Universidad deValladolid

Facultad de Ciencias
Departamento de Algebra, Geometria y Topologia

TESIS DOCTORAL:

Equivariant algebraic kk-theory and
isomorphism conjectures

Presentada por Dna Maria Eugenia Ellis Raggio para optar al grado de
doctora por la Universidad de Valladolid

Dirigida por:
Dr. D. Guillermo Cortinas






Contents

Resumen

Introduction

Chapter 1. Equivariant algebraic kk-theory

P NSO WD

H-algebras and if-(—algebras
Homotopy invariance

Matrix invariance

Extensions and classifying maps
Excision

Algebraic kk-theory
Equivariant matrix invariance
Equivariant algebraic kk-theory

Chapter 2. Adjointness theorems in kk-theory.

U W

Crossed product and trivial action
Induction and Restriction

A discrete variant of Green’s imprimitivity
Duality

Green-Julg theorem for kk”’¢

Chapter 3. Isomorphism conjectures with proper coefficients

©

e N e

G-simplicial sets and model category structures
Equivariant homology

K-theory

K-theory and the standing assumptions
Homotopy K-theory

Proper G-rings

Induction and equivariant homology

Assembly as a connecting map

Isomorphism conjectures with proper coefficients

Bibliography

13
15
20
26
27
31
33
36
44

47
48
52
29
62
64

69
70
74
81
85
92
93
97
99
103

105






Resumen

La kk-teoria algebraica fue introducida por G. Cortifias y A. Thom en [5]. Esta teoria
es una K-teorfa bivariante en la categoria de (-algebras siendo ¢ un anillo conmutativo
con unidad. Para cada par de dlgebras (A, B) se define un grupo kk(A, B). Se obtiene
una categoria KR cuyos objetos son las algebras y cuyos morfismos son los elementos
de kk(A, B). La categoria 88 es una categoria triangulada y existe un funtor canénico
j : Alg, — KRR con ciertas propiedades universales. Estas propiedades son la de invarianza
homotépica polinomial, invarianza por matrices y la propiedad de escision. La definicion
de la kk-teorfa algebraica fue motivada por los trabajos de J. Cuntz [6] y N. Higson [12]
sobre las propiedades universales de la K K-teoria de C*-dlgebras definida por Kasparov
en [19].

En esta tesis se continua la linea de trabajo de [5] verficando que la kk-teoria alge-
braica admite una versiéon equivariante. Sean ¢ un anillo conmutativo con unidad, G un
grupo numerable y H un algebra de Hopf sobre un cuerpo. En el capitulo 1 definimos
una k-teoria bivariante para la categoria de G-algebras, dlgebras G-graduadas, J{-modulo
algebras y H-comddulo dlgebras. Denotamos por X-Alg a cualquiera de estas categorias.
Se introduce el concepto de X-estabilidad que consiste en una nocién equivariante de in-
varianza matricial. Posteriormente se establecen las propiedades universales que verifica el
funtor canénico j : X-Alg — RRY: invarianza por homotopias polinémicas, X-estabilidad
y la propiedad de escision.

En el capitulo 2 se estudian los teoremas de adjuncion en la kk-teoria algebraica
equivariante. Este estudio nos permite seguir completando el diccionario iniciado en [5]
entre la kk-teoria algebraica y la K K-teoria de Kasparov. Si G es un grupo numerable,
se definen funtores que extienden el producto cruzado por G y la accion trivial

x G RARY — AR 7 AR — RRC.

El primer resultado de adjunciéon es una version algebraica del TEOREMA DE GREEN-
JULG y nos permite relacionar los kk®-grupos con los KH-grupos de la K-teorfa ho-
motopica de C. Weibel definida en [32]. Si G es un grupo finito, 1/| G| € ¢, B es un
algebra y A es una G-algebra entonces existe un isomorfismo

Yay  kk®(B7, A) — kk(B, A x Q)
Aqui B” indica la G-algebra con la accién trivial de G. En particular tomando B = /,
kkG (¢, A) ~ KH(A x G) para toda A € G-Alg.
Para cada subgrupo H de G se definen funtores de inducciéon y restriccion

Ind§; : RR® — RRY Resl : RRY — /M
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los cuales son funtores adjuntos. En otras palabras,
kk®(Indjj(B), A) ~ kk" (B, Resi(A)) para A € G-Alg y B € H-Alg.
En particular si A es una G-algebra,
kkG (19 A) ~ KH(A).

Aqui (@) = P gec U con la accién regular de G. Una version algebraica del TEOREMA
DE IMPRIMITIVIDAD DE GREEN nos permite identificar en &R al dlgebra A x H con el
algebra Indg A x G. También se prueba que RR® la categoria de G-algebras y R8¢ la
categoria de algebras G-graduadas son equivalentes. Esta equivalencia esta dada por los
funtores R )
x G RRY — ARY Gx : RRY — ARC.

inducidos por los productos cruzados. Es el andlogo algebraico a la DUALIDAD DE BAAJ-
SKANDALIS, [1]. Por tltimo estudiamos el caso de R8¢ cuando I es un dlgebra de Hopf
de dimensién finita sobre un cuerpo. Existen funtores

T: AR — AR #: AR’ — AR
inducidos por la accién trivial y el producto smash. Cuando H es un algebra semisimple

obtenemos una versién del teorema de Green-Julg en este contexto. En particular si A es
un H-modulo algebra entonces

kk™ (0, A) ~ KH(A#H).

En el dltimo capitulo estudiamos conjeturas de isomorfismo siguiendo la linea de tra-
bajo de [8]. Consideramos estructuras de modelo en la categoria de G-conjuntos simpli-
ciales y en la categoria de G-espacios topoldgicos. Dichas estructuras estan definidas en
funcién de una familia F de subconjuntos de G y son tales que las equivalencias débiles
y las fibraciones son punto a punto. Los objetos cofibrantes son aquellos X tales que el
estabilizador G, pertenece a la familia F para todo x € X. Al probar que el siguiente par
de funtores es una equivalencia de Quillen

Sing,

SC.

I«

obtenemos que es equivalente trabajar con un modelo simplicial de espacio o con un
modelo topologico.

Decimos que un funtor H : S® — Spt de la categoria de G-conjuntos simpliciales en la
categoria de espectros satisface la (G, F)-conjetura de isomorfismo, si para el reemplazo
cofibrante m : E(G,F) — % en la categoria de modelos mencionada anteriormente el
morfismo

H(m) : H(E(G, F)) — H(x)
es una equivalencia. Si E : Z-Cat — Spt es un funtor y R es un G-anillo con unidad,
podemos construir, siguiendo la linea Davis-Luck [8], un funtor

H%(— E(R)) : S® — Spt

tal que HS(x,E(R)) = E(R x G). La (G, J,E, R)-conjetura de isomorfismo es la (G, F)-
conjetura para el funtor HY(—,E(R)). Pobamos que considerando unas condiciones
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minimas sobre E, las STANDING ASSUMPTIONS 3.2.5 (condiciones que satisfacen K y
KH, ver proposiciones 3.4.18 y 3.5.3), H%(—,E(A)) esta definido no sélo para los G-
anillos con unidad, si no que esta definido también para todo G-anillo A que satisface
E-escisién. Mas atn, probamos que si

(1) 0—-A—-A—-A"—0
es una sucesion exacta de anillos E-escisivos y X es un G-conjunto simplicial, entonces
HE(X,E(A)) — H(X,E(4)) — H(X, E(A"))

es una fibraciéon homotépica. Esta es una propiedad necesaria para establecer un analogo
algebraico al médodo dual-Dirac que es un método usado en la prueba de la conjetura de
Baum-Connes para algunos grupos. Otra propiedad basica que nos proporciona sucesiones
(1) en las cuales al menos uno de los anillos satisface la conjetura de isomorfismos, es el
teorema 3.7.3. En éste se muestra que si E satisface las standing assumptions y A es un
anillo E-escisivo de la forma

(2) A= mdg, B;

en donde B; es un K;-anillo y K; € J para todo 4, entonces el funtor H%(— E(A))
lleva (G, F)-equivalencias en equivalencias. En particular la (G,JF,E, A)-conjetura de
isomorfismo se satisface. Usamos este hecho en la seccién 8 para mostrar que bajo otros
supuestos adicionales 3.8.1 (los cuales siguen siendo verificados por E = K y KH), para
cada G-anillo E-escisivo A existe de manera funtorial una sucesién de G-anillos E-escisivos

3B — §*B — §*B/3'B

y un morfismo natural A — F°B tal que

i) HY(X,E(A)) — HY(X,E(3"B)) es una equivalencia para todo G-conjunto sim-

plicial X.

ii) HS(X,E(F*B)) — * es una equivalencia si X es (G, JF)-cofibrante.

iii) H%(—, E(§*°B/F°B)) lleva (G, F)-equivalencias en equivalencias.
A partir de esta sucesion obtenemos que

HE(&(G,9),E(A)) - E(AxG)
es una equivalencia si y solo si el morfismo de conexion
QE(F*B/3°B x G)) — E(A x G)

es una equivalencia. En particular lo anterior se aplica cuando E = K, KH. En el teorema
3.9.2 probamos que bajo hipotesis mas fuertes en E, la cual la méas importante es que
E satisface escision (e.g. KH satisface pero K no), entonces la (G, F, E, A)-conjetura de
isomorfismo es verdad para cuando A es un anillo (G, JF)-propio. Si X es un conjunto
simplicial localmente finito con una accién de G entonces el G-anillo A es propio sobre X
si este es un dlgebra sobre el anillo Z&X) de funciones polinomiales finitamente soportadas
en X, la accién es compatible con la accién de G en Ay en X y Z&X) . A = A. Decimos
que A es (G, F)-propio si es propio sobre algtin conjunto simplicial X localmente finito en
el cual G actia de manera que los estabilizadores pertenecen a la familia &F. Por ejemplo
un algebra es de la forma (2) si y solamente si es propia sobre algin G-conjunto simplicial
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cero dimensional de la forma X = [[G/K;. La nocién de anillo (G, F)-propio usada
aqui es la nocion algebraica de la G-C*-algebra propia, y el teorema 3.9.2 es una version

algebraica del conocido hecho de que la conjetura de Baum-Connes es cierta para las
G-C*-algebras [11].



Introduction

Some concepts in operator algebras and in non-commutative geometry can fit into
algebraic contexts; this observation can lead to interesting results in algebraic settings. In
this thesis we analyse some items in a diccionary between operator algebras and algebras
without topological structure.

Algebraic kk-theory has been introduced by G. Cortinas and A. Thom in [5]. This is a
bivariant K-theory on the category of f-algebras where £ is a commutative ring with unit.
For each pair (A, B) of (-algebras a group kk(A, B) is defined. A category KR is obtained
whose objects are the f(-algebras and whose morphisms are the elements of the group
kk(A, B). The category K8 is triangulated and there is a canonical functor j : Alg, — &R
with universal properties. These properties are algebraic homotopy invariance, matrix
invariance and excision.

The definition of algebraic kk-theory was inspired by the work of J. Cuntz [6] and N.
Higson [12] on the universal properties of Kasparov K K-theory [19]. The K K-theory of
separable C*-algebras is a common generalization both of topological K-homology and
topological K-theory as an additive bivariant functor. Let A, B be separable C*-algebras
then

(3) KK.(C,B) ~ K!’(B) KK*(A,C) = K;,,.(A)

here K!P(B) denotes the K-theory of B and K}, (A) the K-homology of A. J. Cuntz in
[6] gave another equivalent definition of the original one given in [19]. This new approach
allowed to put bivariant K-theory in algebraic context. Higson in [12] stated the universal
property of KK whose algebraic analogoue is studied in [5], where also an analogue of
(3) is proved. On the algebraic side, if A is an f-algebra then

Kk(¢, A) ~ KH(A)

here KH is Weibel’s homotopy K-theory defined in [32]. We can start to build a dictionary
between Kasparov’s KK-theory and algebraic kk-theory in the following way
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Kasparov’'s KK-theory algebraic kk-theory
bivariant K-theory on bivariant K-theory on
separable C*-algebras (-algebras
C*-Alg Alg,
k:.C*Alg — KK j:Alg, — KRR ‘
k is stable with respect to 7 is stable with respect to
compact operators K My = U, en My

k is continous homotopy invariant | j is polynomial homotopy invariant ‘

k is split exact J is excisive ‘
k is universal for the properties 7 is universal for the properties
described above described above
KK,(C,A) ~ K.(A) kk, (¢, A) ~ KH,(A)

In this work we obtain an equivariant version of this dictionary. Let G be a countable
group and H be a Hopf algebra over a field. We introduce an algebraic kk-theory for
the categories of G-algebras, G-graded algebras, H-module algebras and H-comodule al-
gebras. We define an equivariant algebraic notion of matrix invariance. We study the
diferent cases separately. In the category of G-algebras, every object A is stably isomor-
phic to the equivariant matrix algebra Mg(A). In the category of G-graded algebras,
which we call C‘r—algebras, stabilization is with respect to the graded matrix algebra M.
The definition of G-stability was inspired by the definition of equivariant stability in G-
C*-algebras (see [24]). In the case of H-algebras, we fix a basis of H as a ¢-space and
we define an H-algebra called End} (3). The H-stability identifies A with End} (H) ® A.
This identification depends on a chosen basis of H. We put a finiteness condition in
End} (%) and Mg but these condition are different if we take 3 = ¢ G. The equivariant
matrix invariance in the case of H-comodule algebras is similar to that of H-algebras.
After that we introduce the appropiate brand of algebraic kk-theory and we establish
its universal properties in each case. We consider several properties wich are valid for
G-algebras, G—algebras, H-algebras and H-comodule algebras and we write X-algebra to
refer either of them. We can resume Chapter 1 in the following table



INTRODUCTION 9

Equivariant Kasparov’s K K-theory | Equivariant algebraic kk-theory ‘

bivariant K-theory on bivariant K-theory on
separable G-C*-algebras X-algebras
G-C*-Alg X-Alg
k:G-C*-Alg — KK€© j:X-Alg — RRY |

k is stable with respect to j is X-stable
K((*(G xN))

k is continous homotopy invariant | j is polynomial homotopy invariant ‘

k is split exact 7 is excisive ‘
k is universal for the properties 7 is universal for the properties
described above described above

In Chapter 2 we study adjointness theorems in equivariant kk-theory. We put in an
algebraic context some of the adjointness theorems which appear in Kasparov KK-theory.
Let G be a countable group and ¢ a commutative ring with unit. We define the functors of
trivial action and crossed product between R8 and RR®. The first adjointness theorem is
Theorem 2.1.4 which is an algebraic version of the GREEN-JULG THEOREM. This result
gives us the first computation related with homotopy K-theory. If G is a finite group, A
is a G-algebra, B is an algebra and |_(1;\ € ¢ then there is an isomorphism

Yay  kkS (BT, A) — kk(B, A x G).
In particular, if B = ¢ then
kk© (¢, A) ~ KH(A x G).

We consider a subgroup H of G, define induction and restriction funtors between R8¢ and
ARM and study the adjointness between them. If B is an H-algebra and A is a G-algebra
then there is an isomorphism

Yrr - kk®(Ind§; B, A) — kk" (B, Resh A).

This result gives us another computation. Taking H the trivial group and B = ¢ we obtain
that

KkC (09 A) ~ KH(A) VAeG-Alg.

Here (%) = @@ gec U with the regular action of G. More general, if H is a finite subgroup
of G and 1/|H| € ¢ we combine ¢, and ¢z and obtain

kkC(0C/M Ay~ KHAxH) VAeG-Alg.



10 INTRODUCTION

We also prove an algebraic version of GREEN IMPRIMITIVITY THEOREM and obtain that
KH(A x H) ~ KH(Ind§ A x G).

We also obtain an algebraic version of the Baaj-Skandalis theorem. We show that the
funtors A A

x G RRY — ARY Gx : RRS — ARC
are inverse category equivalences. Let J{ be a Hopf algebra with finite dimension. We
define functors between R and KR, the smash product and the trivial action. We study
the adjointness between them in theorem 2.5.4. We obtain that if H is semisimple, B is
an algebra and A is an H-algebra then there is an isomorphism

Y kk™(B7, A) — kk(B, A#5).
In particular,
Kk7(0, A) ~ KH(A#H).
In the last chapter we study isomorphism conjecures in the sense of [8]. If F is a
family of subgroups of G we consider model category structures on S¢ and Top®. With
this structure weak equivalences and fibration are object-wise. Cofibrant object are those

X such that the stabilizer subgroup G, is a subgroup of F for all x € X. We prove that
the following is a Quillen equivalence

Sing,

SC.

I«

We say that a functor H : S® — Spt from the category of G-simplicial set to the category
of spectra satisfies the (G, F)-isomorphism conjecture if for the cofibrant replacement
7 : (G, F) — * in the F-model category mentioned aboved, the map

H(m) : H(E(G, ) — H(x)
is an equivalence. If E : Z-Cat — Spt is a functor and R is a unital G-ring, one constructs,
following Davis-Luck [8], a functor

HY%(—,E(R)) : S® — Spt

such that HS(x,E(R)) = E(R x G). The (G,J,E, R)-isomorphism conjecture is the
(G, F)-conjecture for the functor H%(—, E(R)). We show that under very mild assump-
tions on E, the STANDING ASSUMPTIONS 3.2.5 (which are satisfied for example when E
is either K or KH, see propositions 3.4.18 and 3.5.3), H%(—, E(A)) is defined not only for
unital G-rings, but also for all E-excisive G-rings A, that is all G-rings on which E-salisfies
excision. Moreover whe show that if

(4) 0—-A —-A—-A"—0
is an exact sequence of E-excisive rings and X is a G-simplicial set, then
HY(X,E(A")) — H%(X,E(A)) — H(X,E(A"))

is a homotopy fibration. This is a basic property needed to establish an algebraic analogue
of the Dirac-dual method which is used to prove the Baum-Connes conjecture for some
groups. Another basic property, which provide us with enough sequences (4) in which at
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least one of the rings satisfies the isomorphism conjecture, is Theorem 3.7.3 which shows
that if E satisfies the standing assumtions and A is an E-excisive G-ring of the form

(5) A= mdg, B;

with B; a K;ring and K; € F for all 4, then the functor H(—, E(A4)) maps (G,)-
equivalences to equivalences. In particular the (G, J, E, A)-isomorphism conjecture holds.
We use this in Section 8 to show that under some additional assumptions (which are still
satisfied if E = K, KH, see 3.8.1), for each E-excisive G-ring A there is a functorial exact
sequence of E-excisive G-rings

F°B — F°B — SOOB/SOB

and a natural map A — F°B such that

i) HS(X,E(A4)) — HS(X,E(3"B)) is an equivalence for all G-simplicial set X.

i) H(X,E(§*B)) — * is an equivalence if X is (G, J)-cofibrant.

iii) H%(—, E(§*°B/3"B)) maps (G, F)-equivalences to equivalences.
It follows that the assembly map

HE(&(G,9),E(A)) — E(AxG)
is an equivalence iff the conecting map
QE(F*B/3°B x G)) — E(A x G)

is an equivalence. In particular all this applies when E = K, KH. We also show in Theorem
3.9.2 that under stronger hypotesis on E, of which the main one is that E satisfies excision
(e.g. KH satisfies this but K does not), then the (G,JF, E, A)-isomorphism conjecture is
true whenever A is (G, F)-proper. If X is a locally finite simplicial set with a G-action
then a G-ring A is proper over X if it is an algebra over the ring Z) of finitely supported
polynomial maps on X, the algebra action is compatible with the actions of G on A and
on X, and ZX) - A = A, We say that A is (G, JF)-proper if it is proper over a locally
finite simplicial set X on which G acts with all stabilizers in F. For example an algebra
is of the form (5) if and only if it is proper over the zero-dimensional G-simplicial set
X =]]G/K,.

We remark that the notion of (G, F)-proper ring used here is the algebraic analogue
of the notion of proper G-C*-algebra, and that Teorem 3.9.2 is an algebraic version of the
known fact that Baum-Connes conjecture holds for proper G-C*-algebras [11].






CHAPTER 1

Equivariant algebraic kk-theory

Algebraic kk-theory has been introduced by G. Cortinas and A. Thom in [5]. This is a
bivariant K-theory on the category of (-algebras where £ is a commutative ring with unit.
For each pair (A, B) of (-algebras a group kk(A, B) is defined. A category KR is obtained
whose objects are the f-algebras and whose morphisms are the elements of the group
kk(A, B). The category K8 is triangulated and there is a canonical functor j : Alg, — &R
with universal properties. These properties are algebraic homotopy invariance, matrix
invariance and excision.

The definition of algebraic kk-theory was inspired by the work of J. Cuntz [6] and N.
Higson [12] on the universal properties of Kasparov K K-theory [19]. The K K-theory of
separable C*-algebras is a common generalization both of topological K-homology and
topological K-theory as an additive bivariant functor. Let A, B be separable C*-algebras
then

(6) KK.(C,B) ~ K!’(B) KK*(A,C) = K;,,.(A)
here K!°?(B) denotes the K-theory of B and Kj;,, (A) the K-homology of A. J. Cuntz in
[6] gave another equivalent definition of the original one given in [19]. This new approach
allowed to put bivariant K-theory in algebraic context. Higson in [12] stated the universal
property of KK whose algebraic analogoue is studied in [5], where also an analogue of
(6) is proved. On the algebraic side, if A is an f-algebra then

kk(¢, A) ~ KH(A)

here KH is Weibel’s homotopy K-theory defined in [32]. We can start to build a dictionary
between Kasparov’s KK-theory and algebraic kk-theory in the following way

13
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Kasparov’'s KK-theory algebraic kk-theory
bivariant K-theory on bivariant K-theory on
separable C*-algebras (-algebras
C*-Alg Alg,
k:.C*Alg — KK j:Alg, — KRR ‘
k is stable with respect to 7 is stable with respect to
compact operators K My = U, en My

k is continous homotopy invariant | j is polynomial homotopy invariant ‘

k is split exact J is excisive ‘
k is universal for the properties 7 is universal for the properties
described above described above
KK,(C,A) ~ K.(A) kk, (¢, A) ~ KH,(A)

In this chapter we obtain an equivariant version of this dictionary. Let G be a count-
able group and H be a Hopf algebra over a field. We introduce an algebraic kk-theory
for the categories of G-algebras, G-graded algebras, H-module algebras and H-comodule
algebras. We define an equivariant algebraic notion of matrix invariance. We study the
diferent cases separately. In the category of G-algebras, every object A is stably isomor-
phic to the equivariant matrix algebra Mg(A). In the category of G-graded algebras,
which we call C‘r—algebras, stabilization is with respect to the graded matrix algebra M.
The definition of G-stability was inspired by the definition of equivariant stability in G-
C*-algebras (see [24]). In the case of H-algebras, we fix a basis of H as a ¢-space and
we define an H-algebra called End} (3). The H-stability identifies A with End} (H) ® A.
This identification depends on a chosen basis of H. We put a finiteness condition in
End} (%) and Mg but these condition are different if we take 3 = ¢ G. The equivariant
matrix invariance in the case of H-comodule algebras is similar to that of H-algebras.
After that we introduce the appropiate brand of algebraic kk-theory and we establish
its universal properties in each case. We consider several properties wich are valid for
G-algebras, G—algebras, H-algebras and H-comodule algebras and we write X-algebra to
refer either of them. We can resume this chapter in the following table
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Equivariant Kasparov’s K K-theory | Equivariant algebraic kk-theory ‘

bivariant K-theory on bivariant K-theory on
separable G-C*-algebras X-algebras
G-C*-Alg X-Alg
k:G-C*-Alg — KK€© j:X-Alg — RRY |

k is stable with respect to j is X-stable
K((*(G xN))

k is continous homotopy invariant | j is polynomial homotopy invariant ‘

k is split exact 7 is excisive ‘
k is universal for the properties 7 is universal for the properties
described above described above

1. JH-algebras and .‘J:C-algebras

In this section we set up the notation and terminology related to Hopf algebras, module
algebras and comodule algebras. We follow [25] for this part.

1.1. Hopf algebras. Let ¢ be a commutative ring with unit. In this section all tensor
products are over /; we write ® = ®,. An f(-algebra is an /-bimodule A together with an
(-linear map called multiplication i1 : A® A — A. It is associative if the following diagram

1S commutative:

AR A® A HEC A ® A (associativity)

| |»

A®A A

An (-algebra A with unit is an associative f-algebra A together a with an f-linear map
called unit v : £ — A such that the following diagram is commutative:

AR A (unit)
=7
(A o Al

L

The two lower maps are given by scalar multiplication. We will denote by 14 := u(1,) and
we will write ab for u(a,b). Let V., W be f-modules. Let us denote by 7: VW — WV
the twisting map, 7(v ® w) = w ® v. An f-algebra A is commutative if g o7 = p.
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An (-coalgebra is an /-module C' together with an ¢-linear map called comultiplication
A : C — C ® C such that the following diagram is commutative

A

C CeC (coassociativity)
Al lA@id
CoCzC0®CeC

An (-coalgebra with counit is a coalgebra C' together with an /-linear map called counit
€ : C' — ( such that the following diagram is commutative:

=N,

(counit)

(e C A C®/
Cad

We say that C' is cocommutative if 70 A = A. An (-module (B, u,u, A, €) is a bialgebra
if (B, p,u) is an algebra with unit and (B, A ¢) is a coalgebra with counit such that A
and € are algebra morphisms. We will use the Sweedler notation or sigma notation for A.

If ¢ € C we write
Ac:ZC1®C2

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of C'. The
power of the notation becomes apparent when A must be applied more than once. If we
apply A (n — 1)-times to ¢ we can write

An,1(6>2201®02®...®6n

because of the coassociativity.
An l-module (H, p,u, A€, S) is a Hopf algebra if (H, p,u, A €) is a bialgebra and
S H — H is a bijective ¢-linear map such that

D (Shi)hy = e(h)lsc =Y m(Shy)  VheX

The map S is called an antipode of H. We will write S for the inverse of S. A map
f: H — XK is a Hopf morphism if it is a bialgebra morphism and f(Ssch) = Sacf(h).

ExaMPLE 1.1.1. Let G be a group and ¢ a commutative ring with unit. The group
algebra ¢ G of G is a Hopf algebra with the following structure:

(G = {} cq 40y :ay € L and {g € G : ay # 0} is a finite set }
wlGAHG — LG dg @ Op +— Ogn, u:l—LG u(l)=20,
AAG—-IGRUG 0g = 0y @ 0y e lG—1l €,)=1

S 4G — G 0g > 0g—1
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1.2. H-algebras. Let H be a Hopf algebra. A left H-module A is an /-module with
an (-linear map v : H ® A — A such that the following diagrams commute:

HoHo A2 Ko A (A< 5% A
id®'yl lW l’Y
scalar mult.
H® A A A

5

We will write h - a for v(h ® a). A left H-module algebra is an (-algebra A and a left
H-module structure on A such that

e h-(ab) => (hy-a)(hy-b), for all h € H, a,b € A.
o h-1y=¢€(h)la, forall h € H.

We call A an H-algebra for short. A map f: A — B is an H-algebra morphism if

o f(ab) = f(a)f(b) for all a,b € A.
e f(h-a)=h- f(a)forallae A, h € H.

EXAMPLE 1.1.2. For any algebra A we can consider the trivial action h - a = €(h)a.
In this case we say A is a trivial H-algebra.

EXAMPLE 1.1.3. Let M be a left H-module. Put
Endy(M) ={¢: M — M : p is (-linear},

Endy(M) is an f-algebra with the composition and is an H-algebra with the following
action

(h-@)(m) = hy-@(S(hg) - m) ¢ € Endy(M), h e H
More generally we have the following example.

EXAMPLE 1.1.4. Let M be an H-module and let A be an H-algebra. If ¢ € End,(M)
and h, k € H we put

(7) onk € Endg(M)  @pp(m) = h-p(S(k)-m)

It is easy to check that (o) = Panin- Define the following action in End,(M) @ A

h-(p®a) =) Pnn@hs-a
Let us see that End,(M) ® A is an H-algebra,
k-(h-(p®a)) = k-0 nn ®h2-a)
= 2 (Pnihs)kr s ® K2+ (2 - a)
= D Phihikshs @ (k2ha) - a

= (kh)-(¢p®a)
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h-((p@a)(p®a)) = 2(¢P)nhs @ hy - (ad)
= 2(p@)nny @ (ha - a)(hs - a)
= 2l (p(&(S(hs)- ) @ (h - a)(e(hs)ha - a)
= 2l ((S(hs)ha - @(S(he)- ) ® (he-a)(hs - a)
= 2 PhihsPhahg ® (h2 - a)(hs - a)
= Xh-(¢®a)hy-(p©a)

1‘(@®a):@1,1®1-a=90®a

he(d@1a) =Y idy, py @hg-1a =Y idp, p, @€(ho)la =Y iy, p, @14 =id @14

1.3. ff-f—algebras. A left H-comodule A is an /-module with an ¢-linear map p: A —
H ® A such that the following diagrams commute:

A—L s HeA A-Ll-HoA
pl lA@id \le@)id
1®id
HRIA—HROIHR A R A
id ®p

Following the Sweedler notation we write p(a) = > a_1 ® ag. A left H-comodule algebra
A is an (-algebra and a left H-comodule such that

e /4 is a morphism of left H-comodules: p(ab) = > a_1b_1 & agbg Va,be A

e uy is a morphism of left H-comodules: p(14) =1® 14

We call A an U:C—algebra for short; note that H does not denote any object. A map
f: A — Bis an .‘J:C—algebra morphism if it is an algebra morphism and a comodule
morphism, that is:
e f(ab) = f(a)f(b) for all a,b € A.
e ppo f=(1d®f)o pa.
ExXAMPLE 1.1.5. Suppose /¢ is a field. Let A be an .‘J:C—algebra and M an JH-comodule

with finite dimension over ¢. Then End,(M) ® A is an H-algebra with the following
structure

p: Endo(M)©A — HOEnd (M)®A  p(p®a)(m) = (p(mo))-1a-15(m_1)®(p(mo))o®ag

1.4. Dual of Hopf algebras. Let (H, p,u, A, ¢, S) be a Hopf algebra. The dual of
His
H ={p:H — (: pis (-linear}.
We consider the dual of the multiplication A*, the dual unit ¢*, the dual counit u* and the
dual antipode S*. We also want to consider the dual comultiplication but some difficulties
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arise. The image of p* : H* — (H ® H)* may not lie in H* @ H*. The finite dual of H is
defined as

H={peH": w(p) € H* @ H*}
There are many other equivalent conditions which define H® (see for instance [25], Chapter
9). One of them is

p(p) € H'@H" <= dim(p — H) < o0 p—H:={p—heH: (p+h)(k)=qphk)}

If H is finite dimensional with basis B = {g1, -, gn}, the set B* = {¢},---,g’} is a
basis of H* = H°. In this case we can write the dual comultiplication in the following
way

o=p" H - H QH" Zgz (o~ g:)

PROPOSITION 1.1.6. Let (H, u, u, A, €, S) be a Hopf algebra. Then (H°, p*, u*, A* €, S*)
is also a Hopf algebra.

PROOF: See [25] Theorem 9.1.3. O

1.5. ind-categories. In Chapter 1 we are going to work with directed diagrams of
H-algebras and .‘J:C—algebras.

Let € be a category. The category of ind-objects of C is the category ind-€ of directed
diagrams in €. An object in ind-€ is described by a filtering partially ordered set (1, <)
and a functor A : I — €. The set of homomorphisms in ind-C is defined by

hom;, 1.e((A, 1), (B, J)) := lim colim home(A;, B;).

el jed

Note each homomorphism in ind-C is represented by a natural transformation o : [ — J
that is cofinal (i.e. o([) is cofinal in J) and a family of homomorphisms {f;},c; in
home(A;, By(iy) such that if i < j the following diagram is commutative

AL B,

|

A — = B
T

o(4)

We write f(i) for (7). Two families of homomorphisms in €, {f; }ie; and {f; }ies represent
the same homomorphism in ind-@ if for all € I there exists j(i) € J such that f(7), f(i) <
j(i) and the following diagram is commutative

/ \N
\ e
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Note that there is a natural functor ind-(ind-C) — ind-C mapping

(A, Ji), 1) = (Ay, | Ji x i)
iel
We shall use this functor to collapse any ind-ind-object to an ind-object. Any functor
F . C — D extends to ind-F' : ind-€C — ind-D by

(8) F(Ajiel)=(F(4),icl)

We shall identify objects of € with the full subcategory of ind-€ consisting of the constant
ind-objects.

2. Homotopy invariance

In this section we recall the notion of algebraic homotopy and give a brief exposition
of some of its properties. In particular we discuss some properties of homotopy invariant
functors. All algebras are over £. H is a fixed Hopf algebra. We consider several properties
which are valid for H-algebras and JA'C—algebras, we write X-algebra to refer either of them.
In this section tensor products are over Z.

2.1. Algebraic homotopies. Let A be an X-algebra. Put
AR = Alt] = Ay Z]1).

Note that A[t] is an X-algebra. Let write by c4 : A — A[t] for the inclusion of A as
constant polynomials in A[t] and ev; : A[t] — A for the evaluation of ¢ at i (i = 0,1).
Note these morphisms are morphisms of X-algebras and that c4 is a section of ev;.

Let fo, fi : A — B be morphisms in X-Alg. We call f, and f; elementarily homotopic
if there exists a morphism H : A — B[t] such that ev; H = f;, i = 0,1. We denote it by
fo ~e¢ fi. A morphism f : A — B is an elementary homotopy equivalence if there exists a
morphism ¢ : B — A such that fog~,idg and go f ~, id4.

An X-algebra A is elementarily contractible if the null morphism and the identity mor-
phism are elementarily homotopic. In other words, A is elementarily contractible if there
exists a morphism f : A — A[t] such that evgof =0 and ev; of = id4.

EXAMPLE 1.2.1. Let A be an X—algebra. The path algebra PA := {p € Alu| : p(0) =
0} is elementarily contractible and the homotopy is given by

PA— PA[t] > au'— > a;tu)”
i>1 i>1

EXAMPLE 1.2.2. Let A = ®;enA; be an Nsg-graded X-algebra. The inclusion ¢ : Ay —
A is an elementary homotopy equivalence. The projection p : A — Ay is the homotopy
inverse of ¢ because p ot =1idy, and ¢ o p ~, id4 where the homotopy is given by

H:A— Alt] H(Zai):ao%—Zaiti.
ieN i>1
Note PA is an Nsp-graded X-algebra.

It is easy to check that elementary homotopy is a reflexive and symmetric relation. In
general, it is not transitive.
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DEFINITION 1.2.3 (algebraic homotopy). Let f,g : A — B be morphisms of X-
algebras. We call f and g homotopic, and write f ~ g, if they can be connected by
a chain of elementary homotopies,

fNehONe"'NehnNeg'

We denote the set of homotopy clases by [A, B]x. A morphism f: A — B is an homotopy
equivalence if there exists a morphism ¢g : B — A such that fog~idg and go f ~ id4.

DEFINITION 1.2.4. An X-algebra A is contractible if the identity morphism and the
null morphism are homotopic.

REMARK 1.2.5. Let A, B be X-algebras. We suppose f,h,g: A — B are morphisms
of X-algebras such that f ~. h ~. g. We can consider morphisms H,G : A — Blt] such
that

evpo H=f evyoH=h evjoG=g evyoG=h
Then we have a morphism R : A — B[t] x B[t] such that the following diagram is
B

commutative
A\ e evg opr; o R=f evi oprg o R=g
~ - R

h EN

B t pr2
[t] % Blt] 2= By
prll evp

Bt] B

evi
Suppose there exists a chain of elementary homotopies

fNe hl ~e - e hn—l ~e 4.
We denote this chain in the following way

Hq Ho Hs Hy 1 H,
(9) o> e e . . .— o S e

f hl hg hn—l g

where the beginning of the arrow denotes de value at 0 and the end of the arrow denotes
the value at 1. There exists a morphism R : A — Bl[t] x (B[t] x ... x (B[t] x B[t])) such
B B B B

that the following pull back diagrams commute

A\

Hn—l

evy
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(BIY) % BI)) 2 Bl x ... x (Bt x Blt)

[ § levooprl
evy B
Note that
(10)
Bl % (BIt) X . x (Bl % BI) = {(mr(t)...pa(0) : pilt) € B pi(1) = pia(0)}

We have evyg o pry o R = f and evy o prg o R = g where pry is the projection to
the last coordinate. It is equivalent to have the chain of homotopies (9) and to have the
morphism R.

2.2. Homotopies of ind-X-algebras. Let A = (A,I) and B = (B, J) be ind-X-
algebras, we define
[A, Blx = 11161} cgygn[Ai, Bjlx
Note that for each i € I and j € J there is a natural map
hOHl:’x_Alg(AZ, BJ) — [AZ, B]]x
which sends each f to its homotopy class [f]. We also have a map
(11) homind—fx—Alg(A’ B) — [A, B]x.

We say two morphisms in ind-X-Alg are homotopic if their images by (11) are equal.
An ind-X-algebra A is contractible if the null morphism and the identity morphism are
homotopic.

2.3. Homotopy invariant functors. A functor F': X-Alg — C is homotopy invari-
ant if it maps the inclusion c4 : A — A[t] to an isomorphism. The following Lemma shows
an equivalent definition.

LEMMA 1.2.6. Let F': X-Alg — C be a functor. F' is a homotopy invariant functor if
and only if F/(f) = F(g) when f ~ g (or equivalenty when f ~,. g).

O
2.4. The simplicial algebra A%. Define the following simplicial ring
(12) ZA ) =22 AT =ty ) < 1=t >

O:[n] —[m] — O :ZA" -7~
0 siO7 i) =10
O*(t;) = S A1
(%) { St 5070 #0
Let A be an X-algebra. Define
AR 1 [n] — AR AR = ARy 7~
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Note A2 is a simplicial X-algebra because A2" is an X-algebra with v ®id or p®id. The
face maps and degeneracy maps are given by

dr: AAT — AN A () (to, . tet) = pltos - tii1, 00t ) 0<i<n n#0
st AA"  pamt! s (p)(to, -+ s tnr1) = D(to, -t + i1, tjye, o tngn) 0<j<n
If A has unit, it is easy to check that
AN = Alto, 1]/ < 1—tg—t > A[t]  do* =evg  di* =evy

We can enrich the category X-Alg over simplicial sets, as follows. We have a mapping
space functor

homf_ g : X-Alg™ x X-Alg =8 (4, B) = ([n] = homy_p14(A, B2"))
Let p1: ZA @ ZA — ZA be the multiplication map. For A, B, C' € X-Alg we define

©: hom.:)C—Alg(B’ C>Xhom5C—Alg(A’ B) — hom.:)C—Alg(A’ ) (9©f)n = (idc @u) (g™ " ®Ff)

2.5. Subdivision of simplicial sets. We will recall some concepts from [10], Chap-
ter 3, Section 4. Recall that the nondegenerate simplices of the standard n-simplex

A" = homa(, [n])

are the monic ordinal number maps [m| — [n]. There is exactly one such monomorphism
for each subset of [n] of cardinality m + 1. It follows that the nondegenerate simplices of
A" form a poset PA", ordered by the face relation, and this poset is isomorphic to that
of the nonempty subsets of the ordinal number [n], ordered by inclusion. The subdivision
of A™ is the nerve of the poset PA". We write it as sd A”. If X is a simplicial set, the
subdivision of X, is

sd X = colimg.an_,x sd A".
The map of posets PA™ — [n] given by [vg, vy, ..., vx] — v, induces a natural map
(13) h:sd A" — A"
which it is called last vertex map.

EXAMPLE 1.2.7. Consider A? and its vertices vy, v1, v2. The vertices of sd A? are vy, vy,
va, {vo, v1}, {vo, va}, {v1,v2}, {vo,v1, v}, the 1-simplices are [{vo}, {vo, v1}], [{v1}, {vo, v1}],
[{Ul}v {Ulv U2}]7 [{U2}7 {Uh UQ}]? [{U0}7 {U()? UQ}]? [{UQ}v {U07 U2}]7 HUOv Ul}v {U07 U1, U2}]7 [{Ulv U2}7 {U07 U1, UQ}]?
HUOv U2}7 {U07 U1, U2}]7 [{UQ}v {U07 U1, UQ}]? [{U0}7 {U()? U1, UQ}]? [{U2}7 {U07 U1, U2}]) etc.
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v2

{vg, vo {v1,v2}

{vo,v1,v2}

vo vy
{vo,v1}

2.6. The algebra of polynomial functions on a simplicial set. Let A be an
(-algebra and X be a simplicial set. We define

Ar—X

AY = lim A2" :/ H A2 = mapg(X, A®)

zeXn
If (K, x) is a pointed simplicial set, put
AES = mapg (K, %), A®) = ker(mapg(K, A®) — mapg(, A%)) = ker(AX — A)
From [5] we have the following lemmas.

LEMMA 1.2.8. Let j: K — Lin S, x € K and A € Alg. If j is a cofibration, then

e The map A* — AX is surjective.
e The sequence 0 — AKX — AL . AKX _, () {5 exact.

PROOF: See Lemma 3.1.2 in [5] O

LEMMA 1.2.9. Let K be a finite simplicial set, x a vertex of K, and A an algebra.
Then ZX and ZU$*) are free abelian groups and there are natural isomorphisms

A 7K = AK A ZES =5 A
PROOF: See Lemma 3.1.3 in [5] O
Let A be an X-algebra and K a finite simplicial set, by Lemma 1.2.9 A% and AK™»)

are X-algebras with v ® id or p ® id. We will denote by sd® X the following pro-simplicial
set

sd® X B x Lsarix L Madax B x

where h is the morphism defined in (13). If A is an X-algebra, we consider the following
ind-X-algebra

n—1 n
sd® X*: AX — AdX g X gt X

The next picture shows sd®* A!. The map h contracts the dashed lines to a point.
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Sd4A1—><———»4—»4————»4—»4————»4—»4————»4—
L h
sd? Al > - - - - - - — — -
L h
sd? Al {0, {UO’UIE, o 31, {vo, v1}}
Lk Yo {vo, v1} U1
{vo, v1}
sd Al ———-
Vo U1
L h
Al Vo (%]
Note that

A = {(p1,-- -, p2n) : p2i(0) = p2iy1(0) p2j—1(1) :p2j(1) i=1,.. 2" -1 j=1.
and

B Asd”A1 _>Asd"+1A1

2

(]91,172,173, cee 7]92"71,172”) — (plap1(1)7p2(1)7p27p37p3(1)7p4(1)7 e 7pQ”flap2”71(1)7p2”71(1)7p2")

Let us see that the algebra defined in (10) is isomorphic to A%" 2", In fact, put o : A[t] —
Alt], o(p)(t) = p(1 —t) then the isomorphism is the following

Alt] >Af Alt] >Af >Af Alt] = Asdm At (p1,P2, P35 - -, Pon) = (P1,0(P2),P3, - .., T(P2n))

. s

~
2™ times

For every n € N define

ev; AT 4 = 0,1 evo(pr,...,pan) =evo(p1) evi(pi,...,pem) = evi(pan)

REMARK 1.2.10. Two morphisms f,g : A — B of X-algebras are homotopic if and
only if for some n there exists a morphism H : A — B¢" A such that evgoH = f and
evi oH = ¢. In other words, f ~ ¢ if and only if we have an morphism H : A — Bsd"A
in ind-X-Alg such that evooH = f and ev; oH = g.

LEMMA 1.2.11. The X-algebra AG4*A'%) ig contractible.

PROOF: Put

B={(pr,...,p2) : pi € Al p1(0) = 0, pi(1) = piga (0)} = AT A
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Let H : B — B[t] x ... x BJt] such that
B B

H(pla < 7p2k) = (Ql(pla <o 7p2’“)7 - '7Q2k(p17 < 7p2k>)

Qi(ph s ,ka) - (pl(u)7 s upz—l(u)7pZ(Ut)7pz(t)7 s 7pz(t))
Note H is well-defined
evio Qi(p1,- .. pae) = (Pi(u), ..., pii(u), pi(u),pi(1),...,pi(1))
= (pi(u),...,pic1(w), pi(w), pis1(0), ..., piy1(0))
= €Vpo Qi—i—l(plu"'prk)

and

evoo prio H(pi,...,par) = evo(pi(ut), pi(t) ... p1(t)) = (p1(0),p1(0) ..., p1(0)) = 0

evioprgo H(py, ... ,ka) = eVl(pl(U), ce ,ka_l(u),ka(ut)) = (p1(u), ..., par_1(u), por(u))
[l

COROLLARY 1.2.12. The ind-X-algebra A®4°A"%) is contractible. O

3. Matrix invariance

3.1. Matrix algebra. Let A be a infinite set and let Pr(A) be the set of its finite
sets. We consider the inclusion relation in Pr(A) and we obtain a poset. Let X € Pp(A)
and define

My ={p: X x X — Z}.
For each (z,y) € X x X we consider

0 (s,1) # (z,9)
Every matrix in My is a Z-linear combination of elements e,,, x,y € X. If X C Y we
define ¢ : Mx — My in the obvious way

oy X XX 57 ew(s,t):{ 1 (s,t) = (z,9)

z, if (x, e X xX
v Mx — My o)z, y) = { g( & ott(lergv)ise

Put
M, == {Mx}xeprny Mg = colimMy My = Mo ® My,

Note M, and M|, are ind-algebras and My is an algebra with the multiplication given
by

e ify==z
The set
FIA = {m € ZMN M‘A| - M‘A| D) M|A‘ m}
consists of those matrices in Z*** having finitely many nonzero elements in each row and
column. Every element 7" in '} can be written as a formal sum

T = Z a;;€;; with a;; € Z such that Vi € A the sets {j : a;; # 0} and {j : a;; # 0} are finite sets

ijEA
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LEMMA 1.3.1. Let V, W € Ty such that VW = 1. Define
Wi My — My (A =WAV My — M, $(A) = WAV 1@ : My — My

1 is an morphism of algebras, 1& and 1 ® ¢ are morphisms of ind-algebras. If v denotes
the inclusion in the first entry of M,, then i) is homotopic to . The morphisms v and
1 ® v are homotopic to the identity.

PROOF: See Lemma 4.1.1 in [5]. O

As A is a infinite set, we can choose a subset of A biyectable to N. Suppose A = N x \.
In order to define a direct sum of matrices in M| consider, n,m € N, g,h € A and the
elements in T

1 if m=2n g=nh

i 1 if 2m=n g=h
V(n,g,m,h) = { 0 otherwise

Vi(n,g,m, h) = { 0 otherwise
_J 1 if m=2n+1 g=h
W(n,g,m,h) = { 0 otherwise
Define @ : M|y X M)y — M)y as follows
0P Pp=VeV*+WeW™.

There is also a tensor product defined in M. Let n: (N x A) = (N x ) x (N x A) a
biyection. Define x : M|y X M|y — My as

[ 1if 2m+l=n g=h
W(n,g,m,h) = { 0 otherwise

(o *@)(x,y) = ¢(n(z))e(n(y))
We obtain that (M), ®,*) is a homotopy semiring, see Section 4.1 of [5]. If A = N we
will denote M|y = My and My = M.

3.2. Matrix invariant functors. Let A be an X-algebra. We define
M,A = M, @7 A MoA = My @7 A

which are X-algebras in the obvious way. Denote by ¢, : Z — M, and (o, : Z — M, the
inclusions at the upper left corner. A functor F': X-Alg — € is M,,-stable (M..-stable) if
F(t, ®1d4) (F(teo ®1id4)) is an isomorphism for all A € X-Alg.

4. Extensions and classifying maps
4.1. Extension. Following [5], a sequence of morphisms in ind-X-Alg
(14) AL B

is called an extension if f is a kernel of g and ¢ is a cokernel of f.

Let X-mod be the category of X-modules with linear and equivariant maps. Let
F : X-Alg — X-mod be the forgetful functor. This functor can be extended to F': ind-X-
Alg — ind-X-mod as is shown in (8). We will call an extension (14) weakly split if F'(g)
has a section in X-mod.
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4.2. Path extension. Let S' be the simplicial circle A'/0A!, we define
Q=75

The path extension of an X-algebra A is the extension iduced by the cofibration 0A! C Al
see 1.2.8.

(evo,evi)

(15) QA ——— A 29 4 A

The extension (15) is weakly split because we have a linear and X-equivariant section of
(evg, evy)

(16) (a,b) — (1 —t)a + tb.

4.3. Universal extension. Let M be an H-module. Consider in
T(M)=PM*" M =M. oM
—_—

nzl n-times

the usual structure of H-module. The action in M®" is given by
h(m1®m2®®mn) :Zh1m1®h2m2®®hnmn

It is easy to check that T(M) is an H-module algebra with this action. Similarily, let R
be an H-comodule. Consider in

T(R) = P R

n>1
the usual structure of H-comodule. The coaction in R®" is given by
p(r'e@re...er") :Zrilﬁl...rL@ré@...@r(’}

It is easy to check that T'(R) is an H-comodule algebra with this coaction. Both con-
structions are functorial hence we consider a functor 7" : X-mod — X-Alg. Put

T:=ToF :X-Alg — X-Alg
If A is an X-algebra there exists an X-algebra morphism
na:TA) — A e ®...®a,) =ai...a,

and an X-module morphism j4 : A — T(A) which is the inclusion at the first summand
of T(A).

REMARK 1.4.1. Let A, B be X-algebras, it is easy to check that
homye_ a1 (T(A), B) ~ homye_oq(F(A), F(B)).

Hence if we have a morphism A — B in X-mod, we can extend it to a morphism T'(A) — B
of X-algebras. It shows that T is the left adjoint of F'.
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The counit of the adjuntion is n4 : T(A) — A. It is surjective (see [22], IV.3 Thm 1).
We define

J(A) :=kerna.
The universal extension of A is
J(A) 4, T(A) 4, 4.

PROPOSITION 1.4.2. Let A L B % C be an weakly split extension. There exists a
commutative diagram of extensions as follows

A—L -p—t.¢
ET éT Tldc
J(C) ——=T(C) ——=

where the map & is unique up to elementary homotopy.

PROOF: Let s be a section of F(g) and define € = g o T(s), then

ne=ncoT(g)oT(s)=gongoT(s)=gok.

Define ¢ : J(C) — A as the restriction of £to J (C). This construction of £ depends
on which s is chosen. If &,& : J(C') — A are morphisms constructed taking different
sections of F'(g) we will show &;, & are homotopic. Define a linear equivariant map

H:C— Alt] H(c)=(1-1t)&(c)+ t&(c).

By 1.4.1 it extends to a homomorphism and there exists a morphism H : T'(C') — Aft] in
X-Alg such that

evooH o) =& evi oH o) = &
]

We call ¢ the classifying map of the extension A 1, B % . We abuse notation because
we shall work with maps up to homotopy.

PROPOSITION 1.4.3. ([5] 4.4.2) Let
A—B——C
fl lh lg
Al > B/ > C/
be a commutative diagram of weakly split extensions. Then there is a diagram
J(C)——= A
J(g)l lf
J(C) —= A

of classifying maps, which is commutative up to elementary homotopy.
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PROPOSITION 1.4.4. ([5] 4.4.3) Let L be a ring and A an X-algebra. Then the exten-
sion

is weakly split, and there is a chioce for classifying map ¢4 : J(A®z L) — J(A) @z L
of this extension, which is natural in both variables. O

COROLLARY 1.4.5. ([5] 4.4.4) Let K be a finite pointed simplicial set. There is a
homotopy class of maps

(18) Sax + J(AT) = J(A)"

natural with respect to K, which is represented by a classifying map of following the
extension

J(A)K B, p(a)s 1, 4K

Naturality means that for any map of finite pointed simplicial sets f : K — L, the
following diagram commutes

J(AK) —= J(A)K

J(f*)l lf*

J(AF) —= J(A)F
O

4.4. Loop extension. Let A be an X-algebra. The path algebra of Ais PA := P®zA
with P := Z(A"*)_ The loop extension of A is

(19) QA — PAZL A

Note it is naturally weakly split because a — at is a natural section of F'(evy). Thus we
can pick a natural choice for the classifying map of (19). We call it

pa: J(A) = QA

Let
P.— Z(sd‘ Al %)

we have an extension of ind-X-algebras
AS = A4 St ASY L pA &9
which is naturally weakly split. The classifying map J(A) — A% is the following compo-
sition
(20) J(A) 24 04 L 48

where h is induced by the last vertex map. We will sometimes abuse notation and write
pa for the map (20).
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4.5. Mapping path extension. Let f : A — B be a morphism of X-algebras. The
mapping path extension of f is the extension obtained from the loop extension of B by
pulling it back to A

Pj:=PBxzA QB——>PBxpA—>A (E))

N

QB PB B (E)

L evy

We call Py the path algebra of f. Note the extension (E') is naturally weakly split because
5(a) = (s o f(a),a) is a natural section of 7, where s is the natural section of (E) given
in the Section 4.4. We define

(21) P;:=PBxpA BY - PBxzAL
Note p; := ppJ(f) is the classifying map of the extension (21).

5. Excision

5.1. Triangulated categories. We recall the definition of a triangulated category
[21], [5]. We will express the definition in terms of a loop functor Q. A triangulated
category (7,€2, Q) is an additive category T with an equivalence 2 : T — T and a class Q
of sequences in T called distinguished triangles

(T) OC - A—B—-=C

satisfying the following axioms:

TRO: Any sequence isomorphic to a distinguished triangle is a distinguished triangle.
The sequence
QA —0— A
is a distinguished triangle for every object A in 7.
TR1: For any morphism o : A — B in 7T, there exists a distinguished triangle of the
form

OB—-C—-A%B
TR2: Consider the two triangles

aclasphco 0B 2, 00 =L 4% B

If one is distinguished, then so is the other.
TR3: For any solid arrow commutative diagram

ot 42op o

RN

i / ! i
OC' —= A —= B —~C

there exists a filler j : A — A’ which makes the whole diagram commutative.
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TR4: Let  : A — B and § : B — C be morphism in J. We set v = fa. There
exists a commutative diagram

020 ——= 0D —— 0B 2o qc
O D/// 1 D/// O

h
Oc —L—~ pr A—1>C
1 « 1
OC D’ p—2-c

in which each row and column is a distinghished triangle. Furthermore, the square

o -2 qc

L

D" = D"
h

commutes in T.
A triangle functor from (77,4, Q) to (Ta, 022, Qs) is a pair consisting of an additive
functor F': T, — T, and a natural transformation « : Q5 F' — F€)y such that

Q,F(C) 22220 pray 29 gy 29 pooy
is a distinguished triangle in Ty for each triangle €, C' Lasphc
5.2. Excisive homology theories. Let € be a class of extensions
(22) E) ALBLC

in X-Alg, and let (7,2, Q) be a triangulated category. An E-excisive homology theory for
X-algebras with values in T consists of a functor H : X-Alg — T, together with a collection
{0 : E € £} of maps
Of = Op € homs(QH(C), H(A)).
The maps Og are to satisfy the following requirements:
e For all E as in (22)

ar©) 2 gay 2% gy 19 g

is a distinguished triangle in 7.

o If
(E) : A—f>B_g>C
at B Y
(E') Al —=B —= ("

I’ g’
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is a map of extensions, then the following diagram commutes:

QH(C) -2~ H(A)

QH (v)l lH (e)
!
QH(C") o H(A)
6. Algebraic kk-theory

6.1. Universal functors. Let P be a property for functors defined on X-Alg to some
triangulated category. A functor u : X-Alg — U is a universal functor with P if it has the
property P and if F': X-Alg — T is another functor with P there exists a unique triangle
functor G : U — T such that the following diagram is commutative

X-Alg +—TU
|

\ e

F v

T

In the next section we shall see the definition of algebraic kk-theory and a construction
of a universal functor with P = {P;, P, P3} where the properties are: excision (see 5.2),
homotopy invariance (see 2.3), and matrix invariance (see 3.2). In Section 8 we define
equivariant kk-theory and we construct a functor which is universal for the properties:
excision, homotopy invariance and equivariant matrix invariance (defined in Section 7).

6.2. kk-groups. Let A, B be X-algebras. Define
E, (A, B) = [J*(A), MsB%]x.
Consider the following morphism 1, : E, (A, B) — E,+1(A, B) such that

n n ¢ n n n n
JA) LB Ay 29 govee BSY) 2t v (B8 22 v BS

Define
kk™(A, B) = colim, ey E, (A, B)

6.3. Composition product. A morphism of X-algebras f : A — B induces a mor-
phism of weakly split extensions

A8 PA A

S

BS' PB B

By Proposition 1.4.3 the following diagram is commutative

pA

J(A) = 4%

J(f)l lfsl

J(B) —-—= B%'
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Then f%p4 and ps = ppJ(f) represent the same element in kkI(A, B). Denote by
va: J(AS) — J(A)® the morphism (18) and note

pacay = vad(pa) « JHA) — J(4)%

THEOREM 1.6.1. ([5]) Let A, B and C be X-algebras. There exists an associative
product

o: kk™(B,C) x kk™(A, B) — kk™(A, C)

which extends the composition of algebra homomorphisms.

If [o] € kk™(B,C) is an element represented by o : J*(B) — C" and [4] €
kkI™ (A, B) is an element represented by § : J™(A) — B®" then [a] o [3] is an element
kk™ (A, C) represented by

Jn-l-m(A) L@) Jn(BSm) N J?’L(B)Sm & C«S"er

6.4. The category £R8™. The product given in theorem 1.6.1 allows us to define a
composition in the following category KR™:

e The objects are the X-algebras: ob(RR™) = ob(X-Alg).
e The morphisms are the kk™-groups: hom qx (4, B) = kk'™(A, B).
Denote
j: X-Alg — /R

to the functor which at the level of objects is the identity and at level of morphism sends
f:A— Bto[f] € kk™(A, B).

REMARK 1.6.2. Let C be an X-algebra. A morphism of X-algebras f : C' — M ,C rep-
resents an element j(f) in kk™(C, M .C). But also represents an element in kk™(C, C)
because

kkM(C, C) = colim E,(C,C) and  Ey(C,C) = [C,MsC].

A priori, kk-theory is only defined for X-algebras. However, if (A, J) is an ind-X-
algebra for which all structure maps are kk*-equivalences, we can equally well speak
about its kk™-groups. The kk™-groups with an ind-X-algebra in the right argument are
defined via the colimit of the induces diagram of kk™-groups, i.e.

kk‘x‘ (A’ (B’ J)) = COhHleJ kk‘x‘(Aa BJ)

The statement that two ind-X-algebras B and C are kk™-equivalent, has the rather strict
meaning, that all structure maps of B and C' are kk!™-equivalences and all morphisms
that constitute the morphism of ind-X-algebras are kk™-equivaleneces as well.

6.5. The triangulated structure of KA. In this section we describe the trian-
gulated structure (see 5.1) in AR We shall define the endofunctor Q : KA — &g
and the class Q of distinghished triangles.
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6.5.1. The endofunctor Q. The functor Q : RR™M — RRY sends any X-algebra A to
the path X-algebra QA. Let [o] be an element of kkI™( A, B) represented by a : J*(A) —
B¥". The class of Q[a] is represented by
(23) JHASY = Jr(A)s , ps

Note (23) represents an element of kkI™(A8" B") (see Lemma 6.3.8 [5] to check it is well
defined). As 1 : QA — A3 is a kk™-equivalence (see corollary of Lemma 6.3.2 [5]), we
have the natural morphism

Kk (4%, BS") = kkIM(QA4, QB)

6.5.2. Distinguished Triangles. A diagram
QC - A—-B—-C

of morphisms in RRY is called a distinguished triangle if it is isomorphic in AR 1o the
path sequence

QB/ J() Pf j(ﬂ—f) A/ J(f) Bl
associated with a homomorphism f : A” — B’ of X-algebras. Denote the class of dist-

inghished triangles by Q.

THEOREM 1.6.3 ([5]). The category 8™ is triangulated with respect to the endo-
functor Q : KR — KR™ and the class Q of distinguished triangles.

6.6. Universal properties of R&™. Let E : A L. B % C be an weakly split
extension and let ¢g € kk™(.J(C), A) be the classifying map of E. As the natural map
pa : J(A) — QA induces a kk-equivalence (see Lemma 6.3.10, [5]) we can consider the
following morphisms in kkm(QC, A)

(24) O = cg o pg'.

The functor j : X-Alg — RK™ with the morphisms {J : E € £} is an excisive homology
theory, homotopy invariant and M..-stable. In fact, let E be an extension as in (22). Take
the path sequence asociated to g and the following diagram in /RN

i) P J(mg) i(g)

T
Qc OE A J(f) B i(g) ¢ ( )

The first square commutes beacuse ¢f o cg is elementarily homotopic to to pc. By Lemma
6.3.2 [5], the morphism ¢ is a kk/™-equivalence. Finally (T') and (T") are isomorphic in
AAR™M and (T") is a distinguished triangle.
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THEOREM 1.6.4. ([5]) The functor j : X-Alg — SR is universal with the properties
defined above. In other words, if € is a triangulated category and G : X-Alg — € together
a class of morphisms {dg : E € &} is an excisive, homotopy invariant and M, -stable
functor, then there exists a unique triangle functor G : R&* — € such that the following
diagram commutes

X-Alg . KRN

I
x W
C
THEOREM 1.6.5 ([5]). Consider X = ¢, then
Kkl (¢, A) = Kk, (¢, A) ~ KH,(A)

Here KH, is the homotopy K-theory of Wiebel, see [32]. We recall this definition in a
general context in Section 5 of Chapter 3.

7. Equivariant matrix invariance

In the equivariant setting we will replace the property of M.-stability by an X-stability
condition. Let consider the different cases of X separately.

7.1. G-stability. Let G be a group and ¢ a commutative ring with unit. In this
section we define a G-algebra called M. Let M|q| be the matrix algebra defined in 3.1.
The translation action in G defines an action in Mg

g €st = €gsgt-
Recall a functor is homotopy invariant if it sends the inclusion A — A[t] to an iso-
morphism. A Mg -stable functor on G-Alg sends the morphism a — a ® e;,,1, to an
isomorphism. We want a definition of G-stability such that a G-stable functor on G-Alg,
identifies an G-algebra A with the algebra Mg ® A. In this case we may not have an
equivariant map between A and Mg ® A. Note that the map a — a ® ey 1, is not
equivariant. For this reason we will define G-stability in terms of G-modules.

DEFINITION 1.7.1 (G-module with basis).

e A pair (W, B) is a G-module with basis if W is a G-module, free as an ¢-module
and B is a basis of W.

e A pair (W', B’) is a submodule with basis of (W, B) if W’ is a submodule of W
and B’ C B.

Note that if (Wy, By) and (W3, By) are G-modules with basis then (W; @ Wy, By LI By)
is a G-module with basis.

DEFINITION 1.7.2. Let (W, B) be a G-module with basis B = {v; : i € A}. We define
LW, B) :={¢p: AxA—{:{i:9(i,j)# 0} is finite for all j}
Let p; : W — £ be the projection to the submodule of W generated by v;,

pz(z CLjUj) = Q;.

jEA
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Note that L(W, B) and End,(W) ={f: W — W: f is (-linear} are isomorphic; indeed

we have inverse isomorphisms

(25) Endy(W) — LW, B) [y (i g) = pi(f(v;))

(26) L(W,B) = End(W) ¢ fu  folo) =D 9(i,k)v
€A

Define

COW,B) :={¢Y € LW, B) : {j : ¢¥(i,j) # 0} is finite for all ¢}

FW,B) :={¢ € LW, B) : {(i,j) : ¥(i,5) # 0} is finite }
and
End} (W, B) := {f € End;(W) : ¢y € F(W,B)} EndS(W,B) := {f € End;(W) : ¢y € (W, B)}
Note that (W, B) is a ring with the matrix product and EndS (W, B) is a ring with the
composition. By (25) and (26), End{ (W, B) and (W, B) are isomorphic rings.

DEFINITION 1.7.3 (finiteness conditions for G-modules). Let (W, B) be a G-module
with basis. Consider the representation

p: G — End,(W) g pg py(w)=g-w

We say that (W, B) is a G-module by finite automorphisms if p(G) C End} (W, B). We
say that (W, B) is a G-module by almost finite automorphisms if p(G) € End{ (W, B). If
(W, B) is a G-module by almost finite automorphisms, End; (W, B) is a G-algebra with
the following action

g-f=pl9)fp(g))™"
Note that End} (W, B) is an ideal of EndS (W, B).

EXAMPLE 1.7.4. Let W = ¢ G be the group algebra considered as a G-module via the
regular representation with basis B = {J, : g € G},

(27) qg- (Z CLh(Sh) = Z ahégh.
heG heG
Note

1 s=gt
p:G— End/(¢G) ~L((G,B) gHMg:Zegt’t (Mg)(s,t):{o i%it
teG

As M, € C({ G, B) for all g € G, (¢ G, B) is a G-module by almost finite automorphisms.
Moreover we have

(Mgrl = ]\/[g—1 = (Mg)t'
Observe that
Mg =3F((G,B).
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DEFINITION 1.7.5. Let A be a G-algebra. Consider the tensor product
MgA = Mg® A
with the diagonal action of G
(M®@a)(N®b)=MN®ab  g-(es;,®a) =e€gsq0 @ g - a.

PROPOSITION 1.7.6. Let W be a G-module. Let W™ be W considered as a G-module
with trivial action, then
{GRQW ~ (G W™

PROOF: The isomorphisms are given by
T:AGRW — (GRW S AGRW = 1GRWT

T(0y ® h) =6, @ g(h) S(6y® h) :5g®g_1(h)
It is clear that each is the inverse of the other and that they are equivariant morphisms. [J

If (W, B) is a G-module with basis we will write End' (W) and End} (W) ommiting
the basis when there is no confusion.

PrROPOSITION 1.7.7. Let (W, B) be a G-module with basis. Then
End} (¢ G ®W) ~ End} (¢ G) ® End} (W)
PROOF: Define T : End{ (¢ G) ® End} (W) — End} (¢ G @W) by
T(egh @ €pw) = €guhuw v,w€eB gheG
As T is a bijection between the basis, T is an isomorphism. O

DEFINITION 1.7.8 (G-stability). Let (Wy, By) and (Ws, By) be G-modules by almost
finite automorphisms such that card(B;) < card(G) x cardN, i = 1,2. The inclusion
t: Wiy — Wi ® W, induces a morphism of G-algebras

(28) i:End} (W;) — End; (W, & W,) f ( (J)C 8 )
Let A be a G-algebra and consider
[®1:End/ (W) ® A — Endl (W, @ W,) @ A.
A functor F': G-Alg — C is G-stable if for (Wy, By), (Wa, By) and A as above F(i® 1) is
an isomorphism in C.

ProrosiTiON 1.7.9. If F': G-Alg — C is a G-stable functor then F'is M-stable.

ProoF: Consider (Wy, By) = (£,{1}) and (Ws, By) = ({™) {e; : i € N}) with (M) =
.0, {e; : i € N} is the canonical basis and both modules have the trivial action of G.
Note
End} (¢) = Endy(¢) = ¢ End] (¢ @ (™) = End} (¢™V) = M,
and 7 : { — M, is the inclusion at the upper left corner. Then i® 1 =1: A — My (A)
and F'(¢) is an isomorphism. O

COROLLARY 1.7.10. If G = {e}, F'is G-stable if and only if F' is M.-stable.
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DEFINITION 1.7.11 (zig-zag). Let A, B be G-algebras and I : G-Alg — € be a functor.
A zig-zag between A and B by F'is a diagram in G-Alg

Ao e, 8B
such that F(g;), t =1,...,n, are isomorphisms in C.

REMARK 1.7.12. Let A be a G-algebra and F' be a G-stable functor. There exists a
zig-zag between A and MgA by F. Consider W; = (¢ G, B) as in the example 1.7.4 and
consider W, = (£, {1}) with the trivial action of G. Put W = W; ®W, and C' = End} (W)
with the induced action, then

1:A=A®(=AQEnd,({) - A®C «— A® Mg : !/
is a zig-zag between A and M¢gA.

ProPOSITION 1.7.13. Suppose G is countable. Let F': G-Alg — € be an M -stable
functor. Define R
F:G-Alg—¢C A— F(MgA)
where MgA was defined in 1.7.5. Then F is G-stable.

PRrROOF: Let (Wi, By), (W, By) be G-modules by almost finite automorphisms and
A be a G-algebra. Consider

[®1:End/(W;) ® A — Endl (W, @ W,) @ A.
Let us check that F/(Z ® 1) is an isomorphism:

F(Mg ® Endf (W,) ® A) ~ F(End, ({CeW;)® A) by 1.7.7
~ F(End, ({C@W])® A) by 1.7.6
~ (Mg ® End; (W]) ® A) by 1.7.7
F(Mg ® Endf (W, @ W,) ® A) ~ F(End} (W, ®Wy)") @ Mg ® A)
F(i®1)=F(Mg®i®1) is an isomorphism because F is M, -stable. O

EXAMPLE 1.7.14. Suppose G is a finite group of order n such that 1/n € ¢. Define
§ = (1/n) > ,cq 0y, then & is idempotent. The map s : £ — (G, s(1) = &, is a G-
equivariant section of the canonical argumentation ¢ : /G — ¢. Thus the sequence of
G-modules
©

(29) 0 I (G l 0
splits. Then

(G=la]
I is a G-module with basis {6, — J, : g # e}. Define

PV RS g=e
g de =0y g#e
The set A = {)\, : g € G} is a basis of /G and the relations with the elements of
B = {4, : g € G} are the following
Ae =23 06 Ap = 0c — 0y,
€ n 9eG 9 ¢ h e
e = Ae 5 D gse Ag Oh = Ae = A+ 5 D pse Ag 7
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Consider Wy = £ = (¢£,{{}) and Wy = (I, {\;}42c), in this case the morphism (28) is

1 0 ... 0

00 ... 0
t:l— Mg~End({G,A) 1—| . . . .

0 0 . 0

If we write it in the canonical basis we have

1 1 1

17 1
7:0— Mg=End((G,B) 1w— | ™ " "

11 1

If F: G-Alg — C is a G-stable functor then F(7) is an isomorphism in C.

REMARK 1.7.15. Let I be a set with a distinguished element ¢y. Let A be an (-algebra
and {A; : i € I} subalgebras such that A = @®;c;A;. For each i € I we consider the
projection 74, : A — A;. The following matrices with coeficients in Endj} (A) and with
indices in [ are conjugated

otherwise

o id 1=7=1 o Ta 1=
M(Zvj):{o J '0 N(Zvj):{oAz Z;é:;

In fact, if we choose T" such that

e 1=l

o) Ta, J =1t
T(Zvj)_ 1_7TA¢ Z':j?é/,o
0 otherwise

it is easy to see that T? = Id and TMT = N.

REMARK 1.7.16. Let H be a subgroup of G. Define

(G/H) = P ¢

gHeG /H

Consider W; = (¢(G /H),{gH : g € G}) with the regular action and Wy = (¢/(G /H),{gH :
g € G}) with the trivial action. Put

Mg n = F(W) Mg u) = F(W2)
There is an isomorphism

Mg/H®MG — M\G/H\®MG
€sHgH X €tr > E-1gHr-1gH ® Et,r
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7.2. G—stability. In this section we consider the dual of the notion of G-stability.
We want to identify a G-graded algebra A with the G-graded matrix algebra MgA.

The definition of G—stability is easier than that of G-stability beacause the morphism
A — MgA is homogeneous.

DEFINITION 1.7.17 (G-algebra). A G-algebra A is an associative algebra with a familiy
of submodules {Ag}seq such that

A:@AS A A, C Ay s,t e G

seG

We write |a| = s if a € A,. A morphism f : A — B of G-algebras is an algebra morphism
such that f(As) C Bs, s € G. Write G-Alg for the category of G-algebras.

EXAMPLE 1.7.18. An associative algebra A is a G—algebra with the trivial grading:

A s=e
A=A, AS:{O ot

seG

In particular ¢ is a C}—algebra.

EXAMPLE 1.7.19. Let A be a C}—algebra. Define the following grading in MgA

(30) (MGA)g =< €s,t XRa: g = 5‘@“71 >
As
) _Jei®ab t=35
cwsaesion={ G100 12
we have R
(es; @ a)(e;;@b)| = s|al|b]t? ift =3

= s|alt™15|b/t!
= lest @alles; @ 0]

and MgA is a G-algebra. We will write Mg A for Mg A with this structure.

DEFINITION 1.7.20 (G-stability). Let A be a G-algebra. Consider M¢A as in the
example 1.7.19. Observe the map

tat A— MgA a— e, ®a

is homogeneous. A functor F : G-Alg — C is a G-stable if F/(14) is an isomorphism in C
for all A € G-Alg.

7.3. H-stability. In this section we suppose H is a Hopf algebra over a field ¢. Recall
that a left Hopf module over H is an /-module M such that

o M is a left H-module.
e M is a left H-comodule, via p: M — H ® M.
e pis a left H-module map, where H ® M is a left module via

he(k@m)=> hk®hy-m.
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We may also write

p(hem) = h-p(m) Y (h-m)1@(h-m)o =Y _ hi-m_1@hg-my  V¥meM  VheXH

PRrRoOPOSITION 1.7.21. Let M be a left H-module, H ® M is a Hopf module over H

i
- h-(k®m):2h1k®h2~m p(k@m)=A(k)®@m
Write M7 for the trivial H-module, then
HOM~H M
PrROOF: The isomorphisms are given by
a:HOM - HOM ah®@m)=> h ®hy-m

B:HOIM—->HM™ pBhem)=> h &S(hy)-m

One checks that one is the inverse of the each other and that they are Hopf modules
morphisms. U

Let M be an H{-module. In the Example 1.1.3 we have seen an JH-algebra structure
on Endy(M). Define

(31) End; (M) := {¢ € Endy(M) : ¢(M) is a finite dimensional subspace of M?}.

Let ¢ € End} (M) and h € H. Consider C}, the subcoalgebra of I generated by h. By
Fundamental theorem of coalgebras we know ' has finite dimension over ¢. Because
(h-@)(M) C Cp,- (M) we conclude (h-)(M) is finite dimensional and h- € End} (M).
Hence End} (M) is an H-subalgebra of End,(M). It is easy to check that End} (M) is an
ideal of End,(M).

REMARK 1.7.22. Let M be an H-module, ¢ € End; (M) and h, k € H. Recall from
(7) the definition of ¢y, k, then ¢y, (M) C h-@(M). The space ¢(M) has finite dimension
and h is fixed. Thus h - o(M) and ¢y, (M) has also finite dimension. We conclude that
©nr € Endy (M).

DEFINITION 1.7.23. Let M; and M, be H-modules and let A be an H-algebra. Let
us consider the following homomorphism of H-algebras

v: End) (M) ®A — End/ (M, ® M) ® A
0
f®a = ( (J)C 0 ) ®a
A functor F : H-Alg — C is H-stable if it is M.-stable and F'(¢) is an isomorphism for
every My, M, and A as above and with

REMARK 1.7.24. Let A be an H-algebra and F' : H-Alg — € an JH-stable functor.
There exists a zig-zag between A and End} () ® A by F. Consider H as a H-module
with the regular action and ¢ with the trivial action. Then

A= (@ A=End ()@ A5 End/ ((eH) @ AL End/ (%) ® A
is a zig-zag by F.
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PROPOSITION 1.7.25. Let H be a finite dimensional Hopf algebra and M an H-module
with finite dimension. Then
Endy(H ® M) ~ End,(H) @ Endy(M)

as a H-algebras. The structures of End,(H® M) and End,(H) @ End, (M) are those given
in the examples 1.1.3 and 1.1.4 respectively.

PROOF: Define
I': Endy(H) ® Endy(M) — Endy(H® M)  T(e@¢)(h@m) = p(h) @ ¥(m)

One checks I' is an H-algebra monomorphism. By a dimension argument we conclude
that it is an isomorphism. O

PrROPOSITION 1.7.26. Suppose dim, H is finite. Let F' : H-Alg — € be a homotopy
invariant and M.-stable functor. The following functor

F:H-Alg—C A~ F(End)(H)® A)
is homotopy invariant and JH-stable.

PRrROOF: Let M; and M, be H-modules with finite dimension and A be an H-algebra.
Put

I®1:End/(M;) ® A— Endy(M; & My) ® A.

Let I : H-Alg — C, F(A) := F(Endy(H) ® A). We have to prove F(i ® 1) is an
isomorphism. As

F(Endy(H) ® End,(M;) ® A) ~ F(End/(H® M) ® A) see 1.7.25
~ F(Endy(H® M])® A) by 1.7.21
~ F(End,(H ) ® End,(M7) ® A) see 1.7.25
=~ F(

F(End,(H) @ End,(M; & My) @ A) EHdg((Ml ® Ms)") @ Endy(H) @ A)

F(i®1) is an isomorphism by the M. -stability of F. O

In order to obtain an H-stable functor when H is not finite dimensional, we have
tried to apply the argument used in Proposition 1.7.26. We could not prove an equivalent
assumption of Proposition 1.7.25. We are not sure if the right finiteness condition on
End,(M) is that written on (31). If it is the correct one, we have to redefine the kk/”I-
groups stabilizing by the N x N-matrices with finite rank instead.

7.4. ff-f—stAability. Suppose H is a Hopf algebra over a field ¢ with finite dimension.
Let A be an H-algebra.

PROPOSITION 1.7.27. Let N be a H-comodule and N7 the trivial comodule. There is
a isomorphism

HRON~H@NT

O
Let N be a H-comodule with finite dimension. Recall from Example 1.1.5 the structure
of H-algebra on End,(N) @ A.
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DEFINITION 1.7.28 (H-stability). Let Ny and Ny be H-comodules with finite dimen-

~

sion and let A be an JH-algebra. Let us consider the following homomorphism of H-
algebras

t: Endy(N;)® A — End/(N;® No) @ A
f®a — ((J)C 8)@@

A functor F : H-Alg — @ is H-stable if it is M.-stable and F(:) is an isomorphism for
every Ny, Ny and A as above.

PROPOSITION 1.7.29. Let F': j—(—Alg — € be a homotopy invariant and M.-stable
functor. The following functor

F:H-Alg—C A F(Endy(H)® A)

is homotopy invariant and H-stable.

8. Equivariant algebraic kk-theory

Suppose G is a countable group and /¢ is a commutative ring with unit. Let A, B be
G-algebras, we define

kk®(A, B) :=kkl®l(Mg ® A, Mg ® B).

Consider the category RRY whose objects are the G-algebras and the morphisms between
A and B are the elements of kk%(A, B). In other words,

hommG(A, B) = homM\c\(MG ® A, Mg ® B)

Let j¢ : G-Alg — RR® be the functor such that is the identity on objects and sends each
morphism of G-algebras f : A — B to its class [f] € kk%(A, B).

THEOREM 1.8.1. The functor j¢ : G-Alg — RR® is an excisive, equivariantly ho-
motopy invariant, and G-stable functor. Moreover, it is the universal functor for these
properties.

PROOF: Let E be an extension as in (22), define
J5 € homgga (20, A) = hom gy e (Mg ® QC, Mg ® A) = hom ggc | (QMg @ C, Mg ® A)
as the morphism Oy defined in (24) asociated to the following weakly split extension
Mec®A— Me®B— Mg®C (E')

By theorem 1.6.4 and proposition 1.7.13 the functor j : G-Alg — &R® with the family
{0§ 1 E € &} is an excisive, homotopy invariant and G-stable functor. Let us check it is
universal for these properties. Let X : G-Alg — € be a functor which has the mentioned
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properties with a family {EE : E € &} . By theorem 1.6.4 there exists a unique triangle
functor X : AR/l — @ such that the following diagram commutes

(32)

We will define X’ : R8¢ — €. We know that X’ = X on objects. As X is G-stable the
following morphisms are a zig-zag between A and Mg ® A by X, (see Remark 1.7.12)

(33) Ai>MGu{*}®A<lMG®A

Let o € kk%(A, B) and define
X() = X(15) " X (1) K (@)X (1) X (14).

Note this definition is the unique possibility to make the diagram (32) commutative. [
Let A, B be G-algebras. We define

kkS (4, B) := kk'SI(4, B).

Consider the category AR whose objects are the G—algebras and the morphisms between

A and B are the elements of kkG(A, B). Let jé . G-Alg — &A% be the functor that is
the identity on objects and which sends each morphism of G-algebras f : A — B to its

class [f] € kk(A, B).

THEOREM 1.8.2. The functor jé : G—Alg — RASY is an excisive, graded homotopy
invariant, and G-stable functor. Moreover, it is the universal functor for these properties.

Proor: : It follows from Theorem 1.6.4 and the fact that C}—stability property holds
by the M. -stability property. 0

Let 3 be a Hopf algebra over a field ¢ with finite dimension. Similary, if A and B are
H-algebras, we define

kk?(A, B) := kkI?(End,(H) ® A, Endy(H) @ B).

Consider the category £8”" whose objects are the H-algebras and the morphisms between
A and B are the elements of kk”‘(A, B). In other words,

hom ggsc (A, B) = hom ggsc) (Endy(H) ® A, End,(H) ® B)

Let j7C: H-Alg — KR be the functor which is the identity on objects and sends each
morphism of H-algebras f : A — B to its class [f] € kk” (A, B).
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THEOREM 1.8.3. The functor j7¢ : H-Alg — SRR’ is universal for the properties:
excisive, equivariantly homotopy invariant, and H-stable.

PROOF: The proof is similar to the proof of Theorem 1.8.1. Just we have to replace
Mg by End} (). O
Similary, if A and B are H-algebras, we define

kk* (A, B) := kk™(End, (%) ® A, End,(H) ® B).

Consider the category AR% whose objects are the J:C—algebras and the morphisms between
A and B are the elements of kk” (A, B). Let 790 F-Alg — &R be the functor which
is the identity on objects and sends each morphism of fff—algebras f A — B to its class
[f] € kk(A, B).

THEOREM 1.8.4. The functor jj{ : fﬁC—Alg — AA™ is universal for the properties:
excisive, equivariantly homotopy invariant, and H-stable.

O



CHAPTER 2

Adjointness theorems in kk-theory.

In this chapter we study adjointness theorems in equivariant kk-theory. We put in an
algebraic context some of the adjointness theorems which appear in Kasparov KK-theory.
Let G be a countable group and ¢ a commutative ring with unit. We define the functors of
trivial action and crossed product between R& and RR®. The first adjointness theorem is
Theorem 2.1.4 which is an algebraic version of the GREEN-JULG THEOREM. This result
gives us the first computation related with homotopy K-theory. If G is a finite group, A

is a G-algebra, B is an algebra and |—é‘ € ¢ then there is an isomorphism

Yay  kk® (BT, A) — kk(B, A x G).
In particular, if B = ¢ then
kk© (¢, A) ~ KH(A x G).

We consider a subgroup H of G, define induction and restriction funtors between R8¢ and
ARM and study the adjointness between them. If B is an H-algebra and A is a G-algebra
then there is an isomorphism

Yrr - kk®(Ind$ B, A) — kk"(B, Resh A).
This result gives us another computation. Taking H the trivial group and B = ¢ we obtain
that

KkC (09 A) ~ KH(A) VAeG-Alg.
Here /(%) = @B gec U with the regular action of G. More general, if H is a finite subgroup
of G and 1/|H| € ¢ we combine 1, and ¢z and obtain

kkC(0C/M Ay~ KHAxH) VAeG-Alg.
We also prove an algebraic version of GREEN IMPRIMITIVITY THEOREM and obtain that
KH(A x H) ~ KH(Ind§ A x G).

We also obtain an algebraic version of the Baaj-Skandalis theorem. We show that the
funtors R R

x G RRY — ARY Gx : RRY — /R
are inverse category equivalences. Let J{ be a Hopf algebra with finite dimension. We
define functors between R and KR, the smash product and the trivial action. We study
the adjointness between them in theorem 2.5.4. We obtain that if H is semisimple, B is
an algebra and A is an H-algebra then there is an isomorphism

Y kk?(B7, A) — kk(B, A#H).

In particular,
kk7(0, A) ~ KH(A#H).

47
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1. Crossed product and trivial action

1.1. Trivial action. Let A be an (-algebra. Recall A is A with the trivial action of
G. This gives us a functor 7 : Alg — G-Alg. It is easy to check that o7 satisfies excision
and is homotopy invariant and M.-stable. By theorem 1.6.4 there exists a unique functor
7 : RR — RRY such that the following diagram is commutative

Alg — G-Alg

I

KRR — ARC
We will write 7 for 7.
1.2. Crossed product. Let A be a G-algebra. The crossed product algebra A x G
is the /-module A ® ¢ G with the following multiplication
(axg)bxh)=a(g-b)xgh abeAgheG.

ProprosITION 2.1.1. Let A be a G-algebra and W be a G-module by almost finite
automorphisms. The following algebras are naturally isomorphic

(A% G)®Endf (W) ~ (A®End/ (W) x G.
PROOF: Let p: G — (End} (W))* be the structure map. Define
¢: (A% G)®Endy (W) = (A©@End; (W) x G dlaxgep)=a®pp(g™") xg
It is an algebra morphism:
plaxg@p)axgee)) = ¢laga) x gg® pp)

= ag(a) @ ppp(g~'g™") x g9
= (a®pplg~1))(9(a) @ p(g)pp(g~")p(g™")) x g9
= (a@pplg™") ¥ g)(@a®@p(g~") % q)
= dlaxg@p)p(axgeep)

On the other hand, define

¥ (A®Endy (W) x G — (Ax G)®@End/ (W) ¢(a®¢pxg)=axg®ppg).
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It is also an algebra morphism:

Pla®exg)a®gxg) = P(a®qllga) @ plg)eelg™)] % g9)
= Y(ag(@) ® pp(g)@p(g™") » 99)
= ag(a) x g3 ® ¢p(g)sp(9)
= (axg®¢p(9))(ax g ¢p(g)

= P(a®@pxg)Y(a® ¢ xg)
It is clear ¢ and 1) are inverse of each other. 0

PROPOSITION 2.1.2. There exists a unique functor xG : 8RR — KR such that the
following diagram is commutative

G-Alg 2% Alg

A

AR — 5~ AR

ProOOF: We shall show j(—xG) is excisive, homotopy invariant and G-stable. Because
xG maps split sequences to split sequences and j is excisive, then j(— x G) is excisive.
That j(— x G) is homotopy invariant follows from the fact that

Al] % G = (A x G)[t].

Let (Wy, By), (Wa, By) be G-modules by almost finite automorphisms and A a G-algebra.
Consider the isomorphism 1 defined in Proposition 2.1.1. Note that the following diagram
1s commutative

)xG
(A®Endf (Wh)) x G —2% (4 @ Endf (W) & W,)) x G

g |v

(A x G) ® End} (W)) (A% G)®End} (W, ©W,)

(IxG)®r

Because j is M.-stable, j((1 x G) ®17) is an isomorphism. Hence j(— x G)(1 ®7) is an
isomorphism by the diagram above. U

REMARK 2.1.3. Let [a] € kk%(A, B) be an element represented by a : J*(MgA) —
(MgB)*¥®" which is a morphism in [J"(MgA), Mo (MgB)*¥ ¥"]. Let us see who [a] x G
is. Consider the classifying map

Jn(MgA X G) — Jn(MgA) x G
The element [a] x G is represented by the following composition

JY(MgA % G) — JY(MgA) x G 22 (MBS x G
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1.3. Adjointness between 7 and xG. In this section we shall see an algebraic
version of the GREEN-JULG THEOREM. In [24] there is a version of this result in the
context of Kasparov KK-theory. In [11] there is a version of this theorem in the context
of E-theory.

THEOREM 2.1.4. Let G be a finite group of n elements and 1/n € ¢. The functors
7 AR — AR and G : RR® — AR are adjoint functors. Hence

kk®(A™,B) ~kk(A,BxG) AcAlg BeG-Alg.

PROOF: By [[22] Theorem 2, pag 81], it is enough to prove that there exist natural
transformations

a4 € kk(A, A” x Q) and s € kk®((B x G)", B)
such that

AT ay B 4 B S Buayxa 2 pya

are the identities in kk®(A7, A7) and kk(B x G, B x G) respectively.
Put e=1/n3 49 in (G and define

(34) ay:A— AT xG ala) =a®e

Note A" x G = A® (G and a4 is an algebra morphism since € is idempotent. Consider
the element a4 € kk(A, A™ x G) represented by a4. Let

Bp: (BxG) = McB  Bo(bxg)=> s(besy
seG
Let us check that G is an algebra morphism:

Be((bx g)(axh)) = Bp(bg(a) x gh)
= Ysec s(bg(a))essgn
= 2stea S(b)(a)es sgerm
= (Lsea s0)essg) (Xiec ta)erm)

= ﬂB(b X g)ﬁB(a X h)
Let us check that Gp is equivariant:

Be(h(bxg)) = Bp(bxg)
2 sec $()essg
2 sec 115(0)ens hsg
= WX seq 5(b)essg)
= h(Bp(bxg))
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Let B € kk“((B x G)7, B) be represented by Bz. The composite 3,(a)7(ca) is

(35) AT TO0, sy SO, N A aes 3 aey,.
s,teG
Thus (3,4y7(aa) = ida- ®7 where 7 is the map defined in 1.7.14. As j¢ is G-stable,
76 (ida- ®7) is the identity in kk® (A7, A7).
On the other hand take the morphism 1 defined in the proof of the Proposition 2.1.1.
By 2.1.3, B x G is represented by 1 o (83 x G). We want to prove that the identity in
kk(B x G, B x G) is represented by the following composition

ﬂBXIG

BxG 2% (BxG) %G (B® Mg) xG —2—— (BxG)® Mg

bxg— %Zh,seG(S(b) X h)es,h_lsg
Put ¢t = h~'sg and note
1 1 _
(36) S (0 % e = - 0 (5(0) % 59t~ ew
h,seG t,seG

and

s(b) xsgt™t = (1 xs)(bxg)(1xth) in BxG
We can write (36) as T'Apy, T, where
1
Abxg = E Z (b X g)es,t T = Z(l X t)et,t
t,seG teG

Because b Xt g — Apy, represents the identity, the same is true of b x g — T Ay, 7. O

ExaMPLE 2.1.5. We give an example to show that the adjointness between of 7 and
X G of Theorem 2.1.4 fails to hold at the algebra level. Let G = Zy = {1,0}, A ={ and
B = ({G)* the dual algebra of ¢ G with the regular action. Note homg_Alg(AT, B) has

two elements only:

piil— (LG p(1)=0  @i(l)=x1+ X0
One the other hand homay (A4, B X G) = homa, (¢, (¢ G)* x G) has at least as many
elements as /. For each A € ¢ we can define

ox L= (G xG pa(l)=x1ix14+ANx1x0o) Ael
Note @, is an algebra morphism because x; x 1+ A(x1 % o) is an idempotent element:
(X 1+A(ax0))* = xa ) 1+ A(xa X a) + A (X1Xe X 0) + A2 (X1X0 X 1) = X1 X 1+ A(x1 ¥ 0)
Write ¢ for the isomorphism of the Theorem 2.1.4
(37) Yy kk®(BT,A) - kk(B,Ax G)  tg; =a" oxG
where « is the morphism defined in (34).

COROLLARY 2.1.6. Let G be a finite group such that 1/| G| € ¢. Let A be a G-algebra,
then
kkG (0, A) ~ kk(, A x G) ~ KH(A x Q)
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2. Induction and Restriction

Let H be a subgroup of G. In this section we study the functors of induction and
restriction between the categories AR and AR®

2.1. Finitely supported polynomial maps. Let A be an (-algebra and X a sim-
plicial set. We write ¢ € X when o is an n-simplex for some n, in other words when
o € X,,. Denote by < ¢ >C X the subsimplicial set of X generated by o:

<o >={re€X;:Ja:[i] — [n|such that a*(0) = 7}

Let 0 € X be a simplex. The star of ¢ in X is the following set of simplices of X
St(o) :=Stx(o)={re X <7>N<0o>#£0}.
The closed star of ¢ is the sub simplicial set St(c) generated by St(o),
St(o) =< St(o) > .
Let M be the set of simplices of X. We define
Stx (M) := | ] Stx(0)  Stx(M) =< Stx(M) >= | J St(0).
oceM oceM

We define the link of M as
Link(M) := §X(M) \ Stx(M).

LEMMA 2.2.1. Let X be a simplicial set; write NX for the set of nondegenerate
simplices. The following are equivalent.
i) (Vo e X){r € NX :<7>D< 0 >} is a finite set.
ii) For every o € X, Stx(o) is a finite simplicial set.

Proor. If ¢ € X, then < o > has finitely many nondegenerate simplices, and thus
the set {< 7 >N < o > 7 € X} is finite. Hence if i) holds, there are finitely many
7 € NX such that <7 > N < o ># 0; in other words, NX N Stx (o) is a finite set, and
therefore Sty (o) is a finite simplicial set. Thus i)=+ii). Next note that < 7 >D>< o >
implies 7 € Stx (o), whence ii)=1). O

DEFINITION 2.2.2. A simplicial set X is locally finite if for all o € X, Stx (o) is a finite

simplicial set.

DEFINITION 2.2.3. The support of an element ¢ € AX is generated by the simplices o
such that ¢(o) # 0,

supp(¢) =< o € X : p(0) #0 >
Let ¢,1) € AX and let f:Y — X be a simplicial map then

(38) supp(¢ - 1) C supp(¢) Nsupp(y))  supp(f*(¢)) C f~' (supp(¢)).

We say ¢ has finite support if supp(¢) C X is a finite simplicial set. We define the algebra
of polinomial maps with finite support in X as

AP = {p e AX : supp(¢) is finite }
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If X is finite then AX = AMX)_ In general, by (38) we have that A < AX is an ideal. Note
that if f : X — Y is a morphism of simplicial sets, the image of A®) by f*: AY — AX
it not necessarily in A, By this reason X — A™) can not be extended to a functor in
S. But if f es proper (i.e. f~'(K) is finite for all finite K C V) then f*(A®)) c A by
(38). We conclude that A is a functor from the category of simplicial sets with proper
morphisms. Next we consider the behaviour of this functor with respect to colimits. First
of all, if {X;} is a family of simplicial sets, then we have

(39) AX) — @A(X

Here @ indicates the direct sum of abelian groups, equipped with coordinatewise multi-
plication. Second, A™) maps coequalizers of proper maps to equalizers; if { fi: X—=Y}
is a family of proper maps, then

(40) Alcoeq;{fi:X=Yh) eq; {f AY) A(X)}

Next recall that if I is a small category and X : I — S is a functor, then the colimit of X
can be computed as a coequalizer:

colim X; = coeq X :; X;)
| I v I
a€Ar(I) i€Ob(I

Here Ob and Ar are respectively the sets of objects and of arrows of I, and if o € Ar([)
then s(a) € Ob([) is its source; we also write 7(«) for the range of o. The maps dy and
0, are defined as follows. The restriction of 0; to the copy of X, indexed by « is the
inclusion X ) C ]_[j X; if ¢ = 0 and the composite of X (a) followed by the inclusion
Xr C 11 i X; it i = 1. The conditions that J, and 0; be proper are equivalent to the
following

0o) Each object of I is the source of finitely many arrows.
01) Each object of I is the range of finitely many arrows, and X sends each map of
I to a proper map.

ExaAMPLE 2.2.4. For example the functor ¢ —< ¢ > from the set of nondegenerate
simplices of X, ordered by o < 7 if < 0 >C< 7 >, always satisfies 0;; condition 9 is
precisely condition i) of Lemma 2.2.1. Hence 0, is satisfied if and only if X is locally
finite, and in that case we have

AX) — eq( @ A<o> g @ A<T>)

*
it <T>C<o>,
o,TeNX

2.2. Restriction. Let A be a G-algebra and H C G a subgroup. If we restrict the
action to H we obtain an H-algebra Resi(A). It is clear this construction defines a functor
Resl : G-Alg — H-Alg. Tt is easily seen that we can extend Resfi : G-Alg — H-Alg to a
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triangle functor Res§ : RRY — AR so that the following diagram commutes

H

G-Alg — ¢ HAlg

A

ARC AR

H
Resg

Note that for H = {1} we get ji1} = j : Alg — AR and Resg} - RRY — AR is the induced
by the forgetful functor G-Alg — Alg.

2.3. Induction. We shall define an induction functor Ind$; : H-Alg — G-Alg and
extend it to a functor Ind§ : AR — RRY such the following diagram is commutative

G

nd
H-Alg — % . G-Alg

A

AR ARC

Ind§

DEFINITION 2.2.5 (Ind$(A)). Let H C G be a subgroup, 7 : G — G/ H the projection
and A an H-algebra. Consider
ACGH =[£G — A #r(supp(f)) < oo}
Define
Ind§(A) = {f € AC™ . f(s)=h(f(sh)) VseC, heH}
One checks that Ind§ (A) is a G-algebra with the pointwise multiplication and the following
action

(41) (9-f)(s)=flg7's) [fendy(A) g,5€G.
DEFINITION 2.2.6 (Ind§(¢)). Let ¢ : A — B be a morphism of H-algebras. Define
Indji(¢) : Indjj(A) — Indij(B) ~ Indgi()(f) = po f
As ¢ is equivariant ¢ o f lies in Ind§(B).
Let A be a G-algebra and H C G a subgroup. The following identities are easy to
check md(A)~ A Ind,(4) = A©  Ind§(e) = ¢G/1

If H is finite, then
AGH) — A(G)

Let A be an H-algebra. Consider
BigIndf(A) := {f : G — A: f(s) = h(f(sh)), Vs€ G, heH}

Note BigInd$(A) is a G-algebra with operations defined pointwise, and where G acts
like in (41). If f € BigInd§(A) and z = sH € G/ H, then the value of f at any g € x
determines f on the whole z; in particular,

supp(f)NsH# 0= sH Csupp(f) (sHe G/H)
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Hence

supp(f) = [[  sH
sHNsupp(f)#0
Consider the projection 7 : G — G / H. We obtain

Indjj(4) = {f € BigIndj{(A) : #n(supp(f)) < oo}
One checks that Ind$(A) C BigInd§(A) is a subalgebra; we shall presently introduce

some of its typical elements. If g € G, write x, : G — Z for the characteristic function.
If a € Aand g € G, then
_ h='(a) s=gh
_ E 1 —
EH(gva) - Xghh (CL) §H(97a)(8) - { 0 s ¢ gH

heH

These elements are in Ind$(A) because

supp(&u(g,a)) = gH &u(g,a)(s) =t-&u(g,a)(st) Vse G, teH
Let 7 : G /H — G be a pointed section and R = r(G / H). Every element ¢ € BigInd$(A)
can be written as a formal sum

(42) ¢=> &ulg, d(9))

geR
Note that ¢ € Ind§(A) if and only if the sum above is finite. In particular
Ind{j(A) = > l&u(g, a) C BigIndi(A)
geG,aeA
It is easy to see that if ¢ : A — B is an H-equivariant map then
(43) Indi(¢)(&n(g. a)) = &ulg, (a))
Observe that for each s € G, the map
u(s, —) : A — BigInd$(A)

is an algebra homomorphism. Moreover, we have the following relations

(44) s &ulg, a) = Enlsg, a)
(45) o, )eulg.a) = { G109 T0
(46) ¢u(g,a) = Eu(gh,h™ -a) heH

It follows that (g, a) — &u(g, a) gives a G-equivariant map
G xgA — Ind§(A).
Here G xyA = G xA/ ~, where
(g1,01) ~ (g2,02) = h=g;'go€H and ay, =h-a,.
Extending by linearity we obtain an isomorphism of left G-modules
(|G] @qm A — Indg (A)
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Thus we may think of Ind§(A) as the G-module induced from the H-module A, equipped
with an algebra structure compatible with that of A. In fact (45) implies that if r :
G /H — G is a section, then

(47) (S © A — Indg(A) Xz ® a > &u(r(z), a)
is a nonequivariant algebra isomorphism.

LEMmMA 2.2.7. Let X be an H-simplicial set; put
Ind$(X) = G xyX
There is a natural, G-equivariant isomorphism (i (X)) ~ Ind$ (¢(9).
PROOF: Let 7 : G xX — Ind§(X) be the projection. We have a G-algebra isomor-
phism
© : BigInd§j(£¥) — (™, 0(f)(n(g.2)) = f(9)(x)
For s € G and ¢ € (¥,

Oeu(s. o) (alg. ) = { §70 D oSl

In particular, for O(&u(s, ¢)) not to vanish on 7(g,x), we must have g = sh and z €
h='-{¢ # 0} for some h € H. Hence supp(©(&u(s, ¢))) C m({s} x supp(¢)) which is a
finite simplicial set if ¢ € ¢(X). Therefore © maps Ind$ (¢X)) inside ¢4 Tt remains
to show that ©~1(¢M™IF(XD) © IndG (¢X)). Let {g;} € G be a full set of representatives of
G /H. Every element of G xpX can be written uniquely as 7(g;, z) for some i and some
x € X. Hence as a simplicial set, Ind§(X) is the disjoint union of the ¥; = 7({g; x X). In
particular if ¢ € £(™4i(X) then its support meets finitely many of the Y;, and supp(¢)NY;
is a finite simplicial set. Thus there is a finite number of 7 such that ¢ = ©7!(¢) is

nonzero on g; H, and its restriction to each of these subsets takes values in (). By (42),
this implies that ¢ € Indg(é(x)), as we had to prove. O

PROPOSITION 2.2.8. The functor Ind§ : H-Alg — G-Alg is exact.

PrOOF: The exactness only depends on the group structure of the objects involved.
It follows from the fact that (47) is an isomorphism. O

ProPOSITION 2.2.9. Let A be a G-algebra and B be an H-algebra, then
Ind§(B ® Resh A) ~ Ind§(B) ® A

PrRoOOF: The isomorphisms are given by

S: Ind§(B)® A — Ind§(B ® Resfi(A)) T: Ind§(B®Res§ A) — Ind§(B)® A
&n(g, D) ®@a  — &u(g,b@g"-a) u(g,b®a) = &u(g,b)®g-a
It easy to check that they are mutually inverse equivariant maps. U
COROLLARY 2.2.10. Let A be a G-algebra. Then
Ind§ Restl 4 — ¢(¢/H @ A u(s,0) — xsu ®s-b

is an isomorphism of G-algebras.
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Let x C G and define
Ind$§ (A)[z] := {f € Ind§(A) : supp(f) C x}.
Note that if G = | |, #; is a disjoint union with z; = g; H then
(48) Ind§(A) = @ Ind§ (A)[xz;]

Suppose K is another subgroup of G. Let x = K#H for some § € G. Consider the
subgroup of K

(49) Ky=KnoHO!
Put Hyp-1 = 0~' KON H. Conjugation by 6! defines an isomorphism
(50) co1 1 Ko — Hp co-1(k) = 07k0

Hence we may view an Hy-1-algebra A as a Ky-algebra via cg-1. We denote it by ¢, (A).
ProrPOSITION 2.2.11. The map
o : Rest Ind§(A)[K 0 H] — Ind¥ (1 (Resh " (4)))  a(f)(k) = F(k0)
is an isomorphism of K-algebras.
PROOF: We can check a(&u(s,a)) = &k, (s07 !, a). The map « is equivariant:
alk- f)(x) = (k- f)(@0) = f(k~'20) = a(f)(k7'2) = (k- a(f))(2).
It is an isomorphism because a({u(kb,a)) = &k, (k, a). O

PROPOSITION 2.2.12. Let T be a simplicial set regarded as an H-simplicial set with
the trivial action, then

(51) Indg{(7) = [] Indi, ,(T)
HOK

PROOF: It is enough to prove that G /H = [[;,x K/ Ky-1, as K-sets with the right
regular action. Consider de decomposition

G:HHOK.
0eR

Here 6 runs among a full set of representatives R of the double coclasses H\ G / K. We
have
G/H= ][] HOK/HOKNH
HOK
Observe the function K — HOK, k — 60k is equivariant and if k, k& € K then

Ok = Okgyy <= 0kk07" € H <= kk™ € 07 HO <= kk™ € Ky <=k = k
Then

8_1)

HOK _ K
HOKNH  Kp
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PROPOSITION 2.2.13. Let Ind : H-Alg — G-Alg be the functor such that Ind(A) =
Ind$ (My® A). There exists a functor Ind§ : R&" — &R such that the following diagram
1s commutative

(52) H-Alg — 2~ G-Alg
/| |
H G
AR e AR

PRroOOF: The functor j o Ind is excisive because Ind maps split extensions to split
extensions and j¢ is excisive. Let us see the functor j¢ o Ind§; is homotopy invariant and
M.-stable. Let f,g: A — B be elementary homotopic morphisms of H-algebras. Then
there exists H : A — B[t] such that f = evgoH g = ev; oH. Hence Ind$(f) and Ind$(g)
are elementary homotopic morphisms of G-algebras and the homotopy is given by

Ind§; H : Ind§(A) — Ind§ (B[t]) ~ Ind§(B)]t] by 2.2.9.
As j¢ is homotopy invariant then j¢ o Ind§(f) = 7% o Ind§(g). Let ¢ : A — MA, then
7% o Ind$ (1) is an isomorphism because by Proposition 2.2.9 we have
Ind§ (MyA) ~ M, Ind§(A)

and j is M_-stable. By Proposition 1.7.13 the functor j¢ o Ind is homotopy invariant
and H-stable. As j% : H-Alg — &8" is universal for this properties there exists Ind§ such
that (52) conmmutes. O

2.4. Adjointness between Ind$§; and Res!.

THEOREM 2.2.14. Let G be a group and H be a subgroup of G. The functors
Ind§ : RR" — RR®  Rest : RRY — /R
are adjoint. Hence
kk%(Indfj(B), A) ~ kk"(B,Resg(4)) VB € H-Alg A€ G-Alg
PRrROOF: Let A € G-Alg and B € H-Alg. We need to have natural transformations
oy € kk®(Ind$ Resf A, A) g € kk'™ (B, Res Ind$; B)
which verify the unit and counit condition.
Define ¢4 : Ind§f (Resf(A)) — Mg, u ® A such that
palf)= Y eugn®g(f(9) ealéuls,b) = emen®s-b
gHeG /H
Put
(53) Y B — ResB Ind$(B)  p(b) = ule, b)

It is easy to check that 1p is well-defined and is a map of H-algebras. Let [pa] €
kk®(Ind§; Resf A, A) the element represented by ¢4 and ¢p € kk™ (B, Resfi Ind§ B) the
element represented by vg. The composite

Rest (aa)

BResH
§: Resg A e, Resg Indg; Resg; A Resg A
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is represented by

wResg A esH (

ResG A

Rest Ind§ Rest A

Resg (Ma ju ® A) = Mg u| @ Resg A

al Eule,a) pa(ule,a)) =enn ®a

which is kk"-equivalent to the identity in the sense of remark 1.6.2. The morphism
x € kk%(Ind$; B, Ind§ B)

Ind§ (85)

1! @ n G
x : Ind§ B 27 1048 Rest IndS B —27, 1ndS B

is represented by

dS (¢p) #ma& B

v : Ind§ B Ind§ Rest Ind§ B

Mg ju ® Ind§ B

gH(gab)I €H(gagH(€7 b))'—>egH,gH®§H(97b)

The following morphism of H-algebras

90—>Mg/H®C 9(6):€H7H®C
represents to the identity in the sense of remark 1.6.2. Then Ind$ () is kk®-equivalent to
the identity. It is easy to check Ind§(#) = v with C' = B. O
Write ¢;r for the isomorphism
(54) Yrp - kk®(Ind$ B, A) — kk"(B,Resh A) 4y = 95" o Resl

where 1p is the morphism defined (53).

COROLLARY 2.2.15. Let G be a group, H be a finite subgroup of G and A be a
G-algebra then

kkC(0C/MA) ~ kk(¢, A x H) ~ KH(A x H)

PROOF: The isomorphism is the composition of g, and ;5 defined in (37) and in
(54). O

3. A discrete variant of Green’s imprimitivity

Let G be a group, H a subgroup of G and A an H-algebra. We consider the following
left action of Ind§(A) x G in A®)

(55) (fx9)-9))=Ff)elg™t)  fendj(A4) e A gteG

Observe that Ind$(A) acts on A% by multiplication because Ind§(A) is a subalgebra of
A% and A@ is an ideal of A%. The action of £ G over A is (g- )(t) ©(g~1t). Taking
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the morphism obtained by the universal property of the crossed product we obtain the
following commutative diagram:

(56) Indg(A)% AG n(f)(@)(t) = f(t)e(t)

l l \ 1(g)(@)(t) = (g~'t)

T : Ind§(A) x G—— AS x G - - > End,(A®)

s

(G

Here T : Ind§(A4) x G — End,(A®) is the map asociated to the action defined in (55).
We also define on A(®) a right action of A x H as follows

(57) (p-(axh))(t)=h""(pth Ha) pec A9 qecA heH teG

It is easy to prove (55) and (57) are in fact a left action and a right action respectively.
One checks that these two actions satisfy

(f>xg)-lo-(axh)]=[(fxg) ¢l (axh)
Hence they make A% into an (Ind§(A) x G, A x H)-bimodule. In particular Im Y C
End ANH(A(G)). The decomposition

zeG/H
induces
(58) A9 = AW
zeG/H

and A®@ . (A x H) C A@. Hence (58) is a direct sum of A x H-right modules.

Let T,, : A®W — A® be a morphism of A x H-modules such that for each v €
AW T, ,(v) = 0 for all but a finite number of z. Note the matrix T = {1} ,}, yec/n
represents an element of End g, g (A). Moreover, every element 7' € End 4,5 (A®)) can
be represented in that way. If z = g H,

AxH— AN g his x, - (axh) = xmh ' (a)

is an isomorphism of right A x H-modules. Fix a full set of representatives R of G /H.
Write Mg for the algebra of R x R-matrices with finitely many nonzero coefficients in ¢
and put

MR(AN H) :MR®(A X H)

We have an homomorphism
MfR(A X H) — EHdAXH(A(G))

59
(59) M ={myyteoyer = Diex Xo® Q> ZyGR Xy * D per MayQa
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Furthermore, we have a map G — R which sends each s € G to the representative § € R of
sH. Observe esgu — €;; is an isomorphism between Mg n| and Mz. By composition,
we obtain an algebra homomorphism

I': Mg/m(AxH) — Endam(A©)

60
( ) esH,tH(a Dl h) = ZyE(RXy T Oy X (CL X h)af

THEOREM 2.3.1. Let G be a group, H C G a subgroup, and A an H-algebra. Then
there is an isomorphism

o Indf(A) x G — Mg, m (A x H)

such that the following diagrams commute

Ind§(A) End g (A©)
M\G/H\(A x H)
Ind§ (A M /n|(A > H)

EH(:%\ %

The morphism T is defined in (56) and the morphism I' in (60).

PROOF: For simplicity suppose 1g € R. For each s € G denote ¢(s) = §7's € H.
Observe ¢(sh) = ¢(s)h for all s € G, h € H. Define

(61) Cul(s,a) X g — esug1su ® P(s)-axg(s)p(gts)™!

The map (61) is well-defined:

o(Eualsh, b -a) % g) = eanrng o @ B(sh) - b~ - x o(sh)g(g~ k)~
= esngsn @ O(s) - a X G(s)p(g7"s) ™
= &(SH(Saa) A g)
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Note that if g, ¢, s € G are elements such that t"'g~1s € H then ¢(gt) = ¢(s)d(g's) L o(2).
The map (61) is an algebra homomorphism:

a((&n(s,a) x g)(u(t,b) x 1)) = a(éu(s,a)lulgt,b) x gr)

fH gt [(t71g71s) -alb) x gr) tlg7lseH
t~lg7ls¢ H

gtH rig-ign @ O(gt) - ([(E1g 7 s) - alb) x p(gt)p(r~1)~" t7'g s € H
t~lg7ls¢ H

Il
—

_ { estr—1en ® [0(s) - al[d(gt) -] % G(gt)p(r~'t)™" t7lg7Is € H
t7lg7ls¢ H

= a(fH(s,a) X g)a(gH(tvb) X 7“)
The map (61) is bijective and its inverse is the following
B:Mg u(AxH) —Indf(A) G esngulaxh)— &u(s,a) x $hg™!

Let us check that the diagrams of the theorem are commutative

T(Eu(5.0) % 9)(Syen s o) = Xa-[(@ 2 9(g7's) M =]
= X [(6(5) - a % 6(s)o(g~"s) ]

= (Foa)(&nuls,a) X g)(>_,cx Xy - )

(o éu(lg,—) xid)(a x h) = o(fu(lg,a) x h)

= 6H,H® (CL X h)
U

REMARK 2.3.2. The isomorphism « of the Theorem 2.3.1 is natural in A but not in
the pair (G, H), as it depends on a choice of a full set of representatives R of G / H.

COROLLARY 2.3.3. Let G be a countable group, H C G a subgroup, and A an H-
algebra. Let E : Alg — C be a M-stable functor. The following map is an isomorphism

E(&u(lg, —) xid) : E(A x H) — E(Ind§(A) x Q).

4. Duality

Let G—Alg be the category of G—algebras with homogeneous homomorphisms. In this
section we define functors between the categories G-Alg and G-Alg. We prove that they

extend to equivalences between £8% and £RY. In this way we obtain an algebraic duality
theorem similar to the duality given by Baaj-Skandalis in [1].
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Let A be a G-algebra. Then

AxG=EPAxs  and (Axs)(Axt)C Axst
seG

thus A x G is a G-algebra. If f : A — B is a homomorphism of G-algebras then
fxG:AxG— BxGisa graded homomorphism. Hence we have a functor

%G : G-Alg — G-Alg
We can also define a functor
xG: G-Alg — G-Alg

as follows. Let B be a G—algebra. Let G x B be the algebra which as a module is /(%) @ B
and the product is the following

(62) (Xg X a)(xn X b) := xg X ag-1pD.
Recall b, is the homogeneous element associated to g in the decomposition
b= b,
geG

One check that the product (62) is associative and the following action of G makes it into
a G-algebra

s+ (Xg X a) = Xsg X a
If f: A— B is a homogeneous homomorphism define
Gxf:GxA—-GxB (G % f)(xg X a) == x, ¥ fla)
It is a G-algebra homomorphism. Thus we have a functor
(63) x G : G-Alg — G-Alg
PROPOSITION 2.4.1. Let A be a G-algebra and let B be a G-algebra.
a) There are natural isomorphisms of G-algebras
CGx(AxCG)~Ms® A
b) There are natural isomorphisms of G—algebras
(GxB)xG~My®B
PROOF:
a) Define T: G x (A x G) — Mg ® A as
T(xgMaxs)=g-a® eggs.
It is easy to check T'is an equivariant algebra isomorphism with inverse given by

1

Sla®en)=x,xr taxr 't
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b) Define T': (G x B) x G — Mg ® B as
T(xpXbxs)= Z ehs—1pr @ by

reG
It is easy to check T'is a graded algebra isomorphism with inverse given by
(64) S(ers @ by) = Xr X by X 7gs™?

THEOREM 2.4.2. The functors x G and Gx extend to inverse equivalences
—xG:RRS — RRG G x—: RS — RRC
Hence if A and B are G-algebras and C' and D are G—algebras then
kk®(A, B) ~kk®(Ax G, B x G) kk%(C, D) ~kk%(G x C,G x D)

PrRoOOF: As xG maps split sequences to split sequences, jé(— x G) is excisive. By
Proposition 2.1.2 jé(— x G) is G-stable and homotopy invariant, whence it extends to
— %G ARG — /RS by universality. Similary, as x¢ maps split sequences to split
sequences then jG(G X —) is excisive. Because Gx maps graded homotopies to equivariant
homotopies and j¢(G x —) is Mo-stable, (G x —) extends to G x — : RRY = RRY by
universality. To finish we must show that the maps

kk®(A,B) > kk®(Ax G,BxG) and kk%(C, D) — kk%(G x C,G x D)

are isomorphisms. This is true by Proposition 2.4.1. O

5. Green-Julg theorem for kk”*

In this section we consider a finite dimensional semisimple Hopf algebra H and prove
a version of the Green-Julg theorem for kk“C.

5.1. Smash product. We shall recall the smash product for H-algebras. It is a
generalization for H-algebras of the crossed product A x G.

DEFINITION 2.5.1. Let A be an H-algebra. The smash product algebra A#X is the
(-module A ® H with the following product

(a#th)(b#k) = Za(hl - b)#hok a,be A hkeXH
If f: A— B is a morphism of H-algebras, we put
fH#IC A#H — B#IH f#H(a#h) = f(a)#h
which is a morphism of algebras. Hence, we have a functor # H : H-Alg — Alg.

ProproOSITION 2.5.2. Let M be an H-module and A be an H-algebra. The following
is an isomorphism of algebras

(65) ¢ : Endo(M) @ (A#H) — (End (M) @ A#H  ¢(p @ a#h) =D o1n, ® athy
Moreover, the following restriction of ¢ is also an ismorphism
¢ : End} (M) @ (A#H) — (End} (M) @ A)#H
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PROOF: Let us check (65) is an algebra morphism:
o((p @ ath)(¢ @ a#th)) = Y d(pg @ alhy - a)#hsh)

= 3(0D)1pohy ® alha - @)Fhshy
= S (P(@(S(hsh)- ) @ ale(hr)hy - @)#hahs
= 2 @(S(h)ha@(S(hahr)- ) @ a(hs - @)#hshs
= 2 Ol Phapaiy © alhs - @)#hshs
= 2 (p1m @ a)(Ppy pyny © hs - @)#hshy
= Y (P1m ® a)(By ) hans @ hs - @)#hshy
= Ypim @ a)hy - (15, ®@)#hshs

= oo @ a#th)p(P ® a#th)

It is easy to check that the following map is also an algebra morphism and is the inverse
of (65).

Y (Endy(M) ® A)#H — Endg(M) @ (A#H) (o @ a#th) =Y ¢y 5,) @ atthy

By remark 1.7.22, we can restrict the homomorphisms defined above and obtain the
following isomorphisms

Y (End) (M)®A)#H — End} (M)Q(A#H) ¢ : End, (M)Q(A#H) — (End) (M)@A)#K.

ProrosiTioN 2.5.3. Let H a Hopf algebra with finite dimension. There exists a
unique functor # H : RR”" — AR such that the following diagram is commutative

H-Alg 725 Alg

W)

RRM — 5 AR

PROOF: By 1.8.3 it is enough to prove j(—#XH) is excisive, homotopy invariant and
H-stable. The two first properties are straightforward. Let M;, My be H modules with
countable dimension and A be an H-algebra. Consider the isomorphism v defined in the
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Proposition 2.5.2. Note the following diagram is commutative

(Endo(My) ® A)#H — 0 (Bnd, (M, @ My) @ A)#H

‘| |v

IR1HH

As j is M-stable we know j(I ® 1#3H) is an isomorphism. Hence j(—#H)(f ® 1) is an
isomorphism and j(—#3H) is H-stable. O

Let A be an H-algebra. Consider H ® A as a left H-module with the diagonal action.
Also consider H ® A as a right A-module with the regular action. In other words

he(k©@a)=) mk@hy-a (k®a) c=k®ac
It is easy to check that
(66) t-(h@a)-c)=> (h-(h®a))-(ta-c)
We define
Enda(H ® A) := {p € Endy(H ® A) such that p(k ® ac) = p(k ® a) - ¢}

The structure of H-module in H ® A gives an H-algebra structure in End,(H ® A), see
Example 1.1.3. Tt is easy to check that Ends(H ® A) is a sub-H-algebra of End,(H ® A).
Consider End,(H) ® A as the H-algebra defined in Example 1.1.4 We have the following
homomorphism of H-algebras

(67) T :Endy(H) ® A — Ends(H® A) T(p®a)(h®b) =¢h)ab
If H is finite dimensional, then (67) is an isomorphism.

THEOREM 2.5.4. Let J{ be a semisimple Hopf f-algebra. The functor given by the
trivial action 7 : RR — KR is left adjoint to the functor given by the smash product
#H : RAR” — RR. In particular there is a natural isomorphism

kk?(A7, B) ~ kk(A, B#H) AcAlg B H-Alg
PRroOF: It is enough to prove that there exist
a4 € kk(A, AT#XH) and By € Kk'((B#X)™, B)
such that
AT TO aruge)r B4 and Bagt 22 (Bad)T 4% 208 pugg

are the identities in kk” (A7, A7) and kk(B#3, B#3) respectively. As 3 is semisimple
there exists an element ¢t € H such that

e(t) =1 th=¢eh)t VYheXH

Define
g A AH#HH=AH asla) =a®t
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It is an algebra morphism because t is idempotent. Let

Bp: (B#H)" — Endz(H ® B)

b#h = ©b#n
Popn(k ®a) = k1S(hy) ® (k2S(h) - b)a
One checks that (g is an equivariant algebra homomorphism. Consider
(68) A T (Ampa0 P End . (e A7)
a — a®t — Past
Note
Past (k@) =Y " k1S (t2)@ (koS (t1)-a)b = Y k1 S(ta)®e(ko)e(ty)-ab = kS (t)@ab = e(k)t@ab

As 3 is unimodular we have t = S(t). We write < t > for the subspace of H generated
by t. Let I = kere and note H =< ¢t > @©I as H-modules. Let ¢ : H — H be the
projection over < t >, p(h) = €(h)t. Because the following diagram commutes the map
(68) represents the identity in kk”"(A7, A7) in the sense of remark 1.6.2.

AT —>Endy(H) @ A" o« —>=pRa
M l(m) \ l
Enda- (H ® A7) Past

It remains to prove that the following morphism represents the identity in kk( B#H, B#H)
#Bp

(69) B#H 5 (B#H) @H % Endp(H @ B)#H

The following morphism

Q: Endp(H®B)#H — Endpyg(HRB#H) Qn#l) (z@cH#y) = Zn(llx@)lg-c)#lgy
makes the following diagram commutative

Endp(H @ B)#3 <2 (End, (30) © B)#HK

o] |»

Endp o H © B#H) =— End((H) @ (B#H)

here 9 is the isomorphism defined in Proposition 2.5.2 and T and T5p are the mor-
phisms defined in (67). As H is finite dimensional, T and Tyyp are isomorphisms.
Hence (2 is an isomorphism too. Write by Apzp, = Q(@pun#t). We shall prove that the
map b#h — Ay, represents to the identity. Define

§:H @ BHH — H@BHEH ~: H@BHEH — H @ BHK

S ®@a#ty) =D 11 @xy-aftwsy  y(r @ afty) =Y 11 ® S(w3) - a#S(22)y
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It is easy to check that they are mutually inverse. By M-stability the following morphism
represents the identity

B#H — End,(H) @ (B#XH) b#h — © ® b#h

Hence
B#H — Endpyq9(H @ B#XH) b#h — § o Tpusc(p @ b#h) oy
also represents the identity. We finish the proof verifying that

(6 0 Tyac(p @ b#th) o v)(x ® afty) Y2(6 0 Tppn) (21 ® S(xs) - a#S(22)y)
= > 0(e(x1)t @ b(hi1S(x3) - a)#h2S(x2)y)

= Y 6(t®b(hiS(w2) - a)#haS(x1)y)

= > t1 ®ta(b(h1S(x2)) - a)F#tshaS(x1)y

= Y. t- (1®b(h1S(x2)) - a#thaS(x1)y)

= Y te(zi)e(hs) - (1@ b(h1S(x3)) - atthaS(w2)y)

= S tx1S(h3) - (1@ b(h1S(x3)) - a#haS(x2)y)

= Y t1215(he) @ (tax2S(hs) - b)(t3203S(ha)h1S(z6) - a)#taxaS(hs)haS(z5)y
= Y t1215(ha) @ (tax2S(h3) - b)(t3203S(ha)h1S(z4) - a)#tay

= S t121S(h2) ® (t222S(h1) - b)(ts - a)#tsy

= Nppn(z @ atty)



CHAPTER 3

Isomorphism conjectures with proper coefficients

In this chapter we study isomorphism conjecures in the sense of [8]. We consider
model category structures on G-simplicial sets and G-topological spaces. If & is a family
of subgroups of G we consider model category structures on S¢ and Top®. With this
structure weak equivalences and fibration are object-wise. Cofibrant object are those X
such that the stabilizer subgroup G, is a subgroup in & for all z € X. We prove that the
following is a Quillen equivalence

Sing,
G

Top S¢.

I«

We say that a functor H : S® — Spt from the category of G-simplicial set to the category
of spectra satisfies the (G, F)-isomorphism conjecture if for the cofibrant replacement
7: &(G,F) — * in the F-model category mentioned aboved, the map

H(m) : H(E(G, F)) — H(x)

is an equivalence. If E : Z-Cat — Spt is a functor and R is a unital G-ring, one constructs,
following Davis-Luck [8], a functor

H%(—,E(R)) : S® — Spt

such that HS(x,E(R)) = E(R x G). The (G,J,E, R)-isomorphism conjecture is the
(G, F)-conjecture for the functor H%(—, E(R)). We show that under very mild assump-
tions on E, the STANDING ASSUMPTIONS 3.2.5 (which are satisfied for example when E
is either K or KH, see propositions 3.4.18 and 3.5.3), H%(—, E(A)) is defined not only for
unital G-rings, but also for all E-excisive G-rings A, that is all G-rings on which E-salisfies
excision. Moreover we show that if

(70) 0—-A—-A—-A" >0
is an exact sequence of E-excisive rings and X is a G-simplicial set, then
HE(X,E(A)) — HE(X,E(A)) — H(X, E(A"))

is a homotopy fibration. This is a basic property needed to establish an algebraic analogue
of the Dirac-dual method which is used to prove the Baum-Connes conjecture for some
groups. Another basic property, which provide us with enough sequences (70) in which at
least one of the rings satisfies the isomorphism conjecture, is Theorem 3.7.3 which shows
that if E satisfies the standing assumptions and A is an E-excisive G-ring of the form

(71) A= Indg, B;

69
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with B; a K;-ring and K; € J for all 4, then the functor H%(— E(4)) maps (G,)-
equivalences to equivalences. In particular the (G, J, E, A)-isomorphism conjecture holds.
We use this in Section 8 to show that under some additional assumptions (which are still
satisfied if E = K, KH, see 3.8.1), for each E-excisive G-ring A there is a functorial exact
sequence of E-excisive G-rings

3B —3°B — §*B/3"'B

and a natural map A — F°B such that

i) HS(X,E(4)) — H(X,E(3"B)) is an equivalence for all G-simplicial set X.

ii) HS(X,E(§*B)) — * is an equivalence if X is (G, J)-cofibrant.

iii) H%(—, E(§*B/3"B)) maps (G, F)-equivalences to equivalences.
It follows that the assembly map

HE(&(G,9),E(A)) — E(AxG)
is an equivalence iff the conecting map
QE(F*B/3°B x G)) — E(A x G)

is an equivalence. In particular all this applies when E = K, KH. We also show in Theorem
3.9.2 that under stronger hypotesis on E, of which the main one is that E satisfies excision
(e.g. KH satisfies this but K does not), then the (G, J, E, A)-isomorphism conjecture is
true whenever A is (G, F)-proper. If X is a locally finite simplicial set with a G-action
then a G-ring A is proper over X if it is an algebra over the ring Z) of finitely supported
polynomial maps on X, the algebra action is compatible with the actions of G on A and
on X, and ZX) - A = A, We say that A is (G, JF)-proper if it is proper over a locally
finite simplicial set X on which G acts with all stabilizers in F. For example an algebra
is of the form (71) if and only if it is proper over the zero-dimensional G-simplicial set

We remark that the notion of (G, F)-proper ring used here is the algebraic analogue
of the notion of proper G-C*-algebra, and that Teorem 3.9.2 is an algebraic version of the
known fact that Baum-Connes conjecture holds for proper G-C*-algebras [11].

1. G-simplicial sets and model category structures

1.1. G-simplicial sets. A G-simplicial set or a G-complex X is a simplicial set with
a simplicial action of G. Let X be a G-complex; consider the category (A | X)g defined
as follows. Its objects are the triples (G /H,[n],0 : G/HXA" — X) such that H is a
subgroup of G and ¢ : G/H xA"™ — X is a morphism such that o(¢H,z) = ¢ - o(H, x).
An arrow is a pair (s,0),s: G/H — G /K, 0 : [n] — [m], such that the following diagram
commutes
sxhoma (—,0)

G /HxA" G /K xA™
X

As in the nonequivariant case (see [10], 1.2), any G-simplicial set is the colimit of its cells.
Let recall this in the following lemma.
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LEMMA 3.1.1. Consider
Tx : (A} X)g —S®  (G/H,[n],0:G/HXA" = X)—0:CG/HxA" - X
Then
X = colimg jugxan—x G /HxA" = colim Ty

O
The n-skeleton X,, of a G-complex X can be obtained by attaching equivariant cells
to X,,_1 as the following pushout diagram shows

[Lic;, G/ Hi x0A™ M Xn-1

| |

HiEInG/Hi x A" Xn

ier, @7
A family & of subgroups of G is a nonempty family closed under conjugation and under

taking subgroups. A G-complex X is a (G, F)-complex if H; € F for all i € I, n € N.

1.2. Orbit category. Let J be a family of subgroups of G. We consider the orbit
category of G relative to F and we write it OryG. Its objects are the G-sets G / H with
H € F and its maps are the G-equivariant maps. We write Or G for Oray G. If H, K € &F
and ¢g € G is such that ¢g7' Hg C K then

r,:G/H—G/K rs(tH) =tgK
is a morphism of OrsG. Moreover, every morphism in Org G is 7, for some g € G.
1.3. Quillen equivalences. We consider Top and S with their usual cofibrantly
generated closed model category structures (see Section 2.4, Section 3.2 and Definition

2.1.17 of [14]). The sets of generating cofibrations Itep, Is and the sets of generating
trivial cofibration Jrop, Js are the following

Itop ={f: 5" ' —=D": n>0} Ig={f:0A"— A": n>0}

Jrop ={f: D" —= D"xI: f(x)=(z,0) n>0} Js={f: A —=A": n>0, 0<k<n}

By Theorem 3.6.7 of [14] we have that the geometric realization functor || : S — Top and
its right adjoint Sing : Top — S form a Quillen equivalence (see Definition 1.3.12 in [14])

Sing

Top S

If @ = Top, S, and I is any small category, then, by [13, Thm. 11.6.1], € is again a
cofibrantly generated closed model category, with object-wise fibrations and weak equiv-
alences, and where generating (trivial) cofibrations are of the form

H f: H domf — H codf

hom[(a,—) hOI‘Il[(Oé,—) hOI‘Il[(Oé,—)
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with & € T and f : domf — codf a generating (trivial) cofibration in €. By [13, Thm.
11.6.5], the induced functors

Sing,
I

Top St

Il

are also Quillen equivalences.
Next fix a group G and a family JF of subgroups of G. By the previous discussion
applied to the orbit category OrsG?, we have a Quillen equivalence

Sing,

(72) Top®™” " §Ors G

-~

I
Let H be a subgroup of G and X an object in C%. Consider
Xt ={zeX:h-r=x VhecH

Note X" = map, (G /H, X).
For € = Top, S, consider the functor

R: €% — €2 R(X)(G/H) =mapg(G/H,X) = X"
and its left adjoint, the coend

G/H
L: @O _, 68, L(Y):/ Y(G/H) x G /H

The Quillen equivalence (72) fits into a diagram

Sing,
op ————————————=>
(73) Topori}. GoP - Sorg GopP
I
L R L R
Sing,

PROPOSITION 3.1.2. Let H be a subgroup of G and X an object in C©.
(1) Let B an object in €, B is also an object in €% with the trivial action, and

homec (B x G /H, X) ~ home(B, X™)

(2) Let the following be a cocartesian diagram in €% with g injective,

A—1D

"J j

B—f>0
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Then

is cocartesian in C.
PRrROOF: Straightforward. l

ProrosiTiON 3.1.3. Let € = Top, S.

i) C% is a closed model category where a map f is a fibration (resp. a weak equivalence) if
and only if R(f) is. Moreover C¢ is cofibrantly generated, where the generating (trivial)
cofibrations are the maps f x id : domf x G /H — codf x G /H, with f a generating
(trivial) cofibration and H € F.

ii) Each of the pairs of functors of diagram (73) is a Quillen equivalence .

PROOF. One can give conditions on two sets of maps and a subcategory of a category
D to be respectively the generating cofibrations, generating trivial cofibrations and weak
equivalences in a closed model structure of D; see M. Hovey’s book [14, Thm. 2.1.19]. It
is straightforward that those conditions are satisfied in our case, for D = C%. This proves
i). The top pair of functors in diagram (73) is a Quillen equivalence by the discussion
above the proposition. By definition of fibrations and weak equivalences in €%, these are
both preserved and reflected by R. In particular (L, R) is a Quillen pair. To show that it
is an equivalence, it suffices, by [14, Cor. 1.3.16], to show that if X € @9*s & is cofibrant,
then the unit map

(74) X — RLX

is a weak equivalence; in fact we shall see that it is an isomorphism. Because every
cofibrant object is a retract of a cofibrant cell complex, it suffices to check that (74) is an
isomorphism on cell complexes. By definition, the generating cofibrant cells in GOrs G*
are of the form HmapG(77G/H) A". But for every T' € S, we have:

RL( [ T)(G/K)=R(G/HxT)(G/K)
mapg (—,G/H)
=(G/H x T)¥

—mapor(G/K.G/ M xT = [[ T
mapg (G /K,G/H)

Thus the unit map is an isomorphism on cells, and therefore on coproducts of cells,
since taking fixed points under a subgroup preserves coproducts of G-simplicial sets. In
particular (74) is an isomorphism on the zero skeleton of X. Assume by induction that
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(74) is an isomorphism on the n-skeleton. The n + 1-skeleton is a pushout

HHezn HmapG(—,G/H) A" —— n+1(—)

| |

HHeIn HmapG(—,G/H) OA" — Xn(_)

By Lemma 3.1.2 and the inductive hypothesis, the diagram
ey, (mapg(—, G/ H)) x A" —— RLX,,1(—)

| |

[iies, (mapg (=, G/ H)) x A" Xn(=)

is again a pushout. It follows that RLX, 1 = X, 11 and thus (74) is an isomorphism on
all cell complexes, as we had to prove. We have shown that the top horizontal and both
vertical pairs of functors are Quillen equivalences; by [14, Cor. 1.3.15], this implies that
also the bottom pair is a Quillen equivalence. O

1.4. Assembly map. For the model structures of Proposition 3.1.3, the functorial
cofibrant replacement in Top® of the point space * is a model for the classifying space
of G with respect to F and the cofibrant replacement of * in S¢ is a simplicial version.
Moreover because | — |, : S¢ — Top® is a Quillen equivalence, it takes the simplicial
version to the topological one. In particular if E is a functor from Top® to spectra and
7 : &(G,F) — * is the cofibrant replacement in S, then we have a map

(75) E(m) : E(|E(G, F)|) — E(x)
If
Or G
E(X) = Fy(X) = R(X) Qorc F := / X!'AF(G/H)

for some functor F' : Or G — Spt, (75) is the Davis-Liick assembly map of [8, Section
5.1]. In case ' = |F"| is the geometric realization of a functorial spectrum in the simplicial
set sense, we have further

Or G
FlallX) =1 [ XEAP(G /)] = [F5(X)|

and the assembly map for F' is the geometric realization of that of F’. Hence we can
equivalently work with assembly maps in the topological or the simplicial setting; we
choose to do the latter. In particular all spectra considered henceforth are simplicial.

2. Equivariant homology

2.1. Crossed products and equivariant homology. A groupoid is a small cate-
gory where all arrows are isomorphisms. Let G be a groupoid, and let R be a unital ring.
An action of G on R is a functor p : § — Ring; such that p(z) = R for all x € ob§. For
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example we may take p(g) = idg for all arrows g € arG; this is called the trivial action.
Whenever p is fixed, we omit it from our notation, and write

g(r) = p(g)(r)

for g € ar§ and r € R. Given a triple (G, p, R), we consider a small Z-linear category
R x G. The objects of R x G are those of G, and

hOmeg(.T, y) =R® Z[homg(x, y)]
If s € R and g € homg(z,y), we write s X g for s ® g. Composition is defined by the rule
(76) (rxf)-(sxg)=rf(s)xfg

here ;s € R, and f and g are composable arrows in G. In case the action of G on R is
trivial, we also write R[§] for R x G.

Let G be a group; consider the functor §% : G —Set — Gpd which sends a G-set S to
its transport groupoid. By definition obG%(S) = S, and homge(g)(s,t) = {g € G : g-s = t}.

NotaTioN 3.2.1. If E is a functor from Z-linear categories to spectra, R a unital
G-ring, and X a G-space, we put

HE(X,E(R)) = E(R % §°%(?))x(X)

2.2. The ring A(C). Let € be a small Z-linear category. Put

(77) A(€) = &5 home(a,b)

a,beobC
The following multiplication law
(78) (fg)a,b - Z fc,b O Ja,c
c€obC

makes A(C) into an associative ring, which is unital if and only if ob@ is finite. Whatever
the cardinal of obC is, A(C) is always a ring with local units, i.e. a filtering colimit of
unital rings.

A(?) and tensor products. The tensor product of two Z-linear categories € and D is
the Z-linear category C ® D with ob(€C ® D) = ob(€) x ob(D) and

homegp((c1,dy), (ca,ds)) = home(ey, ¢2) @ homap(dy, do)

We have
AC® D) =A(C) ® A(D)

EXAMPLE 3.2.2. If G is a groupoid acting trivially on a unital ring R, then

A(R[S]) = A(R® Z[F]) = R A(Z[S])
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A(?) and crossed products. If A is any, not necessarily unital ring, and G is a groupoid
acting on A, we put

AAx5) = @ A®Zhomg(r,y)]

z,y€ob§

The rules (76) and (78) make A(A x §) into a ring, which in general is nonunital and
does not have local units. The ring A(A x §) may also be described in terms of the
unitalization A of A. By definition, A = A ® Z equipped with the trivial G-action on the
Z-summand and the following multiplication

(79) (a, N)(b, ) = (ab~+ Ab+ ap, )
We have
(80) A(A % G) = ker(A(A x §) — A(Z[9]))

Note that A(A x G) is defined, even though A x G is not. One can actually define A x G
as a nonunital category, i.e. a category without identity morphisms, but we do not go
into that here.

Next we fix a group G and a subgroup H C G and consider the ring A(A x G¢(G / H))
associated to the crossed product by the transport groupoid. Note that

homSG(G/H) (H, H) =H= hOmSH(H/H) (H, H)

thus there is a fully faithful functor §%(H /H) — G%(G /H). This functor induces a ring
homomorphism

J:AxH=A(AxGYH/H)) c A(A x (G /H))
The next lemma compares the map j with the canonical inclusion
t:AxH— Mgu(AxH), z—egn®z

In the following lemma and elsewhere, we make use of a section s : G/H — G of the
canonical projection onto the quotient by a sugroup H C G. We say that the section s
is pointed if it is a map of pointed sets, that is, if it maps the class of H to the element
1eG.

LEMMA 3.2.3. Let A be a ring, G a group acting on A, and H C G a subgroup. Then
there is an isomorphism « : A(A x §%(G /H)) — Mg, u(A x H) making the following
diagram commute:

AxH—>A(A % GG /H))

2

Mg/H(A X H)

The isomorphism « is natural in A but not in the pair (G, H), as it depends on a choice
of pointed section s : G /H — G of the projection 7 : G — G / H.
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PROOF. Let s be as in the lemma; put § = s(7(g)) (¢ € G). The isomorphism
a: A(A x G9(G/H)) = Mg, u(A x H) is defined as follows. For b € A, s, € G, and
g € homge (g /my(s H, 2 H), put

albxg)=emen @t H(b) x (t1g8)
It is straightforward to check that « is an isomorphism and that o) = ¢. U

Functoriality of A(?). If F': €+ D is a Z-linear functor which is injective on objects,
then it defines a homomorphism A(F) : A(C) — A(D) by the rule a — F(«). Hence we
may regard A as a functor
(81) A :inj-Z-Cat — Ring
from the category of Z-linear categories and functors which are injective on objects, to

the category of rings. However A(F') is not defined for general Z-linear F.

REMARK 3.2.4. The use of the prefix inj here differs from that in [8]. Indeed, here inj
indicates that functors are injective on objects, whereas in [8], it refers to functors which
are injective on arrows.

2.3. The nonunital case. A Milnor square is a pullback square of rings

(82) R —R

b

S/TS

such that either f or ¢ is surjective. Below we shall assume f is surjective. Let E :
7, — Cat — Spt be a functor. If A is a not necessarily unital ring, embedded as an ideal
in a unital ring R, we write E(R : A) = hofiber(E(R) — E(R/A)). The functor E is said
to satisfy excision for the Milnor square (82) if

)
|

E(R') — E(R
E(S") —— E(S)

is homotopy cartesian. If ker f = A, then E satisfies excision on (82) if and only if the
spectrum

E(R,R: A) = hofiber(E(R : A) — E(R: A))
is weakly contractible. We say that the ring A is E-excisive if E satisfies excision on every
Milnor square (82) with ker f =2 A. Assume unital rings are E-excisive; if A is any, not
necessarily E-excisive ring, we consider its unitalization A, defined in (79) above. Put

E(A) = hofiber(E(A) — E(Z))

Because of our assumption that unital rings are E-excisive, if A happens to be unital, the
two definitions of E(A) are naturally homotopy equivalent. Note that if

0—-A —>A—- A" =0
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is an exact sequence of rings and A’ is E-excisive, then
E(A") — E(4) — E(4”)

is a homotopy fibration.

We have already considered rings with local units; we shall need an even weaker form
of unitality, called s-unitality. A ring A is called s-unital if for every finite collection
ai,...,a, € A there exists an element e € A such that a;e = ea; = a;. Note that if we
add the requirement that e be idempotent we recover the notion of ring with local units.

STANDING ASSUMPTIONS 3.2.5. From now on, we shall be primarily concerned with
functors E : Z-Cat — Spt that satisfy the following:

i) Every s-unital ring is E-excisive.

ii) If H is a group and A an E-excisive H-ring, then A x H is E-excisive.

iii) If A is E-excisive, X a set and x € X, then Mx A is E-excisive, and E sends the
map A — MxA, a— e, a to a weak equivalence.

iv) There is a natural weak equivalence E(A(C)) = E(€) of functors inj-Z-Cat —
Spt.

v) Let {A4; : @ € I} be a family of rings, and let A = @,.; A; be their direct
sum, with coordinate-wise multiplication. Then A is E-excisive if and only if

each A; is. Moreover if these equivalent conditions are satisfied, then the map
D, E(A;) — E(A) is an equivalence.

Let G be a group. Assume E satisfies the standing assumptions above. For A an
E-excisive G-ring, consider the Or G-spectrum

(83) G /Hw— E(Ax S%(G/H)) = hofiber(E(A x §%(G /H)) — E(Z[S%(G /H))])

Applying (?)y to (83) defines an equivariant homology theory of G-simplicial sets, which
we denote HY(—,E(A)). Moreover, for each fixed G-simplicial set X, H%(X,E(?)) is
a functor of E-excisive rings. Observe that, for unital A, we have two definitions of
E(A x G%(—)) and two definitions of H%(—, E(A)); the next proposition says that the two
definitions are equivalent.

PROPOSITION 3.2.6. Let E : Z-Cat — Spt be a functor and G a group. Assume that
E satisfies the standing assumptions 3.2.5 above.
a) If R is a unital G-ring, then the two definitions of E(R x §%(—)) and of H%(—, E(R))
are equivalent.
b) If
0—-A —-A—-A" =0

is an exact sequence of E-excisive G-rings, and X is a G-simplicial set, then
E(A" % §9(=)) = E(A x §%(=)) — E(A” x §°(-))
and
HE(X,E(A)) — HE(X,E(A)) — H(X,E(A"))

are homotopy fibrations.
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Proor. If A is E-excisive and H C G is a subgroup, then conditions ii) and iii)
together with Lemma 3.2.3 imply that A(AxG%(G / H)) is E-excisive. Hence, by condition
iv), the spectrum in (83) is equivalent to E(A(A x G%(G/H)). In particular, by i),
A(R x G%(G /H)) is E-excisive for R unital, and the map

hofiber(E(R x §%(G /H)) — E(Z[S%(G /H)])) — E(R x §%(G /H))

induced by the projection R> R x Z — R is an equivalence. This proves a). Moreover,
because A(? x G9(G /H)) preserves exact sequences, then applying (83) to the exact
sequence of part b) yields an object-wise homotopy fibration of Or G-spectra, which is
the first homotopy fibration of b). Applying (7)y we obtain the second one. O

REMARK 3.2.7. Let E : Z-Cat — Spt and let A be any, not necessarily E-excisive
G-ring, equivariantly embedded as an ideal in a unital G-ring R. Consider the Or G-
spectrum

E(R x G%(=) : A x G%(=)) = hofiber(E(R x §%(—)) — E((R/A) x G%(-)))

Put
HE(X,E(R:A)) =E(RxG%=):AxG%=))y(X).

Assembly gives a map of homotopy fibrations

HE(E(G,F),E(R: A)) — H(E(C,F), E(R)) —= HE(&(G, F), E(R/A))

| | |

E(RxG:AxG) E(R x G) E((R/A) x G)

Hence if the (G, J) assembly map for the functorial spectrum E(—) is an equivalence on
unital rings, then both the middle and right hand side vertical maps are equivalences; it
follows that the same is true of the map on the left. We record a particular case of this
in the following corollary.

COROLLARY 3.2.8. Let E : Z-Cat — Spt be a functor; assume E satisfies the Standing
assumptions 3.2.5. Further let G be a group and F a family of subgroups, and assume
that the assembly map H(&(G, F), E(R)) — E(R x G) is an equivalence for every unital
ring R. Then H%(&(G,F),E(A)) — E(A x G) is an equivalence for every E-excisive ring
A.

PRrOPOSITION 3.2.9. Let A < R be an ideal in a unital G-ring, closed under the
action of G. Let E : Ring — Spt be a functor satisfying the standing assumptions. If A
is E-excisive then

B(A % §5(=)) — B(R x §¢(—) : A x §¢(—))
is an object-wise weak equivalence of Or G°P-spectra.
PROOF. Let H be a subgroup of G. By Standing Assumption ii)
E(AxH) - E(RxH:AxH)

is an equivalence. The proof follows from Lemma 3.2.3, using assumptions iii) and iv). O
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2.4. The ring R(C). Let € be a Z-linear category. Imitating a construction used by
M. Joachim ([15]) in the C*-algebra context, we shall associate to € a ring R(€) which is
a quotient of the tensor algebra of A(C); first we need some notation. If M is an abelian
group, we write T'(M) = @, -, M®" for the (unaugmented) tensor algebra. Put

R(@)=T(A@))/ <{9® f—gof:f€home(a,b),g € home(b,c), a,b,ce€obC} >

Note that any Z-linear functor € — D € Z— Cat defines a homomorphism R(€) — R(D).
Thus we may regard R as a functor

R :Z — Cat — Ring, C~— R(C)
Observe that the canonical surjection T'(A(C)) — A(C) factors through a map
(84) R(C) — A(C)

whose kernel is the ideal generated by the elements g ® f for non-composable g and f. In
Lemma 3.2.10 we give conditions on a functor E : Ring — Spt to send (84) to a weak
equivalence; first we need some notation. A functor E : Ring — Spt is called excisive if
every ring is E-excisive. An excisive functor which satisfies Standing Assumption iii) is
called matrix stable. Note that standing assumptions i)-ii) are automatically satisfied if
E : Ring — Spt is excisive and matrix stable. Any excisive functor E satisfies condition
iv) for finite sums; if it satisfies it for arbitrary sums, we say that E is additive. For
example if E is excisive and E, commutes with filtering colimits, then E is additive.

For the proof of the next lemma we also need to recall the concept of multiplier ring
which we borrow from [16]. The multiplier ring of a ring A is the ring M(A) whose elements
are the pairs (f, g) of maps A — A such that f is a right A-module homomorphism, g is
a left A-module homomorphism and the following compatibility condition is satisfied

g(a)b = af(b)
Multiplication in M(A) is defined by

(f1,91)(f2, 92) = (f1f2, 9291)

If a € A then the pair m(a) = (L4, R,) given by left and right multiplication by a is an
element of M(A), and a — m(a) is a ring homomorphism m : A — M(A). The image of
m is always an ideal of M(A); its kernel is the two-sided annihilator of A

kerm ={a € A:aA=Aa=0}
This kernel vanishes for example if A is s-unital.

LEMMA 3.2.10. Let C be a Z-linear category and let E : Ring — Spt be an excisive
and matrix stable functor. Then E, sends (84) to a naturally split surjection. Assume in
addition that E is invariant under polynomial homotopy. Then E sends (84) to a weak
equivalence.

PROOF. Let ob; € = ob C][{+} be the set of objects of € with a base point added.
Consider the homomorphism

j : ‘A(G) — Moby @:R(G)v j(f) - f & €pq (f € hom@(av b))
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Write p for the map (84). Left and right multiplication by each of the following two
matrices

leave Moy, eA(C) stable, and thus define elements m(V'), m(W) € M(Mop,, ¢A(C)). More-
over the map m : My, A(C) — M(Mop, eA(C)) is injective, since Moy, eA(C) has local
units. The composite ¢ = Moy, e(p) o j sends f € A(C) to

q(f) =W(f @e )V

All this together with matrix invariance imply that E,(¢) = E.(?®e, ) is an isomorphism
[3, 2.2.6]. This proves the first assertion of the Lemma. To prove the second, it suffices
to show that » = j o p is homotopic to the inclusion t(a) = a ® e, 1. If f € home(a,b),
write H(f) € Mg, e(R(C))[t] for

H(f)=f@(—t{t® —2t)ey y +t(t* — Deso + (1 =) (# — 20)eps + (1 — %) %ep0)

Note that evo H(f) = r(f), evi H(f) = ¢(f). Further, one checks that if g € home(b, ¢),
then H(gf) = H(g)H(f). Thus H induces a homomorphism R(C) — M, e(R(C))[t]
which is a homotopy from 7 to ¢. This concludes the proof. 0

ExXAMPLE 3.2.11. Let R, S be unital rings, and let C be the Z-linear category with two
objects a and b such that home(a,b) = home(b, a) = 0, home(a,a) = R and home(b, b) =
S. Then A(C) = R® S and R(C) = R]]S is the nonunital coproduct. By Lemma
3.2.10, any excisive, matrix stable, homotopy invariant functor E : Ring — Spt sends
p: R][S — R® S to a weak equivalence. We remark that the hypothesis on E are
necessary; in particular there are functors E : Z — Cat — Spt which satisfy the standing
assumptions, and which do not send p to a weak equivalence.

3. K-theory

3.1. The K-theory spectrum. Given a Z-linear category C, we denote by Cg4 the
Z-linear category whose objects are finite sequences of objects of €, and whose morphisms
are matrices of morphisms in € with the obvious matrix product as composition. Con-
catenation of sequences yields a sum ¢ and hence we obtain, functorially, an additive
category; write Idem Cg for its idempotent completion. We shall also need Karoubi's cone
I'(C) ([18, pp 270]). The objects of I'(C) are the sequences = = (x1, s, ...) of objects of
C such that the set

(85) F(z)={ceC:(3n) z,=c}
is finite. A map z — y in I'(C) is a matrix f = (f;;) of homomorphisms f;; : z; — y;
such that

(1) There exists an N such that every row and every column of f has at most N
nonzero entries.
(2) The set {f;; : 1,7 € N} is finite.
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Interspersing of sequences defines a symmetric monoidal operation B : I'(C) xI'(€) — I'(C)
and there is an endofunctor 7 such that 1 7 = 7 (see [17, § III]). If € has finite direct
sums, e.g. if € = Dg for some Z-linear category D, then the interspersing operation
is naturally equivalent to the induced sum (x & y); = z; & y; ([17, Lemme 3.3]). In
particular, if C is additive, then I'C is a flasque additive category; that is, there is an
additive endofunctor 7 : € — € such that 7 & 1 = 7. A morphism f in I'(C) is finite if
fij = 0 for all but finitely many (7, j). Finite morphisms form an ideal, and we write ¥(C)
for the category with the same objects as I'(€), and morphisms taken modulo the ideal
of finite morphisms. The category ¥(C€) is Karoubi’s suspension of €. By [27, Thm. 5.3],
if € is additive, we have a homotopy fibration sequence

(86) K°9(Idem €) — K9(I'(Idem €)) — K% (X(Idem €))

Here each of the categories is regarded as a semisimple exact category, and K€ de-
notes the fibrant simplicial set for its algebraic K-theory. Because I'(Idem C) is flasque,
KQ9(T'(Idem €C)) is contractible, whence K%(Idem €) =2 QK?(X(Idem €)). Now let € be
any small Z-linear category, possibly without direct sums. Consider the sequence of cat-
egories

(87) ) =TIdem(Cy), €IV =Idem(xe™)
Then we have a spectrum K(C) = {,K(C)}, with
(88) WK (€) = KO(e™)

REMARK 3.3.1. If R is a unital ring, then by [18, Prop. 1.6], we have category
equivalences

(89) Idem(I'(proj(R))) = proj(I'(R)) and Idem(%(proj(R))) = proj(X(R))

Hence the spectrum K(R) defined above is equivalent to the usual, Gersten-Karoubi-
Wagoner spectrum of the ring R.

LEMMA 3.3.2. Let € be an additive category, and let e be the only object of I'(Z).
Consider the functor

p:TZ®C—T(C)
M(’?C) = (C,C,...), M(f®a)ij :fija
Then
i) The functor p is fully faithful.
ii) Let F'(—) be asin (85). For every object x € I'(C) there exist morphisms ¢, : ji(e,c) — «

and 9. : & — p(e, ¢), c € F(z) such that ZCGF(I) btbe = 1,.
iii) The functor p induces a fully faithful functor i : ¥ ® € — 3(C@).

PROOF. Part i) is proved in [5, Lemma 4.7.1] for the case when € has only one object;
the same argument applies in general. To prove ii), let z € T'(€) be an object. If ¢ € F(x),
write I(c) = {n € N:x, = c}, and let x() be the characteristic function. Put

Qe pu(o,0) =z, Yerx—p(e,c), (9e)ij= (Ve)ij = 0i X1 (d)le



3. K-THEORY 83

Z ¢cwc =1,

ceF (x)

One checks that

This proves ii). Next, consider the exact sequence
0— M Z—TZ 5 %7 —0

As is explained in [5, pp 92], it follows from results of Nobeling [26] that the sequence
above is split as a sequence of abelian groups. Hence if ¢,d € C, then

ker(m ® 1 : homrzge((e, c), (o,d)) — homszge((e, ), (0,d))) = MyZ ® home(c, d)

Next observe that if a € home(c,d) and f € My Z, then p(f ® «) is a finite morphism.
Hence p passes to the quotient, inducing a functor i : ¥Z @ € — X(C). If ¢,d € BC and
we put x = (e, c), y = p(e,d) then we have a map of exact sequences

0 — My Z ® home(c,d) — I'Z ® home(c, d) — ¥Z ® home(c,d) — 0

| | |

0 — hompiy(e) (2, y) — hompe) (2, y) — homye)(z,y) — 0

Here Fin(€) C I'(€) is the subcategory of finite morphisms. The second vertical map
is an isomorphism by part i). In particular the first map is injective; furthermore, one
checks that it is onto. It follows that the third vertical map is an isomorphism; this proves
iii). O

3.2. Comparing K(C) with K(A(C)).

The operation . Let X be a set and let € and D be Z-linear categories with ob € =
obD = X. Consider the category COD with set of objects ob(COD) = X, homomor-
phisms

homegp(z,y) = home(z,y) & homp(z, y)
and coordinate-wise composition. If €, D and € are Z-linear categories, we have
(GO®)® - G®<>®®
(90) Idem((COD)g) = Idem Cq X Idem Dy,
(91) COD)®E=(CREND®E)

Unitalization. We have already recalled the definition of the unitalization A of a not
necessarily unital ring A. Now we need a version of unitalization for Z-linear categories;
this can be more generally defined for nonunital Z-categories, but we will have no oc-

casion for that. Let @ € Z — Cat; write C for the category with ob € = ob € and with
homomorphisms given by

~ B B home(z,y) =z #y
home(flr, y) = home(z,y) @ Oy = {hom@(flr, r)BZL x=y

Composition between (f,d,,n) € homg(z,y) and (g,d,.m) € homgy(y, ) is defined by
the formula

(9, 5y,zm) o(f, 5x,yn) =(g9f + Oy -mf + 0z ygn, 5:v,y5yvzmn)
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Observe that if R is a ring, considered as a Z-linear category with one object, then
R — RxZ = ROZ, (r,n)— (r+mn-1,n)

is an isomorphism. This isomorphism generalizes to Z-categories as follows. Let Z{ob C) €
Z — Cat, be the Z-linear category with the same objects as €, homomorphisms given by

homZ(ob C) (ZE, y) = 6ac,yZ
We have an isomorphism of linear categories
(92) COZ(ob C) — €

which is the identity on objects, as well as on homegz(obe)(,y) for x # y, and which
sends

homeozob ey (2, ) 2 (f,n) — (f —nly,n) € homg(x, z)

The map K(C) — K(A(C)). If € is a Z-linear category, and =,y € obC, then by
definition of A(C),

(93) home(z,y) C A(C)
and the inclusion is compatible with composition. We also have an inclusion
(94) homg(z,x) 3 (f,n) — (f,n) € Z(\G/)

The inclusions (93) and (94) together with the only map ob @ — ob A( ) = {e} define a
functor

(95) 6:€—A@©)

Observe that Z{ob€) C € and that ¢(Z(obQ)) C Z C Z(\CT) We have a commutative
diagram

A((?
l’“ |
Z{obC) ——7Z

Here the vertical maps are the obvious projections. By (92) and (90) we have an equiva-
lence

K(C) = K(C) x K(Z{obC))
Under this equivalence the map induced by 7; becomes the canonical projection; hence

its fiber is K (€). On the other hand, by definition, K (A(C)) is the fiber of K (7). Hence
¢ induces a map

(96) v: K(C) — K(A(C))

PROPOSITION 3.3.3. Let € be a Z-linear category. Then the map (96) is an equiva-
lence.



4. K-THEORY AND THE STANDING ASSUMPTIONS 85

PROOF. Because both the source and the target of (96) commute with filtering col-
imits, we may assume that € has finitely many objects. Then A(C) is unital, and thus

e~
[

we have an isomorphism A(C) = A(C) x Z. Recall that the idempotent completion of an
additive category 2l is the category whose objects are the idempotent endomorphisms in 2
and where a map f : e; — ey is an element of homg(dome;, domey) such that f = ey fe;.
One checks that the composite

Ce — Idem Cg = Idem Cy x Idem Z(ob €) =
Tdem(Cy) 2 Tdem(A(€),,) = Tdem(A(€)s) x Tdem(Zqg) — Tdem(A(€))

is the functor ¢» which sends an object (ci,...,¢,) to the idempotent diag(1l.,,...,1.,)
and a map f = (f;;) : (c1,...,¢,) — (di,...,dy) to the corresponding matrix (f;;) €
hom4e), (o",0™). Because ¢ is fully faithful and cofinal, it induces an equivalence

K(€) — K(A(C)). It follows that (96) is an equivalence. O

4. K-theory and the standing assumptions

In this section we prove some tecnical result to see that K-theory satisfy the standing
assumptions.

4.1. The groups Torf(—,A). Let M = Z,Z/nZ,Q. Theorems of Suslin [28] (for
M = 7,7/nZ) and Suslin-Wodzicki (for M = Q) establish that a ring A is excisive for
K-theory with coefficients in M if and only if

Tor (M, A) =0

EXAMPLE 3.4.1. A ring A is said to have the triple factorization property if for every
finite family aq, ..., a, € A there exist by,...,b,,c,d € A such that
a; = cdb; and {a; : a;d =0} = {a : acd = 0} i=1...n

It was proved in [29, Theorem C] that rings having the triple factorization property are
K-excisive. In particular, s-unital rings are K-excisive.

We shall introduce, for any abelian group M, a functorial abelian group Q(A, M)
which computes Tor2 (M, A). Consider the functor L: A — mod — A — mod,

LM:@A.

The functor L is the free fl—rpodule cotriple [33, 8.6.6]. Let Q(A) — A be the canonical

simplicial resolution by free A-modules associated to L [33, 8.7.2]; by definition, its n-th
term is Q,(A) =1" A. Put

Q(A, M) = M ©; Q(A).
We have )
W*(Q(Av M)) = TOI‘f(M, A)
We abbreviate Q(A) = Q(Z, A). Note that

Q(A, M) = M ® Q(A)
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We have .
QO(A> = Z[A]a QTL+1 - Z[A 02y QH(A>]

LEMMA 3.4.2. Let F = A be a simplicial resolution in Rings and M an abelian

group. Let diag Q(F) be the diagonal of the bisimplicial abelian group Q(F). Then
Tor (M, A) = 7,(M @ diag Q(F))

PROOF. Because F' — A is a simplicial resolution in Rings, Qo(F) = Z[F] — Z[A] =
Qo(A) is a free simplicial resolution in Ab of the free abelian group Z[A]. Observe that
if G — N is a free resolution of a free abelian group N, then A®G - A® N is a
free simplicial A-module resolution, and Z[A ® G] — Z[A ® N] is a free simplical Z-
module resolution. Thus for each n, Q,(F) — @Q,(A) is an equivalence of free simplicial
abelian groups, and thus it remains an equivalence after tensoring by M. It follows that
M ® diag Q(F) computes Tor (M, A). O

PROPOSITION 3.4.3. Let F — A be a simplicial resolution and M an abelian group.
Then there is a first quadrant spectral sequence

E = Wq(Torf(M, F)) = Tor’

p+q

(M, A)

~ Proor. This is just the spectral sequence of the bisimplicial abelian group ([p], [¢])
Qy(M, F,). O

COROLLARY 3.4.4. Let F' = A be free simplicial a resolution in Rings. Then
(M & (F/F?)) = Tor*(M, A)

PROOF. In view of the previous proposition, and of the fact that TorOB (M,B) =
M ® B/B? for every ring B, it suffices to show that if V' is a free abelian group, and T'V

the tensor algebra, then Tor’V (M, TV) =0 for n > 1. But this is clear, since T'V is free
as a T'V-module; indeed, the multiplication map TV ® V' — TV is an isomorphism. []

~ 4.2. Bar complex. Let A be aring. Consider the complex P(A) given by P, (A) =
A® A®" (n > 0), with boundary map

n—1

(a1 ®@a®@a® - ®ay) = Y (~1)a,1© - ® a0 Qa,
i=—1

The multiplication map p : AQ A — A gives a surjective quasi-isomorphism y : P (4) — A
[33, 8.6.12]. A canonical Z-linear section of pis j=1® —: A — AR A. Lete: A — A,
e(a,n) = a. A Z-linear homotopy ju — 1 is defined by

g A®FL A(Xm+27 S(Cl_l R--® an) =1® e(a_l) Rag R -+ R ay,
Thus P(A) is a resolution of A by A-modules, and moreover these A-modules are scalar
extensions of Z-modules. Hence if A is flat as Z-module, then C*"(A) = Z ®; P(A)
computes Tor?(Z, M) and M ® C*"(A) computes Tor2(Z, M). In general, the homology
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of C*"(A) can be interpreted as the Tor groups relative to the extension Z — A. For an
arbitrary ring A, one can use the natural homotopy s to give a natural map

L(A) — P(A)

The induced map M ® Q(A) — M ® C*"(A) is a quasi-homomorphism if A is flat as a
Z-module. In particular, we have the following.

LEMMA 3.4.5. Let ' = A be a simplicial resolution by flat rings, and M an abelian
group. Then

Tor (M, A) = H,(Tot(M ® C*"(F)))
4.3. H-unital rings. Let
(97) 0—-A—-B—-C—0

be an exact sequence of rings. We say that (97) is pure if for every abelian group V', the
sequence of abelian groups

0—-AQV - BV —-(CV —0

A ring A is called H-unital if for every abelian group V, the complex C*(A) ® V is
acyclic. If X (—) is a functorial chain complex, then we say that A is pure X-excisive if for
every pure exact sequence (97),

X(A) — X(B) — X(C)
is a distinguished triangle. The following theorem was proved by M. Wodzicki in 3.4.6.

THEOREM 3.4.6. (Wodzicki) The following conditions are equivalent for a ring A.
i) A is H-unital.
ii) A is pure C*"-excisive.
iii) A is pure H H-excisive.
iv) A is pure HC-excisive.

EXAMPLE 3.4.7. Any linearly split sequence (97) is pure. In particular, any sequence
(97) with A a Q-algebra is pure, since any Q-vectorspace is injective as an abelian group.
Thus for a Q-algebra A, Wodzicki’s theorem remains valid if we omit the word “pure”
everywhere. Furthermore, the Suslin-Wodzicki theorem cited above, for A a Q-algebra
then the conditions of Theorem 3.4.6 are also equivalent to A being K%-excisive. In fact it
is well-known that for a Q-algebra A, being K %-excisive is equivalent to being K-excisive;
as explained in [4, Lemma 4.1] this well-known fact follows from the main result of [31].
See [29, Lemma 1.9] for a different proof.

4.4. Colimits. The bar complex manifestly commutes with filtering colimits, and
thus H-unital rings are closed under them. The next proposition establishes the analogue
of this property for K-excisive rings.

PROPOSITION 3.4.8. Let {A;} be a filtering system of rings, and let M be an abelian
group. Write A = colim A;. Then

Tor (M, 4) = colim Tor (M, 4)

7
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Proor. Write L: Rings — Rings, | B = T(Z|B]) for the cotriple associated with

the forgetful functor Rings — Set and its adjoint. Write F'(A) = A for the cotriple
resolution F'(A), =1""" A ([33, Section 8/6]). We have F(A) = colim; F/(A;). Thus
Tot(M ® C*" F(A)) = colim; M @ C* F(A;). Hence we are done by Lemma 3.4.5. [

COROLLARY 3.4.9. K-excisive rings are closed under filtering colimits.
Let MY and M' be chain complexes of abelian groups, and let f € [1]*. Put
Tf(MO,Ml) =MV g...0 Mf™

Let

MxM = T/ M

n=>0 femap([n],[1])
LEMMA 3.4.10. Let A and B be rings. Then
C*(A® B) = (C™" (A)[=1] » €™ (B)[-1])[+1]
PROOF. If D is a ring then C*" (D) = T(D[—1])[+1] as graded abelian groups. Hence

for [ the coproduct of rings, we have

C*(A® B) :T(A[—l] = B[—l])[+1]

=(TA-) [ 7B +1]

(Cb‘”’( )[=1]* Cb”(B)[—l])[H]

It is is straightforward to check that the identifications above are compatible with bound-
ary maps. 0

PROPOSITION 3.4.11. Let {A;} be a family of rings and A = @, A;. Then A is
K-excisive if and only if each A, is, and in that case @, K (A;) — K(A) is an equivalence.

PRrROOF. Let B and C' be rings, and F' — B and G — (' be free simplicial resolutions
in Rings. Then FF& G — B @ C is a flat simplicial resolution. Fix ¢ > 0, and put
C° = ¢ (F,), C' = C"(G,). Let p > 1, and f € [1]P. Then by the Kiinneth formula

H, (T (C°[=1], CM[=1])[+1]) =

f 2 2 =n
T/ (H,(C%), H,(C"))ps1 = {T (F/F()’G/G ) ]]j# nii

Hence the second page of the spectral sequence for the double complex of Lemma 3.4.5 is
Er,= D m(T/(F/F%,G/G?)
fefett

If B and C are K-excisive, we have E? = 0, by the Kiinneth formula, and thus B & C
is again K-excisive. It follows from this and from Proposition 3.4.8 that if A; is a family
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of K-excisive rings as in the proposition, then A is K-excisive. If B and C are arbitrary,
then

Eg, = Tor}(Z, B) & Tor{ (Z, C)
E,= @ T/(A/A% B/B?)
feett

Hence if B @ C is excisive, £, = 0. It follows that Ef, = 0, and therefore E?, =
m(T/(F/F? G/G?)) involves only tensor products of the form E2( ® Ef, and its sym-
metric, and both of these are zero. A recursive argument shows that £? = 0, whence both
B and C are K-excisive. If now A and {4;} are as in the proposition, A = is excisive,
and j € I then setting B = A; and C' = @i# A; above, we obtain that A; is K-excisive.
The last assertion of the proposition is well-known if each A; is unital. More generally,
assume all A; are K- excisive, and consider the exact sequence

(98) 0-A-PA—-Fz—o
We have a commutative diagram with homotopy fibration rows

D K(A) — @, K(4) — B, K(Z)

| | |

K(A) K(@, A — K(D,Z)

Because the middle and right vertical arrows are equivalences, it follows that the left one
is an equivalence too. O

PROPOSITION 3.4.12. Let {A;} be a family of rings and A = @, A;. Then A is H-
unital if and only if each A, is, and in that case @, HH (A;) — HH(A) and @, HC(A;) —
HC(A) are quasi-isomorphisms.

PrOOF. The last assertion is proved by the same argument as its K-theoretic counter-
part. By 3.4.6,if B and C are rings and B is H-unital, then C**(B&C)@V — C* (C)@V
is a quasi-isomorphism for every abelian group V. Thus if also C' is H-unital, then so
is B @ C. Using this and the fact that H-unitality is preserved under filtering colim-
its, it follows that if {A;} is a family of H-unital rings, then A = €, A; is H-unital.
Suppose conversely that A is H-unital, and consider the pure extension (98). A similar
argument as that of the proof of Proposition 3.4.11 shows that @, HH(A;) — HH(A) is
a quasi-isomorphism. Next fix an index j and let

0—-A —-B—-C—=0
be a pure extension. Then
i#] i#]
is a pure extension. Applying H H yields a distinguished triangle quasi-isomorphic to
P HHA) - @A e HHB)® HH(Z) — (P A; & HH(C) & HH(Z)
i i#] i#]
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Removing summands, we obtain a triangle
HH(Aj) - HH(B) — HH(C)

We have shown that A; satisfies excision for pure extensions in Hochschild homology; by
3.4.6, this implies that A; is H-unital. U

4.5. Tensor products. It was proved by Suslin and Wodzicki [29, Theorem 7.10]
that the tensor product of H-unital rings is H-unital. Here we establish a weak analogue
of this property for K-excisive rings.

Let A be a ring. Put

L 1A=A, L,i1A=%ker(A® L,(A) — L,(A)) (n>-1)

LEMMA 3.4.13. Let A be a K-excisive ring, and V' an abelian group. Assume both A

and V' are flat over Z. Then
TorX*"™V(Z, AR TV) = L, ;1A V™ n>0

PRrOOF. If M is a left A-module such that

(99) A-M=M,

and L(M) = ker(A® M — M) is the kernel of the multiplication map, then we have a
short exact sequence

0= LIM)RT>Y 5 ATV MaV® - Mo T>"V — 0

By definition, L,A = L™ A. By [29, Theorem 7.8 and Lemma 7.6], M = L, A satisfies
(99) for all n, and moreover, it is a flat abelian group, by induction. Thus for n > 1, the
sequence

—_~—

0= Lyy(M)@T>"MV - AQTV ® Ly oM @ V" — L, sM @ T>"V — 0
is exact. Hence
TordTV(z, A ® TV) =Tor’®TV(Z, L_, A ® TZ'V)
—Tory®™V (2, Li 1A @ TZ'V)
:Lz‘—lA ® V®i+1
O

PROPOSITION 3.4.14. Let A and B be K-excisive rings, at least one of them flat as a
Z-module. Then A ® B is K-excisive.

PROOF. Assume A is flat. Let F = B be a simplicial resolution by free rings. Then
A® F — A® B is a resolution by flat rings. By Lemma 3.4.13, the second page of the
spectral sequence of Proposition 3.4.3 is

By, =m(A® (F/F)) = A (m,((F/F*)*r))

which equals zero by Corollary 3.4.4 and the Kiinneth formula, since B is K-excisive by
assumption. O
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4.6. Crossed products. Let G be a group and 7 : Z[G] — Z the augmentation
g+— 1. Put

JG =kerm
LEMMA 3.4.15. Let V be a Z[G]-module, free as an abelian group. Then

Tor!V*NZ, TV x G) = Vo @ JG*" @ Z[G] n>0
PROOF. Note that the subset
VTV s G CcTV x G
is a left ideal, and that the map

(100) TV GV - Vg TV=" % @
1®y—y
TXgRY—xg(y) X g
(101)

is a TV x G-module isomorphism. Consider the map
VoM@ (TV""M X G)@M - TV"Vo M, (r,(yxg)@m)—z+y®gm
Composing with the isomorphism (100), we obtain a Z-split surjective map
TV X GRVE - TV"o M

This map fits in an exact sequence

0=T""VRJIGOM - TVxGRV® - T2"Vo M — 0

If M is flat as an abelian group, then the middle term in the exact sequence above is a
flat TV x G-module. Applying this successively, starting with M = Z[G], we obtain

TOI'?;VNG(Z, TV N G) :TOI“OTVNG(Z, TVZTH-l ® JG®” ® Z[G])
=Vl @ JG*" @ Z[G)
]

PROPOSITION 3.4.16. Let G be a group and A € G —Rings. Assume A is K-excisive.
Then A x G is K-excisive.

Proor. Note that the forgetful functor from G — Rings to sets has a left adjoint;

namely X — T(Z[G x X]). Hence A admits a free resolution F —» A such that each F),
is a G-ring; for example we may take the cotriple resolution associated to the adjoint pair
just described. Since F'is a simplicial G-ring, we can take its crossed product with G, to

obtain a Z-flat resolution F x G = A x G. Now proceed as in the proof of Proposition
3.4.14, using Lemma 3.4.15. U

PROPOSITION 3.4.17. Let G be a group and A € G — Rings. Assume A is H-unital.
Then A x GG is H-unital.
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PROOF. The bar resolution B(G, M) ([33, S6.5]) is functorial on the G-module M.
Applying it dimensionwise to C*"(A), we obtain a simplicial chain complex
B(G, C%"(A)). We may view the latter as a double chain complex with A% @ Z[GP!]
in the (p,q) spot. Removing the first row and the first column yields a double complex
whose total chain complex we shall call M[—1]. Note M is a chain complex of A x G-
modules and homomorphisms. We have My = (A x G)®?, and the multiplication map
(AxG)®? — Ax (G induces a surjection onto the kernel L of the augmentation AxG — A,
a X g — a. Note that the hypothesis that A is H-unital implies that the augmented

complex
. — M, — My — L

is acyclic. Now proceed as in the proof of [29, Theorem 7.10]. O

ProPOSITION 3.4.18. The functor K : Z — Cat — Spt satisfies the standing assump-
tions.

PROOF. Assumption iv) was proved in Proposition 3.3.3. By Example 3.4.1, s-unital
rings are K-excisive; hence K-theory satisfies i). Assumption ii) holds by Proposition
3.4.16. If A is K-excisive and X is a set, then My A is K-excisive, by Proposition 3.4.14.
Assumpton iii) follows from this and the fact that K-theory is matrix stable on unital
rings. Assumption v) is proved in Proposition 3.4.11. U

5. Homotopy K-theory
If @ is a Z-linear category, then we write G2" for the simplicial Z-linear category
CY i [n]— CY =C®Zlty, ... ty)) <to+--F+t,—1>

Applying the functor K dimensionwise we get a simplicial spectrum whose total spectrum
is the homotopy K-theory spectrum K H(C). In particular if R is a unital ring, then K H(R)
was defined by Weibel in [32]. The following theorem was proved in [32]; see also [3,
Section 5.

THEOREM 3.5.1. (Weibel) The functor K H : Ring — Spt is excisive, matrix invari-
ant, and invariant under polynomial homotopy.

PROPOSITION 3.5.2. There is a natural weak equivalence K H(€) — K H(R(@)).

PROOF. We begin by observing that the inclusions (93) and (94) lift to inclusions
home(z,y) C R(€) and homg(z,z) C R(C). Thus we have a functor

—_~—

¢ C— R(C)
Composing it with

we obtain the map
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of (95) above. Tensoring with Z2* and applying K (—) we obtain a commutative diagram

~ —_—

KH(€) — KH(R(C))

e b

—_—~—

KH(A(C))

The diagram above maps to the diagram

KH(Z{obC)) —>KH

\H

Taking fibers and using (90), (91) and (92), we obtain a homotopy commutative diagram

KH(@) —~ KH(R(@))
N
@
KH(A(C))
Here ¢’ comes from a map of simplicial spectra
0" K(CRZA) 5 K(R®ZA : Z{ob ) @ Z27) — K(A(C) ® Z2" : Z® ZA%),

and ¢” = ¢ is the map (96), which is an equivalence by Proposition 3.3.3. The same
argument of the proof of Proposition 3.3.3 shows that ¢™ is an equivalence for every n.
On the other hand, by Theorem 3.5.1 and Lemma 3.2.10, the map p : KH(R(C)) —
KH(A(C)) is an equivalence. It follows that ¢” is an equivalence too. O

ProposITION 3.5.3. The functor KH : Z — Cat — Spt satisfies the standing as-
sumptions.

Proor. This follows from Theorem 3.5.1, Proposition 3.5.2, and Lemma 3.2.10. [J

6. Proper G-rings
6.1. Extending polynomial functions and excision properties.
LEMMA 3.6.1. If X is a locally finite simplicial set, then Z*) is a free abelian group.

PROOF. By [5, 3.1.3] the lemma is true when X is finite. Hence if X is any simplicial
set, and o € X is a simplex, then Z<?~ is free. If X locally finite, then by Example 2.2.4,
ZX) is a subgroup of a free group, and therefore it is free. O

THEOREM 3.6.2. Let X be a simplicial set, ¥ C X a sub-simplicial set and A a ring.
Let ¢ € AY and K = supp¢. There there exists 1) € A% with suppy C Sty K such that

YLinkx (k) = 0 and ¢y = ¢.
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PROOF. We have K C Sty K C Sty K, whence PlLinky (k) = 0. Note Sty K NY =
Sty K; thus ¢ vanishes on Linkyx(K) NY. Hence we may extend ¢ to a ¢ : Y’ =
Y U Linkx(K) — A" by Linky () = 0- Put Y7 =Y U Stx K. Because Y/ C Y7 is a
cofibration and A%* — 0 is a trivial fibration, we may further extend ¢ to a ¢” : Y” —
A2, By construction, {o € X : ¢”(0) # 0} C Stx K, and ¢” vanishes on Linkx K. Hence
we may further extend ¢” to a ¢ : X — A2", by letting ¢(c) = 0 if o ¢ Sty K. This
concludes the proof. O

COROLLARY 3.6.3. If X is locally finite and Y C X is a subsimplicial set, then the
restriction map A — A is surjective.

Proor. It follows from Theorem 3.6.2, using 2.2.1. U

PROPOSITION 3.6.4. (Compare [7, Lemma 2.5]) Let A be a nonzero ring. The following
are equivalent for a simplicial set X.
i) For every simplex o € X there exists ¢ € AX) such that ¢(c) # 0.
ii) X is locally finite.

PROOF. Observe that if 0,7 € X are simplices, with < 7 >D< ¢ > and ¢ € AX
satisfies ¢(0) # 0, then ¢(7) # 0. If X is not locally finite, then by Lemma 2.2.1, there
exists a simplex ¢ € X which is contained in infinitely many nondegenerate simplices.
By the previous observation, ¢(c) = 0 for every ¢ € AX). We have proved that i)=ii).
Assume conversely that X is locally finite, and let ¢ be a simplex of X. We want to show
that there exists ¢ € AX) such that ¢(o) # 0. We may assume that o is nondegenerate.
Let Y =< 0 >C X be the sub-simplicial set generated by o; by Corollary 3.6.3, it suffices
to show that AY # 0. Now Y is an n-dimensional quotient of A", whence S™ = A"/9A"
is a quotient of Y. So we may further reduce to showing A%" is nonzero. Now

A" = 7, A% = (ker(d; : AY" — A*")
=0

But if 0 # a € A, then aty...t, is a nonzero element of Z, A", O
PROPOSITION 3.6.5. If X is a locally finite simplicial set, then Z(¥) is s-unital.

PROOF. Let ¢1,...,¢, € ZX) and let K = J,supp(¢). By Theorem 3.6.2 there is
puZX) such that ik = 1 is the constant map. Thus
(6.1) bi = Qi (V2).
O

PROPOSITION 3.6.6. If A is K-excisive and X is locally finite, then Z(X) @ A is K-
excisive.

Proor. Follows from Lemma 3.6.1 and Propositions 3.6.5 and 3.4.14. 0

REMARK 3.6.7. If A is a ring and X a locally finite simplicial set, then there is a

natural map
759 @ A — AX)
It was proved in [5, 3.1.3] that this map is an isomorphism if X is finite.
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6.2. Proper rings over a G-simplicial set. Fix a group G and consider rings
equipped with an action of G by ring automorphisms. We write G —Rings for the category
of such rings and equivariant ring homomorphisms. If C' € G —Rings is commutative but
not necessarily unital and A € G —Rings, then by a compatible (G, C')-algebra structure
on A we understand a C-bimodule structure on A such that the following identities hold
fora,be A ,ceC,and g € G:

(6.2) c-(ab) = (c-a)b=a(c-b)
g(c-a) =g(c) - g(a)

(6.3)

If X is a G-simplicial set and A € G —Rings, then we say that A is proper over X if it
carries a compatible (G, Z™X)) algebra structure such that

(6.4) 75 . A=A

If F is a family of subgroups of G, we say that A is (G, F)-proper if it is proper over some
(G,F) complex X.

ExAMPLE 3.6.8. Fix a group G, a family of subgroups ¥ and a (G, F)-complex X. By
Proposition 3.6.5, we have Z(X) . Z(X) = 7). thus ZX) is proper. If A is proper over X,
and B is any ring, then A ® B is proper over X. In particular, Z() @ B is proper.

Let A be a G-ring, proper over a locally finite G-simplicial set X. We write Ax for
the unitalization of A as an algebra over Z™): this is the abelian group
(6.5) Ax = Aa 7™
equipped with the multiplication law given by the formula 79.

LEMMA 3.6.9. Let A be a G-ring, proper over a locally finite G-simplicial set X. Then
the ring Ax of (6.5) is s-unital.

PRrOOF. Immediate from Proposition 3.6.5 and condition (6.4). O

Let X be a locally finite simplicial set, and K C X a subobject. Put

I(K) = {¢:suppp C K} < 22
If A € Ring has a compatible ZX) structure, we put
AK)=1(K)-A< A

LEMMA 3.6.10. Let A be a G-ring. Assume that A is (G, F)-proper. Then {4;} of
ideals of A such that A = U;A; and such that each A; is proper over a finite (G, J)-
complex.

PROOF. By hypothesis, there exists a (G, F)-complex X such that A is proper over
X. For each G-finite (G, F)-subcomplex K C X, consider I(K) and A(K). It is clear
that {I(K)} and {A(K)} are filtering systems of ideals and that UxI(K) = Z™). We
claim furthermore that A = Ux A(K). By definition of Z(*)-algebra, A = Z*) - A. Hence
if a € A, then there exist ¢1,...,¢, € Z™) and aq,...,a, € A such that a = > dia.
Hence a € A(K) for K = U; G -supp(¢;). O
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LEMMA 3.6.11. (cf. [11, pp. 51]) Let A € G —Rings be proper over a locally finite
G-simplicial set X, and let f : X — Y be an equivariant map with Y locally finite. Then
the map f* : Z¥ — Z¥ induces a compatible (G,Z(Y))-algebra structure on A which
makes it proper over Y.

PROOF. We begin by showing that the compatible (G, Z*))-algebra structure on A
extends to a compatible (G,Z*)-module structure. By the lemma above, if a € A then
there exists a finite subsimplicial set K C X such that a € A(K) = I(K)-A. By Theorem
3.6.2 there exists ux € Z%, with suppux C St(K)) such that

(6.6) puka=a  Yae A(K).

Because X is locally finite, St(K) is finite and pux € 7). Thus we have a map A(K) —
I(St(K))) ® A(K), a — px @ a. Now I(St(K)) is an ideal in Z* by (38); using the
multiplication of Z* we obtain a map

(6.7) X @ A(K) — A(St(K)), ¢®a— (¢-pux)a.

If L O K, and we choose an element py as above, then for a € A(K) and ¢ € Z* we
have:
(@-pr)-a=(¢-pr)- (ux-a) = (¢ px)a

This shows that (6.7) is independent of the choice of the element px of (6.6), and that
we have a well-defined action ZX @ A — A. Compatibility with the G-action follows from
the fact that g - p is the identity on ¢ - K. The remaining compatibility conditions are
immediate. Now A becomes an Z()-module through f*. If K C X is a finite subsimplicial
set, then L = f(K) C Y is finite, and since Y is locally finite, there is a py € Z() which
is the identity on L, and thus f*(uz) is the identity on K. It follows that the action of
ZY) on A satisfies (6.4). The remaining (G,Z%))-compatibility conditions of (6.2) are
straightforward. O

If C;A € H—Rings with C commutative and we have a compatible (H, C)-algebra

structure on A, then Indfj(A) carries a compatible (G, Ind$(C))-algebra structure, given
by

énls.c) - Eult,a) = {fH(S}f @ g

If moreover C'- A = A, then Ind§(C) - Ind$(A) = Indfj(A). We record a particular case
of this in the following

LEMMA 3.6.12. If A € H—Rings is proper over an H-simplicial set X, then the G-ring
Ind§(A) is proper over Ind$(X).

6.3. Compression. Let A € G —Rings, and H C G a subgroup. Assume that A is
proper over G /H. Let yg € Z(G/% be the characteristic function of H. The compression
of A over H is the subring

Compyj (A) = i - A
Note the action of G on A restricts to an action of H on Compfj(A), which makes it into
an object of H—Rings.

PROPOSITION 3.6.13. (Compare [11] Lemma 12.3, and paragraph after 12.4)



7. INDUCTION AND EQUIVARIANT HOMOLOGY 97
i) If B € H—Rings, then Inds;(B) is proper over G /H, and
B — Compy; Indj B, b+ &u(1,b)
is an H-equivariant isomorphism.
ii) If A € G —Rings is proper over G / H, then
Ind$; Comp$(A) — A,  Exuls, xua) — xsus(a)
is a G-equivariant isomorphism.

Proor. Any B € H—Rings is proper over the 1-point space *. Hence Indg(B) is
proper over Ind$; () = G / H, by Lemma 3.6.12. The proof that the maps of i) and ii) are
isomorphisms is straightforward; to show equivariance, one uses (44) and (46). O

7. Induction and equivariant homology

LEMMA 3.7.1. Let G be a group, K C G a subgroup, A a K-ring, and E : Z — Cat —
Spt a functor satisfying the standing assumptions. Then A is E-excisive if and only if
Indg(A) is E-excisive.

PROOF. The map (47) gives a nonequivariant isomorphism
Indi(A) =z eA= P A
zeG /K

The equivalence of the lemma follows from assumption v). O

Let G, K and A be as in the Lemma 3.7.1, and let X be a G-simplicial set. If A is
unital, then for each subgroup S C K we have a functor

A x G¥(K/S) — Ind$(A) x (G /S)
kS — kS,
axk—&k(l,a) xk
If A is any E-excisive ring, the map above is defined for the unitalization A; applying E,

taking fibers relative to the augmentation A — Z, and using the standing assumptions,
we get a map

E(A x G5(K/S)) — E(Ind§(A) x §9(G/S)).
The maps
X7 AE(Ax G(K/S)) — X AE(Indf(A) x §9(G/S)) — H(X,E(Indg A))
assemble to
(7.1) Ind : H¥(X,E(A)) — H%(X,E(Indg(A)))

PROPOSITION 3.7.2. (Compare [11, Proposition 12.9]) Let A be an E-excisive G-ring.
Then the map (7.1) is an equivalence.
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PROOF. Because equivariant homology satisfies excision on X [8, Section 8], and
because X is obtained by gluing together cells of the form Ind$(A™), H € All, it suffices
to prove the proposition for X = Ind§(T) where H acts trivially on 7. Let R be a full
set of representatives of K\G/H. We have

Ind§(7T) =T x G/H

=[] 7 xKoH
feR
~J[T xK/K,
feR
Here as in (49), Ky = ¢o(H) N K. Thus
H¥(Indj(T), E(A)) = T4 A \/ B(A x §¥(K / Ky))
feR
On the other hand,
H(Ind$(T), E(Ind$ (A)) =T, A E(Ind$(A) x §9(G/H))
We have to show that
\/ E(A x §5(K /Kp)) — E(Indi(A) x §9(G/H))
feR

is an equivalence. By standing assumptions iv) and v) we may replace the map above by
that induced by the corresponding ring homomorphism

(7.2) P A(A x GK(K/Ky)) — A(IndG(A) x §4(G/H))

Here A(A x S¥(K/Ky)) — A(Ind$(A) x G5(G/H)) is induced by &k (1, —) : A — Ind$(A)
and by the inclusions K € G and K/Ky — G/H, kKy — kOH. One checks that the
following diagram commutes

A(Indg(A) x §4(G/H))

/ %

A(A x GK(K/Ky)) Mg u(Indg (A) x H)

T TQGH,GH
& (071,—) Cp
A3 Ky S Ind$ (A)[H0'K] x H
ZLMCN ~T2.2.11
. CH, 1.H, 1 -~ u .

Because the lower rectangle commutes, E(A XKy — Indg(A)[HOK] x H) is an equivalence,
by matrix stability. Again by matrix stability and by Lemma 3.2.3, applying E to the
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top left vertical arrow is an equivalence. Hence to prove that E applied to (7.2) is an
equivalence, it suffices to show that E applied to

>0 €OH,0H

(7.3) Indg(A) x H = @yeq Indii (A)[HOK] x H Mg u(Ind$(A) x H)

is one. But another application of matrix stability (using Remark 1.7.15) shows that (7.3)
induces the same map in HoSpt as the inclusion

e : Indg(A) x H — Mg u(Indg (A) x H).
This concludes the proof. U

THEOREM 3.7.3. Let E : Z— Cat — Spt be a functor satisfying the standing assump-
tions 3.2.5. Also let G be a group, F a family of subgroups of G and B an E-excisive
ring, proper over a O-dimensional (G, F)-complex X. Then H%(—,E(B)) maps (G, JF)-
equivalences to equivalences. In particular, the assembly map

HY(&(G,9),E(B)) — E(B x Q)
is an equivalence.

PrROOF. We have X = [[. G/K; for some K; € F, and Z&) = @, Z(E/K). The ring
B; = Z\8/%) . B is proper over G/K;, and is excisive by standing assumption v). Again
by standing assumption v), it suffices to prove the assertion of the theorem individually
for each B;; in other words, we may assume X = G/K for some K € F. Hence for
A = Compg B we have B = Ind$ A, by Proposition 3.6.13. Moreover, by Lemma 3.7.1,
A is E-excisive. Let Y — Z be a (G, F)-equivalence. We have a commutative diagram

HE (Y. E(B)) HO(Z,E(B))
IndT IndT
HX(Y,B(A)) HY(Z,1(4))

The bottom horizontal arrow is an equivalence because K € F. The two vertical arrows
are equivalences by Proposition 3.7.2. It follows that the top horizontal arrow is an
equivalence too. 0

8. Assembly as a connecting map

Throughout this section, we consider a fixed functor E : Z — Cat — Spt, and —
except when otherwise stated— we assume that, in addition to the standing assumptions,
it satisfies the following:

SECTIONAL ASSUMPTIONS 3.8.1.
vi) E, commutes with filtering colimits.
vii) If A is E-excisive and L has local units and is flat as a Z-module, then L ® A is
E-excisive.
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8.1. Preliminaries.
Mapping cones. Let f : A — B be a ring homomorphism, the mapping cone of f is
defined as the pullback

I'y——TB

L

EAW)ZB

LEMMA 3.8.2. Let E : Z — Cat — Spt be a functor satisfying both the standing and
the sectional assumptions, and f : A — B a homomorphism of strongly E-excisive rings.
Then

i) E(I'B) is weakly contractible.

ii) E(XB) — Y E(B).

ii) Assume that I'; is E-excisive. Then the following is a distinguished triangle in HoSpt
E(B) — E(I'y) - X E(A) — X E(B)

PROOF. By Lemma 3.3.2, I'B = I'Z ® B, whence it is E-excisive. Part i) follows
from matrix stability and the fact that I'Z is a ring with infinite sums (see e.g. [3, Prop.
2.3.1)). Parts ii) and iii) follow from i) and excision. O

Matriz rings and group actions.

LEMMA 3.8.3. Let G be a group, A a G-ring and X a G-set. Write My for the ring
Mx equipped with the G-action

9(ery) = €gagy
The map
(MxA) %G — Mx(AXG),(egy®a) X g egqg-1,® (axg)

is a G-equivariant isomorphism of rings.

8.2. Dirac extensions. Let G be a group, & a family of subgroups, E : Z — Cat —

Spt a functor satisfying the standing assumptions, and A an E-excisive ring. A Dirac
extension for (G,J, A, E) consists of an extension of E-excisive G-rings

(8.1) 0—-B—-Q—P—0
together with a zig-zag

A:ZOfo 7 f2 7y fs 7. =B

such that
a) E(f; x H) is an equivalence for every subgroup H C G.
b) E.(Q x H) =0 for every H € F.
¢) The assembly map HY(E(G,F), E(P)) — E(P x G) is an equivalence.
ProprosITION 3.8.4. Let E : Z — Cat — Spt be a functor satisfying the standing

assumptions, G a group, F a family of subgroups of G, and A a G-ring. Let (8.1) be a
Dirac extension for (G, F, A, E). Then there are an exact sequence

Eot1(AxG) = E(QxG) = Eu(PxG) S E(A%G)
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an isomorphism HY(&(G,JF),E(A)) &£ E,,1(P x G), and a commutative diagram

Assembly

HS(E(C, F),E(A)) E.(Ax Q)

/

E*+1 (P X G)

1%

ProoOF. Condition a) together with standing assumptions iii) and iv) and Lemma
3.2.3 imply that the zig-zag f = {fi} induces an equivalence

H(X,E(4)) — H(X,E(B))
for every G-space X. Hence by Proposition 3.2.6 we have a distinguished triangle

HE (X, E(A)) — HY(X, B(Q)) —= HE(X, E(P)) —2~ SHE(X, B(4))

The proposition follows by comparison of the long exact sequence of homotopy associated
to the triangles for X = £(G,F), and X = %, and noting that condition b) implies that
HE(E(G, ), E(Q)) = 0. O

8.3. A canonical Dirac extension. Let G be a group and J a family of subgroups.
Consider the discrete G-simplicial sets

X=Xy;=][G/H Yv=G/G]]x
HeTF

The group G acts on Y and thus on the ring My of Y x Y-matrices with finitely many
nonzero integral coefficients. The point yo corresponding to the unique orbit of G /G is
fixed by G, whence the map ¢ : Z — My, A — Aey,,, is G-equivariant. In particular we
have a directed system of G-rings {id ®¢ : (Mo My )®" — (M My )®" 1}, Put

3 = colim (M, My )®"

Since X is discrete, the ring of finitely supported functions breaks up into a sum
2% = P zx.
zeX

Multiplication by an element of My gives an Z-linear endomorphism of Z(*). This defines
a monomorphism
My — Endgz (™))

whose image consists of those linear transformations 7" such that the matrix of 7" with re-
spect to the basis {x, : ¥ € Y} has finitely many nonzero entries. Note that multiplication
by Y in Z&) € ZO) is in this image. Thus we have an injective ring homomorphism

p: 2% — My

For each n > 1, consider the G-ring

3= <® Fp> ®F
=1
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Note that §" = (., I',) @5’ = (Q;_, ') ® MxMy @ F°. The inclusion M My — T,
induces an inclusion " C "' for each n > 0. Put
=3
n>0

If A € Rings, we also write §"A =F"® A (n > 0). We have

LEMMA 3.8.5.
i) §" C § is an ideal (n < 00).
ii) For each n >0, " and §"+1/§" = ©ZX) ® F" have local units, and are (G, F)-proper
rings and are flat as abelian groups.
iii) f He ¥, x € G/H, and A is a G-ring, we have a commutative diagram
(p®1) xid

(ZCG/M @ F"A) x H C (ZX) @ "A) x H (My§"A) x H
XI®1T 2l(3.8.3)
S"AxH My (3"A x H)

ez, ®—

PROOF. Part i) is clear. Because My is proper over Y, §" is proper over Y for all n,
by 3.6.8. Similarly,
(82) FH/F =22 0§

is proper. That §" is flat is clear for n = 0; the general case follows by induction, using
(8.2). The ring F° has local units because My and M,, do. To prove that §" has local
units for n > 1, it suffices to show that I', does. We may and do identify I', with the
inverse image of ¥(p(ZX))) under the projection 7 : I'My — XMy ; thus

T, =Tp(ZX)) + MMy C T My

One checks that if ¢1,...,¢, € I',, then there are finite subsets /7 C X and F, C N such
that for yo = G/G €Y, the element

e=1® Z €rx T Z epp D Cyoyo € 1)
TEF peEFy
satisfies €2 = e and e¢; = ¢e = ¢; for all i = 1,...,r. This proves part ii); part iii) is

straightforward. O

THEOREM 3.8.6. (Compare [23, Theorem 5.18]) Let E : Z — Cat — Spt be a functor
satisfying both the standing and the sectional assumptions. Let G a group, F a family of
subgroups, and A a G-ring. Then

FOA— FF¥A - FRA/FA
is a Dirac extension for (G, 5, A, E).

PROOF. The three rings in the extension of the theorem are E-excisive, by Lemma
3.8.5 i) and the hypothesis on A. The map E(A) — E(F’A) is an equivalence by standing
assumption iii) and the assumption that E, commutes with filtering colimits. Next we
prove that the assembly map HY(E(G,F),E(F*A/F°A)) — E(F*A/F°A x G) is an
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equivalence. By excision and the hypothesis that E, commutes with filtering colimits, it
suffices to show that

(8.3) HO(E(G, 9), E(3"A/3A)) — E(3"A/F°A » G)
is an equivalence. Consider the extension
O_)%nA/SOA_)%n-i—lA/%OA_)Sn—I—IA/gnA_)O

By Proposition 3.2.6, assembly gives a map of homotopy fibration sequences

HE(£(G,F), B(3" A/3°A)) B(F"A/3°A x G)

| |

HE(E(G,F), EF"HA/3A)) —= BF1A/3°A x Q)

| |

HE(E(G,9),E(F"A/F"A)) —= B A/F"A % G)

By Lemma 3.8.5 and Theorem 3.7.3, the bottom horizontal map is an equivalence. Hence
(8.3) is an equivalence for each n, by induction. It remains to show that E,(§*AxH) =0
for each H € F. Because E, preserves filtering colimits by assumption, we may further
restrict ourselves to proving that the map j, : E.(§"A x H) — E,(3"" A x H) induced
by inclusion is zero for all n. By Lemma 3.8.2 we have a long exact sequence (q € Z)

B, (3" A x H) — E,(3"*1A x H) — E,_, (Z) ® §"A x H)
la
E, 1 (3"A x H)

where 0 = E,_1(p ® 1 x 1). By Lemma 3.8.5, part iii), 0 is a split surjection. It follows
that j,, = 0; this concludes the proof. O

ExAMPLE 3.8.7. The hypothesis of Theorem 3.8.6 are satisfied, for example, by the
functorial spectra K and K H.

9. Isomorphism conjectures with proper coefficients

9.1. The excisive case.

THEOREM 3.9.1. Let E : Z — Cat — Spt be a functor. Assume that E is excisive,
additive and matrix-stable. Let A € G —Rings be proper over a locally finite, finite
dimensional (G, F)-complex X. Then the assembly map

HE(&(G,9),E(A)) - E(AxG)

is a weak equivalence.
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Proor. If dim X = 0, this follows from Theorem 3.7.3. Let n > 0 and assume the
theorem true in dimensions < n. If dim X =n, and Y C X is the n — 1-skeleton, we have
a pushout diagram

[T, Ind§ (A") —— X
[T, Ind§; (9A") —— jf

Here H; € F and the horizontal arrows are proper, since X is assumed locally finite.
Hence we obtain a pullback diagram

4 78" @ 7(G/Hi) « m(X)

| |

+ 70A") @ 7(G/Hi) «_ 7(Y)

Let I = ker(Z™) — Z)) be the kernel of the restriction map; because the diagram
above is cartesian, [ = @, ker(ZA") @ Z(G/H) — @ 70~ © 7(G/H)) The quotient
A/I - A is proper over Y, and [ - A is proper over [], Indgi(A"), whence also over the
zero-dimensional [ [, G /H;, by Lemma 3.6.11. Thus the theorem is true for both A/I - A

and I - A; because E is excisive by hypothesis, this implies that the theorem is also true
for A. O

THEOREM 3.9.2. Let E : Z — Cat — Spt be a functor. Assume that E is excisive
and matrix stable, and that E, commutes with filtering colimits. Let F be a family of
subgroups of a group G. Let A € G —Rings be proper over a locally finite (G, F)-complex
X. Then the assembly map

is an isomorphism.

PRrROOF. By Lemma 3.6.10, we may write A as a filtering colimit A = colim; A; such
that each A; is proper over a finite (G, J) complex. Because E, commutes with filtering
colimits by hypothesis, we may therefore restrict to the case when X is a finite (G, JF)-
complex. Now apply Theorem 3.9.1. U

ExaAMPLE 3.9.3. Homotopy K-theory satisfies the hypothesis of Theorem 3.9.2.
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