −〈b, a〉,
∂〈a, b〉 = −b − a + b + a,
〈∂c, ∂d〉 = −d − c + d + c.

The homotopy groups of C are
π0C = Coker ∂,
π1C = Ker ∂.
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A symmetric monoidal category

A stable quadratic module C gives rise to a symmetric monoidal
category smcC with

object set C0,
morphisms (c0, c1) : c0 → c0 + ∂c1 for c0 ∈ C0 and c1 ∈ C1.

The symmetry isomorphism is defined by the bracket

(c0 + c′0, 〈c0, c′0〉) : c0 + c′0
∼=−→ c′0 + c0.
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The classifying spectrum

Segal’s construction associates a classifying spectrum BM to any
symmetric monoidal category M.

The spectrum BsmcC has homotopy groups concentrated in
dimensions 0 and 1.

Moreover,

π0BsmcC ∼= π0C,

π1BsmcC ∼= π1C.
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The main theorem

We define a stable quadratic module D∗W by generators and relations
which models the 1-type of K W:

Theorem
There is a natural morphism in the stable homotopy category

K W −→ BsmcD∗W

which induces isomorphisms in π0 and π1.

Corollary
There are natural isomorphisms

K0W ∼= π0D∗W,

K1W ∼= π1D∗W.
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The algebraic model D∗W

We define D∗W as the stable quadratic module generated in
dimension zero by the symbols

[A] for any object in W,
and in dimension one by

[A ∼→A′] for any weak equivalence,
[A�B�B/A] for any cofiber sequence.

These generators correspond to bisimplices of total degree 1 and 2 in
Waldhausen’s S.-construction bisimplices
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The algebraic model D∗W

The generating symbols satisfy six kinds of relations.
The trivial relations formulas bisimplices .
The boundary relations formulas bisimplices .
Composition of weak equivalences formula bisimplex .
Weak equivalences of cofiber sequences formula bisimplex .
Composition of cofiber sequences formula bisimplex .
Coproducts formula .

features more skip
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Related work

Nenashev’s presentation of K1 of an exact category.
Deligne’s Picard category of virtual objects of an exact category.

more skip
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New features of our approach

Valid for Waldhausen categories.
Use of strict algebraic structures of optimal nilpotency degree.
Generators and relations are given by objects, weak equivalences,
and cofiber sequences.
Functoriality and compatibility with products.

skip
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What I couldn’t tell you in this talk

The multiplicative structure.
If W is a monoidal Waldhausen category then D∗W is endowed
with the structure of a quadratic pair algebra and hence by results
of Baues-Jibladze-Pirashvili it represents the first Postnikov
invariant of K W as a ring spectrum

k1 = {D∗W} ∈ HML3(K0W, K1W).

Comments on the proof.
For the proof we compute a small model of the fundamental
2-groupoid of wS.W by using an Eilenberg-Zilber-Cartier theorem
for ∞-groupoids. Then we use Curtis’s connectivity result to
obtain nilpotency degree 2.
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The End
Thanks for your attention!
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The trivial relations

[∗] = 0.

[A1A→A] = 0.

[A1A→A�∗] = 0, [∗�A1A→A] = 0.

back
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The boundary relations

∂[A ∼→A′] = −[A′] + [A].
∂[A�B�B/A] = −[B] + [B/A] + [A].

back
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Composition of weak equivalences

For any pair of composable weak equivalences A ∼→A′ ∼→A′′,

[A ∼→A′′] = [A′ ∼→A′′] + [A ∼→A′].

back
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Weak equivalences of cofiber sequences

For any commutative diagram in W as follows

A // //

∼
��

B // //

∼
��

B/A

∼
��

A′ // // B′ // // B′/A′

we have

[A′�B′�B′/A′]

[A ∼→A′] + [B/A ∼→B′/A′]

+〈[A],−[B′/A′] + [B/A]〉 = [B ∼→B′]

+[A�B�B/A].

back
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Composition of cofiber sequences

For any commutative diagram consisting of four obvious cofiber
sequences in W as follows

C/B

B/A // // C/A

OOOO

A // // B // //

OOOO

C

OOOO

we have

[B�C�C/B]

+[A�B�B/A] = [A�C�C/A]

+[B/A�C/A�C/B]

+〈[A],−[C/A] + [C/B] + [B/A]〉.
back
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Coproducts

For any pair of objects A, B in W

〈[A], [B]〉 = −[A
i1
�A ∨ B

p2
�B] + [B

i2
�A ∨ B

p1
�A].

back
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Bisimplices of total degree 1 and 2 in wS.W

A

A′

A

∼

OO

A

B
����������

����������
B/A

OO

OO

// //

back to generators back to relations
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Degenerate bisimplices of total degree 1 and 2 in
wS.W

∗

A

A

∼

∗

A
����������

����������
A

OO

OO

A

A
����������

����������
∗// //

back
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Bisimplex of bidegree (1, 2) in wS.W

A′′?
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?
?

?
?
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? _____ A′_____ _____ _____

???????????????
�

�
�

�
�

�
�

� A
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�
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__?
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?
?
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∼

OO

back
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Bisimplex of bidegree (2, 1) in wS.W

B′

A′
??

??
??

?

??
??

??
? B′/A′

ooooooooooo

ooooooooooo

___ ___ B___ ___ ______

A
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oooooooooooo
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77oooooooo
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�� ��
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?

?
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∼

�
�
�
�
�
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�
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�
�
�

back
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Bisimplex of bidegree (3, 0) in wS.W

A
TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

Cttttttttttttttttttt

ttttttttttttttttttt

B/A
ooooooooooo

ooooooooooo

C/A

C/B??????????????

??????????????

________ B_____ __ ___ ________
TTT

** **TTTTT

________ // //____

77

77oooo
OO

OO

__

__?
?

?
?

?

__

__??????????

** **TTTTTTTTTTTTTT
77 77oooooooo

back
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