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Resumen

La kk-teoŕıa algebraica fue introducida por G. Cortiñas y A. Thom en [5]. Esta teoŕıa
es una K-teoŕıa bivariante en la categoŕıa de �-álgebras siendo � un anillo conmutativo
con unidad. Para cada par de álgebras (A,B) se define un grupo kk(A,B). Se obtiene
una categoŕıa KK cuyos objetos son las álgebras y cuyos morfismos son los elementos
de kk(A,B). La categoŕıa KK es una categoŕıa triangulada y existe un funtor canónico
j : Alg� → KK con ciertas propiedades universales. Estas propiedades son la de invarianza
homotópica polinomial, invarianza por matrices y la propiedad de escisión. La definición
de la kk-teoŕıa algebraica fue motivada por los trabajos de J. Cuntz [6] y N. Higson [12]
sobre las propiedades universales de la KK-teoŕıa de C∗-álgebras definida por Kasparov
en [19].

En esta tesis se continua la ĺınea de trabajo de [5] verficando que la kk-teoŕıa alge-
braica admite una versión equivariante. Sean � un anillo conmutativo con unidad, G un
grupo numerable y H un álgebra de Hopf sobre un cuerpo. En el caṕıtulo 1 definimos
una k-teoŕıa bivariante para la categoŕıa de G-álgebras, álgebras G-graduadas, H-módulo
álgebras y H-comódulo álgebras. Denotamos por X-Alg a cualquiera de estas categoŕıas.
Se introduce el concepto de X-estabilidad que consiste en una noción equivariante de in-
varianza matricial. Posteriormente se establecen las propiedades universales que verifica el
funtor canónico j : X-Alg → KKX: invarianza por homotoṕıas polinómicas, X-estabilidad
y la propiedad de escisión.

En el caṕıtulo 2 se estudian los teoremas de adjunción en la kk-teoŕıa algebraica
equivariante. Este estudio nos permite seguir completando el diccionario iniciado en [5]
entre la kk-teoŕıa algebraica y la KK-teoŕıa de Kasparov. Si G es un grupo numerable,
se definen funtores que extienden el producto cruzado por G y la acción trivial

� G : KKG → KK τ : KK → KKG.

El primer resultado de adjunción es una versión algebraica del Teorema de Green-

Julg y nos permite relacionar los kkG-grupos con los KH-grupos de la K-teoŕıa ho-
motópica de C. Weibel definida en [32]. Si G es un grupo finito, 1/|G | ∈ �, B es un
álgebra y A es una G-álgebra entonces existe un isomorfismo

ψGJ : kkG(Bτ , A) → kk(B,A� G)

Aqúı Bτ indica la G-álgebra con la acción trivial de G. En particular tomando B = �,

kkG(�, A) � KH(A� G) para toda A ∈ G-Alg.

Para cada subgrupo H de G se definen funtores de inducción y restricción

IndG
H : KKG → KKH ResH

G : KKG → KKH

3



4 RESUMEN

los cuales son funtores adjuntos. En otras palabras,

kkG(IndG
H(B), A) � kkH(B,ResH

G(A)) para A ∈ G-Alg y B ∈ H-Alg.

En particular si A es una G-álgebra,

kkG(�(G), A) � KH(A).

Aqúı �(G) =
⊕

g∈G � con la acción regular de G. Una versión algebraica del Teorema

de imprimitividad de Green nos permite identificar en KK al álgebra A � H con el

álgebra IndG
H A � G. También se prueba que KKG la categoŕıa de G-algebras y KKĜ la

categoŕıa de álgebras G-graduadas son equivalentes. Esta equivalencia está dada por los
funtores

� G : KKG → KKĜ Ĝ� : KKĜ → KKG.

inducidos por los productos cruzados. Es el análogo algebraico a la dualidad de Baaj-

Skandalis, [1]. Por último estudiamos el caso de KKH cuando H es un álgebra de Hopf
de dimensión finita sobre un cuerpo. Existen funtores

τ : KK → KKH # : KKH → KK

inducidos por la acción trivial y el producto smash. Cuando H es un álgebra semisimple
obtenemos una versión del teorema de Green-Julg en este contexto. En particular si A es
un H-módulo álgebra entonces

kkH(�, A) � KH(A#H).

En el último caṕıtulo estudiamos conjeturas de isomorfismo siguiendo la ĺınea de tra-
bajo de [8]. Consideramos estructuras de modelo en la categoŕıa de G-conjuntos simpli-
ciales y en la categoŕıa de G-espacios topológicos. Dichas estructuras estan definidas en
función de una familia F de subconjuntos de G y son tales que las equivalencias débiles
y las fibraciones son punto a punto. Los objetos cofibrantes son aquellos X tales que el
estabilizador Gx pertenece a la familia F para todo x ∈ X. Al probar que el siguiente par
de funtores es una equivalencia de Quillen

TopG
Sing∗

��
SG.

||∗
��

obtenemos que es equivalente trabajar con un modelo simplicial de espacio o con un
modelo topológico.

Decimos que un funtor H : SG → Spt de la categoŕıa de G-conjuntos simpliciales en la
categoŕıa de espectros satisface la (G,F)-conjetura de isomorfismo, si para el reemplazo
cofibrante π : E(G,F) → ∗ en la categoŕıa de modelos mencionada anteriormente el
morfismo

H(π) : H(E(G,F)) → H(∗)
es una equivalencia. Si E : Z-Cat → Spt es un funtor y R es un G-anillo con unidad,
podemos construir, siguiendo la ĺınea Davis-Luck [8], un funtor

HG(−,E(R)) : SG → Spt

tal que HG(∗,E(R)) = E(R� G). La (G,F,E, R)-conjetura de isomorfismo es la (G,F)-
conjetura para el funtor HG(−,E(R)). Pobamos que considerando unas condiciones
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mı́nimas sobre E, las Standing Assumptions 3.2.5 (condiciones que satisfacen K y
KH, ver proposiciones 3.4.18 y 3.5.3), HG(−,E(A)) está definido no sólo para los G-
anillos con unidad, si no que está definido también para todo G-anillo A que satisface
E-escisión. Más aún, probamos que si

(1) 0 → A′ → A→ A′′ → 0

es una sucesión exacta de anillos E-escisivos y X es un G-conjunto simplicial, entonces

HG(X,E(A′)) → HG(X,E(A)) → HG(X,E(A′′))

es una fibración homotópica. Esta es una propiedad necesaria para establecer un análogo
algebraico al médodo dual-Dirac que es un método usado en la prueba de la conjetura de
Baum-Connes para algunos grupos. Otra propiedad básica que nos proporciona sucesiones
(1) en las cuales al menos uno de los anillos satisface la conjetura de isomorfismos, es el
teorema 3.7.3. En éste se muestra que si E satisface las standing assumptions y A es un
anillo E-escisivo de la forma

(2) A =
⊕
i

IndG
Ki
Bi

en donde Bi es un Ki-anillo y Ki ∈ F para todo i, entonces el funtor HG(−,E(A))
lleva (G,F)-equivalencias en equivalencias. En particular la (G,F,E, A)-conjetura de
isomorfismo se satisface. Usamos este hecho en la sección 8 para mostrar que bajo otros
supuestos adicionales 3.8.1 (los cuales siguen siendo verificados por E = K y KH), para
cada G-anillo E-escisivo A existe de manera funtorial una sucesión de G-anillos E-escisivos

F0B → F∞B → F∞B/F0B

y un morfismo natural A→ F0B tal que

i) HG(X,E(A)) → HG(X,E(F0B)) es una equivalencia para todo G-conjunto sim-
plicial X.

ii) HG(X,E(F∞B)) → ∗ es una equivalencia si X es (G,F)-cofibrante.
iii) HG(−,E(F∞B/F0B)) lleva (G,F)-equivalencias en equivalencias.

A partir de esta sucesión obtenemos que

HG(E(G,F),E(A)) → E(A� G)

es una equivalencia si y sólo si el morfismo de conexión

Ω(E(F∞B/F0B � G)) → E(A� G)

es una equivalencia. En particular lo anterior se aplica cuando E = K,KH. En el teorema
3.9.2 probamos que bajo hipótesis más fuertes en E, la cual la más importante es que
E satisface escisión (e.g. KH satisface pero K no), entonces la (G,F,E, A)-conjetura de
isomorfismo es verdad para cuando A es un anillo (G,F)-propio. Si X es un conjunto
simplicial localmente finito con una acción de G entonces el G-anillo A es propio sobre X
si este es un álgebra sobre el anillo Z(X) de funciones polinomiales finitamente soportadas
en X, la acción es compatible con la acción de G en A y en X y Z(X) · A = A. Decimos
que A es (G,F)-propio si es propio sobre algún conjunto simplicial X localmente finito en
el cual G actúa de manera que los estabilizadores pertenecen a la familia F. Por ejemplo
un álgebra es de la forma (2) si y solamente si es propia sobre algún G-conjunto simplicial
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cero dimensional de la forma X =
∐

G /Ki. La noción de anillo (G,F)-propio usada
aqúı es la noción algebraica de la G-C∗-algebra propia, y el teorema 3.9.2 es una versión
algebraica del conocido hecho de que la conjetura de Baum-Connes es cierta para las
G-C∗-algebras [11].



Introduction

Some concepts in operator algebras and in non-commutative geometry can fit into
algebraic contexts; this observation can lead to interesting results in algebraic settings. In
this thesis we analyse some items in a diccionary between operator algebras and algebras
without topological structure.

Algebraic kk-theory has been introduced by G. Cortiñas and A. Thom in [5]. This is a
bivariant K-theory on the category of �-algebras where � is a commutative ring with unit.
For each pair (A,B) of �-algebras a group kk(A,B) is defined. A category KK is obtained
whose objects are the �-algebras and whose morphisms are the elements of the group
kk(A,B). The category KK is triangulated and there is a canonical functor j : Alg� → KK
with universal properties. These properties are algebraic homotopy invariance, matrix
invariance and excision.

The definition of algebraic kk-theory was inspired by the work of J. Cuntz [6] and N.
Higson [12] on the universal properties of Kasparov KK-theory [19]. The KK-theory of
separable C∗-algebras is a common generalization both of topological K-homology and
topological K-theory as an additive bivariant functor. Let A, B be separable C∗-algebras
then

(3) KK∗(C, B) � Ktop
∗ (B) KK∗(A,C) = K∗

hom(A)

here Ktop
∗ (B) denotes the K-theory of B and K∗

hom(A) the K-homology of A. J. Cuntz in
[6] gave another equivalent definition of the original one given in [19]. This new approach
allowed to put bivariant K-theory in algebraic context. Higson in [12] stated the universal
property of KK whose algebraic analogoue is studied in [5], where also an analogue of
(3) is proved. On the algebraic side, if A is an �-algebra then

kk(�, A) � KH(A)

here KH is Weibel’s homotopy K-theory defined in [32]. We can start to build a dictionary
between Kasparov’s KK-theory and algebraic kk-theory in the following way

7



8 INTRODUCTION

Kasparov’s KK-theory algebraic kk-theory

bivariant K-theory on bivariant K-theory on
separable C∗-algebras �-algebras

C∗-Alg Alg�

k : C∗-Alg → KK j : Alg� → KK

k is stable with respect to j is stable with respect to
compact operators K M∞ =

⋃
n∈N Mn

k is continous homotopy invariant j is polynomial homotopy invariant

k is split exact j is excisive

k is universal for the properties j is universal for the properties
described above described above

KK∗(C, A) � K∗(A) kk∗(�, A) � KH∗(A)

In this work we obtain an equivariant version of this dictionary. Let G be a countable
group and H be a Hopf algebra over a field. We introduce an algebraic kk-theory for
the categories of G-algebras, G-graded algebras, H-module algebras and H-comodule al-
gebras. We define an equivariant algebraic notion of matrix invariance. We study the
diferent cases separately. In the category of G-algebras, every object A is stably isomor-
phic to the equivariant matrix algebra MG(A). In the category of G-graded algebras,

which we call Ĝ-algebras, stabilization is with respect to the graded matrix algebra MĜ.
The definition of G-stability was inspired by the definition of equivariant stability in G-
C∗-algebras (see [24]). In the case of H-algebras, we fix a basis of H as a �-space and
we define an H-algebra called EndF� (H). The H-stability identifies A with EndF� (H)⊗A.
This identification depends on a chosen basis of H. We put a finiteness condition in
EndF� (H) and MG but these condition are different if we take H = �G. The equivariant
matrix invariance in the case of H-comodule algebras is similar to that of H-algebras.
After that we introduce the appropiate brand of algebraic kk-theory and we establish
its universal properties in each case. We consider several properties wich are valid for
G-algebras, Ĝ-algebras, H-algebras and H-comodule algebras and we write X-algebra to
refer either of them. We can resume Chapter 1 in the following table
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Equivariant Kasparov’s KK-theory Equivariant algebraic kk-theory

bivariant K-theory on bivariant K-theory on
separable G-C∗-algebras X-algebras

G-C∗-Alg X-Alg

k : G-C∗-Alg → KKG j : X-Alg → KKX

k is stable with respect to j is X-stable
K(�2(G×N))

k is continous homotopy invariant j is polynomial homotopy invariant

k is split exact j is excisive

k is universal for the properties j is universal for the properties
described above described above

In Chapter 2 we study adjointness theorems in equivariant kk-theory. We put in an
algebraic context some of the adjointness theorems which appear in Kasparov KK-theory.
Let G be a countable group and � a commutative ring with unit. We define the functors of
trivial action and crossed product between KK and KKG. The first adjointness theorem is
Theorem 2.1.4 which is an algebraic version of the Green-Julg Theorem. This result
gives us the first computation related with homotopy K-theory. If G is a finite group, A
is a G-algebra, B is an algebra and 1

|G | ∈ � then there is an isomorphism

ψGJ : kkG(Bτ , A) → kk(B,A� G).

In particular, if B = � then

kkG(�, A) � KH(A� G).

We consider a subgroup H of G, define induction and restriction funtors between KKG and
KKH and study the adjointness between them. If B is an H-algebra and A is a G-algebra
then there is an isomorphism

ψIR : kkG(IndG
H B,A) → kkH(B,ResH

GA).

This result gives us another computation. Taking H the trivial group and B = � we obtain
that

kkG(�(G), A) � KH(A) ∀A ∈ G−Alg .

Here �(G) =
⊕

g∈G � with the regular action of G. More general, if H is a finite subgroup

of G and 1/|H | ∈ � we combine ψGJ and ψIR and obtain

kkG(�(G /H), A) � KH(A� H) ∀A ∈ G−Alg .
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We also prove an algebraic version of Green imprimitivity Theorem and obtain that

KH(A� H) � KH(IndG
H A� G).

We also obtain an algebraic version of the Baaj-Skandalis theorem. We show that the
funtors

� G : KKG → KKĜ Ĝ� : KKĜ → KKG

are inverse category equivalences. Let H be a Hopf algebra with finite dimension. We
define functors between KK and KKH, the smash product and the trivial action. We study
the adjointness between them in theorem 2.5.4. We obtain that if H is semisimple, B is
an algebra and A is an H-algebra then there is an isomorphism

ψ : kkH(Bτ , A) → kk(B,A#H).

In particular,
kkH(�, A) � KH(A#H).

In the last chapter we study isomorphism conjecures in the sense of [8]. If F is a
family of subgroups of G we consider model category structures on SG and TopG. With
this structure weak equivalences and fibration are object-wise. Cofibrant object are those
X such that the stabilizer subgroup Gx is a subgroup of F for all x ∈ X. We prove that
the following is a Quillen equivalence

TopG
Sing∗

��
SG.

||∗
��

We say that a functor H : SG → Spt from the category of G-simplicial set to the category
of spectra satisfies the (G,F)-isomorphism conjecture if for the cofibrant replacement
π : E(G,F) → ∗ in the F-model category mentioned aboved, the map

H(π) : H(E(G,F)) → H(∗)
is an equivalence. If E : Z-Cat → Spt is a functor andR is a unital G-ring, one constructs,
following Davis-Luck [8], a functor

HG(−,E(R)) : SG → Spt

such that HG(∗,E(R)) = E(R � G). The (G,F,E, R)-isomorphism conjecture is the
(G,F)-conjecture for the functor HG(−,E(R)). We show that under very mild assump-
tions on E, the Standing Assumptions 3.2.5 (which are satisfied for example when E
is either K or KH, see propositions 3.4.18 and 3.5.3), HG(−,E(A)) is defined not only for
unital G-rings, but also for all E-excisive G-rings A, that is all G-rings on which E-salisfies
excision. Moreover whe show that if

(4) 0 → A′ → A→ A′′ → 0

is an exact sequence of E-excisive rings and X is a G-simplicial set, then

HG(X,E(A′)) → HG(X,E(A)) → HG(X,E(A′′))

is a homotopy fibration. This is a basic property needed to establish an algebraic analogue
of the Dirac-dual method which is used to prove the Baum-Connes conjecture for some
groups. Another basic property, which provide us with enough sequences (4) in which at
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least one of the rings satisfies the isomorphism conjecture, is Theorem 3.7.3 which shows
that if E satisfies the standing assumtions and A is an E-excisive G-ring of the form

(5) A =
⊕
i

IndG
Ki
Bi

with Bi a Ki-ring and Ki ∈ F for all i, then the functor HG(−,E(A)) maps (G,F)-
equivalences to equivalences. In particular the (G,F,E, A)-isomorphism conjecture holds.
We use this in Section 8 to show that under some additional assumptions (which are still
satisfied if E = K, KH, see 3.8.1), for each E-excisive G-ring A there is a functorial exact
sequence of E-excisive G-rings

F0B → F∞B → F∞B/F0B

and a natural map A→ F0B such that

i) HG(X,E(A)) → HG(X,E(F0B)) is an equivalence for all G-simplicial set X.
ii) HG(X,E(F∞B)) → ∗ is an equivalence if X is (G,F)-cofibrant.
iii) HG(−,E(F∞B/F0B)) maps (G,F)-equivalences to equivalences.

It follows that the assembly map

HG(E(G,F),E(A)) → E(A� G)

is an equivalence iff the conecting map

Ω(E(F∞B/F0B � G)) → E(A� G)

is an equivalence. In particular all this applies when E = K,KH. We also show in Theorem
3.9.2 that under stronger hypotesis on E, of which the main one is that E satisfies excision
(e.g. KH satisfies this but K does not), then the (G,F,E, A)-isomorphism conjecture is
true whenever A is (G,F)-proper. If X is a locally finite simplicial set with a G-action
then a G-ring A is proper over X if it is an algebra over the ring Z(X) of finitely supported
polynomial maps on X, the algebra action is compatible with the actions of G on A and
on X, and Z(X) · A = A. We say that A is (G,F)-proper if it is proper over a locally
finite simplicial set X on which G acts with all stabilizers in F. For example an algebra
is of the form (5) if and only if it is proper over the zero-dimensional G-simplicial set
X =
∐

G /Ki.
We remark that the notion of (G,F)-proper ring used here is the algebraic analogue

of the notion of proper G-C∗-algebra, and that Teorem 3.9.2 is an algebraic version of the
known fact that Baum-Connes conjecture holds for proper G-C∗-algebras [11].





CHAPTER 1

Equivariant algebraic kk-theory

Algebraic kk-theory has been introduced by G. Cortiñas and A. Thom in [5]. This is a
bivariant K-theory on the category of �-algebras where � is a commutative ring with unit.
For each pair (A,B) of �-algebras a group kk(A,B) is defined. A category KK is obtained
whose objects are the �-algebras and whose morphisms are the elements of the group
kk(A,B). The category KK is triangulated and there is a canonical functor j : Alg� → KK
with universal properties. These properties are algebraic homotopy invariance, matrix
invariance and excision.

The definition of algebraic kk-theory was inspired by the work of J. Cuntz [6] and N.
Higson [12] on the universal properties of Kasparov KK-theory [19]. The KK-theory of
separable C∗-algebras is a common generalization both of topological K-homology and
topological K-theory as an additive bivariant functor. Let A, B be separable C∗-algebras
then

(6) KK∗(C, B) � Ktop
∗ (B) KK∗(A,C) = K∗

hom(A)

here Ktop
∗ (B) denotes the K-theory of B and K∗

hom(A) the K-homology of A. J. Cuntz in
[6] gave another equivalent definition of the original one given in [19]. This new approach
allowed to put bivariant K-theory in algebraic context. Higson in [12] stated the universal
property of KK whose algebraic analogoue is studied in [5], where also an analogue of
(6) is proved. On the algebraic side, if A is an �-algebra then

kk(�, A) � KH(A)

here KH is Weibel’s homotopy K-theory defined in [32]. We can start to build a dictionary
between Kasparov’s KK-theory and algebraic kk-theory in the following way

13



14 1. EQUIVARIANT ALGEBRAIC kk-THEORY

Kasparov’s KK-theory algebraic kk-theory

bivariant K-theory on bivariant K-theory on
separable C∗-algebras �-algebras

C∗-Alg Alg�

k : C∗-Alg → KK j : Alg� → KK

k is stable with respect to j is stable with respect to
compact operators K M∞ =

⋃
n∈N Mn

k is continous homotopy invariant j is polynomial homotopy invariant

k is split exact j is excisive

k is universal for the properties j is universal for the properties
described above described above

KK∗(C, A) � K∗(A) kk∗(�, A) � KH∗(A)

In this chapter we obtain an equivariant version of this dictionary. Let G be a count-
able group and H be a Hopf algebra over a field. We introduce an algebraic kk-theory
for the categories of G-algebras, G-graded algebras, H-module algebras and H-comodule
algebras. We define an equivariant algebraic notion of matrix invariance. We study the
diferent cases separately. In the category of G-algebras, every object A is stably isomor-
phic to the equivariant matrix algebra MG(A). In the category of G-graded algebras,

which we call Ĝ-algebras, stabilization is with respect to the graded matrix algebra MĜ.
The definition of G-stability was inspired by the definition of equivariant stability in G-
C∗-algebras (see [24]). In the case of H-algebras, we fix a basis of H as a �-space and
we define an H-algebra called EndF� (H). The H-stability identifies A with EndF� (H)⊗A.
This identification depends on a chosen basis of H. We put a finiteness condition in
EndF� (H) and MG but these condition are different if we take H = �G. The equivariant
matrix invariance in the case of H-comodule algebras is similar to that of H-algebras.
After that we introduce the appropiate brand of algebraic kk-theory and we establish
its universal properties in each case. We consider several properties wich are valid for
G-algebras, Ĝ-algebras, H-algebras and H-comodule algebras and we write X-algebra to
refer either of them. We can resume this chapter in the following table
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Equivariant Kasparov’s KK-theory Equivariant algebraic kk-theory

bivariant K-theory on bivariant K-theory on
separable G-C∗-algebras X-algebras

G-C∗-Alg X-Alg

k : G-C∗-Alg → KKG j : X-Alg → KKX

k is stable with respect to j is X-stable
K(�2(G×N))

k is continous homotopy invariant j is polynomial homotopy invariant

k is split exact j is excisive

k is universal for the properties j is universal for the properties
described above described above

1. H-algebras and Ĥ-algebras

In this section we set up the notation and terminology related to Hopf algebras, module
algebras and comodule algebras. We follow [25] for this part.

1.1. Hopf algebras. Let � be a commutative ring with unit. In this section all tensor
products are over �; we write ⊗ = ⊗�. An �-algebra is an �-bimodule A together with an
�-linear map called multiplication μ : A⊗A→ A. It is associative if the following diagram
is commutative:

A⊗ A⊗ A
μ⊗id ��

id⊗μ
��

A⊗ A

μ

��
A⊗A μ

�� A

(associativity)

An �-algebra A with unit is an associative �-algebra A together a with an �-linear map
called unit u : �→ A such that the following diagram is commutative:

A⊗A

μ

��

�⊗ A

u⊗id
�����������

������������ A⊗ �

������������

id⊗u
		���������

A

(unit)

The two lower maps are given by scalar multiplication. We will denote by 1A := u(1�) and
we will write ab for μ(a, b). Let V , W be �-modules. Let us denote by τ : V ⊗W →W⊗V
the twisting map, τ(v ⊗ w) = w ⊗ v. An �-algebra A is commutative if μ ◦ τ = μ.
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An �-coalgebra is an �-module C together with an �-linear map called comultiplication
Δ : C → C ⊗ C such that the following diagram is commutative

C
Δ ��

Δ
��

C ⊗ C

Δ⊗id
��

C ⊗ C
id⊗Δ

�� C ⊗ C ⊗ C

(coassociativity)

An �-coalgebra with counit is a coalgebra C together with an �-linear map called counit
ε : C → � such that the following diagram is commutative:

C

Δ

��

1⊗
������������

⊗1

������������

�⊗ C C ⊗ �

C ⊗ C
ε⊗id

		��������� id⊗ε



���������

(counit)

We say that C is cocommutative if τ ◦Δ = Δ. An �-module (B, μ, u,Δ, ε) is a bialgebra
if (B, μ, u) is an algebra with unit and (B,Δ, ε) is a coalgebra with counit such that Δ
and ε are algebra morphisms. We will use the Sweedler notation or sigma notation for Δ.
If c ∈ C we write

Δc =
∑

c1 ⊗ c2

The subscripts 1 and 2 are symbolic, and do not indicate particular elements of C. The
power of the notation becomes apparent when Δ must be applied more than once. If we
apply Δ (n− 1)-times to c we can write

Δn−1(c) =
∑

c1 ⊗ c2 ⊗ . . .⊗ cn

because of the coassociativity.
An �-module (H, μ, u,Δ, ε, S) is a Hopf algebra if (H, μ, u,Δ, ε) is a bialgebra and

S : H → H is a bijective �-linear map such that∑
(Sh1)h2 = ε(h)1H =

∑
h1(Sh2) ∀h ∈ H

The map S is called an antipode of H. We will write S for the inverse of S. A map
f : H → K is a Hopf morphism if it is a bialgebra morphism and f(SHh) = SKf(h).

Example 1.1.1. Let G be a group and � a commutative ring with unit. The group
algebra �G of G is a Hopf algebra with the following structure:

�G := {∑g∈G agδg : ag ∈ � and {g ∈ G : ag 	= 0} is a finite set}

μ : �G⊗�G → �G δg ⊗ δh 
→ δgh u : �→ �G u(1) = δe

Δ : �G → �G⊗�G δg 
→ δg ⊗ δg ε : �G → � ε(δg) = 1

S : �G → �G δg 
→ δg−1
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1.2. H-algebras. Let H be a Hopf algebra. A left H-module A is an �-module with
an �-linear map γ : H ⊗ A→ A such that the following diagrams commute:

H⊗H ⊗A
μ⊗id ��

id⊗γ
��

H⊗ A

γ

��
H ⊗ A γ

�� A

�⊗A
u⊗id ��

scalar mult. ������������ H⊗ A

γ

��
A

We will write h · a for γ(h ⊗ a). A left H-module algebra is an �-algebra A and a left
H-module structure on A such that

• h · (ab) =
∑

(h1 · a)(h2 · b), for all h ∈ H, a, b ∈ A.
• h · 1A = ε(h)1A, for all h ∈ H.

We call A an H-algebra for short. A map f : A→ B is an H-algebra morphism if

• f(ab) = f(a)f(b) for all a,b ∈ A.
• f(h · a) = h · f(a) for all a ∈ A, h ∈ H.

Example 1.1.2. For any algebra A we can consider the trivial action h · a = ε(h)a.
In this case we say A is a trivial H-algebra.

Example 1.1.3. Let M be a left H-module. Put

End�(M) = {ϕ : M →M : ϕ is �-linear},
End�(M) is an �-algebra with the composition and is an H-algebra with the following
action

(h · ϕ)(m) =
∑

h1 · ϕ(S(h2) ·m) ϕ ∈ End�(M), h ∈ H

More generally we have the following example.

Example 1.1.4. Let M be an H-module and let A be an H-algebra. If ϕ ∈ End�(M)
and h, k ∈ H we put

(7) ϕh,k ∈ End�(M) ϕh,k(m) = h · ϕ(S(k) ·m)

It is easy to check that (ϕh,k)h̃,k̃ = ϕh̃h,k̃k. Define the following action in End�(M)⊗ A

h · (ϕ⊗ a) =
∑

ϕh1,h3 ⊗ h2 · a
Let us see that End�(M)⊗A is an H-algebra,

k · (h · (ϕ⊗ a)) = k · (∑ϕh1,h3 ⊗ h2 · a)

=
∑

(ϕh1,h3)k1,k3 ⊗ k2 · (h2 · a)

=
∑
ϕk1h1,k3h3 ⊗ (k2h2) · a

= (kh) · (ϕ⊗ a)
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h · ((ϕ⊗ a)(ϕ̃⊗ ã)) =
∑

(ϕϕ̃)h1,h3 ⊗ h2 · (aã)

=
∑

(ϕϕ̃)h1,h4 ⊗ (h2 · a)(h3 · ã)

=
∑
h1 · (ϕ(ϕ̃(S(h5)· ))⊗ (h2 · a)(ε(h3)h4 · ã)

=
∑
h1 · (ϕ(S(h3)h4 · ϕ̃(S(h6)· ))⊗ (h2 · a)(h5 · ã)

=
∑
ϕh1,h3ϕ̃h4,h6 ⊗ (h2 · a)(h5 · ã)

=
∑
h1 · (ϕ⊗ a)h2 · (ϕ̃⊗ ã)

1 · (ϕ⊗ a) = ϕ1,1 ⊗ 1 · a = ϕ⊗ a

h · (id⊗1A) =
∑

idh1,h3 ⊗h2 · 1A =
∑

idh1,h3 ⊗ε(h2)1A =
∑

idh1,h2 ⊗1A = id⊗1A

1.3. Ĥ-algebras. A left H-comodule A is an �-module with an �-linear map ρ : A→
H ⊗A such that the following diagrams commute:

A
ρ ��

ρ

��

H ⊗ A

Δ⊗id
��

H ⊗A
id⊗ρ

�� H⊗H ⊗A

A
ρ ��

1⊗id ���
��

��
���

� H ⊗A

ε⊗id
��

�⊗A

Following the Sweedler notation we write ρ(a) =
∑
a−1 ⊗ a0. A left H-comodule algebra

A is an �-algebra and a left H-comodule such that

• μA is a morphism of left H-comodules: ρ(ab) =
∑
a−1b−1 ⊗ a0b0 ∀a, b ∈ A

• uA is a morphism of left H-comodules: ρ(1A) = 1⊗ 1A

We call A an Ĥ-algebra for short; note that Ĥ does not denote any object. A map
f : A → B is an Ĥ-algebra morphism if it is an algebra morphism and a comodule
morphism, that is:

• f(ab) = f(a)f(b) for all a, b ∈ A.
• ρB ◦ f = (id⊗f) ◦ ρA.

Example 1.1.5. Suppose � is a field. Let A be an Ĥ-algebra and M an H-comodule
with finite dimension over �. Then End�(M) ⊗ A is an Ĥ-algebra with the following
structure

ρ : End�(M)⊗A→ H⊗End�(M)⊗A ρ(ϕ⊗a)(m) =
∑

(ϕ(m0))−1a−1S(m−1)⊗(ϕ(m0))0⊗a0

1.4. Dual of Hopf algebras. Let (H, μ, u,Δ, ε, S) be a Hopf algebra. The dual of
H is

H∗ = {ϕ : H → � : ϕ is �-linear}.
We consider the dual of the multiplication Δ∗, the dual unit ε∗, the dual counit u∗ and the
dual antipode S∗. We also want to consider the dual comultiplication but some difficulties
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arise. The image of μ∗ : H∗ → (H⊗H)∗ may not lie in H∗ ⊗H∗. The finite dual of H is
defined as

Ho = {ϕ ∈ H∗ : μ∗(ϕ) ∈ H∗ ⊗H∗}
There are many other equivalent conditions which define Ho (see for instance [25], Chapter
9). One of them is

μ∗(ϕ) ∈ H∗⊗H∗ ⇐⇒ dim(ϕ ↼ H) <∞ ϕ ↼ H := {ϕ ↼ h ∈ H∗ : (ϕ ↼ h)(k) = ϕ(hk)}
If H is finite dimensional with basis B = {g1, · · · , gn}, the set B∗ = {g∗1, · · · , g∗n} is a
basis of H∗ = Ho. In this case we can write the dual comultiplication in the following
way

δ = μ∗ : H∗ → H∗ ⊗H∗ δ(ϕ) =
∑
i

g∗i ⊗ (ϕ ↼ gi)

Proposition 1.1.6. Let (H, μ, u,Δ, ε, S) be a Hopf algebra. Then (Ho, μ∗, u∗,Δ∗, ε∗, S∗)
is also a Hopf algebra.

Proof: See [25] Theorem 9.1.3. �

1.5. ind-categories. In Chapter 1 we are going to work with directed diagrams of
H-algebras and Ĥ-algebras.

Let C be a category. The category of ind-objects of C is the category ind-C of directed
diagrams in C. An object in ind-C is described by a filtering partially ordered set (I,≤)
and a functor A : I → C. The set of homomorphisms in ind-C is defined by

homind-C((A, I), (B, J)) := lim
i∈I

colim
j∈J

homC(Ai, Bj).

Note each homomorphism in ind-C is represented by a natural transformation σ : I → J
that is cofinal (i.e. σ(I) is cofinal in J) and a family of homomorphisms {fi}i∈I in
homC(Ai, Bσ(i)) such that if i ≤ j the following diagram is commutative

Ai
fi ��

��

Bσ(i)

��
Aj

fj

�� Bσ(j)

We write f(i) for σ(i). Two families of homomorphisms in C, {fi}i∈I and {f̃i}i∈I represent

the same homomorphism in ind-C if for all i ∈ I there exists j(i) ∈ J such that f(i), f̃(i) ≤
j(i) and the following diagram is commutative

Bf(i)

���
��

���
��

Ai

fi



��������

f̃i ���
��

��
��

�
Bj(i)

Bf̃(i)

����������
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Note that there is a natural functor ind-(ind-C) → ind-C mapping

((Ai, Ji), I) 
→ (Aij ,
⋃
i∈I
Ji × {i})

We shall use this functor to collapse any ind-ind-object to an ind-object. Any functor
F : C → D extends to ind-F : ind-C → ind-D by

(8) F (Ai, i ∈ I) = (F (Ai), i ∈ I)
We shall identify objects of C with the full subcategory of ind-C consisting of the constant
ind-objects.

2. Homotopy invariance

In this section we recall the notion of algebraic homotopy and give a brief exposition
of some of its properties. In particular we discuss some properties of homotopy invariant
functors. All algebras are over �. H is a fixed Hopf algebra. We consider several properties
which are valid for H-algebras and Ĥ-algebras, we write X-algebra to refer either of them.
In this section tensor products are over Z.

2.1. Algebraic homotopies. Let A be an X-algebra. Put

AΔ1

:= A[t] = A⊗Z Z[t].

Note that A[t] is an X-algebra. Let write by cA : A → A[t] for the inclusion of A as
constant polynomials in A[t] and evi : A[t] → A for the evaluation of t at i (i = 0, 1).
Note these morphisms are morphisms of X-algebras and that cA is a section of evi.

Let f0, f1 : A → B be morphisms in X-Alg. We call f0 and f1 elementarily homotopic
if there exists a morphism H : A → B[t] such that eviH = fi, i = 0, 1. We denote it by
f0 ∼e f1. A morphism f : A→ B is an elementary homotopy equivalence if there exists a
morphism g : B → A such that f ◦ g ∼e idB and g ◦ f ∼e idA.

An X-algebra A is elementarily contractible if the null morphism and the identity mor-
phism are elementarily homotopic. In other words, A is elementarily contractible if there
exists a morphism f : A→ A[t] such that ev0 ◦f = 0 and ev1 ◦f = idA.

Example 1.2.1. Let A be an X−algebra. The path algebra PA := {p ∈ A[u] : p(0) =
0} is elementarily contractible and the homotopy is given by

PA→ PA[t]
∑
i≥1

aiu
i 
→
∑
i≥1

ai(tu)
i.

Example 1.2.2. Let A = ⊕i∈NAi be an N≥0-graded X-algebra. The inclusion ι : A0 →
A is an elementary homotopy equivalence. The projection p : A → A0 is the homotopy
inverse of ι because p ◦ ι = idA0 and ι ◦ p ∼e idA where the homotopy is given by

H : A→ A[t] H(
∑
i∈N

ai) = a0 +
∑
i≥1

ait
i.

Note PA is an N≥0-graded X-algebra.

It is easy to check that elementary homotopy is a reflexive and symmetric relation. In
general, it is not transitive.
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Definition 1.2.3 (algebraic homotopy). Let f, g : A → B be morphisms of X-
algebras. We call f and g homotopic, and write f ∼ g, if they can be connected by
a chain of elementary homotopies,

f ∼e h0 ∼e . . . ∼e hn ∼e g.

We denote the set of homotopy clases by [A,B]X. A morphism f : A→ B is an homotopy
equivalence if there exists a morphism g : B → A such that f ◦ g ∼ idB and g ◦ f ∼ idA.

Definition 1.2.4. An X-algebra A is contractible if the identity morphism and the
null morphism are homotopic.

Remark 1.2.5. Let A, B be X-algebras. We suppose f, h, g : A→ B are morphisms
of X-algebras such that f ∼e h ∼e g. We can consider morphisms H,G : A → B[t] such
that

ev0 ◦ H = f ev1 ◦ H = h ev1 ◦ G = g ev0 ◦ G = h

Then we have a morphism R : A → B[t] ×
B
B[t] such that the following diagram is

commutative

A G

��

R

��	
	

	
	

	

H

��

B[t]×
B
B[t]

pr1
��

pr2 �� B[t]

ev0

��
B[t] ev1

�� B

�

ev0 ◦ pr1 ◦ R = f ev1 ◦ pr2 ◦ R = g

Suppose there exists a chain of elementary homotopies

f ∼e h1 ∼e . . . ∼e hn−1 ∼e g.

We denote this chain in the following way

(9) •
f

H1−→ •
h1

H2−→ •
h2

H3−→ . . .
Hn−1−−−→ •

hn−1

Hn−−→ •
g

where the beginning of the arrow denotes de value at 0 and the end of the arrow denotes
the value at 1. There exists a morphism R : A→ B[t]×

B
(B[t]×

B
. . .×

B
(B[t]×

B
B[t])) such

that the following pull back diagrams commute

A Hn

��

R1

��	
	

	
	

	

Hn−1

��

B[t]×
B
B[t]

pr1
��

pr2 �� B[t]

ev0

��
B[t] ev1

�� B

�

A R1

��

R2

��







Hn−2

��

B[t]×
B

(B[t]×
B
B[t])

pr1
��

pr2 �� B[t]×
B
B[t]

ev0 ◦pr1
��

B[t] ev1

�� B

�

. . .
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A Rn−2

��
R

�����������

H1

��

B[t]×
B

(B[t]×
B
. . .×

B
(B[t]×

B
B[t]))

pr1
��

pr2 �� B[t]×
B
. . .×

B
(B[t]×

B
B[t])

ev0 ◦pr1
��

B[t] ev1

�� B

�

Note that
(10)
B[t]×

B
(B[t]×

B
. . .×

B
(B[t]×

B
B[t])) = {(p1(t), . . . , pn(t)) : pi(t) ∈ B[t] pi(1) = pi+1(0)}

We have ev0 ◦ pr1 ◦ R = f and ev1 ◦ pr2 ◦ R = g where pr2 is the projection to
the last coordinate. It is equivalent to have the chain of homotopies (9) and to have the
morphism R.

2.2. Homotopies of ind-X-algebras. Let A = (A, I) and B = (B, J) be ind-X-
algebras, we define

[A,B]X = lim
i∈I

colim
j∈J

[Ai, Bj]X

Note that for each i ∈ I and j ∈ J there is a natural map

homX-Alg(Ai, Bj) 
→ [Ai, Bj]X

which sends each f to its homotopy class [f ]. We also have a map

(11) homind-X-Alg(A,B) 
→ [A,B]X.

We say two morphisms in ind-X-Alg are homotopic if their images by (11) are equal.
An ind-X-algebra A is contractible if the null morphism and the identity morphism are
homotopic.

2.3. Homotopy invariant functors. A functor F : X-Alg → C is homotopy invari-
ant if it maps the inclusion cA : A→ A[t] to an isomorphism. The following Lemma shows
an equivalent definition.

Lemma 1.2.6. Let F : X-Alg → C be a functor. F is a homotopy invariant functor if
and only if F (f) = F (g) when f ∼ g (or equivalenty when f ∼e g).

�
2.4. The simplicial algebra AΔ. Define the following simplicial ring

(12) ZΔ : [n] 
→ ZΔn

ZΔn

:= Z[t0, . . . , tn]/ < 1−
∑
i

ti >

Θ : [n] → [m] 
→ Θ∗ : ZΔm → ZΔn

Θ∗(ti) =

{
0 si Θ−1(i) = ∅∑

j∈Θ−1(i) tj si Θ−1(i) 	= ∅
Let A be an X-algebra. Define

AΔ : [n] 
→ AΔn

AΔn

:= A⊗Z ZΔn
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Note AΔ is a simplicial X-algebra because AΔn
is an X-algebra with γ⊗ id or ρ⊗ id. The

face maps and degeneracy maps are given by

dni : AΔn → AΔn−1
dni (p)(t0, . . . , tn−1) = p(t0, . . . , ti−1, 0, ti, . . . , tn−1) 0 ≤ i ≤ n n 	= 0

snj : AΔn → AΔn+1
snj (p)(t0, . . . , tn+1) = p(t0, . . . , tj + tj+1, tj+2, . . . , tn+1) 0 ≤ j ≤ n

If A has unit, it is easy to check that

AΔ1

= A[t0, t1]/ < 1− t0 − t1 >∼= A[t] d0
∗ = ev0 d1

∗ = ev1

We can enrich the category X-Alg over simplicial sets, as follows. We have a mapping
space functor

hom•
X-Alg : X-Algop × X-Alg → S (A,B) 
→ ([n] 
→ homX-Alg(A,BΔn

))

Let μ : ZΔ ⊗ ZΔ → ZΔ be the multiplication map. For A,B,C ∈ X-Alg we define

� : hom•
X-Alg(B,C)×hom•

X-Alg(A,B) → hom•
X-Alg(A,C) (g�f)n := (idC ⊗μ)(gΔn⊗f)

2.5. Subdivision of simplicial sets. We will recall some concepts from [10], Chap-
ter 3, Section 4. Recall that the nondegenerate simplices of the standard n-simplex

Δn = homΔ(, [n])

are the monic ordinal number maps [m] → [n]. There is exactly one such monomorphism
for each subset of [n] of cardinality m+ 1. It follows that the nondegenerate simplices of
Δn form a poset PΔn, ordered by the face relation, and this poset is isomorphic to that
of the nonempty subsets of the ordinal number [n], ordered by inclusion. The subdivision
of Δn, is the nerve of the poset PΔn. We write it as sd Δn. If X is a simplicial set, the
subdivision of X, is

sdX = colimσ:Δn→X sd Δn.

The map of posets PΔn → [n] given by [v0, v1, . . . , vk] 
→ vk, induces a natural map

(13) h : sd Δn → Δn

which it is called last vertex map.

Example 1.2.7. Consider Δ2 and its vertices v0, v1, v2. The vertices of sd Δ2 are v0, v1,
v2, {v0, v1}, {v0, v2}, {v1, v2}, {v0, v1, v2}, the 1-simplices are [{v0}, {v0, v1}], [{v1}, {v0, v1}],
[{v1}, {v1, v2}], [{v2}, {v1, v2}], [{v0}, {v0, v2}], [{v2}, {v0, v2}], [{v0, v1}, {v0, v1, v2}], [{v1, v2}, {v0, v1, v2}],
[{v0, v2}, {v0, v1, v2}], [{v2}, {v0, v1, v2}], [{v0}, {v0, v1, v2}], [{v2}, {v0, v1, v2}], etc.
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{v0, v2}

v1v0
{v0, v1}

{v1, v2}

v2

{v0, v1, v2}

2.6. The algebra of polynomial functions on a simplicial set. Let A be an
�-algebra and X be a simplicial set. We define

AX := lim
Δn→X

AΔn

=

∫
n

∏
x∈Xn

AΔn

= mapS(X,A
Δ)

If (K, �) is a pointed simplicial set, put

A(K,�) := mapS∗((K, �), A
Δ) = ker(mapS(K,A

Δ) → mapS(�, A
Δ)) = ker(AK → A)

From [5] we have the following lemmas.

Lemma 1.2.8. Let j : K → L in S, � ∈ K and A ∈ Alg. If j is a cofibration, then

• The map AL → AK is surjective.
• The sequence 0 → A(L/K,�) → A(L,�) → A(K,�) → 0 is exact.

Proof: See Lemma 3.1.2 in [5] �

Lemma 1.2.9. Let K be a finite simplicial set, � a vertex of K, and A an algebra.
Then ZK and Z(K,�) are free abelian groups and there are natural isomorphisms

A⊗ ZK ∼−→ AK A⊗ Z(K,�) ∼−→ A(K,�)

Proof: See Lemma 3.1.3 in [5] �

Let A be an X-algebra and K a finite simplicial set, by Lemma 1.2.9 AK and A(K,�)

are X-algebras with γ⊗ id or ρ⊗ id. We will denote by sd•X the following pro-simplicial
set

sd•X : . . .
h−→ sdnX

h−→ sdn−1X
h−→ . . .

h−→ sdX
h−→ X

where h is the morphism defined in (13). If A is an X-algebra, we consider the following
ind-X-algebra

sd•X∗ : AX → AsdX → . . .→ Asdn−1X → Asdn X → . . .

The next picture shows sd• Δ1. The map h contracts the dashed lines to a point.
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{v0, v1}

sd3 Δ1

sd2 Δ1

sd Δ1

Δ1

sd4 Δ1

↓ h

↓ h

↓ h

↓ h

{v1, {v0, v1}}

v0

{v0, {v0, v1}}

v1

v0 {v0, v1} v1

v1v0

Note that

Asdn Δ1

= {(p1, . . . , p2n) : p2i(0) = p2i+1(0) p2j−1(1) = p2j(1) i = 1, . . . 2n−1−1 j = 1, . . . 2n−1}
and

h∗ : Asdn Δ1 → Asdn+1 Δ1

(p1, p2, p3, . . . , p2n−1, p2n) 
→ (p1, p1(1), p2(1), p2, p3, p3(1), p4(1), . . . , p2n−1, p2n−1(1), p2n−1(1), p2n)

Let us see that the algebra defined in (10) is isomorphic to Asdn Δ1
. In fact, put σ : A[t] →

A[t], σ(p)(t) = p(1− t) then the isomorphism is the following

A[t]×
A
A[t]×

A
. . .×

A
A[t]︸ ︷︷ ︸

2n times


→ Asdn Δ1

(p1, p2, p3, . . . , p2n) 
→ (p1, σ(p2), p3, . . . , σ(p2n))

For every n ∈ N define

evi : Asdn Δ1 → A i = 0, 1 ev0(p1, . . . , p2n) = ev0(p1) ev1(p1, . . . , p2n) = ev1(p2n)

Remark 1.2.10. Two morphisms f, g : A → B of X-algebras are homotopic if and
only if for some n there exists a morphism H : A → Bsdn Δ1

such that ev0 ◦H = f and
ev1 ◦H = g. In other words, f ∼ g if and only if we have an morphism H : A→ Bsd• Δ1

in ind-X-Alg such that ev0 ◦H = f and ev1 ◦H = g.

Lemma 1.2.11. The X-algebra A(sdk Δ1,�) is contractible.

Proof: Put

B = {(p1, . . . , p2k) : pi ∈ A[u], p1(0) = 0, pi(1) = pi+1(0)} � A(sdk Δ1,�)
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Let H : B → B[t]×
B
. . .×

B
B[t] such that

H(p1, . . . , p2k) = (Q1(p1, . . . , p2k), . . . , Q2k(p1, . . . , p2k))

Qi(p1, . . . , p2k) = (p1(u), . . . , pi−1(u), pi(ut), pi(t), . . . , pi(t))

Note H is well-defined

ev1 ◦ Qi(p1, . . . , p2k) = (p1(u), . . . , pi−1(u), pi(u), pi(1), . . . , pi(1))
= (p1(u), . . . , pi−1(u), pi(u), pi+1(0), . . . , pi+1(0))
= ev0 ◦ Qi+1(p1, . . . , p2k)

and

ev0 ◦ pr1 ◦H(p1, . . . , p2k) = ev0(p1(ut), p1(t) . . . , p1(t)) = (p1(0), p1(0) . . . , p1(0)) = 0
ev1 ◦ pr2 ◦H(p1, . . . , p2k) = ev1(p1(u), . . . , p2k−1(u), p2k(ut)) = (p1(u), . . . , p2k−1(u), p2k(u))

�
Corollary 1.2.12. The ind-X-algebra A(sd• Δ1,�) is contractible. �

3. Matrix invariance

3.1. Matrix algebra. Let Λ be a infinite set and let PF (Λ) be the set of its finite
sets. We consider the inclusion relation in PF (Λ) and we obtain a poset. Let X ∈ PF (Λ)
and define

MX := {ϕ : X ×X → Z}.
For each (x, y) ∈ X ×X we consider

ex,y : X ×X → Z ex,y(s, t) =

{
1 (s, t) = (x, y)
0 (s, t) 	= (x, y)

Every matrix in MX is a Z-linear combination of elements ex,y, x, y ∈ X. If X ⊂ Y we
define ι : MX → MY in the obvious way

ι : MX →MY ι(ϕ)(x, y) =

{
ϕ(x, y) if (x, y) ∈ X ×X
0 otherwise

Put
M• := {MX}X∈PF (Λ) M|Λ| := colim

X
MX M|Λ| = M• ⊗M|Λ|

Note M• and M|Λ| are ind-algebras and M|Λ| is an algebra with the multiplication given
by

ex,y · ez,w =

{
ex,w if y = z
0 if y 	= z

The set
ΓlΛ := {m ∈ ZΛ×Λ : m ·M|Λ| ⊆ M|Λ| ⊇M|Λ| ·m}.

consists of those matrices in ZΛ×Λ having finitely many nonzero elements in each row and
column. Every element T in ΓlΛ can be written as a formal sum

T =
∑
i,j∈Λ

ai,jei,j with ai,j ∈ Z such that ∀i ∈ Λ the sets {j : ai,j 	= 0} and {j : aj,i 	= 0} are finite sets
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Lemma 1.3.1. Let V,W ∈ ΓlΛ such that VW = 1. Define

ψ : M|Λ| →M|Λ| ψ(A) = WAV ψ̂ : M• →M• ψ̂(A) = WAV 1⊗ ψ : M|Λ| → M|Λ|

ψ is an morphism of algebras, ψ̂ and 1 ⊗ ψ are morphisms of ind-algebras. If ι denotes
the inclusion in the first entry of M2, then ιψ is homotopic to ι. The morphisms ψ̂ and
1⊗ ψ are homotopic to the identity.

Proof: See Lemma 4.1.1 in [5]. �

As Λ is a infinite set, we can choose a subset of Λ biyectable to N. Suppose Λ = N×λ.
In order to define a direct sum of matrices in M|Λ| consider, n,m ∈ N, g, h ∈ λ and the
elements in ΓlΛ

V (n, g,m, h) =

{
1 if m = 2n g = h
0 otherwise

V ∗(n, g,m, h) =

{
1 if 2m = n g = h
0 otherwise

W (n, g,m, h) =

{
1 if m = 2n+ 1 g = h
0 otherwise

W (n, g,m, h) =

{
1 if 2m+ 1 = n g = h
0 otherwise

Define ⊕ : M|Λ| ×M|Λ| →M|Λ| as follows

ϕ⊕ ϕ̃ = V ϕV ∗ +Wϕ̃W ∗.

There is also a tensor product defined in M|Λ|. Let η : (N × λ) → (N × λ) × (N × λ) a
biyection. Define � : M|Λ| ×M|Λ| → M|Λ| as

(ϕ � ϕ̃)(x, y) := ϕ(η(x))ϕ̃(η(y))

We obtain that (M|Λ|,⊕, �) is a homotopy semiring, see Section 4.1 of [5]. If Λ = N we
will denote M|N| = M∞ and M|N| = M∞.

3.2. Matrix invariant functors. Let A be an X-algebra. We define

MnA = Mn ⊗Z A M∞A = M∞ ⊗Z A

which are X-algebras in the obvious way. Denote by ιn : Z → Mn and ι∞ : Z → M∞ the
inclusions at the upper left corner. A functor F : X-Alg → C is Mn-stable (M∞-stable) if
F (ιn ⊗ idA) (F (ι∞ ⊗ idA)) is an isomorphism for all A ∈ X-Alg.

4. Extensions and classifying maps

4.1. Extension. Following [5], a sequence of morphisms in ind-X-Alg

(14) A
f−→ B

g−→ C

is called an extension if f is a kernel of g and g is a cokernel of f .
Let X-mod be the category of X-modules with linear and equivariant maps. Let

F : X-Alg → X-mod be the forgetful functor. This functor can be extended to F : ind-X-
Alg → ind-X-mod as is shown in (8). We will call an extension (14) weakly split if F (g)
has a section in X-mod.
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4.2. Path extension. Let S1 be the simplicial circle Δ1/∂Δ1, we define

Ω := Z(S1,�)

The path extension of an X-algebra A is the extension iduced by the cofibration ∂Δ1 ⊂ Δ1,
see 1.2.8.

(15) ΩA −−−−−→ AΔ1 (ev0,ev1)−−−−−→ A⊕A

The extension (15) is weakly split because we have a linear and X-equivariant section of
(ev0, ev1)

(16) (a, b) 
→ (1− t)a+ tb.

4.3. Universal extension. Let M be an H-module. Consider in

T̃ (M) =
⊕
n≥1

M⊗n

M⊗n

= M ⊗ . . .⊗M︸ ︷︷ ︸
n-times

the usual structure of H-module. The action in M⊗n
is given by

h · (m1 ⊗m2 ⊗ . . .⊗mn) =
∑

h1 ·m1 ⊗ h2 ·m2 ⊗ . . .⊗ hn ·mn

It is easy to check that T̃ (M) is an H-module algebra with this action. Similarily, let R
be an H-comodule. Consider in

T̃ (R) =
⊕
n≥1

R⊗n

the usual structure of H-comodule. The coaction in R⊗n
is given by

ρ(r1 ⊗ r2 ⊗ . . .⊗ rn) =
∑

r1
−1r

2
−1 . . . r

n
−1 ⊗ r1

0 ⊗ . . .⊗ rn0

It is easy to check that T̃ (R) is an H-comodule algebra with this coaction. Both con-
structions are functorial hence we consider a functor T̃ : X-mod → X-Alg. Put

T := T̃ ◦ F : X-Alg → X-Alg

If A is an X-algebra there exists an X-algebra morphism

ηA : T (A) → A ηA(a1 ⊗ . . .⊗ an) = a1 . . . an

and an X-module morphism μA : A→ T (A) which is the inclusion at the first summand
of T (A).

Remark 1.4.1. Let A,B be X-algebras, it is easy to check that

homX-Alg(T (A), B) � homX-mod(F (A), F (B)).

Hence if we have a morphism A→ B in X-mod, we can extend it to a morphism T (A) → B
of X-algebras. It shows that T is the left adjoint of F .
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The counit of the adjuntion is ηA : T (A) → A. It is surjective (see [22], IV.3 Thm 1).
We define

J(A) := ker ηA.

The universal extension of A is

J(A)
ıA−→ T (A)

ηA−→ A.

Proposition 1.4.2. Let A
f−→ B

g−→ C be an weakly split extension. There exists a
commutative diagram of extensions as follows

A
f �� B

g �� C

J(C)

ξ

��

ıC
�� T (C)

ξ̂

��

ηC

�� C

idC

��

where the map ξ is unique up to elementary homotopy.

Proof: Let s be a section of F (g) and define ξ̂ = ηB ◦ T̃ (s), then

ηC = ηC ◦ T (g) ◦ T̃ (s) = g ◦ ηB ◦ T̃ (s) = g ◦ ξ̂.
Define ξ : J(C) → A as the restriction of ξ̂ to J(C). This construction of ξ depends
on which s is chosen. If ξ1, ξ2 : J(C) → A are morphisms constructed taking different
sections of F (g) we will show ξ1, ξ2 are homotopic. Define a linear equivariant map

H : C → A[t] H(c) = (1− t)ξ1(c) + tξ2(c).

By 1.4.1 it extends to a homomorphism and there exists a morphism H : T (C) → A[t] in
X-Alg such that

ev0 ◦H|J(C) = ξ1 ev1 ◦H|J(C) = ξ2.

�
We call ξ the classifying map of the extension A

f−→ B
g−→ C. We abuse notation because

we shall work with maps up to homotopy.

Proposition 1.4.3. ([5] 4.4.2) Let

A ��

f
��

B

h
��

�� C

g

��
A′ �� B′ �� C ′

be a commutative diagram of weakly split extensions. Then there is a diagram

J(C) ��

J(g)
��

A

f

��
J(C ′) �� A′

of classifying maps, which is commutative up to elementary homotopy.



30 1. EQUIVARIANT ALGEBRAIC kk-THEORY

Proposition 1.4.4. ([5] 4.4.3) Let L be a ring and A an X-algebra. Then the exten-
sion

(17) J(A)⊗Z L→ T (A)⊗Z L→ A⊗Z L

is weakly split, and there is a chioce for classifying map φA,L : J(A ⊗Z L) → J(A) ⊗Z L
of this extension, which is natural in both variables. �

Corollary 1.4.5. ([5] 4.4.4) Let K be a finite pointed simplicial set. There is a
homotopy class of maps

(18) φA,K : J(AK) → J(A)K

natural with respect to K, which is represented by a classifying map of following the
extension

J(A)K
ι∗A−→ T (A)K

η∗A−→ AK

Naturality means that for any map of finite pointed simplicial sets f : K → L, the
following diagram commutes

J(AK) ��

J(f∗)
��

J(A)K

f∗
��

J(AL) �� J(A)L

�

4.4. Loop extension. Let A be an X-algebra. The path algebra of A is PA := P⊗ZA
with P := Z(Δ1,�). The loop extension of A is

(19) ΩA→ PA
ev1−−→ A

Note it is naturally weakly split because a 
→ at is a natural section of F (ev1). Thus we
can pick a natural choice for the classifying map of (19). We call it

ρA : J(A) → ΩA

Let

P := Z(sd• Δ1,�)

we have an extension of ind-X-algebras

AS1

:= A(sd• S1,�) AS1 → PA
ev1−−→ A

which is naturally weakly split. The classifying map J(A) → AS1
is the following compo-

sition

(20) J(A)
ρA−→ ΩA

h−→ AS1

where h is induced by the last vertex map. We will sometimes abuse notation and write
ρA for the map (20).



5. EXCISION 31

4.5. Mapping path extension. Let f : A→ B be a morphism of X-algebras. The
mapping path extension of f is the extension obtained from the loop extension of B by
pulling it back to A

Pf := PB ×B A ΩB
ι ��

��

PB ×B A
πf ��

��

A

f

��

(E′)

ΩB ι
�� PB ��

ev1

�� B (E)

We call Pf the path algebra of f . Note the extension (E′) is naturally weakly split because
s̃(a) = (s ◦ f(a), a) is a natural section of πf where s is the natural section of (E) given
in the Section 4.4. We define

(21) Pf := PB ×B A BS1 −→ PB ×B A
πf−→ A.

Note ρf := ρBJ(f) is the classifying map of the extension (21).

5. Excision

5.1. Triangulated categories. We recall the definition of a triangulated category
[21], [5]. We will express the definition in terms of a loop functor Ω. A triangulated
category (T,Ω,Q) is an additive category T with an equivalence Ω : T → T and a class Q
of sequences in T called distinguished triangles

(T ) ΩC → A→ B → C

satisfying the following axioms:

TR0: Any sequence isomorphic to a distinguished triangle is a distinguished triangle.
The sequence

ΩA→ 0 → A
idA−−→ A

is a distinguished triangle for every object A in T.
TR1: For any morphism α : A→ B in T, there exists a distinguished triangle of the

form

ΩB → C → A
α−→ B

TR2: Consider the two triangles

ΩC
f−→ A

g−→ B
h−→ C ΩB

−Ω(h)−−−→ ΩC
−f−→ A

−g−→ B

If one is distinguished, then so is the other.
TR3: For any solid arrow commutative diagram

ΩC
f ��

Ωk
��

A

j
���
�
�

g �� B
h ��

l
��

C

k
��

ΩC ′
f ′

�� A′
g′

�� B′
h′

�� C ′

there exists a filler j : A→ A′ which makes the whole diagram commutative.
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TR4: Let α : A → B and β : B → C be morphism in T. We set γ = βα. There
exists a commutative diagram

Ω2C ��

��

ΩD′ ��

��

ΩB
Ωβ ��

��

ΩC

��
0 ��

��

D′′′ 1 ��

h
��

D′′′ ��

��

0

��
ΩC

j ��

1
��

D′′ ��

��

A
γ ��

α

��

C

1
��

ΩC �� D′ �� B
β �� C

in which each row and column is a distinghished triangle. Furthermore, the square

ΩB

��

Ωβ �� ΩC

j
��

D′′′
h

�� D′′

commutes in T.
A triangle functor from (T1,Ω1,Q1) to (T2,Ω2,Q2) is a pair consisting of an additive

functor F : T1 → T2 and a natural transformation α : Ω2F → FΩ1 such that

Ω2F (C)
F (f)◦αC−−−−−→ F (A)

F (g)−−→ F (B)
F (h)−−→ F (C)

is a distinguished triangle in T2 for each triangle Ω1C
f−→ A

g−→ B
h−→ C.

5.2. Excisive homology theories. Let E be a class of extensions

(22) (E) A
f−→ B

g−→ C

in X-Alg, and let (T,Ω,Q) be a triangulated category. An E-excisive homology theory for
X-algebras with values in T consists of a functorH : X-Alg → T, together with a collection
{∂E : E ∈ E} of maps

∂HE = ∂E ∈ homT(ΩH(C), H(A)).

The maps ∂E are to satisfy the following requirements:

• For all E as in (22)

ΩH(C)
∂E−→ H(A)

H(f)−−−→ H(B)
H(g)−−→ H(C)

is a distinguished triangle in T.
• If

(E) : A
f ��

α

��

B

β

��

g �� C

γ

��
(E′) : A′

f ′
�� B′

g′
�� C ′
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is a map of extensions, then the following diagram commutes:

ΩH(C)
∂E ��

ΩH(γ)
��

H(A)

H(α)
��

ΩH(C ′)
∂E′

�� H(A)

6. Algebraic kk-theory

6.1. Universal functors. Let P be a property for functors defined on X-Alg to some
triangulated category. A functor u : X-Alg → U is a universal functor with P if it has the
property P and if F : X-Alg → T is another functor with P there exists a unique triangle
functor G : U → T such that the following diagram is commutative

X-Alg
u ��

F
��
















U

G
���
�
�

T

In the next section we shall see the definition of algebraic kk-theory and a construction
of a universal functor with P = {P1, P2, P3} where the properties are: excision (see 5.2),
homotopy invariance (see 2.3), and matrix invariance (see 3.2). In Section 8 we define
equivariant kk-theory and we construct a functor which is universal for the properties:
excision, homotopy invariance and equivariant matrix invariance (defined in Section 7).

6.2. kk-groups. Let A, B be X-algebras. Define

En(A,B) := [Jn(A),M∞BSn

]X.

Consider the following morphism ın : En(A,B) → En+1(A,B) such that

Jn(A)
f−→ M∞BSn 
→ Jn+1(A)

J(f)−−→ J(M∞BSn

)
φ

M∞,BSn−−−−−−→ M∞J(BSn

)
ρ

BSn−−−→ M∞BSn+1

Define
kk|X|(A,B) = colimn∈N En(A,B)

6.3. Composition product. A morphism of X-algebras f : A→ B induces a mor-
phism of weakly split extensions

AS1 ��

fS1

��

PA

��

�� A

f

��
BS1 �� PB �� B

By Proposition 1.4.3 the following diagram is commutative

J(A)

J(f)
��

ρA �� AS1

fS1

��
J(B) ρB

�� BS1
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Then fS1
ρA and ρf = ρBJ(f) represent the same element in kk|X|(A,B). Denote by

γA : J(AS1
) → J(A)S1

the morphism (18) and note

ρJ(A) � γAJ(ρA) : J2(A) → J(A)S1

Theorem 1.6.1. ([5]) Let A, B and C be X-algebras. There exists an associative
product

◦ : kk|X|(B,C)× kk|X|(A,B) → kk|X|(A,C)

which extends the composition of algebra homomorphisms.

If [α] ∈ kk|X|(B,C) is an element represented by α : Jn(B) → CSn
and [β] ∈

kk|X|(A,B) is an element represented by β : Jm(A) → BSm
then [α] ◦ [β] is an element

kk|X|(A,C) represented by

Jn+m(A)
Jn(β)−−−→ Jn(BSm

) −→ Jn(B)Sm αSm

−−→ CSn+m

6.4. The category KK|X|. The product given in theorem 1.6.1 allows us to define a
composition in the following category KK|X|:

• The objects are the X-algebras: ob(KK|X|) = ob(X-Alg).

• The morphisms are the kk|X|-groups: homKK|X|(A,B) = kk|X|(A,B).

Denote

j : X-Alg → KK|X|

to the functor which at the level of objects is the identity and at level of morphism sends
f : A→ B to [f ] ∈ kk|X|(A,B).

Remark 1.6.2. Let C be an X-algebra. A morphism of X-algebras f : C → M∞C rep-
resents an element j(f) in kk|X|(C,M∞C). But also represents an element in kk|X|(C,C)
because

kk|X|(C,C) = colimEn(C,C) and E0(C,C) = [C,M∞C].

A priori, kk-theory is only defined for X-algebras. However, if (A, J) is an ind-X-
algebra for which all structure maps are kk|X|-equivalences, we can equally well speak
about its kk|X|-groups. The kk|X|-groups with an ind-X-algebra in the right argument are
defined via the colimit of the induces diagram of kk|X|-groups, i.e.

kk|X|(A, (B, J)) := colimj∈J kk|X|(A,Bj)

The statement that two ind-X-algebras B and C are kk|X|-equivalent, has the rather strict
meaning, that all structure maps of B and C are kk|X|-equivalences and all morphisms
that constitute the morphism of ind-X-algebras are kk|X|-equivaleneces as well.

6.5. The triangulated structure of KK|X|. In this section we describe the trian-
gulated structure (see 5.1) in KK|X|. We shall define the endofunctor Ω : KK|X| → KK|X|

and the class Q of distinghished triangles.



6. ALGEBRAIC kk-THEORY 35

6.5.1. The endofunctor Ω. The functor Ω : KK|X| → KK|X| sends any X-algebra A to
the path X-algebra ΩA. Let [α] be an element of kk|X|(A,B) represented by α : Jn(A) →
BSn

. The class of Ω[α] is represented by

(23) Jn(AS1

) −→ Jn(A)S1 αS1

−−→ BSn+1

Note (23) represents an element of kk|X|(AS1
, BS1

) (see Lemma 6.3.8 [5] to check it is well

defined). As ı : ΩA → AS1
is a kk|X|-equivalence (see corollary of Lemma 6.3.2 [5]), we

have the natural morphism

kk|X|(AS1

, BS1

)
∼−→ kk|X|(ΩA,ΩB)

6.5.2. Distinguished Triangles. A diagram

ΩC → A→ B → C

of morphisms in KK|X| is called a distinguished triangle if it is isomorphic in KK|X| to the
path sequence

ΩB′ j(ι)−−→ Pf
j(πf )−−−→ A′ j(f)−−→ B′

associated with a homomorphism f : A′ → B′ of X-algebras. Denote the class of dist-
inghished triangles by Q.

Theorem 1.6.3 ([5]). The category KK|X| is triangulated with respect to the endo-

functor Ω : KK|X| → KK|X| and the class Q of distinguished triangles.

6.6. Universal properties of KK|X|. Let E : A
f−→ B

g−→ C be an weakly split
extension and let cE ∈ kk|X|(J(C), A) be the classifying map of E. As the natural map
ρA : J(A) → ΩA induces a kk-equivalence (see Lemma 6.3.10, [5]) we can consider the

following morphisms in kk|X|(ΩC,A)

(24) ∂E := cE ◦ ρ−1
C .

The functor j : X-Alg → KK|X| with the morphisms {∂E : E ∈ E} is an excisive homology
theory, homotopy invariant and M∞-stable. In fact, let E be an extension as in (22). Take

the path sequence asociated to g and the following diagram in KK|X|

ΩC
j(ι)

�� Pg
j(πg)

�� B
j(g)

�� C (T )

ΩC

id

��

∂E

�� A

ιf

��

j(f)
�� B

id

��

j(g)
�� C

id

��

(T ′)

The first square commutes beacuse ιf ◦ cE is elementarily homotopic to ι◦ρC . By Lemma

6.3.2 [5], the morphism ιf is a kk|X|-equivalence. Finally (T ) and (T ′) are isomorphic in

KK|X| and (T ′) is a distinguished triangle.
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Theorem 1.6.4. ([5]) The functor j : X-Alg → KK|X| is universal with the properties
defined above. In other words, if C is a triangulated category and G : X-Alg → C together
a class of morphisms {∂E : E ∈ E} is an excisive, homotopy invariant and M∞-stable

functor, then there exists a unique triangle functor G : KK|X| → C such that the following
diagram commutes

X-Alg
j ��

G
������������ KK|X|

G
���
�
�

C

Theorem 1.6.5 ([5]). Consider X = �, then

kk|�|
∗ (�, A) = kk∗(�, A) � KH∗(A)

Here KH∗ is the homotopy K-theory of Wiebel, see [32]. We recall this definition in a
general context in Section 5 of Chapter 3.

7. Equivariant matrix invariance

In the equivariant setting we will replace the property ofM∞-stability by an X-stability
condition. Let consider the different cases of X separately.

7.1. G-stability. Let G be a group and � a commutative ring with unit. In this
section we define a G-algebra called MG. Let M|G | be the matrix algebra defined in 3.1.
The translation action in G defines an action in M|G |

g · es,t = egs,gt.

Recall a functor is homotopy invariant if it sends the inclusion A → A[t] to an iso-
morphism. A M|G |-stable functor on G-Alg sends the morphism a → a ⊗ e1G,1G

to an
isomorphism. We want a definition of G-stability such that a G-stable functor on G-Alg,
identifies an G-algebra A with the algebra MG ⊗ A. In this case we may not have an
equivariant map between A and MG ⊗ A. Note that the map a → a ⊗ e1G,1G

is not
equivariant. For this reason we will define G-stability in terms of G-modules.

Definition 1.7.1 (G-module with basis).

• A pair (W, B) is a G-module with basis if W is a G-module, free as an �-module
and B is a basis of W.

• A pair (W′, B′) is a submodule with basis of (W, B) if W′ is a submodule of W
and B′ ⊂ B.

Note that if (W1, B1) and (W2, B2) are G-modules with basis then (W1⊕W2, B1�B2)
is a G-module with basis.

Definition 1.7.2. Let (W, B) be a G-module with basis B = {vi : i ∈ Λ}. We define

L(W, B) := {ψ : Λ× Λ → � : {i : ψ(i, j) 	= 0} is finite for all j}
Let pi : W → � be the projection to the submodule of W generated by vi,

pi(
∑
j∈Λ

ajvj) = ai.
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Note that L(W, B) and End�(W) = {f : W → W : f is �-linear} are isomorphic; indeed
we have inverse isomorphisms

(25) End�(W) → L(W, B) f 
→ ψf ψf (i, j) = pi(f(vj))

(26) L(W, B) → End�(W) ψ 
→ fψ fψ(vk) =
∑
i∈Λ

ψ(i, k)vi

Define
C(W, B) := {ψ ∈ L(W, B) : {j : ψ(i, j) 	= 0} is finite for all i}

F(W, B) := {ψ ∈ L(W, B) : {(i, j) : ψ(i, j) 	= 0} is finite }
and

EndF� (W, B) := {f ∈ End�(W) : ψf ∈ F(W, B)} EndC� (W, B) := {f ∈ End�(W) : ψf ∈ C(W, B)}
Note that C(W, B) is a ring with the matrix product and EndC� (W, B) is a ring with the
composition. By (25) and (26), EndC� (W, B) and C(W, B) are isomorphic rings.

Definition 1.7.3 (finiteness conditions for G-modules). Let (W, B) be a G-module
with basis. Consider the representation

ρ : G → End�(W) g 
→ ρg ρg(w) = g · w
We say that (W, B) is a G-module by finite automorphisms if ρ(G) ⊂ EndF� (W, B). We
say that (W, B) is a G-module by almost finite automorphisms if ρ(G) ⊂ EndC� (W, B). If
(W, B) is a G-module by almost finite automorphisms, EndF� (W, B) is a G-algebra with
the following action

g · f = ρ(g)f(ρ(g))−1

Note that EndF� (W, B) is an ideal of EndC� (W, B).

Example 1.7.4. Let W = �G be the group algebra considered as a G-module via the
regular representation with basis B = {δg : g ∈ G},
(27) g · (

∑
h∈G

ahδh) =
∑
h∈G

ahδgh.

Note

ρ : G → End�(�G) � L(�G, B) g 
→ Mg =
∑
t∈G

egt,t (Mg)(s, t) =

{
1 s = gt
0 s 	= gt

As Mg ∈ C(�G, B) for all g ∈ G, (�G, B) is a G-module by almost finite automorphisms.
Moreover we have

(Mg)
−1 = Mg−1 = (Mg)

t.

Observe that

MG = F(�G, B).
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Definition 1.7.5. Let A be a G-algebra. Consider the tensor product

MGA = MG ⊗A

with the diagonal action of G

(M ⊗ a)(N ⊗ b) = MN ⊗ ab g · (es,t ⊗ a) = egs,gt ⊗ g · a.
Proposition 1.7.6. Let W be a G-module. Let Wτ be W considered as a G-module

with trivial action, then
�G⊗W � �G⊗Wτ

Proof: The isomorphisms are given by

T : �G⊗Wτ → �G⊗W S : �G⊗W → �G⊗Wτ

T (δg ⊗ h) = δg ⊗ g(h) S(δg ⊗ h) = δg ⊗ g−1(h)

It is clear that each is the inverse of the other and that they are equivariant morphisms. �
If (W, B) is a G-module with basis we will write EndC� (W) and EndF� (W) ommiting

the basis when there is no confusion.

Proposition 1.7.7. Let (W, B) be a G-module with basis. Then

EndF� (�G⊗W) � EndF� (�G)⊗ EndF� (W)

Proof: Define T : EndF� (�G)⊗ EndF� (W) → EndF� (�G⊗W) by

T (eg,h ⊗ ev,w) = eg,v,h,w v, w ∈ B g, h ∈ G

As T is a bijection between the basis, T is an isomorphism. �
Definition 1.7.8 (G-stability). Let (W1, B1) and (W2, B2) be G-modules by almost

finite automorphisms such that card(Bi) ≤ card(G) × card N, i = 1, 2. The inclusion
ι : W1 → W1 ⊕W2 induces a morphism of G-algebras

(28) ι̃ : EndF� (W1) → EndF� (W1 ⊕W2) f 
→
(
f 0
0 0

)
Let A be a G-algebra and consider

ι̃⊗ 1 : EndF� (W1)⊗ A→ EndF� (W1 ⊕W2)⊗A.

A functor F : G-Alg → C is G-stable if for (W1, B1), (W2, B2) and A as above F (ι̃⊗ 1) is
an isomorphism in C.

Proposition 1.7.9. If F : G-Alg → C is a G-stable functor then F is M∞-stable.

Proof: Consider (W1, B1) = (�, {1}) and (W2, B2) = (�(N), {ei : i ∈ N}) with �(N) =
⊕∞
i=1�, {ei : i ∈ N} is the canonical basis and both modules have the trivial action of G.

Note
EndF� (�) = End�(�) = � EndF� (�⊕ �(N)) = EndF� (�(N)) = M∞

and ι̃ : � → M∞ is the inclusion at the upper left corner. Then ι̃ ⊗ 1 = ι : A → M∞(A)
and F (ι) is an isomorphism. �

Corollary 1.7.10. If G = {e}, F is G-stable if and only if F is M∞-stable.
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Definition 1.7.11 (zig-zag). Let A, B be G-algebras and F : G-Alg → C be a functor.
A zig-zag between A and B by F is a diagram in G-Alg

A
f1−→ C1

g1←− . . .
fn−→ Cn

gn←− B

such that F (gi), i = 1, . . . , n, are isomorphisms in C.

Remark 1.7.12. Let A be a G-algebra and F be a G-stable functor. There exists a
zig-zag between A and MGA by F . Consider W1 = (�G, B) as in the example 1.7.4 and
consider W2 = (�, {1}) with the trivial action of G. Put W = W1⊕W2 and C = EndF� (W)
with the induced action, then

ι : A = A⊗ � = A⊗ EndF� (�) → A⊗ C ← A⊗MG : ι′

is a zig-zag between A and MGA.

Proposition 1.7.13. Suppose G is countable. Let F : G-Alg → C be an M∞-stable
functor. Define

F̂ : G-Alg → C A 
→ F (MGA)

where MGA was defined in 1.7.5. Then F̂ is G-stable.

Proof: Let (W1, B1), (W2, B2) be G-modules by almost finite automorphisms and
A be a G-algebra. Consider

ι̃⊗ 1 : EndF� (W1)⊗ A→ EndF� (W1 ⊕W2)⊗A.

Let us check that F̂ (ι̃⊗ 1) is an isomorphism:

F (MG ⊗ EndF� (W1)⊗ A) � F (EndF� (�G⊗W1)⊗A) by 1.7.7
� F (EndF� (�G⊗Wτ

1)⊗ A) by 1.7.6
� F (MG ⊗ EndF� (Wτ

1)⊗A) by 1.7.7
F (MG ⊗ EndF� (W1 ⊕W2)⊗ A) � F (EndF� ((W1 ⊕W2)

τ )⊗MG ⊗A)

F̂ (ι̃⊗ 1) = F (MG ⊗ ι̃⊗ 1) is an isomorphism because F is M∞-stable. �
Example 1.7.14. Suppose G is a finite group of order n such that 1/n ∈ �. Define

ξ = (1/n)
∑

g∈G δg, then ξ is idempotent. The map s : � → �G, s(1) = ξ, is a G-
equivariant section of the canonical argumentation ϕ : �G → �. Thus the sequence of
G-modules

(29) 0 �� I �� �G
ϕ �� � �� 0

splits. Then
�G = �ξ ⊕ I

I is a G-module with basis {δe − δg : g 	= e}. Define

λg =

{
ξ g = e
δe − δg g 	= e

The set Λ = {λg : g ∈ G} is a basis of �G and the relations with the elements of
B = {δg : g ∈ G} are the following

λe = 1
n

∑
g∈G δg λh = δe − δh

δe = λe + 1
n

∑
g �=e λg δh = λe − λh + 1

n

∑
g �=e λg

h 	= e
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Consider W1 = � = (�ξ, {ξ}) and W2 = (I, {λg}g �=e), in this case the morphism (28) is

ι : �→ MG � End(�G,Λ) 1 
→

⎛⎜⎜⎝
1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎠
If we write it in the canonical basis we have

ι : �→ MG = End(�G, B) 1 
→

⎛⎜⎜⎝
1
n

1
n

. . . 1
n

1
n

1
n

. . . 1
n

...
...

. . .
...

1
n

1
n

. . . 1
n

⎞⎟⎟⎠
If F : G-Alg → C is a G-stable functor then F (ι) is an isomorphism in C.

Remark 1.7.15. Let I be a set with a distinguished element ι0. Let A be an �-algebra
and {Ai : i ∈ I} subalgebras such that A = ⊕i∈IAi. For each i ∈ I we consider the
projection πAi

: A → Ai. The following matrices with coeficients in EndF� (A) and with
indices in I are conjugated

M(i, j) =

{
id i = j = ι0
0 otherwise

N(i, j) =

{
πAi

i = j
0 i 	= j

In fact, if we choose T such that

T (i, j) =

⎧⎪⎪⎨⎪⎪⎩
πAj

i = ι0
πAi

j = ι0
1− πAi

i = j 	= ι0
0 otherwise

it is easy to see that T 2 = Id and TMT = N .

Remark 1.7.16. Let H be a subgroup of G. Define

�(G /H) =
⊕

gH∈G /H

�

Consider W1 = (�(G /H), {gH : g ∈ G}) with the regular action and W2 = (�(G /H), {gH :
g ∈ G}) with the trivial action. Put

MG /H = F(W1) M|G /H | = F(W2)

There is an isomorphism

MG /H ⊗MG

−→ M|G /H | ⊗MG

esH,gH ⊗ et,r 
→ et−1sH,r−1gH ⊗ et,r
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7.2. Ĝ-stability. In this section we consider the dual of the notion of G-stability.
We want to identify a G-graded algebra A with the G-graded matrix algebra MĜA.

The definition of Ĝ-stability is easier than that of G-stability beacause the morphism
A→MĜA is homogeneous.

Definition 1.7.17 (Ĝ-algebra). A Ĝ-algebra A is an associative algebra with a familiy
of submodules {As}s∈G such that

A =
⊕
s∈G

As AsAt ⊆ Ast s, t ∈ G

We write |a| = s if a ∈ As. A morphism f : A→ B of Ĝ-algebras is an algebra morphism

such that f(As) ⊂ Bs, s ∈ G. Write Ĝ-Alg for the category of Ĝ-algebras.

Example 1.7.18. An associative algebra A is a Ĝ-algebra with the trivial grading:

A =
⊕
s∈G

As As =

{
A s = e
0 s 	= e

In particular � is a Ĝ-algebra.

Example 1.7.19. Let A be a Ĝ-algebra. Define the following grading in MGA

(30) (MGA)g :=< es,t ⊗ a : g = s|a|t−1 >

As

(es,t ⊗ a)(es̃,t̃ ⊗ b) =

{
es,t̃ ⊗ ab t = s̃
0 t 	= s̃

we have
|(es,t ⊗ a)(es̃,t̃ ⊗ b)| = s|a||b|t̃−1 if t = s̃

= s|a|t−1s̃|b|t̃−1

= |es,t ⊗ a||es̃,t̃ ⊗ b|
and MGA is a Ĝ-algebra. We will write MĜA for MGA with this structure.

Definition 1.7.20 (Ĝ-stability). Let A be a Ĝ-algebra. Consider MĜA as in the
example 1.7.19. Observe the map

ιA : A→MĜA a 
→ e1G,1G
⊗ a

is homogeneous. A functor F : Ĝ-Alg → C is a Ĝ-stable if F (ιA) is an isomorphism in C

for all A ∈ Ĝ-Alg.

7.3. H-stability. In this section we suppose H is a Hopf algebra over a field �. Recall
that a left Hopf module over H is an �-module M such that

• M is a left H-module.
• M is a left H-comodule, via ρ : M → H⊗M .
• ρ is a left H-module map, where H ⊗M is a left module via

h · (k ⊗m) =
∑

h1k ⊗ h2 ·m.
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We may also write

ρ(h·m) = h·ρ(m)
∑

(h·m)−1⊗(h·m)0 =
∑

h1 ·m−1⊗h2 ·m0 ∀m ∈M ∀h ∈ H

Proposition 1.7.21. Let M be a left H-module, H ⊗M is a Hopf module over H
via

h · (k ⊗m) =
∑

h1k ⊗ h2 ·m ρ(k ⊗m) = Δ(k)⊗m

Write M τ for the trivial H-module, then

H ⊗M � H⊗M τ

Proof: The isomorphisms are given by

α : H ⊗M τ → H ⊗M α(h⊗m) =
∑
h1 ⊗ h2 ·m

β : H ⊗M → H ⊗M τ β(h⊗m) =
∑
h1 ⊗ S(h2) ·m

One checks that one is the inverse of the each other and that they are Hopf modules
morphisms. �

Let M be an H-module. In the Example 1.1.3 we have seen an H-algebra structure
on End�(M). Define

(31) EndF� (M) := {ϕ ∈ End�(M) : ϕ(M) is a finite dimensional subspace of M}.
Let ϕ ∈ EndF� (M) and h ∈ H. Consider Ch the subcoalgebra of H generated by h. By
Fundamental theorem of coalgebras we know Ch has finite dimension over �. Because
(h ·ϕ)(M) ⊂ Ch ·ϕ(M) we conclude (h ·ϕ)(M) is finite dimensional and h ·ϕ ∈ EndF� (M).
Hence EndF� (M) is an H-subalgebra of End�(M). It is easy to check that EndF� (M) is an
ideal of End�(M).

Remark 1.7.22. Let M be an H-module, ϕ ∈ EndF� (M) and h, k ∈ H. Recall from
(7) the definition of ϕh,k, then ϕh,k(M) ⊂ h ·ϕ(M). The space ϕ(M) has finite dimension
and h is fixed. Thus h · ϕ(M) and ϕh,k(M) has also finite dimension. We conclude that

ϕh,k ∈ EndF� (M).

Definition 1.7.23. Let M1 and M2 be H-modules and let A be an H-algebra. Let
us consider the following homomorphism of H-algebras

ι : EndF� (M1)⊗A → EndF� (M1 ⊕M2)⊗A

f ⊗ a 
→
(
f 0
0 0

)
⊗ a

A functor F : H-Alg → C is H-stable if it is M∞-stable and F (ι) is an isomorphism for
every M1, M2 and A as above and with

dim�(Mi) ≤ dim�(H) i = 1, 2.

Remark 1.7.24. Let A be an H-algebra and F : H-Alg → C an H-stable functor.
There exists a zig-zag between A and EndF� (H) ⊗ A by F . Consider H as a H-module
with the regular action and � with the trivial action. Then

A ∼= �⊗A ∼= EndF� (�)⊗A
ι−→ EndF� (�⊕H)⊗ A

ι′←− EndF� (H)⊗ A

is a zig-zag by F .
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Proposition 1.7.25. Let H be a finite dimensional Hopf algebra and M an H-module
with finite dimension. Then

End�(H⊗M) � End�(H)⊗ End�(M)

as a H-algebras. The structures of End�(H⊗M) and End�(H)⊗End�(M) are those given
in the examples 1.1.3 and 1.1.4 respectively.

Proof: Define

Γ : End�(H)⊗ End�(M) → End�(H ⊗M) Γ(ϕ⊗ ψ)(h⊗m) = ϕ(h)⊗ ψ(m)

One checks Γ is an H-algebra monomorphism. By a dimension argument we conclude
that it is an isomorphism. �

Proposition 1.7.26. Suppose dim� H is finite. Let F : H-Alg → C be a homotopy
invariant and M∞-stable functor. The following functor

F̂ : H-Alg → C A 
→ F (End�(H)⊗ A)

is homotopy invariant and H-stable.

Proof: Let M1 and M2 be H-modules with finite dimension and A be an H-algebra.
Put

ι̃⊗ 1 : End�(M1)⊗ A→ End�(M1 ⊕M2)⊗ A.

Let F̂ : H-Alg → C, F̂ (A) := F (End�(H) ⊗ A). We have to prove F̂ (ι̃ ⊗ 1) is an
isomorphism. As

F (End�(H)⊗ End�(M1)⊗A) � F (End�(H⊗M1)⊗ A) see 1.7.25
� F (End�(H⊗M τ

1 )⊗ A) by 1.7.21
� F (End�(H)⊗ End�(M

τ
1 )⊗A) see 1.7.25

� F (End�(M
τ
1 )⊗ End�(H)⊗A)

F (End�(H)⊗ End�(M1 ⊕M2)⊗ A) � F (End�((M1 ⊕M2)
τ )⊗ End�(H)⊗ A)

F̂ (ι̃⊗ 1) is an isomorphism by the M∞-stability of F . �
In order to obtain an H-stable functor when H is not finite dimensional, we have

tried to apply the argument used in Proposition 1.7.26. We could not prove an equivalent
assumption of Proposition 1.7.25. We are not sure if the right finiteness condition on
End�(M) is that written on (31). If it is the correct one, we have to redefine the kk|H|-
groups stabilizing by the N× N-matrices with finite rank instead.

7.4. Ĥ-stability. Suppose H is a Hopf algebra over a field � with finite dimension.
Let A be an Ĥ-algebra.

Proposition 1.7.27. Let N be a H-comodule and N τ the trivial comodule. There is
a isomorphism

H ⊗N � H⊗N τ

�
LetN be a H-comodule with finite dimension. Recall from Example 1.1.5 the structure

of H-algebra on End�(N)⊗ A.
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Definition 1.7.28 (Ĥ-stability). Let N1 and N2 be H-comodules with finite dimen-

sion and let A be an Ĥ-algebra. Let us consider the following homomorphism of Ĥ-
algebras

ι : End�(N1)⊗A → End�(N1 ⊕N2)⊗A

f ⊗ a 
→
(
f 0
0 0

)
⊗ a

A functor F : Ĥ-Alg → C is Ĥ-stable if it is M∞-stable and F (ι) is an isomorphism for
every N1, N2 and A as above.

Proposition 1.7.29. Let F : Ĥ-Alg → C be a homotopy invariant and M∞-stable
functor. The following functor

F̂ : Ĥ-Alg → C A 
→ F (End�(H)⊗ A)

is homotopy invariant and Ĥ-stable.

�

8. Equivariant algebraic kk-theory

Suppose G is a countable group and � is a commutative ring with unit. Let A, B be
G-algebras, we define

kkG(A,B) := kk|G |(MG ⊗A,MG ⊗ B).

Consider the category KKG whose objects are the G-algebras and the morphisms between
A and B are the elements of kkG(A,B). In other words,

homKKG(A,B) = homKK|G |(MG ⊗ A,MG ⊗ B)

Let jG : G-Alg → KKG be the functor such that is the identity on objects and sends each
morphism of G-algebras f : A→ B to its class [f ] ∈ kkG(A,B).

Theorem 1.8.1. The functor jG : G-Alg → KKG is an excisive, equivariantly ho-
motopy invariant, and G-stable functor. Moreover, it is the universal functor for these
properties.

Proof: Let E be an extension as in (22), define

∂G
E ∈ homKKG(ΩC,A) = homKK|G |(MG ⊗ ΩC,MG ⊗ A) = homKK|G |(ΩMG ⊗ C,MG ⊗ A)

as the morphism ∂E′ defined in (24) asociated to the following weakly split extension

MG ⊗A→MG ⊗ B →MG ⊗ C (E′)

By theorem 1.6.4 and proposition 1.7.13 the functor j : G-Alg → KKG with the family
{∂G

E : E ∈ E} is an excisive, homotopy invariant and G-stable functor. Let us check it is
universal for these properties. Let X : G-Alg → C be a functor which has the mentioned



8. EQUIVARIANT ALGEBRAIC kk-THEORY 45

properties with a family {∂E : E ∈ E} . By theorem 1.6.4 there exists a unique triangle

functor X : KK|G | → C such that the following diagram commutes

(32) G-Alg

X

���
��

��
��

��
��

��
��

��

jG ��

j ����������� KKG

X′

���
�

�
�

�
�

�
�

�

KK|G |

�����������

X
��
C

We will define X ′ : KKG → C. We know that X ′ = X on objects. As X is G-stable the
following morphisms are a zig-zag between A and MG ⊗ A by X, (see Remark 1.7.12)

(33) A
ιA �� MG�{∗} ⊗ A MG ⊗ A

ι′A��

Let α ∈ kkG(A,B) and define

X ′(α) := X(ιB)−1X(ι′B)X(α)X(ι′A)−1X(ιA).

Note this definition is the unique possibility to make the diagram (32) commutative. �
Let A, B be Ĝ-algebras. We define

kkĜ(A,B) := kk|Ĝ|(A,B).

Consider the category KKĜ whose objects are the Ĝ-algebras and the morphisms between

A and B are the elements of kkĜ(A,B). Let jĜ : Ĝ-Alg → KKĜ be the functor that is
the identity on objects and which sends each morphism of G-algebras f : A → B to its

class [f ] ∈ kkĜ(A,B).

Theorem 1.8.2. The functor jĜ : Ĝ-Alg → KKĜ is an excisive, graded homotopy
invariant, and Ĝ-stable functor. Moreover, it is the universal functor for these properties.

Proof: : It follows from Theorem 1.6.4 and the fact that Ĝ-stability property holds
by the M∞-stability property. �

Let H be a Hopf algebra over a field � with finite dimension. Similary, if A and B are
H-algebras, we define

kkH(A,B) := kk|H|(End�(H)⊗ A,End�(H)⊗ B).

Consider the category KKH whose objects are the H-algebras and the morphisms between
A and B are the elements of kkH(A,B). In other words,

homKKH (A,B) = homKK|H|(End�(H)⊗ A,End�(H)⊗B)

Let jH : H-Alg → KKH be the functor which is the identity on objects and sends each
morphism of H-algebras f : A→ B to its class [f ] ∈ kkH(A,B).
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Theorem 1.8.3. The functor jH : H-Alg → KKH is universal for the properties:
excisive, equivariantly homotopy invariant, and H-stable.

Proof: The proof is similar to the proof of Theorem 1.8.1. Just we have to replace
MG by EndF� (H). �

Similary, if A and B are Ĥ-algebras, we define

kkĤ(A,B) := kk|Ĥ|(End�(H)⊗ A,End�(H)⊗ B).

Consider the category KKĤ whose objects are the Ĥ-algebras and the morphisms between

A and B are the elements of kkĤ(A,B). Let jĤ : Ĥ-Alg → KKĤ be the functor which

is the identity on objects and sends each morphism of Ĥ-algebras f : A→ B to its class

[f ] ∈ kkĤ(A,B).

Theorem 1.8.4. The functor jĤ : Ĥ-Alg → KKĤ is universal for the properties:
excisive, equivariantly homotopy invariant, and Ĥ-stable.

�



CHAPTER 2

Adjointness theorems in kk-theory.

In this chapter we study adjointness theorems in equivariant kk-theory. We put in an
algebraic context some of the adjointness theorems which appear in Kasparov KK-theory.
Let G be a countable group and � a commutative ring with unit. We define the functors of
trivial action and crossed product between KK and KKG. The first adjointness theorem is
Theorem 2.1.4 which is an algebraic version of the Green-Julg Theorem. This result
gives us the first computation related with homotopy K-theory. If G is a finite group, A
is a G-algebra, B is an algebra and 1

|G | ∈ � then there is an isomorphism

ψGJ : kkG(Bτ , A) → kk(B,A� G).

In particular, if B = � then
kkG(�, A) � KH(A� G).

We consider a subgroup H of G, define induction and restriction funtors between KKG and
KKH and study the adjointness between them. If B is an H-algebra and A is a G-algebra
then there is an isomorphism

ψIR : kkG(IndG
H B,A) → kkH(B,ResH

GA).

This result gives us another computation. Taking H the trivial group and B = � we obtain
that

kkG(�(G), A) � KH(A) ∀A ∈ G−Alg .

Here �(G) =
⊕

g∈G � with the regular action of G. More general, if H is a finite subgroup

of G and 1/|H | ∈ � we combine ψGJ and ψIR and obtain

kkG(�(G /H), A) � KH(A� H) ∀A ∈ G−Alg .

We also prove an algebraic version of Green imprimitivity Theorem and obtain that

KH(A� H) � KH(IndG
H A� G).

We also obtain an algebraic version of the Baaj-Skandalis theorem. We show that the
funtors

� G : KKG → KKĜ Ĝ� : KKĜ → KKG

are inverse category equivalences. Let H be a Hopf algebra with finite dimension. We
define functors between KK and KKH, the smash product and the trivial action. We study
the adjointness between them in theorem 2.5.4. We obtain that if H is semisimple, B is
an algebra and A is an H-algebra then there is an isomorphism

ψ : kkH(Bτ , A) → kk(B,A#H).

In particular,
kkH(�, A) � KH(A#H).

47
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1. Crossed product and trivial action

1.1. Trivial action. Let A be an �-algebra. Recall Aτ is A with the trivial action of
G. This gives us a functor τ : Alg → G-Alg. It is easy to check that jG◦τ satisfies excision
and is homotopy invariant and M∞-stable. By theorem 1.6.4 there exists a unique functor
τ̂ : KK → KKG such that the following diagram is commutative

Alg
τ ��

j

��

G-Alg

jG

��
KK

τ̂
�� KKG

We will write τ for τ̂ .

1.2. Crossed product. Let A be a G-algebra. The crossed product algebra A� G
is the �-module A⊗ �G with the following multiplication

(a� g)(b� h) = a(g · b) � gh a, b ∈ A g, h ∈ G .

Proposition 2.1.1. Let A be a G-algebra and W be a G-module by almost finite
automorphisms. The following algebras are naturally isomorphic

(A� G)⊗ EndF� (W) � (A⊗ EndF� (W)) � G .

Proof: Let ρ : G → (EndK� (W))× be the structure map. Define

φ : (A� G)⊗ EndF� (W) → (A⊗ EndF� (W)) � G φ(a� g ⊗ ϕ) = a⊗ ϕρ(g−1) � g

It is an algebra morphism:

φ((a� g ⊗ ϕ)(ã� g̃ ⊗ ϕ̃)) = φ(ag(ã) � gg̃ ⊗ ϕϕ̃)

= ag(ã)⊗ ϕϕ̃ρ(g̃−1g−1) � gg̃

= (a⊗ ϕρ(g−1))(g(ã)⊗ ρ(g)ϕ̃ρ(g̃−1)ρ(g−1)) � gg̃

= (a⊗ ϕρ(g−1) � g)(ã⊗ ϕ̃ρ(g̃−1) � g̃)

= φ(a� g ⊗ ϕ)φ(ã� g̃ ⊗ ϕ̃)

On the other hand, define

ψ : (A⊗ EndF� (W)) � G → (A� G)⊗ EndF� (W) ψ(a⊗ ϕ� g) = a� g ⊗ ϕρ(g).
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It is also an algebra morphism:

ψ(a⊗ ϕ� g)(ã⊗ ϕ̃� g̃) = ψ([a⊗ ϕ][g(ã)⊗ ρ(g)ϕ̃ρ(g−1)] � gg̃)

= ψ(ag(ã)⊗ ϕρ(g)ϕ̃ρ(g−1) � gg̃)

= ag(ã) � gg̃ ⊗ ϕρ(g)ϕ̃ρ(g̃)

= (a� g ⊗ ϕρ(g))(ã� g̃ ⊗ ϕ̃ρ(g̃))

= ψ(a⊗ ϕ� g)ψ(ã⊗ ϕ̃� g̃)

It is clear φ and ψ are inverse of each other. �

Proposition 2.1.2. There exists a unique functor �G : KKG → KK such that the
following diagram is commutative

G-Alg
�G ��

jG

��

Alg

j

��
KKG

�G
�� KK

Proof: We shall show j(−�G) is excisive, homotopy invariant and G-stable. Because
�G maps split sequences to split sequences and j is excisive, then j(− � G) is excisive.
That j(−� G) is homotopy invariant follows from the fact that

A[t] � G = (A� G)[t].

Let (W1, B1), (W2, B2) be G-modules by almost finite automorphisms and A a G-algebra.
Consider the isomorphism ψ defined in Proposition 2.1.1. Note that the following diagram
is commutative

(A⊗ EndF� (W1)) � G
(1⊗ι̃)�G

��

ψ
��

(A⊗ EndF� (W1 ⊕W2)) � G

ψ
��

(A� G)⊗ EndF� (W1) (1�G)⊗ι̃
�� (A� G)⊗ EndF� (W1 ⊕W2)

Because j is M∞-stable, j((1 � G) ⊗ ı̃) is an isomorphism. Hence j(− � G)(1 ⊗ ı̃) is an
isomorphism by the diagram above. �

Remark 2.1.3. Let [α] ∈ kkG(A,B) be an element represented by α : Jn(MGA) →
(MGB)sdp Sn

which is a morphism in [Jn(MGA),M∞(MGB)sdp Sn
]. Let us see who [α] � G

is. Consider the classifying map

Jn(MGA� G) → Jn(MGA) � G

The element [α] � G is represented by the following composition

Jn(MGA� G) → Jn(MGA) � G
α�G−−−→ (MGB)sdp Sn

� G .
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1.3. Adjointness between τ and �G. In this section we shall see an algebraic
version of the Green-Julg Theorem. In [24] there is a version of this result in the
context of Kasparov KK-theory. In [11] there is a version of this theorem in the context
of E-theory.

Theorem 2.1.4. Let G be a finite group of n elements and 1/n ∈ �. The functors
τ : KK → KKG and �G : KKG → KK are adjoint functors. Hence

kkG(Aτ , B) � kk(A,B � G) A ∈ Alg B ∈ G-Alg.

Proof: By [[22] Theorem 2, pag 81], it is enough to prove that there exist natural
transformations

αA ∈ kk(A,Aτ � G) and βB ∈ kkG((B � G)τ , B)

such that

Aτ
τ(αA)−−−→ (Aτ � G)τ

βτ(A)−−−→ Aτ B � G
αB�G−−−→ (B � G)τ � G

βB�G−−−→ B � G

are the identities in kkG(Aτ , Aτ ) and kk(B � G, B � G) respectively.
Put ε = 1/n

∑
g∈G g in �G and define

(34) αA : A→ Aτ � G α(a) = a⊗ ε

Note Aτ � G = A⊗ �G and αA is an algebra morphism since ε is idempotent. Consider
the element αA ∈ kk(A,Aτ � G) represented by αA. Let

βB : (B � G)τ →MGB βB(b� g) =
∑
s∈G

s(b)es,sg

Let us check that βB is an algebra morphism:

βB((b� g)(a� h)) = βB(bg(a) � gh)

=
∑

s∈G s(bg(a))es,sgh

=
∑

s,t∈G s(b)t(a)es,sget,th

= (
∑

s∈G s(b)es,sg)(
∑

t∈G t(a)et,th)

= βB(b� g)βB(a� h)

Let us check that βB is equivariant:

βB(h(b� g)) = βB(b� g)

=
∑

s∈G s(b)es,sg

=
∑

s∈G hs(b)ehs,hsg

= h(
∑

s∈G s(b)es,sg)

= h(βB(b� g))
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Let βB ∈ kkG((B � G)τ , B) be represented by βB. The composite βτ(A)τ(αA) is

(35) Aτ
τ(αA)−−−→ (Aτ � G)τ

βτ(A)−−−→MGA
τ a 
→ 1

n

∑
s,t∈G

aes,t.

Thus βτ(A)τ(αA) = idAτ ⊗ι where ι is the map defined in 1.7.14. As jG is G-stable,

jG(idAτ ⊗ι) is the identity in kkG(Aτ , Aτ ).
On the other hand take the morphism ψ defined in the proof of the Proposition 2.1.1.

By 2.1.3, βB � G is represented by ψ ◦ (βB � G). We want to prove that the identity in
kk(B � G, B � G) is represented by the following composition

B � G
αB�G−−−→ (B � G)τ � G

βB�G−−−−−−−→ (B ⊗MG) � G
ψ−−−−−−−−→ (B � G)⊗MG

b� g 
→ 1
n

∑
h,s∈G(s(b) � h)es,h−1sg

Put t = h−1sg and note

(36)
1

n

∑
h,s∈G

(s(b) � h)es,h−1sg =
1

n

∑
t,s∈G

(s(b) � sgt−1)es,t

and
s(b) � sgt−1 = (1 � s)(b� g)(1 � t−1) in B̃ � G

We can write (36) as TAb�gT
−1, where

Ab�g =
1

n

∑
t,s∈G

(b� g)es,t T =
∑
t∈G

(1 � t)et,t

Because b� g 
→ Ab�g represents the identity, the same is true of b� g 
→ TAb�gT
−1. �

Example 2.1.5. We give an example to show that the adjointness between of τ and
�G of Theorem 2.1.4 fails to hold at the algebra level. Let G = Z2 = {1, σ}, A = � and
B = (�G)∗ the dual algebra of �G with the regular action. Note homG-Alg(Aτ , B) has

two elements only:

ϕi : �→ (�G)∗ ϕ0(1) = 0 ϕ1(1) = χ1 + χσ

One the other hand homAlg(A,B � G) = homAlg(�, (�G)∗ � G) has at least as many
elements as �. For each λ ∈ � we can define

ϕλ : �→ (�G)∗ � G ϕλ(1) = χ1 � 1 + λ(χ1 � σ) λ ∈ �
Note ϕλ is an algebra morphism because χ1 � 1 + λ(χ1 � σ) is an idempotent element:

(χ1 �1+λ(χ1�σ))2 = χ1 �1+λ(χ1�σ)+λ(χ1χσ�σ)+λ2(χ1χσ�1) = χ1 �1+λ(χ1�σ)

Write ψGJ for the isomorphism of the Theorem 2.1.4

(37) ψGJ : kkG(Bτ , A) → kk(B,A� G) ψGJ = α∗ ◦�G

where α is the morphism defined in (34).

Corollary 2.1.6. Let G be a finite group such that 1/|G | ∈ �. Let A be a G-algebra,
then

kkG(�, A) � kk(�, A� G) � KH(A� G)
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�

2. Induction and Restriction

Let H be a subgroup of G. In this section we study the functors of induction and
restriction between the categories KKH and KKG

2.1. Finitely supported polynomial maps. Let A be an �-algebra and X a sim-
plicial set. We write σ ∈ X when σ is an n-simplex for some n, in other words when
σ ∈ Xn. Denote by < σ >⊂ X the subsimplicial set of X generated by σ:

< σ >i= {τ ∈ Xi : ∃ α : [i] → [n] such that α∗(σ) = τ}
Let σ ∈ X be a simplex. The star of σ in X is the following set of simplices of X

St(σ) := StX(σ) = {τ ∈ X :< τ > ∩ < σ >	= ∅}.
The closed star of σ is the sub simplicial set St(σ) generated by St(σ),

St(σ) =< St(σ) > .

Let M be the set of simplices of X. We define

StX(M) :=
⋃
σ∈M

StX(σ) StX(M) =< StX(M) >=
⋃
σ∈M

St(σ).

We define the link of M as

Link(M) := StX(M) \ StX(M).

Lemma 2.2.1. Let X be a simplicial set; write NX for the set of nondegenerate
simplices. The following are equivalent.

i) (∀σ ∈ X){τ ∈ NX :< τ >⊃< σ >} is a finite set.
ii) For every σ ∈ X, StX(σ) is a finite simplicial set.

Proof. If σ ∈ X, then < σ > has finitely many nondegenerate simplices, and thus
the set {< τ > ∩ < σ >: τ ∈ X} is finite. Hence if i) holds, there are finitely many
τ ∈ NX such that < τ > ∩ < σ >	= ∅; in other words, NX ∩ StX(σ) is a finite set, and
therefore StX(σ) is a finite simplicial set. Thus i)⇒ii). Next note that < τ >⊃< σ >
implies τ ∈ StX(σ), whence ii)⇒i). �

Definition 2.2.2. A simplicial set X is locally finite if for all σ ∈ X, StX(σ) is a finite
simplicial set.

Definition 2.2.3. The support of an element φ ∈ AX is generated by the simplices σ
such that φ(σ) 	= 0,

supp(φ) :=< σ ∈ X : ϕ(σ) 	= 0 >

Let φ, ψ ∈ AX and let f : Y → X be a simplicial map then

(38) supp(φ · ψ) ⊂ supp(φ) ∩ supp(ψ) supp(f ∗(φ)) ⊂ f−1(supp(φ)).

We say φ has finite support if supp(φ) ⊂ X is a finite simplicial set. We define the algebra
of polinomial maps with finite support in X as

A(X) := {φ ∈ AX : supp(φ) is finite }
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IfX is finite then AX = A(X). In general, by (38) we have thatA(X) � AX is an ideal. Note
that if f : X → Y is a morphism of simplicial sets, the image of A(Y ) by f ∗ : AY → AX

it not necessarily in A(X). By this reason X 
→ A(X) can not be extended to a functor in
S. But if f es proper (i.e. f−1(K) is finite for all finite K ⊂ Y ) then f ∗(A(Y )) ⊂ A(X) by
(38). We conclude that A(−) is a functor from the category of simplicial sets with proper
morphisms. Next we consider the behaviour of this functor with respect to colimits. First
of all, if {Xi} is a family of simplicial sets, then we have

(39) A(
∐
Xi) =

⊕
i

A(Xi)

Here
⊕

indicates the direct sum of abelian groups, equipped with coordinatewise multi-
plication. Second, A(−) maps coequalizers of proper maps to equalizers; if {fj : X → Y }
is a family of proper maps, then

(40) A(coeqj{fj :X→Y }) = eqj{f ∗
j : A(Y ) → A(X)}

Next recall that if I is a small category and X : I → S is a functor, then the colimit of X
can be computed as a coequalizer:

colim
i

Xi = coeq(
∐

α∈Ar(I)

Xs(α)

∂0
⇒
∂1

∐
i∈Ob(I)

Xi)

Here Ob and Ar are respectively the sets of objects and of arrows of I, and if α ∈ Ar(I)
then s(α) ∈ Ob(I) is its source; we also write r(α) for the range of α. The maps ∂0 and
∂1 are defined as follows. The restriction of ∂i to the copy of Xs(α) indexed by α is the
inclusion Xs(α) ⊂

∐
j Xj if i = 0 and the composite of X(α) followed by the inclusion

Xr(α) ⊂
∐

j Xj if i = 1. The conditions that ∂0 and ∂1 be proper are equivalent to the
following

∂0) Each object of I is the source of finitely many arrows.
∂1) Each object of I is the range of finitely many arrows, and X sends each map of

I to a proper map.

Example 2.2.4. For example the functor σ 
→< σ > from the set of nondegenerate
simplices of X, ordered by σ ≤ τ if < σ >⊂< τ >, always satisfies ∂1; condition ∂0 is
precisely condition i) of Lemma 2.2.1. Hence ∂0 is satisfied if and only if X is locally
finite, and in that case we have

A(X) = eq(
⊕
σ∈NX

A<σ>
∂∗0
⇒
∂∗1

⊕
<τ>⊂<σ>,
σ,τ∈NX

A<τ>)

2.2. Restriction. Let A be a G-algebra and H ⊂ G a subgroup. If we restrict the
action to H we obtain an H-algebra ResH

G(A). It is clear this construction defines a functor
ResH

G : G-Alg → H-Alg. It is easily seen that we can extend ResH
G : G-Alg → H-Alg to a
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triangle functor ResH
G : KKG → KKH so that the following diagram commutes

G-Alg
ResHG ��

jG

��

H-Alg

jH

��

KKG

ResHG

�� KKH

Note that for H = {1} we get j{1} = j : Alg → KK and Res
{1}
G : KKG → KK is the induced

by the forgetful functor G-Alg → Alg.

2.3. Induction. We shall define an induction functor IndG
H : H-Alg → G-Alg and

extend it to a functor IndG
H : KKH → KKG such the following diagram is commutative

H-Alg
IndG

H ��

jH

��

G-Alg

jG

��

KKH

IndG
H

�� KKG

Definition 2.2.5 (IndG
H(A)). Let H ⊂ G be a subgroup, π : G → G /H the projection

and A an H-algebra. Consider

A(G,H) := {f : G → A : #π(supp(f)) <∞}
Define

IndG
H(A) = {f ∈ A(G,H) : f(s) = h(f(sh)) ∀s ∈ G, h ∈ H}.

One checks that IndG
H(A) is a G-algebra with the pointwise multiplication and the following

action

(41) (g · f)(s) = f(g−1s) f ∈ IndG
H(A) g, s ∈ G .

Definition 2.2.6 (IndG
H(ϕ)). Let ϕ : A→ B be a morphism of H-algebras. Define

IndG
H(ϕ) : IndG

H(A) → IndG
H(B) IndG

H(ϕ)(f) = ϕ ◦ f
As ϕ is equivariant ϕ ◦ f lies in IndG

H(B).

Let A be a G-algebra and H ⊂ G a subgroup. The following identities are easy to
check:

IndG
G(A) � A IndG

{e}(A) = A(G) IndG
H(�) = �(G /H)

If H is finite, then
A(G,H) = A(G).

Let A be an H-algebra. Consider

Big IndG
H(A) := {f : G → A : f(s) = h(f(sh)), ∀s ∈ G, h ∈ H}

Note Big IndG
H(A) is a G-algebra with operations defined pointwise, and where G acts

like in (41). If f ∈ Big IndG
H(A) and x = sH ∈ G /H, then the value of f at any g ∈ x

determines f on the whole x; in particular,

supp(f) ∩ sH 	= ∅ ⇒ sH ⊂ supp(f) (sH ∈ G /H)
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Hence
supp(f) =

∐
sH∩ supp(f)�=∅

sH

Consider the projection π : G → G /H. We obtain

IndG
H(A) = {f ∈ Big IndG

H(A) : #π(supp(f)) <∞}
One checks that IndG

H(A) ⊂ Big IndG
H(A) is a subalgebra; we shall presently introduce

some of its typical elements. If g ∈ G, write χg : G → Z for the characteristic function.
If a ∈ A and g ∈ G, then

ξH(g, a) =
∑
h∈H

χghh
−1(a) ξH(g, a)(s) =

{
h−1(a) s = gh
0 s /∈ gH

These elements are in IndG
H(A) because

supp(ξH(g, a)) = gH ξH(g, a)(s) = t · ξH(g, a)(st) ∀s ∈ G, t ∈ H

Let r : G /H → G be a pointed section and R = r(G /H). Every element φ ∈ Big IndG
H(A)

can be written as a formal sum

(42) φ =
∑
g∈R

ξH(g, φ(g))

Note that φ ∈ IndG
H(A) if and only if the sum above is finite. In particular

IndG
H(A) =

∑
g∈G,a∈A

�ξH(g, a) ⊂ Big IndG
H(A)

It is easy to see that if ϕ : A→ B is an H-equivariant map then

(43) IndG
H(ϕ)(ξH(g, a)) = ξH(g, ϕ(a))

Observe that for each s ∈ G, the map

ξH(s,−) : A→ Big IndG
H(A)

is an algebra homomorphism. Moreover, we have the following relations

(44) s · ξH(g, a) = ξH(sg, a)

(45) ξH(g, a)ξH(g̃, ã) =

{
ξH(g̃, g̃−1g(a)ã) g̃−1g ∈ H
0 g̃−1g /∈ H

(46) ξH(g, a) = ξH(gh, h−1 · a) h ∈ H

It follows that (g, a) 
→ ξH(g, a) gives a G-equivariant map

G×HA→ IndG
H(A).

Here G×HA = G×A/ ∼, where

(g1, a1) ∼ (g2, a2) ⇐⇒ h = g−1
1 g2 ∈ H and a1 = h · a2.

Extending by linearity we obtain an isomorphism of left G-modules

�[G]⊗�[H] A→ IndG
H(A)
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Thus we may think of IndG
H(A) as the G-module induced from the H-module A, equipped

with an algebra structure compatible with that of A. In fact (45) implies that if r :
G /H → G is a section, then

(47) �(G /H) ⊗A→ IndG
H(A) χx ⊗ a 
→ ξH(r(x), a)

is a nonequivariant algebra isomorphism.

Lemma 2.2.7. Let X be an H-simplicial set; put

IndG
H(X) = G×HX

There is a natural, G-equivariant isomorphism �(IndG
H(X)) � IndG

H(�(X)).

Proof: Let π : G×X → IndG
H(X) be the projection. We have a G-algebra isomor-

phism

Θ : Big IndG
H(�X) → �IndG

H(X), Θ(f)(π(g, x)) = f(g)(x)

For s ∈ G and φ ∈ �X ,

Θ(ξH(s, φ))(π(g, x)) =

{
φ(s−1g · x) if g ∈ sH
0 if g /∈ sH

In particular, for Θ(ξH(s, φ)) not to vanish on π(g, x), we must have g = sh and x ∈
h−1 · {φ 	= 0} for some h ∈ H. Hence supp(Θ(ξH(s, φ))) ⊂ π({s} × supp(φ)) which is a

finite simplicial set if φ ∈ �(X). Therefore Θ maps IndG
H(�(X)) inside �(IndG

H(X)). It remains

to show that Θ−1(�(IndG
H(X))) ⊂ IndG

H(�(X)). Let {gi} ⊂ G be a full set of representatives of
G /H. Every element of G×HX can be written uniquely as π(gi, x) for some i and some
x ∈ X. Hence as a simplicial set, IndG

H(X) is the disjoint union of the Yi = π({gi×X). In

particular if φ ∈ �(IndG
H (X)), then its support meets finitely many of the Yi, and supp(φ)∩Yi

is a finite simplicial set. Thus there is a finite number of i such that ψ = Θ−1(φ) is
nonzero on gi H, and its restriction to each of these subsets takes values in �(X). By (42),
this implies that ψ ∈ IndG

H(�(X)), as we had to prove. �
Proposition 2.2.8. The functor IndG

H : H-Alg → G-Alg is exact.

Proof: The exactness only depends on the group structure of the objects involved.
It follows from the fact that (47) is an isomorphism. �

Proposition 2.2.9. Let A be a G-algebra and B be an H-algebra, then

IndG
H(B ⊗ ResH

GA) � IndG
H(B)⊗ A

Proof: The isomorphisms are given by

S : IndG
H(B)⊗ A → IndG

H(B ⊗ ResH
G(A))

ξH(g, b)⊗ a 
→ ξH(g, b⊗ g−1 · a)
T : IndG

H(B ⊗ResH
GA) → IndG

H(B)⊗ A
ξH(g, b⊗ a) 
→ ξH(g, b)⊗ g · a

It easy to check that they are mutually inverse equivariant maps. �
Corollary 2.2.10. Let A be a G-algebra. Then

IndG
H ResH

GA→ �(G /H) ⊗ A ξH(s, b) 
→ χsH ⊗ s · b
is an isomorphism of G-algebras.
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�
Let x ⊂ G and define

IndG
H(A)[x] := {f ∈ IndG

H(A) : supp(f) ⊂ x}.
Note that if G =

⊔
i xi is a disjoint union with xi = gi H then

(48) IndG
H(A) =

⊕
i

IndG
H(A)[xi]

Suppose K is another subgroup of G. Let x = K θH for some θ ∈ G. Consider the
subgroup of K

(49) Kθ = K∩ θH θ−1

Put Hθ−1 = θ−1 K θ ∩H. Conjugation by θ−1 defines an isomorphism

(50) cθ−1 : Kθ → Hθ−1 cθ−1(k) = θ−1kθ

Hence we may view an Hθ−1-algebra A as a Kθ-algebra via cθ−1. We denote it by c∗θ−1(A).

Proposition 2.2.11. The map

α : ResK
G IndG

H(A)[K θH] → IndK
Kθ

(c∗θ−1(Res
Hθ−1

H (A))) α(f)(k) = f(kθ)

is an isomorphism of K-algebras.

Proof: We can check α(ξH(s, a)) = ξKθ
(sθ−1, a). The map α is equivariant:

α(k · f)(x) = (k · f)(xθ) = f(k−1xθ) = α(f)(k−1x) = (k · α(f))(x).

It is an isomorphism because α(ξH(kθ, a)) = ξKθ
(k, a). �

Proposition 2.2.12. Let T be a simplicial set regarded as an H-simplicial set with
the trivial action, then

(51) IndG
H(T ) =

∐
H θK

IndK
Kθ-1

(T )

Proof: It is enough to prove that G /H ∼= ∐H θK K /Kθ−1 , as K-sets with the right
regular action. Consider de decomposition

G =
∐
θ∈R

H θK .

Here θ runs among a full set of representatives R of the double coclasses H \G /K. We
have

G /H =
∐
H θK

H θK /H θK∩H

Observe the function K → H θK, k 
→ θk is equivariant and if k, k̃ ∈ K then

θk ≡ θk̃(H) ⇐⇒ θkk̃−1θ−1 ∈ H ⇐⇒ kk̃−1 ∈ θ−1Hθ⇐⇒ kk̃−1 ∈ Kθ−1 ⇐⇒ k ≡ k̃(Kθ−1 )

Then
H θK

H θK∩H
∼= K

Kθ-1

�
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Proposition 2.2.13. Let Ind : H-Alg → G-Alg be the functor such that Ind(A) =
IndG

H(MH⊗A). There exists a functor IndG
H : KKH → KKG such that the following diagram

is commutative

(52) H-Alg
Ind ��

jH

��

G-Alg

jG

��

KKH

IndG
H

�� KKG

Proof: The functor jG ◦ Ind is excisive because Ind maps split extensions to split
extensions and jG is excisive. Let us see the functor jG ◦ IndG

H is homotopy invariant and
M∞-stable. Let f, g : A → B be elementary homotopic morphisms of H-algebras. Then
there exists H : A→ B[t] such that f = ev0 ◦H g = ev1 ◦H . Hence IndG

H(f) and IndG
H(g)

are elementary homotopic morphisms of G-algebras and the homotopy is given by

IndG
H H : IndG

H(A) → IndG
H(B[t]) � IndG

H(B)[t] by 2.2.9.

As jG is homotopy invariant then jG ◦ IndG
H(f) = jG ◦ IndG

H(g). Let ι : A→ M∞A, then
jG ◦ IndG

H(ι) is an isomorphism because by Proposition 2.2.9 we have

IndG
H(M∞A) �M∞ IndG

H(A)

and jG is M∞-stable. By Proposition 1.7.13 the functor jG ◦ Ind is homotopy invariant
and H-stable. As jH : H-Alg → KKH is universal for this properties there exists IndG

H such
that (52) conmmutes. �

2.4. Adjointness between IndG
H and ResH

G.

Theorem 2.2.14. Let G be a group and H be a subgroup of G. The functors

IndG
H : KKH → KKG ResH

G : KKG → KKH

are adjoint. Hence

kkG(IndG
H(B), A) � kkH(B,ResH

G(A)) ∀B ∈ H-Alg A ∈ G-Alg

Proof: Let A ∈ G-Alg and B ∈ H-Alg. We need to have natural transformations

αA ∈ kkG(IndG
H ResH

GA,A) βB ∈ kkH(B,ResH
G IndG

H B)

which verify the unit and counit condition.
Define ϕA : IndG

H(ResH
G(A)) →MG /H ⊗A such that

ϕA(f) =
∑

gH∈G /H

egH,gH ⊗ g(f(g)) ϕA(ξH(s, b)) = esH,sH ⊗ s · b

Put

(53) ψB : B → ResH
G IndG

H(B) ψB(b) = ξH(e, b)

It is easy to check that ψB is well-defined and is a map of H-algebras. Let [ϕA] ∈
kkG(IndG

H ResH
GA,A) the element represented by ϕA and ψB ∈ kkH(B,ResH

G IndG
H B) the

element represented by ψB. The composite

δ : ResH
GA

β
ResH

G
A−−−−→ ResH

G IndG
H ResH

GA
ResHG(αA)−−−−−→ ResH

GA
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is represented by

ResH
GA

ψ
ResH

G
A

�� ResH
G IndG

H ResH
GA

ResHG(ϕA)
�� ResH

G(MG /H ⊗ A) = M|G /H | ⊗ResH
GA

a � �� ξH(e, a) � �� ϕA(ξH(e, a)) = eH,H ⊗ a

which is kkH-equivalent to the identity in the sense of remark 1.6.2. The morphism
χ ∈ kkG(IndG

H B, IndG
H B)

χ : IndG
H B

IndG
H(βB)−−−−−→ IndG

H ResH
G IndG

H B
α

IndG
H

B−−−−→ IndG
H B

is represented by

γ : IndG
H B

IndG
H(ψB)

�� IndG
H ResH

G IndG
H B

ϕ
IndG

H
B

�� MG /H ⊗ IndG
H B

ξH(g, b) � �� ξH(g, ξH(e, b)) � �� egH,gH ⊗ ξH(g, b)

The following morphism of H-algebras

θ : C →MG /H ⊗ C θ(c) = eH,H ⊗ c

represents to the identity in the sense of remark 1.6.2. Then IndG
H(θ) is kkG-equivalent to

the identity. It is easy to check IndG
H(θ) = γ with C = B. �

Write ψIR for the isomorphism

(54) ψIR : kkG(IndG
H B,A) → kkH(B,ResH

GA) ψIR = ψB
∗ ◦ ResH

G

where ψB is the morphism defined (53).

Corollary 2.2.15. Let G be a group, H be a finite subgroup of G and A be a
G-algebra then

kkG(�(G /H), A) � kk(�, A� H) � KH(A� H)

Proof: The isomorphism is the composition of ψGJ and ψIR defined in (37) and in
(54). �

3. A discrete variant of Green’s imprimitivity

Let G be a group, H a subgroup of G and A an H-algebra. We consider the following
left action of IndG

H(A) � G in A(G)

(55) ((f � g) · ϕ)(t) = f(t)ϕ(g−1t) f ∈ IndG
H(A) ϕ ∈ A(G) g, t ∈ G

Observe that IndG
H(A) acts on A(G) by multiplication because IndG

H(A) is a subalgebra of
AG and A(G) is an ideal of AG. The action of �G over A(G) is (g ·ϕ)(t) = ϕ(g−1t). Taking
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the morphism obtained by the universal property of the crossed product we obtain the
following commutative diagram:

(56) IndG
H(A) � � ��

��

AG

η

��������������

��
Υ : IndG

H(A) � G � � �� AG � G ����� End�(A
(G))

�G

��

μ

�������������

η(f)(ϕ)(t) = f(t)ϕ(t)

μ(g)(ϕ)(t) = ϕ(g−1t)

Here Υ : IndG
H(A) � G → End�(A

(G)) is the map asociated to the action defined in (55).
We also define on A(G) a right action of A� H as follows

(57) (ϕ · (a� h))(t) = h−1 · (ϕ(th−1)a) ϕ ∈ A(G) a ∈ A h ∈ H t ∈ G

It is easy to prove (55) and (57) are in fact a left action and a right action respectively.
One checks that these two actions satisfy

(f � g) · [ϕ · (a� h)] = [(f � g) · ϕ] · (a� h)

Hence they make A(G) into an (IndG
H(A) � G, A � H)-bimodule. In particular Im Υ ⊆

EndA�H(A(G)). The decomposition

G =
∐

x∈G /H

x

induces

(58) A(G) =
⊕

x∈G /H

A(x)

and A(x) · (A� H) ⊆ A(x). Hence (58) is a direct sum of A� H-right modules.
Let Tx,y : A(y) → A(x) be a morphism of A � H-modules such that for each v ∈

A(y), Tx,y(v) = 0 for all but a finite number of x. Note the matrix T = {Tx,y}x,y∈G /H

represents an element of EndA�H(A(G)). Moreover, every element T ∈ EndA�H(A(G)) can
be represented in that way. If x = gH,

A� H → A(gH) a� h 
→ χg · (a� h) = χghh
−1(a)

is an isomorphism of right A � H-modules. Fix a full set of representatives R of G /H.
Write MR for the algebra of R × R-matrices with finitely many nonzero coefficients in �
and put

MR(A� H) = MR⊗ (A� H)

We have an homomorphism

(59)
MR(A� H) −→ EndA�H(A(G))
M = {mx,y}x,y∈R 
−→ ∑

x∈X χx · αx 
→
∑

y∈Rχy ·
∑

x∈Rmx,yαx
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Furthermore, we have a map G → R which sends each s ∈ G to the representative ŝ ∈ R of
sH. Observe esH,tH 
→ eŝ,t̂ is an isomorphism between M|G /H | and MR. By composition,
we obtain an algebra homomorphism

(60)
Γ : M|G /H |(A� H) → EndA�H(A(G))

esH,tH(a� h) 
→ ∑
y∈Rχy · αy 
→ χŝ · (a� h)αt̂

Theorem 2.3.1. Let G be a group, H ⊂ G a subgroup, and A an H-algebra. Then
there is an isomorphism

α : IndG
H(A) � G →M|G /H |(A� H)

such that the following diagrams commute

IndG
H(A) � G

Υ ��

α ���������������
EndA�H(A(G))

M|G /H |(A� H)

Γ

���������������

IndG
H(A) � G

α �� M|G /H |(A� H)

A� H

eH,H⊗−

��������������ξH(e,−)�id

��












The morphism Υ is defined in (56) and the morphism Γ in (60).

Proof: For simplicity suppose 1G ∈ R. For each s ∈ G denote φ(s) = ŝ−1s ∈ H.
Observe φ(sh) = φ(s)h for all s ∈ G, h ∈ H. Define

(61)
α : IndG

H(A) � G → M|G /H |(A� H)
ξH(s, a) � g 
→ esH,g−1sH ⊗ φ(s) · a� φ(s)φ(g−1s)−1

The map (61) is well-defined:

α(ξH(sh, h−1 · a) � g) = eshH,g−1shH ⊗ φ(sh) · h−1 · a� φ(sh)φ(g−1sh)−1

= esH,g−1sH ⊗ φ(s) · a� φ(s)φ(g−1s)−1

= α(ξH(s, a) � g)
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Note that if g, t, s ∈ G are elements such that t−1g−1s ∈ H then φ(gt) = φ(s)φ(g−1s)−1φ(t).
The map (61) is an algebra homomorphism:

α((ξH(s, a) � g)(ξH(t, b) � r)) = α(ξH(s, a)ξH(gt, b) � gr)

=
{

α(ξH(gt, [(t−1g−1s) · a]b) � gr) t−1g−1s ∈ H
0 t−1g−1s /∈ H

=
{

egt H,r−1g−1gt H ⊗ φ(gt) · ([(t−1g−1s) · a]b) � φ(gt)φ(r−1t)−1 t−1g−1s ∈ H
0 t−1g−1s /∈ H

=
{

es H,r−1t H ⊗ [φ(s) · a][φ(gt) · b] � φ(gt)φ(r−1t)−1 t−1g−1s ∈ H
0 t−1g−1s /∈ H

= α(ξH(s, a) � g)α(ξH(t, b) � r)

The map (61) is bijective and its inverse is the following

β : M|G / H |(A×H) → IndG
H(A) � G es H,g H(a � h) 
→ ξH(ŝ, a) � ŝhĝ−1

Let us check that the diagrams of the theorem are commutative

Υ(ξH(s, a) � g)(
∑

y∈Rχy · αy) = χs · [(a� φ(g−1s)−1)α
ĝ−1s

]

= χŝ · [(φ(s) · a� φ(s)φ(g−1s)−1)α
ĝ−1s

]

= (Γ ◦ α)(ξH(s, a) � g)(
∑

y∈Rχy · αy)

(α ◦ ξH(1G,−) � id)(a� h) = α(ξH(1G, a) � h)

= eH,H ⊗ (a� h)

�

Remark 2.3.2. The isomorphism α of the Theorem 2.3.1 is natural in A but not in
the pair (G,H), as it depends on a choice of a full set of representatives R of G /H.

Corollary 2.3.3. Let G be a countable group, H ⊂ G a subgroup, and A an H-
algebra. Let E : Alg → C be a M∞-stable functor. The following map is an isomorphism

E(ξH(1G,−) � id) : E(A� H) → E(IndG
H(A) � G).

�

4. Duality

Let Ĝ-Alg be the category of Ĝ-algebras with homogeneous homomorphisms. In this
section we define functors between the categories G-Alg and Ĝ-Alg. We prove that they

extend to equivalences between KKG and KKĜ. In this way we obtain an algebraic duality
theorem similar to the duality given by Baaj-Skandalis in [1].
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Let A be a G-algebra. Then

A� G =
⊕
s∈G

A� s and (A� s)(A� t) ⊂ A� st

thus A � G is a Ĝ-algebra. If f : A → B is a homomorphism of Ĝ-algebras then
f � G : A� G → B � G is a graded homomorphism. Hence we have a functor

�G : G -Alg → Ĝ-Alg

We can also define a functor

�Ĝ : Ĝ-Alg → G -Alg

as follows. Let B be a Ĝ-algebra. Let Ĝ�B be the algebra which as a module is �(G)⊗B
and the product is the following

(62) (χg � a)(χh � b) := χg � ag−1hb.

Recall bg is the homogeneous element associated to g in the decomposition

b =
∑
g∈G

bg.

One check that the product (62) is associative and the following action of G makes it into
a G-algebra

s · (χg � a) = χsg � a

If f : A→ B is a homogeneous homomorphism define

Ĝ � f : Ĝ �A→ Ĝ � B (Ĝ � f)(χg � a) := χg � f(a)

It is a G-algebra homomorphism. Thus we have a functor

(63) � Ĝ : Ĝ-Alg → G-Alg

Proposition 2.4.1. Let A be a G-algebra and let B be a Ĝ-algebra.

a) There are natural isomorphisms of G-algebras

Ĝ � (A� G) �MG ⊗A

b) There are natural isomorphisms of Ĝ-algebras

(Ĝ � B) � G �MĜ ⊗B

Proof:

a) Define T : Ĝ � (A� G) →MG ⊗ A as

T (χg � a� s) = g · a⊗ eg,gs.

It is easy to check T is an equivariant algebra isomorphism with inverse given by

S(a⊗ er,t) := χr � r−1 · a� r−1t
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b) Define T : (Ĝ � B) � G →MĜ ⊗ B as

T (χh � b� s) =
∑
r∈G

eh,s−1hr ⊗ br.

It is easy to check T is a graded algebra isomorphism with inverse given by

(64) S(er,s ⊗ bq) = χr � bq � rqs−1

�
Theorem 2.4.2. The functors � G and Ĝ� extend to inverse equivalences

−� G : KKG −→ KKĜ Ĝ �− : KKĜ −→ KKG

Hence if A and B are G-algebras and C and D are Ĝ-algebras then

kkG(A,B) � kkĜ(A� G, B � G) kkĜ(C,D) � kkG(Ĝ � C, Ĝ �D)

Proof: As �G maps split sequences to split sequences, jĜ(− � G) is excisive. By

Proposition 2.1.2 jĜ(− � G) is G-stable and homotopy invariant, whence it extends to

−� G : KKG → KKĜ by universality. Similary, as �Ĝ maps split sequences to split

sequences then jG(Ĝ�−) is excisive. Because Ĝ� maps graded homotopies to equivariant

homotopies and jG(Ĝ �−) is M∞-stable, jG(Ĝ �−) extends to Ĝ �− : KKĜ → KKG by
universality. To finish we must show that the maps

kkG(A,B) → kkĜ(A� G, B � G) and kkĜ(C,D) → kkG(Ĝ � C, Ĝ �D)

are isomorphisms. This is true by Proposition 2.4.1. �

5. Green-Julg theorem for kkH

In this section we consider a finite dimensional semisimple Hopf algebra H and prove
a version of the Green-Julg theorem for kkH.

5.1. Smash product. We shall recall the smash product for H-algebras. It is a
generalization for H-algebras of the crossed product A� G.

Definition 2.5.1. Let A be an H-algebra. The smash product algebra A#H is the
�-module A⊗H with the following product

(a#h)(b#k) =
∑

a(h1 · b)#h2k a, b ∈ A h, k ∈ H

If f : A→ B is a morphism of H-algebras, we put

f#H : A#H → B#H f#H(a#h) = f(a)#h

which is a morphism of algebras. Hence, we have a functor # H : H-Alg → Alg.

Proposition 2.5.2. Let M be an H-module and A be an H-algebra. The following
is an isomorphism of algebras

(65) φ : End�(M)⊗ (A#H) → (End�(M)⊗ A)#H φ(ϕ⊗ a#h) =
∑

ϕ1,h1 ⊗ a#h2

Moreover, the following restriction of φ is also an ismorphism

φ : EndF� (M)⊗ (A#H) → (EndF� (M)⊗A)#H
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�

Proof: Let us check (65) is an algebra morphism:

φ((ϕ⊗ a#h)(ϕ̃⊗ ã#h̃)) =
∑
φ(ϕϕ̃⊗ a(h1 · ã)#h2h̃)

=
∑

(ϕϕ̃)1,h2h̃1
⊗ a(h1 · ã)#h3h̃2

=
∑

(ϕ(ϕ̃(S(h3h̃1)· ))⊗ a(ε(h1)h2 · ã)#h4h̃2

=
∑
ϕ(S(h1)h2ϕ̃(S(h4h̃1)· ))⊗ a(h3 · ã)#h5h̃2

=
∑
ϕ1,h1ϕ̃h2,h4h̃1

⊗ a(h3 · ã)#h5h̃2

=
∑

(ϕ1,h1 ⊗ a)(ϕ̃h2,h4h̃1
⊗ h3 · ã)#h5h̃2

=
∑

(ϕ1,h1 ⊗ a)((ϕ̃1,h̃1
)h2,h4 ⊗ h3 · ã)#h5h̃2

=
∑

(ϕ1,h1 ⊗ a)h2 · (ϕ1,h̃1
⊗ ã)#h3h̃2

= φ(ϕ⊗ a#h)φ(ϕ̃⊗ ã#h̃)

It is easy to check that the following map is also an algebra morphism and is the inverse
of (65).

ψ : (End�(M)⊗A)#H → End�(M)⊗ (A#H) ψ(ϕ⊗ a#h) =
∑

ϕ1,S(h1) ⊗ a#h2

By remark 1.7.22, we can restrict the homomorphisms defined above and obtain the
following isomorphisms

ψ : (EndF� (M)⊗A)#H → EndF� (M)⊗(A#H) φ : EndF� (M)⊗(A#H) → (EndF� (M)⊗A)#H. �

Proposition 2.5.3. Let H a Hopf algebra with finite dimension. There exists a
unique functor # H : KKH → KK such that the following diagram is commutative

H-Alg
#H ��

jH

��

Alg

j

��
KKH

#H
�� KK

Proof: By 1.8.3 it is enough to prove j(−#H) is excisive, homotopy invariant and
H-stable. The two first properties are straightforward. Let M1, M2 be H modules with
countable dimension and A be an H-algebra. Consider the isomorphism ψ defined in the
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Proposition 2.5.2. Note the following diagram is commutative

(End�(M1)⊗ A)#H
(ι̃⊗1)#H

��

ψ
��

(End�(M1 ⊕M2)⊗A)#H

ψ
��

End�(M1)⊗ (A#H)
ι̃⊗1#H

�� End�(M1 ⊕M2)⊗ (A#H)

As j is M∞-stable we know j(ι̃ ⊗ 1#H) is an isomorphism. Hence j(−#H)(ι̃ ⊗ 1) is an
isomorphism and j(−#H) is H-stable. �

Let A be an H-algebra. Consider H⊗A as a left H-module with the diagonal action.
Also consider H ⊗A as a right A-module with the regular action. In other words

h · (k ⊗ a) =
∑

h1k ⊗ h2 · a (k ⊗ a) · c = k ⊗ ac

It is easy to check that

(66) t · ((h⊗ a) · c) =
∑

(t1 · (h⊗ a)) · (t2 · c)
We define

EndA(H⊗ A) := {ϕ ∈ End�(H ⊗A) such that ϕ(k ⊗ ac) = ϕ(k ⊗ a) · c}
The structure of H-module in H ⊗ A gives an H-algebra structure in End�(H ⊗ A), see
Example 1.1.3. It is easy to check that EndA(H⊗A) is a sub-H-algebra of End�(H⊗A).
Consider End�(H)⊗A as the H-algebra defined in Example 1.1.4 We have the following
homomorphism of H-algebras

(67) T : End�(H)⊗A→ EndA(H ⊗A) T (ϕ⊗ a)(h⊗ b) = ϕ(h)⊗ ab

If H is finite dimensional, then (67) is an isomorphism.

Theorem 2.5.4. Let H be a semisimple Hopf �-algebra. The functor given by the
trivial action τ : KK → KKH is left adjoint to the functor given by the smash product
#H : KKH → KK. In particular there is a natural isomorphism

kkH(Aτ , B) � kk(A,B#H) A ∈ Alg B ∈ H-Alg

Proof: It is enough to prove that there exist

αA ∈ kk(A,Aτ#H) and βB ∈ kkH((B#H)τ , B)

such that

Aτ
τ(αA)−−−→ (Aτ#H)τ

βAτ−−→ Aτ and B#H
αB#H−−−→ (B#H)τ#H

#(βB)−−−→ B#H

are the identities in kkH(Aτ , Aτ ) and kk(B#H, B#H) respectively. As H is semisimple
there exists an element t ∈ H such that

ε(t) = 1 th = ε(h)t ∀h ∈ H

Define

αA : A→ Aτ#H = A⊗H αA(a) = a⊗ t
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It is an algebra morphism because t is idempotent. Let

βB : (B#H)τ → EndB(H⊗ B)
b#h 
→ ϕb#h

ϕb#h(k ⊗ a) =
∑

k1S(h2)⊗ (k2S(h1) · b)a
One checks that βB is an equivariant algebra homomorphism. Consider

(68) Aτ
τ(αA)−−−→ (Aτ#H)τ

βAτ−−→ EndAτ (H⊗ Aτ )
a 
→ a⊗ t 
→ ϕa⊗t

Note

ϕa⊗t(k⊗b) =
∑

k1S(t2)⊗(k2S(t1)·a)b =
∑

k1S(t2)⊗ε(k2)ε(t1)·ab = kS(t)⊗ab = ε(k)t⊗ab
As H is unimodular we have t = S(t). We write < t > for the subspace of H generated
by t. Let I = ker ε and note H =< t > ⊕I as H-modules. Let ϕ : H → H be the
projection over < t >, ϕ(h) = ε(h)t. Because the following diagram commutes the map
(68) represents the identity in kkH(Aτ , Aτ ) in the sense of remark 1.6.2.

Aτ

(68) ��












ι �� End�(H)⊗ Aτ

(67)
��

EndAτ (H ⊗Aτ )

a

��















�� ϕ⊗ a

��
ϕa⊗t

It remains to prove that the following morphism represents the identity in kk(B#H, B#H)

(69) B#H
αB#H−−−→ (B#H)τ ⊗H

#βB−−→ EndB(H ⊗ B)#H

b#h 
→ b#h⊗ t 
→ ϕb#h#t

The following morphism

Ω : EndB(H⊗B)#H → EndB#H(H⊗B#H) Ω(η#l)(x⊗c#y) =
∑

η(l1x⊗l2 ·c)#l3y
makes the following diagram commutative

EndB(H ⊗B)#H

Ω
��

(End�(H)⊗ B)#H

ψ

��

TB#id��

EndB#H(H⊗ B#H) End�(H)⊗ (B#H)
TB#H

��

here ψ is the isomorphism defined in Proposition 2.5.2 and TB and TH#B are the mor-
phisms defined in (67). As H is finite dimensional, TB and TH#B are isomorphisms.
Hence Ω is an isomorphism too. Write by Λb#h = Ω(ϕb#h#t). We shall prove that the
map b#h 
→ Λb#h represents to the identity. Define

δ : H ⊗ B#H → H ⊗ B#H γ : H⊗ B#H → H⊗ B#H

δ(x⊗ a#y) =
∑
x1 ⊗ x2 · a#x3y γ(x⊗ a#y) =

∑
x1 ⊗ S(x3) · a#S(x2)y
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It is easy to check that they are mutually inverse. ByM∞-stability the following morphism
represents the identity

B#H → End�(H)⊗ (B#H) b#h 
→ ϕ⊗ b#h

Hence
B#H → EndB#H(H ⊗B#H) b#h 
→ δ ◦ TB#H(ϕ⊗ b#h) ◦ γ

also represents the identity. We finish the proof verifying that

(δ ◦ TB#H(ϕ⊗ b#h) ◦ γ)(x⊗ a#y) =
∑

(δ ◦ Γb#h)(x1 ⊗ S(x3) · a#S(x2)y)

=
∑

δ(ε(x1)t⊗ b(h1S(x3) · a)#h2S(x2)y)

=
∑

δ(t⊗ b(h1S(x2) · a)#h2S(x1)y)

=
∑

t1 ⊗ t2(b(h1S(x2)) · a)#t3h2S(x1)y

=
∑

t · (1⊗ b(h1S(x2)) · a#h2S(x1)y)

=
∑

tε(x1)ε(h3) · (1⊗ b(h1S(x3)) · a#h2S(x2)y)

=
∑

tx1S(h3) · (1⊗ b(h1S(x3)) · a#h2S(x2)y)

=
∑

t1x1S(h6)⊗ (t2x2S(h5) · b)(t3x3S(h4)h1S(x6) · a)#t4x4S(h3)h2S(x5)y

=
∑

t1x1S(h4)⊗ (t2x2S(h3) · b)(t3x3S(h2)h1S(x4) · a)#t4y

=
∑

t1x1S(h2)⊗ (t2x2S(h1) · b)(t3 · a)#t4y

= Λb#h(x⊗ a#y)

�



CHAPTER 3

Isomorphism conjectures with proper coefficients

In this chapter we study isomorphism conjecures in the sense of [8]. We consider
model category structures on G-simplicial sets and G-topological spaces. If F is a family
of subgroups of G we consider model category structures on SG and TopG. With this
structure weak equivalences and fibration are object-wise. Cofibrant object are those X
such that the stabilizer subgroup Gx is a subgroup in F for all x ∈ X. We prove that the
following is a Quillen equivalence

TopG
Sing∗ ��

SG.
||∗

��

We say that a functor H : SG → Spt from the category of G-simplicial set to the category
of spectra satisfies the (G,F)-isomorphism conjecture if for the cofibrant replacement
π : E(G,F) → ∗ in the F-model category mentioned aboved, the map

H(π) : H(E(G,F)) → H(∗)
is an equivalence. If E : Z-Cat → Spt is a functor andR is a unital G-ring, one constructs,
following Davis-Luck [8], a functor

HG(−,E(R)) : SG → Spt

such that HG(∗,E(R)) = E(R � G). The (G,F,E, R)-isomorphism conjecture is the
(G,F)-conjecture for the functor HG(−,E(R)). We show that under very mild assump-
tions on E, the Standing Assumptions 3.2.5 (which are satisfied for example when E
is either K or KH, see propositions 3.4.18 and 3.5.3), HG(−,E(A)) is defined not only for
unital G-rings, but also for all E-excisive G-rings A, that is all G-rings on which E-salisfies
excision. Moreover we show that if

(70) 0 → A′ → A→ A′′ → 0

is an exact sequence of E-excisive rings and X is a G-simplicial set, then

HG(X,E(A′)) → HG(X,E(A)) → HG(X,E(A′′))

is a homotopy fibration. This is a basic property needed to establish an algebraic analogue
of the Dirac-dual method which is used to prove the Baum-Connes conjecture for some
groups. Another basic property, which provide us with enough sequences (70) in which at
least one of the rings satisfies the isomorphism conjecture, is Theorem 3.7.3 which shows
that if E satisfies the standing assumptions and A is an E-excisive G-ring of the form

(71) A =
⊕
i

IndG
Ki
Bi

69
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with Bi a Ki-ring and Ki ∈ F for all i, then the functor HG(−,E(A)) maps (G,F)-
equivalences to equivalences. In particular the (G,F,E, A)-isomorphism conjecture holds.
We use this in Section 8 to show that under some additional assumptions (which are still
satisfied if E = K, KH, see 3.8.1), for each E-excisive G-ring A there is a functorial exact
sequence of E-excisive G-rings

F0B → F∞B → F∞B/F0B

and a natural map A→ F0B such that

i) HG(X,E(A)) → HG(X,E(F0B)) is an equivalence for all G-simplicial set X.
ii) HG(X,E(F∞B)) → ∗ is an equivalence if X is (G,F)-cofibrant.
iii) HG(−,E(F∞B/F0B)) maps (G,F)-equivalences to equivalences.

It follows that the assembly map

HG(E(G,F),E(A)) → E(A� G)

is an equivalence iff the conecting map

Ω(E(F∞B/F0B � G)) → E(A� G)

is an equivalence. In particular all this applies when E = K,KH. We also show in Theorem
3.9.2 that under stronger hypotesis on E, of which the main one is that E satisfies excision
(e.g. KH satisfies this but K does not), then the (G,F,E, A)-isomorphism conjecture is
true whenever A is (G,F)-proper. If X is a locally finite simplicial set with a G-action
then a G-ring A is proper over X if it is an algebra over the ring Z(X) of finitely supported
polynomial maps on X, the algebra action is compatible with the actions of G on A and
on X, and Z(X) · A = A. We say that A is (G,F)-proper if it is proper over a locally
finite simplicial set X on which G acts with all stabilizers in F. For example an algebra
is of the form (71) if and only if it is proper over the zero-dimensional G-simplicial set
X =
∐

G /Ki.
We remark that the notion of (G,F)-proper ring used here is the algebraic analogue

of the notion of proper G-C∗-algebra, and that Teorem 3.9.2 is an algebraic version of the
known fact that Baum-Connes conjecture holds for proper G-C∗-algebras [11].

1. G-simplicial sets and model category structures

1.1. G-simplicial sets. A G-simplicial set or a G-complex X is a simplicial set with
a simplicial action of G. Let X be a G-complex; consider the category (Δ ↓ X)G defined
as follows. Its objects are the triples (G /H, [n], σ : G /H×Δn → X) such that H is a
subgroup of G and σ : G /H×Δn → X is a morphism such that σ(gH, x) = g · σ(H, x).
An arrow is a pair (s, θ), s : G /H → G /K, θ : [n] → [m], such that the following diagram
commutes

G /H×Δn

σ
������������

s×homΔ(−,θ)
�� G /K×Δm

τ
������������

X .

As in the nonequivariant case (see [10], I.2), any G-simplicial set is the colimit of its cells.
Let recall this in the following lemma.
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Lemma 3.1.1. Consider

TX : (Δ ↓ X)G → SG (G /H, [n], σ : G /H×Δn → X) 
→ σ : G /H×Δn → X

Then

X = colimG /H×Δn→X G /H×Δn = colimTX

�
The n-skeleton Xn of a G-complex X can be obtained by attaching equivariant cells

to Xn−1 as the following pushout diagram shows∐
i∈In G /Hi×∂Δn

∐
i∈In

qn
i ��

��

Xn−1

��∐
i∈In G /Hi×Δn ∐

i∈In
Qn

i

�� Xn

A family F of subgroups of G is a nonempty family closed under conjugation and under
taking subgroups. A G-complex X is a (G,F)-complex if Hi ∈ F for all i ∈ I, n ∈ N.

1.2. Orbit category. Let F be a family of subgroups of G. We consider the orbit
category of G relative to F and we write it OrF G. Its objects are the G-sets G /H with
H ∈ F and its maps are the G-equivariant maps. We write OrG for OrAll G. If H, K ∈ F
and g ∈ G is such that g−1 H g ⊂ K then

rg : G /H → G /K rg(tH) = tgK

is a morphism of OrF G. Moreover, every morphism in OrF G is rg for some g ∈ G.

1.3. Quillen equivalences. We consider Top and S with their usual cofibrantly
generated closed model category structures (see Section 2.4, Section 3.2 and Definition
2.1.17 of [14]). The sets of generating cofibrations ITop, IS and the sets of generating
trivial cofibration JTop, JS are the following

ITop = {f : Sn−1 ↪→ Dn : n ≥ 0} IS = {f : ∂Δn ↪→ Δn : n ≥ 0}
JTop = {f : Dn ↪→ Dn×I : f(x) = (x, 0) n ≥ 0} JS = {f : Λn

k ↪→ Δn : n > 0, 0 ≤ k ≤ n}
By Theorem 3.6.7 of [14] we have that the geometric realization functor || : S → Top and
its right adjoint Sing : Top → S form a Quillen equivalence (see Definition 1.3.12 in [14])

Top
Sing

�� S
||

��

If C = Top, S, and I is any small category, then, by [13, Thm. 11.6.1], CI is again a
cofibrantly generated closed model category, with object-wise fibrations and weak equiv-
alences, and where generating (trivial) cofibrations are of the form∐

homI(α,−)

f :
∐

homI(α,−)

domf →
∐

homI(α,−)

codf
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with α ∈ I and f : domf → codf a generating (trivial) cofibration in C. By [13, Thm.
11.6.5], the induced functors

TopI
Sing∗

�� SI
||∗

��

are also Quillen equivalences.
Next fix a group G and a family F of subgroups of G. By the previous discussion

applied to the orbit category OrF Gop, we have a Quillen equivalence

(72) TopOrF Gop

Sing∗
��
SOrF Gop

| |∗
��

Let H be a subgroup of G and X an object in CG. Consider

XH := {x ∈ X : h · x = x ∀h ∈ H}
Note XH = mapG(G /H, X).

For C = Top, S, consider the functor

R : CG → COrF Gop

, R(X)(G /H) = mapG(G /H, X) = XH

and its left adjoint, the coend

L : COrF Gop → CG, L(Y ) =

∫ G /H

Y (G /H)×G /H

The Quillen equivalence (72) fits into a diagram

(73) TopOrF Gop

L

��

Sing∗
��
SOrF Gop

L

��

| |∗
��

TopG

Sing∗
  

R

!!

SG

| |∗
��

R

!!

Proposition 3.1.2. Let H be a subgroup of G and X an object in CG.

(1) Let B an object in C, B is also an object in CG with the trivial action, and

homCG(B ×G /H, X) � homC(B,XH)

(2) Let the following be a cocartesian diagram in CG with g injective,

A
j �� D

B
f

����

g

��

C
��

ı

��
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Then

AH
jH �� DH

BH
fH

��
��

gH

��

CH
��
ıH

��

is cocartesian in C.

Proof: Straightforward. �

Proposition 3.1.3. Let C = Top, S.
i) CG is a closed model category where a map f is a fibration (resp. a weak equivalence) if
and only if R(f) is. Moreover CG is cofibrantly generated, where the generating (trivial)
cofibrations are the maps f × id : domf × G /H → codf × G /H, with f a generating
(trivial) cofibration and H ∈ F.

ii) Each of the pairs of functors of diagram (73) is a Quillen equivalence .

Proof. One can give conditions on two sets of maps and a subcategory of a category
D to be respectively the generating cofibrations, generating trivial cofibrations and weak
equivalences in a closed model structure of D; see M. Hovey’s book [14, Thm. 2.1.19]. It
is straightforward that those conditions are satisfied in our case, for D = CG. This proves
i). The top pair of functors in diagram (73) is a Quillen equivalence by the discussion
above the proposition. By definition of fibrations and weak equivalences in CG, these are
both preserved and reflected by R. In particular (L,R) is a Quillen pair. To show that it
is an equivalence, it suffices, by [14, Cor. 1.3.16], to show that if X ∈ COrF Gop

is cofibrant,
then the unit map

(74) X → RLX

is a weak equivalence; in fact we shall see that it is an isomorphism. Because every
cofibrant object is a retract of a cofibrant cell complex, it suffices to check that (74) is an
isomorphism on cell complexes. By definition, the generating cofibrant cells in COrF Gop

are of the form
∐

mapG(−,G /H) Δn. But for every T ∈ S, we have:

RL(
∐

mapG(−,G/H)

T )(G/K) =R(G/H× T )(G/K)

=(G/H× T )K

= mapOrG(G /K,G /H)× T =
∐

mapG(G /K,G /H)

T

Thus the unit map is an isomorphism on cells, and therefore on coproducts of cells,
since taking fixed points under a subgroup preserves coproducts of G-simplicial sets. In
particular (74) is an isomorphism on the zero skeleton of X. Assume by induction that
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(74) is an isomorphism on the n-skeleton. The n+ 1-skeleton is a pushout∐
H∈In
∐

mapG(−,G /H) Δn �� Xn+1(−)

∐
H∈In
∐

mapG(−,G /H) ∂Δ
n

��

�� Xn(−)

��

By Lemma 3.1.2 and the inductive hypothesis, the diagram∐
H∈In(mapG(−,G /H))×Δn �� RLXn+1(−)

∐
H∈In(mapG(−,G /H))× ∂Δn ��

��

Xn(−)

��

is again a pushout. It follows that RLXn+1
∼= Xn+1 and thus (74) is an isomorphism on

all cell complexes, as we had to prove. We have shown that the top horizontal and both
vertical pairs of functors are Quillen equivalences; by [14, Cor. 1.3.15], this implies that
also the bottom pair is a Quillen equivalence. �

1.4. Assembly map. For the model structures of Proposition 3.1.3, the functorial
cofibrant replacement in TopG of the point space ∗ is a model for the classifying space
of G with respect to F and the cofibrant replacement of ∗ in SG is a simplicial version.
Moreover because | − |∗ : SG → TopG is a Quillen equivalence, it takes the simplicial
version to the topological one. In particular if E is a functor from TopG to spectra and
π : E(G,F) → ∗ is the cofibrant replacement in SG, then we have a map

(75) E(π) : E(|E(G,F)|) → E(∗)
If

E(X) = F%(X) = R(X)⊗OrG F :=

∫ OrG

XH
+ ∧ F (G /H)

for some functor F : OrG → Spt, (75) is the Davis-Lück assembly map of [8, Section
5.1]. In case F = |F ′| is the geometric realization of a functorial spectrum in the simplicial
set sense, we have further

|F ′|%(|X|) = |
∫ OrG

XH
+ ∧ F ′(G /H)| = |F ′

%(X)|

and the assembly map for F is the geometric realization of that of F ′. Hence we can
equivalently work with assembly maps in the topological or the simplicial setting; we
choose to do the latter. In particular all spectra considered henceforth are simplicial.

2. Equivariant homology

2.1. Crossed products and equivariant homology. A groupoid is a small cate-
gory where all arrows are isomorphisms. Let G be a groupoid, and let R be a unital ring.
An action of G on R is a functor ρ : G → Ring1 such that ρ(x) = R for all x ∈ obG. For
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example we may take ρ(g) = idR for all arrows g ∈ arG; this is called the trivial action.
Whenever ρ is fixed, we omit it from our notation, and write

g(r) = ρ(g)(r)

for g ∈ arG and r ∈ R. Given a triple (G, ρ, R), we consider a small Z-linear category
R� G. The objects of R� G are those of G, and

homR�G(x, y) = R⊗ Z[homG(x, y)]

If s ∈ R and g ∈ homG(x, y), we write s� g for s⊗ g. Composition is defined by the rule

(76) (r � f) · (s� g) = rf(s) � fg

here r, s ∈ R, and f and g are composable arrows in G. In case the action of G on R is
trivial, we also write R[G] for R� G.

Let G be a group; consider the functor GG : G−Set → Gpd which sends a G-set S to
its transport groupoid. By definition obGG(S) = S, and homGG(S)(s, t) = {g ∈ G : g·s = t}.

Notation 3.2.1. If E is a functor from Z-linear categories to spectra, R a unital
G-ring, and X a G-space, we put

HG(X,E(R)) := E(R � GG(?))%(X)

2.2. The ring A(C). Let C be a small Z-linear category. Put

(77) A(C) =
⊕

a,b∈obC

homC(a, b)

The following multiplication law

(78) (fg)a,b =
∑
c∈obC

fc,b ◦ ga,c

makes A(C) into an associative ring, which is unital if and only if obC is finite. Whatever
the cardinal of obC is, A(C) is always a ring with local units, i.e. a filtering colimit of
unital rings.

A(?) and tensor products. The tensor product of two Z-linear categories C and D is
the Z-linear category C⊗D with ob(C⊗D) = ob(C)× ob(D) and

homC⊗D((c1, d1), (c2, d2)) = homC(c1, c2)⊗ homD(d1, d2)

We have

A(C⊗D) = A(C)⊗A(D)

Example 3.2.2. If G is a groupoid acting trivially on a unital ring R, then

A(R[G]) = A(R⊗ Z[G]) = R⊗A(Z[G])



76 3. ISOMORPHISM CONJECTURES WITH PROPER COEFFICIENTS

A(?) and crossed products. If A is any, not necessarily unital ring, and G is a groupoid
acting on A, we put

A(A� G) =
⊕

x,y∈obG

A⊗ Z[homG(x, y)]

The rules (76) and (78) make A(A � G) into a ring, which in general is nonunital and
does not have local units. The ring A(A � G) may also be described in terms of the
unitalization Ã of A. By definition, Ã = A⊕ Z equipped with the trivial G-action on the
Z-summand and the following multiplication

(79) (a, λ)(b, μ) = (ab+ λb+ aμ, λμ)

We have

(80) A(A� G) = ker(A(Ã� G) → A(Z[G]))

Note that A(A� G) is defined, even though A� G is not. One can actually define A� G

as a nonunital category, i.e. a category without identity morphisms, but we do not go
into that here.

Next we fix a group G and a subgroup H ⊂ G and consider the ring A(A�GG(G /H))
associated to the crossed product by the transport groupoid. Note that

homGG(G /H)(H,H) = H = homGH(H /H)(H,H)

thus there is a fully faithful functor GH(H /H) → GG(G /H). This functor induces a ring
homomorphism

j : A� H = A(A� GH(H /H)) ⊂ A(A� GG(G /H))

The next lemma compares the map j with the canonical inclusion

ι : A� H →MG /H(A� H), x 
→ eH,H ⊗ x

In the following lemma and elsewhere, we make use of a section s : G /H → G of the
canonical projection onto the quotient by a sugroup H ⊂ G. We say that the section s
is pointed if it is a map of pointed sets, that is, if it maps the class of H to the element
1 ∈ G.

Lemma 3.2.3. Let A be a ring, G a group acting on A, and H ⊂ G a subgroup. Then

there is an isomorphism α : A(A � GG(G /H))
∼=−→ MG /H(A � H) making the following

diagram commute:

A� H
j ��

ι ��������������� A(A� GG(G /H))

�α
��

MG /H(A� H)

The isomorphism α is natural in A but not in the pair (G,H), as it depends on a choice
of pointed section s : G /H → G of the projection π : G → G /H.
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Proof. Let s be as in the lemma; put ĝ = s(π(g)) (g ∈ G). The isomorphism

α : A(A � GG(G /H))
∼=−→ MG /H(A � H) is defined as follows. For b ∈ A, s, t ∈ G, and

g ∈ homGG(G /H)(sH, tH), put

α(b� g) = etH,sH ⊗ t̂−1(b) � (t̂−1gŝ)

It is straightforward to check that α is an isomorphism and that αj = ι. �
Functoriality of A(?). If F : C 
→ D is a Z-linear functor which is injective on objects,

then it defines a homomorphism A(F ) : A(C) → A(D) by the rule α 
→ F (α). Hence we
may regard A as a functor

(81) A : inj-Z-Cat → Ring

from the category of Z-linear categories and functors which are injective on objects, to
the category of rings. However A(F ) is not defined for general Z-linear F .

Remark 3.2.4. The use of the prefix inj here differs from that in [8]. Indeed, here inj
indicates that functors are injective on objects, whereas in [8], it refers to functors which
are injective on arrows.

2.3. The nonunital case. A Milnor square is a pullback square of rings

(82) R′

��

�� R

f

��
S ′

g
�� S

such that either f or g is surjective. Below we shall assume f is surjective. Let E :
Z−Cat → Spt be a functor. If A is a not necessarily unital ring, embedded as an ideal
in a unital ring R, we write E(R : A) = hofiber(E(R) → E(R/A)). The functor E is said
to satisfy excision for the Milnor square (82) if

E(R′)

��

�� E(R)

E(f)
��

E(S ′) �� E(S)

is homotopy cartesian. If ker f ∼= A, then E satisfies excision on (82) if and only if the
spectrum

E(R′, R : A) = hofiber(E(R′ : A) → E(R : A))

is weakly contractible. We say that the ring A is E-excisive if E satisfies excision on every
Milnor square (82) with ker f ∼= A. Assume unital rings are E-excisive; if A is any, not

necessarily E-excisive ring, we consider its unitalization Ã, defined in (79) above. Put

E(A) = hofiber(E(Ã) → E(Z))

Because of our assumption that unital rings are E-excisive, if A happens to be unital, the
two definitions of E(A) are naturally homotopy equivalent. Note that if

0 → A′ → A→ A” → 0
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is an exact sequence of rings and A′ is E-excisive, then

E(A′) → E(A) → E(A”)

is a homotopy fibration.
We have already considered rings with local units; we shall need an even weaker form

of unitality, called s-unitality. A ring A is called s-unital if for every finite collection
a1, . . . , an ∈ A there exists an element e ∈ A such that aie = eai = ai. Note that if we
add the requirement that e be idempotent we recover the notion of ring with local units.

Standing Assumptions 3.2.5. From now on, we shall be primarily concerned with
functors E : Z-Cat → Spt that satisfy the following:

i) Every s-unital ring is E-excisive.
ii) If H is a group and A an E-excisive H-ring, then A� H is E-excisive.
iii) If A is E-excisive, X a set and x ∈ X, then MXA is E-excisive, and E sends the

map A→MXA, a 
→ ex,xa to a weak equivalence.

iv) There is a natural weak equivalence E(A(C))
∼−→ E(C) of functors inj-Z-Cat →

Spt.
v) Let {Ai : i ∈ I} be a family of rings, and let A =

⊕
i∈I Ai be their direct

sum, with coordinate-wise multiplication. Then A is E-excisive if and only if
each Ai is. Moreover if these equivalent conditions are satisfied, then the map⊕

i E(Ai) → E(A) is an equivalence.

Let G be a group. Assume E satisfies the standing assumptions above. For A an
E-excisive G-ring, consider the OrG-spectrum

(83) G /H 
→ E(A� GG(G/H)) = hofiber(E(Ã� GG(G /H)) → E(Z[GG(G /H))])

Applying (?)% to (83) defines an equivariant homology theory of G-simplicial sets, which
we denote HG(−,E(A)). Moreover, for each fixed G-simplicial set X, HG(X,E(?)) is
a functor of E-excisive rings. Observe that, for unital A, we have two definitions of
E(A�GG(−)) and two definitions of HG(−,E(A)); the next proposition says that the two
definitions are equivalent.

Proposition 3.2.6. Let E : Z-Cat → Spt be a functor and G a group. Assume that
E satisfies the standing assumptions 3.2.5 above.

a) If R is a unital G-ring, then the two definitions of E(R � GG(−)) and of HG(−,E(R))
are equivalent.

b) If

0 → A′ → A→ A” → 0

is an exact sequence of E-excisive G-rings, and X is a G-simplicial set, then

E(A′ � GG(−)) → E(A� GG(−)) → E(A” � GG(−))

and

HG(X,E(A′)) → HG(X,E(A)) → HG(X,E(A”))

are homotopy fibrations.
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Proof. If A is E-excisive and H ⊂ G is a subgroup, then conditions ii) and iii)
together with Lemma 3.2.3 imply that A(A�GG(G /H)) is E-excisive. Hence, by condition
iv), the spectrum in (83) is equivalent to E(A(A � GG(G /H)). In particular, by i),
A(R� GG(G /H)) is E-excisive for R unital, and the map

hofiber(E(R̃� GG(G /H)) → E(Z[GG(G /H)])) → E(R� GG(G /H))

induced by the projection R̃ ∼= R × Z → R is an equivalence. This proves a). Moreover,
because A(? � GG(G /H)) preserves exact sequences, then applying (83) to the exact
sequence of part b) yields an object-wise homotopy fibration of OrG-spectra, which is
the first homotopy fibration of b). Applying (?)% we obtain the second one. �

Remark 3.2.7. Let E : Z-Cat → Spt and let A be any, not necessarily E-excisive
G-ring, equivariantly embedded as an ideal in a unital G-ring R. Consider the OrG-
spectrum

E(R� GG(−) : A� GG(−)) = hofiber(E(R� GG(−)) → E((R/A) � GG(−)))

Put

HG(X,E(R : A)) = E(R� GG(−) : A� GG(−))%(X).

Assembly gives a map of homotopy fibrations

HG(E(G,F),E(R : A)) ��

��

HG(E(G,F),E(R))

��

�� HG(E(G,F),E(R/A))

��
E(R� G : A� G) �� E(R� G) �� E((R/A) � G)

Hence if the (G,F) assembly map for the functorial spectrum E(−) is an equivalence on
unital rings, then both the middle and right hand side vertical maps are equivalences; it
follows that the same is true of the map on the left. We record a particular case of this
in the following corollary.

Corollary 3.2.8. Let E : Z-Cat → Spt be a functor; assume E satisfies the Standing
assumptions 3.2.5. Further let G be a group and F a family of subgroups, and assume
that the assembly map HG(E(G,F),E(R)) → E(R�G) is an equivalence for every unital
ring R. Then HG(E(G,F),E(A)) → E(A� G) is an equivalence for every E-excisive ring
A.

Proposition 3.2.9. Let A � R be an ideal in a unital G-ring, closed under the
action of G. Let E : Ring → Spt be a functor satisfying the standing assumptions. If A
is E-excisive then

E(A� GG(−)) → E(R� GG(−) : A� GG(−))

is an object-wise weak equivalence of OrGop-spectra.

Proof. Let H be a subgroup of G. By Standing Assumption ii)

E(A� H) → E(R� H : A� H)

is an equivalence. The proof follows from Lemma 3.2.3, using assumptions iii) and iv). �
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2.4. The ring R(C). Let C be a Z-linear category. Imitating a construction used by
M. Joachim ([15]) in the C∗-algebra context, we shall associate to C a ring R(C) which is
a quotient of the tensor algebra of A(C); first we need some notation. If M is an abelian
group, we write T (M) =

⊕
n≥1M

⊗n for the (unaugmented) tensor algebra. Put

R(C) = T (A(C))/ < {g ⊗ f − g ◦ f : f ∈ homC(a, b), g ∈ homC(b, c), a, b, c ∈ obC} >
Note that any Z-linear functor C → D ∈ Z−Cat defines a homomorphism R(C) → R(D).
Thus we may regard R as a functor

R : Z−Cat → Ring, C 
→ R(C)

Observe that the canonical surjection T (A(C)) → A(C) factors through a map

(84) R(C) � A(C)

whose kernel is the ideal generated by the elements g⊗ f for non-composable g and f . In
Lemma 3.2.10 we give conditions on a functor E : Ring → Spt to send (84) to a weak
equivalence; first we need some notation. A functor E : Ring → Spt is called excisive if
every ring is E-excisive. An excisive functor which satisfies Standing Assumption iii) is
called matrix stable. Note that standing assumptions i)-ii) are automatically satisfied if
E : Ring → Spt is excisive and matrix stable. Any excisive functor E satisfies condition
iv) for finite sums; if it satisfies it for arbitrary sums, we say that E is additive. For
example if E is excisive and E∗ commutes with filtering colimits, then E is additive.

For the proof of the next lemma we also need to recall the concept of multiplier ring
which we borrow from [16]. The multiplier ring of a ring A is the ring M(A) whose elements
are the pairs (f, g) of maps A→ A such that f is a right A-module homomorphism, g is
a left A-module homomorphism and the following compatibility condition is satisfied

g(a)b = af(b)

Multiplication in M(A) is defined by

(f1, g1)(f2, g2) = (f1f2, g2g1)

If a ∈ A then the pair m(a) = (La, Ra) given by left and right multiplication by a is an
element of M(A), and a 
→ m(a) is a ring homomorphism m : A 
→ M(A). The image of
m is always an ideal of M(A); its kernel is the two-sided annihilator of A

kerm = {a ∈ A : aA = Aa = 0}
This kernel vanishes for example if A is s-unital.

Lemma 3.2.10. Let C be a Z-linear category and let E : Ring → Spt be an excisive
and matrix stable functor. Then E∗ sends (84) to a naturally split surjection. Assume in
addition that E is invariant under polynomial homotopy. Then E sends (84) to a weak
equivalence.

Proof. Let ob+ C = obC
∐{+} be the set of objects of C with a base point added.

Consider the homomorphism

j : A(C) → Mob+ CR(C), j(f) = f ⊗ eb,a (f ∈ homC(a, b))
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Write p for the map (84). Left and right multiplication by each of the following two
matrices

W =
∑
a∈ob C

1a ⊗ ea,+

V =
∑
a∈ob C

1a ⊗ e+,a

leave Mob+ CA(C) stable, and thus define elements m(V ), m(W ) ∈ M(Mob+ CA(C)). More-
over the map m : Mob+ CA(C) → M(Mob+ CA(C)) is injective, since Mob+ CA(C) has local
units. The composite q = Mob+ C(p) ◦ j sends f ∈ A(C) to

q(f) = W (f ⊗ e+,+)V

All this together with matrix invariance imply that E∗(q) = E∗(?⊗e+,+) is an isomorphism
[3, 2.2.6]. This proves the first assertion of the Lemma. To prove the second, it suffices
to show that r = j ◦ p is homotopic to the inclusion ι(a) = a⊗ e+,+. If f ∈ homC(a, b),
write H(f) ∈Mob+ C(R(C))[t] for

H(f) = f ⊗ (−t(t3 − 2t)e+,+ + t(t2 − 1)e+,a + (1− t2)(t3 − 2t)eb,+ + (1− t2)2eb,a)

Note that ev0H(f) = r(f), ev1H(f) = ι(f). Further, one checks that if g ∈ homC(b, c),
then H(gf) = H(g)H(f). Thus H induces a homomorphism R(C) → Mob+ C(R(C))[t]
which is a homotopy from r to ι. This concludes the proof. �

Example 3.2.11. Let R, S be unital rings, and let C be the Z-linear category with two
objects a and b such that homC(a, b) = homC(b, a) = 0, homC(a, a) = R and homC(b, b) =
S. Then A(C) = R ⊕ S and R(C) = R

∐
S is the nonunital coproduct. By Lemma

3.2.10, any excisive, matrix stable, homotopy invariant functor E : Ring → Spt sends
p : R

∐
S → R ⊕ S to a weak equivalence. We remark that the hypothesis on E are

necessary; in particular there are functors E : Z−Cat → Spt which satisfy the standing
assumptions, and which do not send p to a weak equivalence.

3. K-theory

3.1. The K-theory spectrum. Given a Z-linear category C, we denote by C⊕ the
Z-linear category whose objects are finite sequences of objects of C, and whose morphisms
are matrices of morphisms in C with the obvious matrix product as composition. Con-
catenation of sequences yields a sum ⊕ and hence we obtain, functorially, an additive
category; write Idem C⊕ for its idempotent completion. We shall also need Karoubi’s cone
Γ(C) ([18, pp 270]). The objects of Γ(C) are the sequences x = (x1, x2, . . . ) of objects of
C such that the set

(85) F (x) = {c ∈ C : (∃n) xn = c}
is finite. A map x → y in Γ(C) is a matrix f = (fi,j) of homomorphisms fi,j : xj → yi
such that

(1) There exists an N such that every row and every column of f has at most N
nonzero entries.

(2) The set {fi,j : i, j ∈ N} is finite.
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Interspersing of sequences defines a symmetric monoidal operation � : Γ(C)×Γ(C) → Γ(C)
and there is an endofunctor τ such that 1 � τ ∼= τ (see [17, § III]). If C has finite direct
sums, e.g. if C = D⊕ for some Z-linear category D, then the interspersing operation
is naturally equivalent to the induced sum (x ⊕ y)i = xi ⊕ yi ([17, Lemme 3.3]). In
particular, if C is additive, then ΓC is a flasque additive category; that is, there is an
additive endofunctor τ : C → C such that τ ⊕ 1 ∼= τ . A morphism f in Γ(C) is finite if
fij = 0 for all but finitely many (i, j). Finite morphisms form an ideal, and we write Σ(C)
for the category with the same objects as Γ(C), and morphisms taken modulo the ideal
of finite morphisms. The category Σ(C) is Karoubi’s suspension of C. By [27, Thm. 5.3],
if C is additive, we have a homotopy fibration sequence

(86) KQ(Idem C) → KQ(Γ(Idem C)) → KQ(Σ(Idem C))

Here each of the categories is regarded as a semisimple exact category, and KQ de-
notes the fibrant simplicial set for its algebraic K-theory. Because Γ(Idem C) is flasque,
KQ(Γ(Idem C)) is contractible, whence KQ(Idem C) ∼= ΩKQ(Σ(Idem C)). Now let C be
any small Z-linear category, possibly without direct sums. Consider the sequence of cat-
egories

(87) C(0) = Idem(C⊕), C(n+1) = Idem(ΣC(n))

Then we have a spectrum K(C) = {nK(C)}, with

(88) nK(C) ∼= KQ(C(n))

Remark 3.3.1. If R is a unital ring, then by [18, Prop. 1.6], we have category
equivalences

(89) Idem(Γ(proj(R))) ∼= proj(Γ(R)) and Idem(Σ(proj(R))) ∼= proj(Σ(R))

Hence the spectrum K(R) defined above is equivalent to the usual, Gersten-Karoubi-
Wagoner spectrum of the ring R.

Lemma 3.3.2. Let C be an additive category, and let • be the only object of Γ(Z).
Consider the functor

μ : ΓZ⊗ C → Γ(C)

μ(•, c) = (c, c, . . . ), μ(f ⊗ α)ij = fijα

Then
i) The functor μ is fully faithful.
ii) Let F (−) be as in (85). For every object x ∈ Γ(C) there exist morphisms φc : μ(•, c) → x
and ψc : x→ μ(•, c), c ∈ F (x) such that

∑
c∈F (x) φcψc = 1x.

iii) The functor μ induces a fully faithful functor μ̄ : Σ⊗ C → Σ(C).

Proof. Part i) is proved in [5, Lemma 4.7.1] for the case when C has only one object;
the same argument applies in general. To prove ii), let x ∈ Γ(C) be an object. If c ∈ F (x),
write I(c) = {n ∈ N : xn = c}, and let χI(c) be the characteristic function. Put

φc : μ(•, c) → x, ψc : x→ μ(•, c), (φc)i,j = (ψc)i,j = δi,jχI(c)(j)1c
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One checks that ∑
c∈F (x)

φcψc = 1x

This proves ii). Next, consider the exact sequence

0 →M∞Z → ΓZ
π→ ΣZ → 0

As is explained in [5, pp 92], it follows from results of Nöbeling [26] that the sequence
above is split as a sequence of abelian groups. Hence if c, d ∈ C, then

ker(π ⊗ 1 : homΓZ⊗C((•, c), (•, d)) → homΣZ⊗C((•, c), (•, d))) = M∞Z⊗ homC(c, d)

Next observe that if α ∈ homC(c, d) and f ∈ M∞Z, then μ(f ⊗ α) is a finite morphism.
Hence μ passes to the quotient, inducing a functor μ̄ : ΣZ⊗ C → Σ(C). If c, d ∈ B C and
we put x = μ(•, c), y = μ(•, d) then we have a map of exact sequences

0 → M∞Z⊗ homC(c, d)

��

�� ΓZ⊗ homC(c, d) ��

��

ΣZ⊗ homC(c, d) → 0

��
0 → homFin(C)(x, y) �� homΓ(C)(x, y) �� homΣ(C)(x, y) → 0

Here Fin(C) ⊂ Γ(C) is the subcategory of finite morphisms. The second vertical map
is an isomorphism by part i). In particular the first map is injective; furthermore, one
checks that it is onto. It follows that the third vertical map is an isomorphism; this proves
iii). �

3.2. Comparing K(C) with K(A(C)).
The operation ♦. Let X be a set and let C and D be Z-linear categories with ob C =

ob D = X. Consider the category C♦D with set of objects ob(C♦D) = X, homomor-
phisms

homC♦D(x, y) = homC(x, y)⊕ homD(x, y)

and coordinate-wise composition. If C, D and E are Z-linear categories, we have

(C♦D)⊕ = C⊕♦D⊕
Idem((C♦D)⊕) = Idem C⊕ × Idem D⊕(90)

(C♦D)⊗ E = (C⊗ E)♦(D⊗ E)(91)

Unitalization. We have already recalled the definition of the unitalization Ã of a not
necessarily unital ring A. Now we need a version of unitalization for Z-linear categories;
this can be more generally defined for nonunital Z-categories, but we will have no oc-
casion for that. Let C ∈ Z − Cat; write C̃ for the category with ob C̃ = ob C and with
homomorphisms given by

homC̃(x, y) = homC(x, y)⊕ δx,yZ =

{
homC(x, y) x 	= y

homC(x, x)⊕ Z x = y

Composition between (f, δx,yn) ∈ homC̃(x, y) and (g, δy,zm) ∈ homC̃(y, z) is defined by
the formula

(g, δy,zm) ◦ (f, δx,yn) = (gf + δy,zmf + δx,ygn, δx,yδy,zmn)
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Observe that if R is a ring, considered as a Z-linear category with one object, then

R̃→ R× Z = R♦Z, (r, n) 
→ (r + n · 1, n)

is an isomorphism. This isomorphism generalizes to Z-categories as follows. Let Z〈ob C〉 ∈
Z−Cat, be the Z-linear category with the same objects as C, homomorphisms given by

homZ〈ob C〉(x, y) = δx,yZ

We have an isomorphism of linear categories

(92) C♦Z〈ob C〉 → C̃

which is the identity on objects, as well as on homC♦Z〈ob C〉(x, y) for x 	= y, and which
sends

homC♦Z〈ob C〉(x, x)  (f, n) 
→ (f − n1x, n) ∈ homC̃(x, x)

The map K(C) → K(A(C)). If C is a Z-linear category, and x, y ∈ ob C, then by
definition of A(C),

(93) homC(x, y) ⊂ A(C)

and the inclusion is compatible with composition. We also have an inclusion

(94) homC̃(x, x)  (f, n) 
→ (f, n) ∈ Ã(C)

The inclusions (93) and (94) together with the only map ob C̃ → ob Ã(C) = {•} define a
functor

(95) φ : C̃ → Ã(C)

Observe that Z〈ob C〉 ⊂ C̃ and that φ(Z〈ob C〉) ⊂ Z ⊂ Ã(C). We have a commutative
diagram

C̃
φ ��

π1

��

Ã(C)

π2

��
Z〈ob C〉 �� Z

Here the vertical maps are the obvious projections. By (92) and (90) we have an equiva-
lence

K(C̃)
∼−→ K(C)×K(Z〈obC〉)

Under this equivalence the map induced by π1 becomes the canonical projection; hence
its fiber is K(C). On the other hand, by definition, K(A(C)) is the fiber of K(π2). Hence
φ induces a map

(96) ϕ : K(C) → K(A(C))

Proposition 3.3.3. Let C be a Z-linear category. Then the map (96) is an equiva-
lence.
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Proof. Because both the source and the target of (96) commute with filtering col-
imits, we may assume that C has finitely many objects. Then A(C) is unital, and thus

we have an isomorphism Ã(C) ∼= A(C)× Z. Recall that the idempotent completion of an
additive category A is the category whose objects are the idempotent endomorphisms in A
and where a map f : e1 → e2 is an element of homA(dome1, dome2) such that f = e2fe1.
One checks that the composite

C⊕ → Idem C⊕
1×0→ Idem C⊕ × Idem Z〈ob C〉 ∼=

Idem(C̃⊕)
φ→ Idem(Ã(C)⊕) ∼= Idem(A(C)⊕)× Idem(Z⊕) → Idem(A(C)⊕)

is the functor ψ which sends an object (c1, . . . , cn) to the idempotent diag(1c1, . . . , 1cn)
and a map f = (fi,j) : (c1, . . . , cn) → (d1, . . . , dm) to the corresponding matrix (fi,j) ∈
homA(C)⊕(•n, •m). Because ψ is fully faithful and cofinal, it induces an equivalence
K(C) → K(A(C)). It follows that (96) is an equivalence. �

4. K-theory and the standing assumptions

In this section we prove some tecnical result to see that K-theory satisfy the standing
assumptions.

4.1. The groups TorÃ∗ (−, A). Let M = Z,Z/nZ,Q. Theorems of Suslin [28] (for
M = Z,Z/nZ) and Suslin-Wodzicki (for M = Q) establish that a ring A is excisive for
K-theory with coefficients in M if and only if

TorÃ∗ (M,A) = 0

Example 3.4.1. A ring A is said to have the triple factorization property if for every
finite family a1, . . . , an ∈ A there exist b1, . . . , bn, c, d ∈ A such that

ai = cdbi and {ai : aid = 0} = {a : acd = 0} i = 1 . . . n

It was proved in [29, Theorem C] that rings having the triple factorization property are
K-excisive. In particular, s-unital rings are K-excisive.

We shall introduce, for any abelian group M , a functorial abelian group Q̄(A,M)

which computes TorÃ∗ (M,A). Consider the functor ⊥: Ã−mod→ Ã−mod,

⊥M =
⊕
m∈M

Ã.

The functor ⊥ is the free Ã-module cotriple [33, 8.6.6]. Let Q(A) → A be the canonical

simplicial resolution by free Ã-modules associated to ⊥ [33, 8.7.2]; by definition, its n-th
term is Qn(A) =⊥n A. Put

Q̄(A,M) = M ⊗Ã Q(A).

We have
π∗(Q̄(A,M)) = TorÃ∗ (M,A)

We abbreviate Q̄(A) = Q̄(Z, A). Note that

Q̄(A,M) = M ⊗ Q̄(A)
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We have

Q̄0(A) = Z[A], Q̄n+1 = Z[Ã⊗ Q̄n(A)].

Lemma 3.4.2. Let F
∼� A be a simplicial resolution in Rings and M an abelian

group. Let diag Q̄(F ) be the diagonal of the bisimplicial abelian group Q̄(F ). Then

TorÃ∗ (M,A) = π∗(M ⊗ diag Q̄(F ))

Proof. Because F → A is a simplicial resolution in Rings, Q̄0(F ) = Z[F ] → Z[A] =
Q̄0(A) is a free simplicial resolution in Ab of the free abelian group Z[A]. Observe that
if G → N is a free resolution of a free abelian group N , then Ã ⊗ G → Ã ⊗ N is a
free simplicial Ã-module resolution, and Z[Ã ⊗ G] → Z[Ã ⊗ N ] is a free simplical Z-
module resolution. Thus for each n, Q̄n(F ) → Q̄n(A) is an equivalence of free simplicial
abelian groups, and thus it remains an equivalence after tensoring by M . It follows that

M ⊗ diag Q̄(F ) computes TorÃ∗ (M,A). �

Proposition 3.4.3. Let F
∼� A be a simplicial resolution and M an abelian group.

Then there is a first quadrant spectral sequence

E2
p,q = πq(TorF̃p (M,F )) ⇒ TorÃp+q(M,A)

Proof. This is just the spectral sequence of the bisimplicial abelian group ([p], [q]) 
→
Q̄p(M,Fq). �

Corollary 3.4.4. Let F
∼� A be free simplicial a resolution in Rings. Then

π∗(M ⊗ (F/F 2)) = TorÃ∗ (M,A)

Proof. In view of the previous proposition, and of the fact that TorB̃0 (M,B) =
M ⊗B/B2 for every ring B, it suffices to show that if V is a free abelian group, and TV

the tensor algebra, then Tor
˜TV
n (M,TV ) = 0 for n ≥ 1. But this is clear, since TV is free

as a ˜TV -module; indeed, the multiplication map ˜TV ⊗ V → TV is an isomorphism. �

4.2. Bar complex. Let A be a ring. Consider the complex P (A) given by Pn(A) =
Ã⊗ A⊗n+1 (n ≥ 0), with boundary map

b”(a−1 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an) =

n−1∑
i=−1

(−1)ia−1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

The multiplication map μ : Ã⊗A→ A gives a surjective quasi-isomorphism μ : P (A) � A
[33, 8.6.12]. A canonical Z-linear section of μ is j = 1⊗− : A→ Ã⊗ A. Let ε : Ã→ A,
ε(a, n) = a. A Z-linear homotopy jμ→ 1 is defined by

s : A⊗n+1 → A⊗n+2, s(a−1 ⊗ · · · ⊗ an) = 1⊗ ε(a−1)⊗ a0 ⊗ · · · ⊗ an

Thus P (A) is a resolution of A by Ã-modules, and moreover these Ã-modules are scalar
extensions of Z-modules. Hence if A is flat as Z-module, then Cbar(A) = Z ⊗Ã P (A)

computes TorÃ∗ (Z,M) and M ⊗Cbar(A) computes TorÃ∗ (Z,M). In general, the homology
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of Cbar(A) can be interpreted as the Tor groups relative to the extension Z → Ã. For an
arbitrary ring A, one can use the natural homotopy s to give a natural map

L(A) → P (A)

The induced map M ⊗ Q̄(A) → M ⊗ Cbar(A) is a quasi-homomorphism if A is flat as a
Z-module. In particular, we have the following.

Lemma 3.4.5. Let F
∼� A be a simplicial resolution by flat rings, and M an abelian

group. Then

TorÃ∗ (M,A) = H∗(Tot(M ⊗ Cbar(F )))

4.3. H-unital rings. Let

(97) 0 → A→ B → C → 0

be an exact sequence of rings. We say that (97) is pure if for every abelian group V , the
sequence of abelian groups

0 → A⊗ V → B ⊗ V → C ⊗ V → 0

A ring A is called H-unital if for every abelian group V , the complex Cbar(A)⊗ V is
acyclic. If X(−) is a functorial chain complex, then we say that A is pure X-excisive if for
every pure exact sequence (97),

X(A) → X(B) → X(C)

is a distinguished triangle. The following theorem was proved by M. Wodzicki in 3.4.6.

Theorem 3.4.6. (Wodzicki) The following conditions are equivalent for a ring A.
i) A is H-unital.
ii) A is pure Cbar-excisive.
iii) A is pure HH-excisive.
iv) A is pure HC-excisive.

Example 3.4.7. Any linearly split sequence (97) is pure. In particular, any sequence
(97) with A a Q-algebra is pure, since any Q-vectorspace is injective as an abelian group.
Thus for a Q-algebra A, Wodzicki’s theorem remains valid if we omit the word “pure”
everywhere. Furthermore, the Suslin-Wodzicki theorem cited above, for A a Q-algebra
then the conditions of Theorem 3.4.6 are also equivalent to A being KQ-excisive. In fact it
is well-known that for a Q-algebra A, being KQ-excisive is equivalent to being K-excisive;
as explained in [4, Lemma 4.1] this well-known fact follows from the main result of [31].
See [29, Lemma 1.9] for a different proof.

4.4. Colimits. The bar complex manifestly commutes with filtering colimits, and
thus H-unital rings are closed under them. The next proposition establishes the analogue
of this property for K-excisive rings.

Proposition 3.4.8. Let {Ai} be a filtering system of rings, and let M be an abelian
group. Write A = colimAi. Then

TorÃ∗ (M,A) = colim
i

TorÃi∗ (M,Ai)
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Proof. Write ⊥: Rings → Rings, ⊥ B = T (Z[B]) for the cotriple associated with

the forgetful functor Rings → Set and its adjoint. Write F (A)
∼� A for the cotriple

resolution F (A)n =⊥n+1 A ([33, Section 8/6]). We have F (A) = colimi F (Ai). Thus
Tot(M ⊗ CbarF (A)) = colimiM ⊗ CbarF (Ai). Hence we are done by Lemma 3.4.5. �

Corollary 3.4.9. K-excisive rings are closed under filtering colimits.

Let M0 and M1 be chain complexes of abelian groups, and let f ∈ [1]n. Put

T f(M0,M1) = Mf(1) ⊗ · · · ⊗Mf(n)

Let

M0 � M1 =
⊕
n≥0

⊕
f∈map([n],[1])

T f(M0,M1)

Lemma 3.4.10. Let A and B be rings. Then

Cbar(A⊕ B) = (Cbar(A)[−1] � Cbar(B)[−1])[+1]

Proof. If D is a ring then Cbar(D) = T (D[−1])[+1] as graded abelian groups. Hence
for
∐

the coproduct of rings, we have

Cbar(A⊕B) =T (A[−1]⊕ B[−1])[+1]

=(T (A[−1])
∐

T (B[−1]))[+1]

=(Cbar(A)[−1] � Cbar(B)[−1])[+1]

It is is straightforward to check that the identifications above are compatible with bound-
ary maps. �

Proposition 3.4.11. Let {Ai} be a family of rings and A =
⊕

iAi. Then A is
K-excisive if and only if each Ai is, and in that case

⊕
iK(Ai) → K(A) is an equivalence.

Proof. Let B and C be rings, and F → B and G→ C be free simplicial resolutions
in Rings. Then F ⊕ G → B ⊕ C is a flat simplicial resolution. Fix q ≥ 0, and put
C0 = Cbar(Fq), C

1 = Cbar(Gq). Let p ≥ 1, and f ∈ [1]p. Then by the Künneth formula

Hn(T
f(C0[−1], C1[−1])[+1]) =

T f(H∗(C0), H∗(C1))n+1 =

{
T f(F/F 2, G/G2) p = n+ 1

0 p 	= n+ 1

Hence the second page of the spectral sequence for the double complex of Lemma 3.4.5 is

E2
p,q =

⊕
f∈[1]p+1

πq(T
f(F/F 2, G/G2))

If B and C are K-excisive, we have E2 = 0, by the Künneth formula, and thus B ⊕ C
is again K-excisive. It follows from this and from Proposition 3.4.8 that if Ai is a family
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of K-excisive rings as in the proposition, then A is K-excisive. If B and C are arbitrary,
then

E2
0,q = TorB̃q (Z, B)⊕ TorC̃q (Z, C)

E2
p,0 =

⊕
f∈[1]p+1

T f(A/A2, B/B2)

Hence if B ⊕ C is excisive, E2
∗,0 = 0. It follows that E2

0,1 = 0, and therefore E2
∗,1 =

π1(T
f(F/F 2, G/G2)) involves only tensor products of the form E2

p,0 ⊗ E2
0,1 and its sym-

metric, and both of these are zero. A recursive argument shows that E2 = 0, whence both
B and C are K-excisive. If now A and {Ai} are as in the proposition, A = is excisive,
and j ∈ I then setting B = Aj and C =

⊕
i�=j Ai above, we obtain that Ai is K-excisive.

The last assertion of the proposition is well-known if each Ai is unital. More generally,
assume all Ai are K- excisive, and consider the exact sequence

(98) 0 → A→
⊕
i

Ãi →
⊕
i

Z → 0

We have a commutative diagram with homotopy fibration rows⊕
iK(Ai) ��

��

⊕
iK(Ãi)

��

��
⊕

iK(Z)

��
K(A) �� K(

⊕
i Ãi

�� K(
⊕

i Z)

Because the middle and right vertical arrows are equivalences, it follows that the left one
is an equivalence too. �

Proposition 3.4.12. Let {Ai} be a family of rings and A =
⊕

iAi. Then A is H-
unital if and only if each Ai is, and in that case

⊕
iHH(Ai) → HH(A) and

⊕
iHC(Ai) →

HC(A) are quasi-isomorphisms.

Proof. The last assertion is proved by the same argument as its K-theoretic counter-
part. By 3.4.6, ifB and C are rings and B isH-unital, then Cbar(B⊕C)⊗V → Cbar(C)⊗V
is a quasi-isomorphism for every abelian group V . Thus if also C is H-unital, then so
is B ⊕ C. Using this and the fact that H-unitality is preserved under filtering colim-
its, it follows that if {Ai} is a family of H-unital rings, then A =

⊕
iAi is H-unital.

Suppose conversely that A is H-unital, and consider the pure extension (98). A similar
argument as that of the proof of Proposition 3.4.11 shows that

⊕
iHH(Ai) → HH(A) is

a quasi-isomorphism. Next fix an index j and let

0 → Aj → B → C → 0

be a pure extension. Then

0 → A→
⊕
i�=j

Ai ⊕ B̃ →
⊕
i�=j

Ai ⊕ C̃ → 0

is a pure extension. Applying HH yields a distinguished triangle quasi-isomorphic to⊕
i

HH(Ai) →
⊕
i�=j

Ai ⊕HH(B)⊕HH(Z) →
⊕
i�=j

Ai ⊕HH(C)⊕HH(Z)
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Removing summands, we obtain a triangle

HH(Aj) → HH(B) → HH(C)

We have shown that Aj satisfies excision for pure extensions in Hochschild homology; by
3.4.6, this implies that Aj is H-unital. �

4.5. Tensor products. It was proved by Suslin and Wodzicki [29, Theorem 7.10]
that the tensor product of H-unital rings is H-unital. Here we establish a weak analogue
of this property for K-excisive rings.

Let A be a ring. Put

L−1A = A, Ln+1A = ker(A⊗ Ln(A) → Ln(A)) (n ≥ −1)

Lemma 3.4.13. Let A be a K-excisive ring, and V an abelian group. Assume both A
and V are flat over Z. Then

TorÃ⊗TVn (Z, A⊗ TV ) = Ln−1A⊗ V ⊗n+1 n ≥ 0

Proof. If M is a left A-module such that

(99) A ·M = M,

and L(M) = ker(A ⊗M → M) is the kernel of the multiplication map, then we have a
short exact sequence

0 → L(M)⊗ T≥n+1V → Ã⊗ TV ⊗M ⊗ V ⊗n → M ⊗ T≥nV → 0

By definition, LnA = Ln+1A. By [29, Theorem 7.8 and Lemma 7.6], M = LnA satisfies
(99) for all n, and moreover, it is a flat abelian group, by induction. Thus for n ≥ 1, the
sequence

0 → Ln−1(M)⊗ T≥n+1V → Ã⊗ TV ⊗ Ln−2M ⊗ V ⊗n → Ln−2M ⊗ T≥nV → 0

is exact. Hence

TorÃ⊗TVi (Z, A⊗ TV ) =TorÃ⊗TVi (Z, L−1A⊗ T≥1V )

=TorÃ⊗TV0 (Z, Li−1A⊗ T≥i+1V )

=Li−1A⊗ V ⊗i+1

�
Proposition 3.4.14. Let A and B be K-excisive rings, at least one of them flat as a

Z-module. Then A⊗ B is K-excisive.

Proof. Assume A is flat. Let F
∼� B be a simplicial resolution by free rings. Then

A ⊗ F
∼� A ⊗ B is a resolution by flat rings. By Lemma 3.4.13, the second page of the

spectral sequence of Proposition 3.4.3 is

E2
p,q = πq(A⊗ (F/F 2)⊗p+1) = A⊗ (πq((F/F

2)⊗p+1))

which equals zero by Corollary 3.4.4 and the Künneth formula, since B is K-excisive by
assumption. �
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4.6. Crossed products. Let G be a group and π : Z[G] → Z the augmentation
g 
→ 1. Put

JG = ker π

Lemma 3.4.15. Let V be a Z[G]-module, free as an abelian group. Then

TorT̃ V�G
n (Z, TV �G) = V ⊗n+1 ⊗ JG⊗n ⊗ Z[G] n ≥ 0

Proof. Note that the subset

V ⊗n ⊕ TV ≥n+1 �G ⊂ TV �G

is a left ideal, and that the map

˜TV �G⊗ V ⊗n → V ⊗n ⊕ TV ≥n+1 �G(100)

1⊗ y 
→ y

x� g ⊗ y 
→ xg(y) � g

(101)

is a ˜TV �G-module isomorphism. Consider the map

V ⊗n ⊗M ⊕ (TV ≥n+1 �G)⊗M → TV ≥nV ⊗M, (x, (y � g)⊗m) 
→ x+ y ⊗ gm

Composing with the isomorphism (100), we obtain a Z-split surjective map

˜TV �G⊗ V ⊗n � TV ≥n ⊗M

This map fits in an exact sequence

0 → T≥n+1V ⊗ JG⊗M → ˜TV �G⊗ V ⊗n → T≥nV ⊗M → 0

If M is flat as an abelian group, then the middle term in the exact sequence above is a

flat ˜TV �G-module. Applying this successively, starting with M = Z[G], we obtain

TorT̃ V�G
n (Z, TV �G) =TorT̃ V�G

0 (Z, TV ≥n+1 ⊗ JG⊗n ⊗ Z[G])

=V ⊗n+1 ⊗ JG⊗n ⊗ Z[G]

�
Proposition 3.4.16. Let G be a group and A ∈ G−Rings. Assume A is K-excisive.

Then A�G is K-excisive.

Proof. Note that the forgetful functor from G − Rings to sets has a left adjoint;

namely X 
→ T (Z[G ×X]). Hence A admits a free resolution F
∼� A such that each Fn

is a G-ring; for example we may take the cotriple resolution associated to the adjoint pair
just described. Since F is a simplicial G-ring, we can take its crossed product with G, to

obtain a Z-flat resolution F � G
∼� A � G. Now proceed as in the proof of Proposition

3.4.14, using Lemma 3.4.15. �
Proposition 3.4.17. Let G be a group and A ∈ G−Rings. Assume A is H-unital.

Then A�G is H-unital.
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Proof. The bar resolution B(G,M) ([33, S6.5]) is functorial on the G-module M .
Applying it dimensionwise to Cbar(A), we obtain a simplicial chain complex
B(G,Cbar(A)). We may view the latter as a double chain complex with A⊗q+1 ⊗Z[Gp+1]
in the (p, q) spot. Removing the first row and the first column yields a double complex
whose total chain complex we shall call M [−1]. Note M is a chain complex of A � G-
modules and homomorphisms. We have M0

∼= (A � G)⊗2, and the multiplication map
(A�G)⊗2 → A�G induces a surjection onto the kernel L of the augmentation A�G→ A,
a � g → a. Note that the hypothesis that A is H-unital implies that the augmented
complex

. . .→ M1 →M0 → L

is acyclic. Now proceed as in the proof of [29, Theorem 7.10]. �

Proposition 3.4.18. The functor K : Z−Cat → Spt satisfies the standing assump-
tions.

Proof. Assumption iv) was proved in Proposition 3.3.3. By Example 3.4.1, s-unital
rings are K-excisive; hence K-theory satisfies i). Assumption ii) holds by Proposition
3.4.16. If A is K-excisive and X is a set, then MXA is K-excisive, by Proposition 3.4.14.
Assumpton iii) follows from this and the fact that K-theory is matrix stable on unital
rings. Assumption v) is proved in Proposition 3.4.11. �

5. Homotopy K-theory

If C is a Z-linear category, then we write CΔ•
for the simplicial Z-linear category

CΔ•
: [n] 
→ CΔn

= C⊗ Z[t0, . . . , tn]/ < t0 + · · ·+ tn − 1 >

Applying the functor K dimensionwise we get a simplicial spectrum whose total spectrum
is the homotopy K-theory spectrum KH(C). In particular if R is a unital ring, thenKH(R)
was defined by Weibel in [32]. The following theorem was proved in [32]; see also [3,
Section 5].

Theorem 3.5.1. (Weibel) The functor KH : Ring → Spt is excisive, matrix invari-
ant, and invariant under polynomial homotopy.

Proposition 3.5.2. There is a natural weak equivalence KH(C)
∼−→ KH(R(C)).

Proof. We begin by observing that the inclusions (93) and (94) lift to inclusions

homC(x, y) ⊂ R(C) and homC̃(x, x) ⊂ R̃(C). Thus we have a functor

φ′ : C̃ → R̃(C)

Composing it with

p̃ : R̃(C) → Ã(C)

we obtain the map

φ : C̃ → Ã(C)
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of (95) above. Tensoring with ZΔ•
and applying K(−) we obtain a commutative diagram

KH(C̃)

φ ������������
�� KH(R̃(C))

p

��

KH(Ã(C))

The diagram above maps to the diagram

KH(Z〈obC〉) φ ��

φ �������������
KH(Z)

KH(Z)

Taking fibers and using (90), (91) and (92), we obtain a homotopy commutative diagram

KH(C)
ϕ” ��

ϕ′ �������������
KH(R(C))

p

��
KH(A(C))

Here ϕ′ comes from a map of simplicial spectra

ϕ• : K(C⊗ ZΔ•
)

∼−→ K(C̃⊗ ZΔ•
: Z〈ob C〉 ⊗ ZΔ•

) → K(Ã(C)⊗ ZΔ•
: Z⊗ ZΔ•

),

and ϕ0 = ϕ is the map (96), which is an equivalence by Proposition 3.3.3. The same
argument of the proof of Proposition 3.3.3 shows that ϕn is an equivalence for every n.
On the other hand, by Theorem 3.5.1 and Lemma 3.2.10, the map p : KH(R(C)) →
KH(A(C)) is an equivalence. It follows that ϕ′′ is an equivalence too. �

Proposition 3.5.3. The functor KH : Z − Cat → Spt satisfies the standing as-
sumptions.

Proof. This follows from Theorem 3.5.1, Proposition 3.5.2, and Lemma 3.2.10. �

6. Proper G-rings

6.1. Extending polynomial functions and excision properties.

Lemma 3.6.1. If X is a locally finite simplicial set, then Z(X) is a free abelian group.

Proof. By [5, 3.1.3] the lemma is true when X is finite. Hence if X is any simplicial
set, and σ ∈ X is a simplex, then Z<σ> is free. If X locally finite, then by Example 2.2.4,
Z(X) is a subgroup of a free group, and therefore it is free. �

Theorem 3.6.2. Let X be a simplicial set, Y ⊂ X a sub-simplicial set and A a ring.
Let φ ∈ AY and K = suppφ. There there exists ψ ∈ AX with suppψ ⊂ StXK such that
ψ|LinkX(K) = 0 and ψ|Y = φ.
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Proof. We have K ⊂ StYK ⊂ StYK, whence φ|LinkY (K) = 0. Note StXK ∩ Y =
StYK; thus φ vanishes on LinkX(K) ∩ Y . Hence we may extend φ to a φ′ : Y ′ =
Y ∪ LinkX(K) → AΔ•

by φ′
|LinkX(K) = 0. Put Y ” = Y ∪ StXK. Because Y ′ ⊂ Y ” is a

cofibration and AΔ• � 0 is a trivial fibration, we may further extend φ′ to a φ” : Y ” →
AΔ•

. By construction, {σ ∈ X : φ”(σ) 	= 0} ⊂ StXK, and φ” vanishes on LinkXK. Hence
we may further extend φ” to a ψ : X → AΔ•

, by letting ψ(σ) = 0 if σ /∈ StXK. This
concludes the proof. �

Corollary 3.6.3. If X is locally finite and Y ⊂ X is a subsimplicial set, then the
restriction map A(X) → A(Y ) is surjective.

Proof. It follows from Theorem 3.6.2, using 2.2.1. �
Proposition 3.6.4. (Compare [7, Lemma 2.5]) LetA be a nonzero ring. The following

are equivalent for a simplicial set X.
i) For every simplex σ ∈ X there exists φ ∈ A(X) such that φ(σ) 	= 0.
ii) X is locally finite.

Proof. Observe that if σ, τ ∈ X are simplices, with < τ >⊃< σ > and φ ∈ AX

satisfies φ(σ) 	= 0, then φ(τ) 	= 0. If X is not locally finite, then by Lemma 2.2.1, there
exists a simplex σ ∈ X which is contained in infinitely many nondegenerate simplices.
By the previous observation, φ(σ) = 0 for every φ ∈ A(X). We have proved that i)⇒ii).
Assume conversely that X is locally finite, and let σ be a simplex of X. We want to show
that there exists φ ∈ A(X) such that φ(σ) 	= 0. We may assume that σ is nondegenerate.
Let Y =< σ >⊂ X be the sub-simplicial set generated by σ; by Corollary 3.6.3, it suffices
to show that AY 	= 0. Now Y is an n-dimensional quotient of Δn, whence Sn = Δn/∂Δn

is a quotient of Y . So we may further reduce to showing AS
n

is nonzero. Now

AS
n

= ZnA
Δ•

=

n⋂
i=0

ker(di : AΔn → AΔn−1

)

But if 0 	= a ∈ A, then at0 . . . tn is a nonzero element of ZnA
Δ•

. �
Proposition 3.6.5. If X is a locally finite simplicial set, then Z(X) is s-unital.

Proof. Let φ1, . . . , φn ∈ Z(X), and let K =
⋃
i supp(φ). By Theorem 3.6.2 there is

μZ(X) such that μ|K = 1 is the constant map. Thus

(6.1) φi = φiμ (∀i).
�

Proposition 3.6.6. If A is K-excisive and X is locally finite, then Z(X) ⊗ A is K-
excisive.

Proof. Follows from Lemma 3.6.1 and Propositions 3.6.5 and 3.4.14. �
Remark 3.6.7. If A is a ring and X a locally finite simplicial set, then there is a

natural map
Z(X) ⊗A→ A(X)

It was proved in [5, 3.1.3] that this map is an isomorphism if X is finite.
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6.2. Proper rings over a G-simplicial set. Fix a group G and consider rings
equipped with an action of G by ring automorphisms. We write G−Rings for the category
of such rings and equivariant ring homomorphisms. If C ∈ G−Rings is commutative but
not necessarily unital and A ∈ G−Rings, then by a compatible (G, C)-algebra structure
on A we understand a C-bimodule structure on A such that the following identities hold
for a, b ∈ A ,c ∈ C, and g ∈ G:

c · a = a · c
c · (ab) = (c · a)b = a(c · b)(6.2)

g(c · a) = g(c) · g(a)
(6.3)

If X is a G-simplicial set and A ∈ G−Rings, then we say that A is proper over X if it
carries a compatible (G,Z(X)) algebra structure such that

(6.4) Z(X) ·A = A

If F is a family of subgroups of G, we say that A is (G,F)-proper if it is proper over some
(G,F) complex X.

Example 3.6.8. Fix a group G, a family of subgroups F and a (G,F)-complex X. By
Proposition 3.6.5, we have Z(X) ·Z(X) = Z(X); thus Z(X) is proper. If A is proper over X,
and B is any ring, then A⊗ B is proper over X. In particular, Z(X) ⊗ B is proper.

Let A be a G-ring, proper over a locally finite G-simplicial set X. We write AX for
the unitalization of A as an algebra over Z(X); this is the abelian group

(6.5) AX = A⊕ Z(X)

equipped with the multiplication law given by the formula 79.

Lemma 3.6.9. Let A be a G-ring, proper over a locally finite G-simplicial set X. Then
the ring AX of (6.5) is s-unital.

Proof. Immediate from Proposition 3.6.5 and condition (6.4). �
Let X be a locally finite simplicial set, and K ⊂ X a subobject. Put

I(K) = {φ : suppφ ⊂ K} � Z(X)

If A ∈ Ring has a compatible Z(X) structure, we put

A(K) = I(K) · A � A

Lemma 3.6.10. Let A be a G-ring. Assume that A is (G,F)-proper. Then {Ai} of
ideals of A such that A = ∪iAi and such that each Ai is proper over a finite (G,F)-
complex.

Proof. By hypothesis, there exists a (G,F)-complex X such that A is proper over
X. For each G-finite (G,F)-subcomplex K ⊂ X, consider I(K) and A(K). It is clear
that {I(K)} and {A(K)} are filtering systems of ideals and that ∪KI(K) = Z(X). We
claim furthermore that A = ∪KA(K). By definition of Z(X)-algebra, A = Z(X) ·A. Hence
if a ∈ A, then there exist φ1, . . . , φn ∈ Z(X) and a1, . . . , an ∈ A such that a =

∑
i φiai.

Hence a ∈ A(K) for K = ∪i G ·supp(φi). �
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Lemma 3.6.11. (cf. [11, pp. 51]) Let A ∈ G−Rings be proper over a locally finite
G-simplicial set X, and let f : X → Y be an equivariant map with Y locally finite. Then
the map f ∗ : ZY → ZX induces a compatible (G,Z(Y ))-algebra structure on A which
makes it proper over Y .

Proof. We begin by showing that the compatible (G,Z(X))-algebra structure on A
extends to a compatible (G,ZX)-module structure. By the lemma above, if a ∈ A then
there exists a finite subsimplicial set K ⊂ X such that a ∈ A(K) = I(K) ·A. By Theorem
3.6.2 there exists μK ∈ ZX , with suppμK ⊂ St(K)) such that

(6.6) μKa = a ∀a ∈ A(K).

Because X is locally finite, St(K) is finite and μK ∈ Z(X). Thus we have a map A(K) →
I(St(K))) ⊗ A(K), a 
→ μK ⊗ a. Now I(St(K)) is an ideal in ZX by (38); using the
multiplication of ZX we obtain a map

(6.7) ZX ⊗ A(K) → A(St(K)), φ⊗ a 
→ (φ · μK)a.

If L ⊃ K, and we choose an element μL as above, then for a ∈ A(K) and φ ∈ ZX we
have:

(φ · μL) · a = (φ · μL) · (μK · a) = (φ · μK)a

This shows that (6.7) is independent of the choice of the element μK of (6.6), and that
we have a well-defined action ZX⊗A→ A. Compatibility with the G-action follows from
the fact that g · μK is the identity on g ·K. The remaining compatibility conditions are
immediate. Now A becomes an Z(Y )-module through f ∗. If K ⊂ X is a finite subsimplicial
set, then L = f(K) ⊂ Y is finite, and since Y is locally finite, there is a μL ∈ Z(Y ) which
is the identity on L, and thus f ∗(μL) is the identity on K. It follows that the action of
Z(Y ) on A satisfies (6.4). The remaining (G,Z(Y ))-compatibility conditions of (6.2) are
straightforward. �

If C,A ∈ H−Rings with C commutative and we have a compatible (H, C)-algebra
structure on A, then IndG

H(A) carries a compatible (G, IndG
H(C))-algebra structure, given

by

ξH(s, c) · ξH(t, a) =

{
ξH(s, c · a) s = t

0 sH 	= tH

If moreover C · A = A, then IndG
H(C) · IndG

H(A) = IndG
H(A). We record a particular case

of this in the following

Lemma 3.6.12. If A ∈ H−Rings is proper over an H-simplicial set X, then the G-ring
IndG

H(A) is proper over IndG
H(X).

6.3. Compression. Let A ∈ G−Rings, and H ⊂ G a subgroup. Assume that A is
proper over G /H. Let χH ∈ Z(G /H) be the characteristic function of H. The compression
of A over H is the subring

CompG
H(A) = χH · A

Note the action of G on A restricts to an action of H on CompG
H(A), which makes it into

an object of H−Rings.

Proposition 3.6.13. (Compare [11] Lemma 12.3, and paragraph after 12.4)
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i) If B ∈ H−Rings, then IndG
H(B) is proper over G /H, and

B → CompG
H IndG

H B, b 
→ ξH(1, b)

is an H-equivariant isomorphism.
ii) If A ∈ G−Rings is proper over G /H, then

IndG
H CompG

H(A) → A, ξH(s, χHa) 
→ χsHs(a)

is a G-equivariant isomorphism.

Proof. Any B ∈ H−Rings is proper over the 1-point space ∗. Hence IndG
H(B) is

proper over IndG
H(∗) = G /H, by Lemma 3.6.12. The proof that the maps of i) and ii) are

isomorphisms is straightforward; to show equivariance, one uses (44) and (46). �

7. Induction and equivariant homology

Lemma 3.7.1. Let G be a group, K ⊂ G a subgroup, A a K-ring, and E : Z−Cat →
Spt a functor satisfying the standing assumptions. Then A is E-excisive if and only if
IndG

K(A) is E-excisive.

Proof. The map (47) gives a nonequivariant isomorphism

IndG
K(A) ∼= Z(G /K) ⊗ A =

⊕
x∈G /K

A

The equivalence of the lemma follows from assumption v). �

Let G, K and A be as in the Lemma 3.7.1, and let X be a G-simplicial set. If A is
unital, then for each subgroup S ⊂ K we have a functor

A� GK(K/S) → IndGK(A) � GG(G /S)

kS 
→ kS,

a� k 
→ ξK(1, a) � k

If A is any E-excisive ring, the map above is defined for the unitalization Ã; applying E,
taking fibers relative to the augmentation Ã → Z, and using the standing assumptions,
we get a map

E(A� GK(K/S)) → E(IndG
K(A) � GG(G/S)).

The maps

XS
+ ∧ E(A� GK(K/S)) → XS

+ ∧ E(IndG
K(A) � GG(G/S)) → HG(X,E(IndG

KA))

assemble to

(7.1) Ind : HK(X,E(A)) → HG(X,E(IndG
K(A)))

Proposition 3.7.2. (Compare [11, Proposition 12.9]) Let A be an E-excisive G-ring.
Then the map (7.1) is an equivalence.
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Proof. Because equivariant homology satisfies excision on X [8, Section 8], and
because X is obtained by gluing together cells of the form IndG

H(Δn), H ∈ All, it suffices
to prove the proposition for X = IndG

H(T ) where H acts trivially on T . Let R be a full
set of representatives of K \G/H. We have

IndG
H(T ) =T ×G/H

=
∐
θ∈R

T ×K θH

∼=
∐
θ∈R

T ×K /Kθ

Here as in (49), Kθ = cθ(H) ∩K. Thus

HK(IndG
H(T ),E(A)) = T+ ∧

∨
θ∈R

E(A� GK(K /Kθ))

On the other hand,

HG(IndG
H(T ),E(IndG

K(A)) =T+ ∧ E(IndG
K(A) � GG(G/H))

We have to show that∨
θ∈R

E(A� GK(K /Kθ)) → E(IndG
K(A) � GG(G/H))

is an equivalence. By standing assumptions iv) and v) we may replace the map above by
that induced by the corresponding ring homomorphism

(7.2)
⊕
θ∈R

A(A� GK(K/Kθ)) → A(IndG
K(A) � GG(G/H))

Here A(A�GK(K/Kθ)) → A(IndG
K(A)�GG(G/H)) is induced by ξK(1,−) : A→ IndG

K(A)
and by the inclusions K ⊂ G and K/Kθ → G/H, kKθ 
→ kθH. One checks that the
following diagram commutes

A(IndG
K(A) � GG(G/H))

3.2.3
∼ ""�����������������

A(A� GK(K/Kθ))

ξK(1,−)�inc
##�����������������

MG/H(IndG
K(A) � H)

A� Kθ

��

� 1�cθ−1

��

ξK(θ−1,−)�cθ−1 �� IndG
K(A)[Hθ−1K] � H

eθH,θH

��

c∗θ(A) � Hθ−1

eH
θ−1 ,H

θ−1�� MH/Hθ−1
(c∗θ(A) � Hθ−1)

2.3.1
∼ �� IndH

Hθ−1
(c∗θ(A)) � H

∼ 2.2.11

��

Because the lower rectangle commutes, E(A�Kθ → IndG
K(A)[HθK]�H) is an equivalence,

by matrix stability. Again by matrix stability and by Lemma 3.2.3, applying E to the



8. ASSEMBLY AS A CONNECTING MAP 99

top left vertical arrow is an equivalence. Hence to prove that E applied to (7.2) is an
equivalence, it suffices to show that E applied to

(7.3) IndG
K(A) � H =

⊕
θ∈R IndG

K(A)[HθK] � H

∑
θ eθH,θH �� MG/H(IndG

K(A) � H)

is one. But another application of matrix stability (using Remark 1.7.15) shows that (7.3)
induces the same map in HoSpt as the inclusion

eH,H : IndG
K(A) � H →MG/H(IndG

K(A) � H).

This concludes the proof. �

Theorem 3.7.3. Let E : Z−Cat → Spt be a functor satisfying the standing assump-
tions 3.2.5. Also let G be a group, F a family of subgroups of G and B an E-excisive
ring, proper over a 0-dimensional (G,F)-complex X. Then HG(−,E(B)) maps (G,F)-
equivalences to equivalences. In particular, the assembly map

HG(E(G,F),E(B)) → E(B � G)

is an equivalence.

Proof. We have X =
∐

i G/Ki for some Ki ∈ F, and Z(X) =
⊕

i Z
(G/Ki). The ring

Bi = Z(G/Ki) · B is proper over G/Ki, and is excisive by standing assumption v). Again
by standing assumption v), it suffices to prove the assertion of the theorem individually
for each Bi; in other words, we may assume X = G/K for some K ∈ F. Hence for
A = CompK

GB we have B = IndG
KA, by Proposition 3.6.13. Moreover, by Lemma 3.7.1,

A is E-excisive. Let Y → Z be a (G,F)-equivalence. We have a commutative diagram

HG(Y,E(B)) �� HG(Z,E(B))

HK(Y,E(A))

Ind

��

�� HK(Z,E(A))

Ind

��

The bottom horizontal arrow is an equivalence because K ∈ F. The two vertical arrows
are equivalences by Proposition 3.7.2. It follows that the top horizontal arrow is an
equivalence too. �

8. Assembly as a connecting map

Throughout this section, we consider a fixed functor E : Z − Cat → Spt, and –
except when otherwise stated– we assume that, in addition to the standing assumptions,
it satisfies the following:

Sectional Assumptions 3.8.1.
vi) E∗ commutes with filtering colimits.
vii) If A is E-excisive and L has local units and is flat as a Z-module, then L ⊗ A is
E-excisive.
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8.1. Preliminaries.
Mapping cones. Let f : A → B be a ring homomorphism, the mapping cone of f is

defined as the pullback
Γf

��

�� ΓB

��
ΣA

Σf
�� ΣB

Lemma 3.8.2. Let E : Z−Cat → Spt be a functor satisfying both the standing and
the sectional assumptions, and f : A→ B a homomorphism of strongly E-excisive rings.
Then

i) E(ΓB) is weakly contractible.
ii) E(ΣB)

∼−→ Σ E(B).
ii) Assume that Γf is E-excisive. Then the following is a distinguished triangle in HoSpt

E(B) → E(Γf) → Σ E(A) → Σ E(B)

Proof. By Lemma 3.3.2, ΓB = ΓZ ⊗ B, whence it is E-excisive. Part i) follows
from matrix stability and the fact that ΓZ is a ring with infinite sums (see e.g. [3, Prop.
2.3.1]). Parts ii) and iii) follow from i) and excision. �

Matrix rings and group actions.

Lemma 3.8.3. Let G be a group, A a G-ring and X a G-set. Write MX for the ring
MX equipped with the G-action

g(ex,y) = egx,gy
The map

(MXA) � G →MX(A� G), (ex,y ⊗ a) � g 
→ ex,g−1y ⊗ (a� g)

is a G-equivariant isomorphism of rings.

8.2. Dirac extensions. Let G be a group, F a family of subgroups, E : Z−Cat →
Spt a functor satisfying the standing assumptions, and A an E-excisive ring. A Dirac
extension for (G,F, A,E) consists of an extension of E-excisive G-rings

(8.1) 0 → B → Q→ P → 0

together with a zig-zag

A = Z0

f0 �� Z1 Z2

f2�� f3 �� . . . Zn = B

such that

a) E(fi � H) is an equivalence for every subgroup H ⊂ G.
b) E∗(Q� H) = 0 for every H ∈ F.
c) The assembly map HG(E(G,F),E(P )) → E(P � G) is an equivalence.

Proposition 3.8.4. Let E : Z − Cat → Spt be a functor satisfying the standing
assumptions, G a group, F a family of subgroups of G, and A a G-ring. Let (8.1) be a
Dirac extension for (G,F, A,E). Then there are an exact sequence

E∗+1(A� G) → E∗+1(Q� G) → E∗+1(P � G)
∂→ E∗(A�G)
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an isomorphism HG
∗ (E(G,F),E(A)) ∼= E∗+1(P � G), and a commutative diagram

HG
∗ (E(G,F),E(A))

∼= ����������������

Assembly �� E∗(A� G)

E∗+1(P � G)

∂
��������������

Proof. Condition a) together with standing assumptions iii) and iv) and Lemma
3.2.3 imply that the zig-zag f = {fi} induces an equivalence

HG(X,E(A))
∼−→ HG(X,E(B))

for every G-space X. Hence by Proposition 3.2.6 we have a distinguished triangle

HG(X,E(A)) �� HG(X,E(Q)) �� HG(X,E(P ))
∂X

�� ΣHG(X,E(A))

The proposition follows by comparison of the long exact sequence of homotopy associated
to the triangles for X = E(G,F), and X = ∗, and noting that condition b) implies that
HG

∗ (E(G,F),E(Q)) = 0. �

8.3. A canonical Dirac extension. Let G be a group and F a family of subgroups.
Consider the discrete G-simplicial sets

X = XF =
∐
H∈F

G /H, Y = G /G
∐

X

The group G acts on Y and thus on the ring MY of Y × Y -matrices with finitely many
nonzero integral coefficients. The point y0 corresponding to the unique orbit of G /G is
fixed by G, whence the map ι : Z → MY , λ → λey0,y0 is G-equivariant. In particular we
have a directed system of G-rings {id⊗ι : (M∞MY )⊗n → (M∞MY )⊗n+1}n. Put

F0 = colim
n

(M∞MY )⊗n

Since X is discrete, the ring of finitely supported functions breaks up into a sum

Z(X) =
⊕
x∈X

Zχx

Multiplication by an element of MY gives an Z-linear endomorphism of Z(Y ). This defines
a monomorphism

MY → EndZ(Z(Y ))

whose image consists of those linear transformations T such that the matrix of T with re-
spect to the basis {χy : y ∈ Y } has finitely many nonzero entries. Note that multiplication
by χx in Z(X) ⊂ Z(Y ) is in this image. Thus we have an injective ring homomorphism

ρ : Z(X) → MY

For each n ≥ 1, consider the G-ring

Fn =

(
n⊗
i=1

Γρ

)
⊗ F0
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Note that Fn = (
⊗n

i=1 Γρ)⊗ F0 = (
⊗n

i=1 Γρ)⊗M∞MY ⊗F0. The inclusion M∞MY → Γρ
induces an inclusion Fn ⊂ Fn+1 for each n ≥ 0. Put

F∞ =
⋃
n≥0

Fn

If A ∈ Rings, we also write FnA = Fn ⊗ A (n ≥ 0). We have

Lemma 3.8.5.
i) Fn ⊂ F∞ is an ideal (n <∞).
ii) For each n ≥ 0, Fn and Fn+1/Fn ∼= ΣZ(X) ⊗ Fn have local units, and are (G,F)-proper
rings and are flat as abelian groups.

iii) If H ∈ F, x ∈ G /H, and A is a G-ring, we have a commutative diagram

(Z(G /H) ⊗ FnA) � H ⊂ (Z(X) ⊗ FnA) �H
(ρ⊗1)�id

�� (MY FnA) � H

� (3.8.3)

��
FnA� H

χx⊗1

��

ex,x⊗−
�� MY (FnA� H)

Proof. Part i) is clear. Because MY is proper over Y , Fn is proper over Y for all n,
by 3.6.8. Similarly,

(8.2) Fn+1/Fn = ΣZ(X) ⊗ Fn

is proper. That Fn is flat is clear for n = 0; the general case follows by induction, using
(8.2). The ring F0 has local units because MY and M∞ do. To prove that Fn has local
units for n ≥ 1, it suffices to show that Γρ does. We may and do identify Γρ with the
inverse image of Σ(ρ(Z(X))) under the projection π : ΓMY → ΣMY ; thus

Γρ = Γρ(Z(X)) +M∞MY ⊂ ΓMY

One checks that if φ1, . . . , φr ∈ Γρ, then there are finite subsets F1 ⊂ X and F2 ⊂ N such
that for y0 = G/G ∈ Y , the element

e = 1⊗
∑
x∈F1

ex,x +
∑
p∈F2

ep,p ⊗ ey0,y0 ∈ Γρ

satisfies e2 = e and eφi = φie = φi for all i = 1, . . . , r. This proves part ii); part iii) is
straightforward. �

Theorem 3.8.6. (Compare [23, Theorem 5.18]) Let E : Z−Cat → Spt be a functor
satisfying both the standing and the sectional assumptions. Let G a group, F a family of
subgroups, and A a G-ring. Then

F0A→ F∞A→ F∞A/F0A

is a Dirac extension for (G,F, A,E).

Proof. The three rings in the extension of the theorem are E-excisive, by Lemma
3.8.5 ii) and the hypothesis on A. The map E(A) → E(F0A) is an equivalence by standing
assumption iii) and the assumption that E∗ commutes with filtering colimits. Next we
prove that the assembly map HG(E(G,F),E(F∞A/F0A)) → E(F∞A/F0A � G) is an
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equivalence. By excision and the hypothesis that E∗ commutes with filtering colimits, it
suffices to show that

(8.3) HG(E(G,F),E(FnA/F0A)) → E(FnA/F0A� G)

is an equivalence. Consider the extension

0 → FnA/F0A→ Fn+1A/F0A→ Fn+1A/FnA→ 0

By Proposition 3.2.6, assembly gives a map of homotopy fibration sequences

HG(E(G,F),E(FnA/F0A)) ��

��

E(FnA/F0A� G)

��
HG(E(G,F),E(Fn+1A/F0A)) ��

��

E(Fn+1A/F0A� G)

��
HG(E(G,F),E(Fn+1A/FnA)) �� E(Fn+1A/FnA� G)

By Lemma 3.8.5 and Theorem 3.7.3, the bottom horizontal map is an equivalence. Hence
(8.3) is an equivalence for each n, by induction. It remains to show that E∗(F∞A�H) = 0
for each H ∈ F. Because E∗ preserves filtering colimits by assumption, we may further
restrict ourselves to proving that the map jn : E∗(FnA � H) → E∗(Fn+1A � H) induced
by inclusion is zero for all n. By Lemma 3.8.2 we have a long exact sequence (q ∈ Z)

Eq(F
nA� H)

jn �� Eq(F
n+1A� H) �� Eq−1(Z(X) ⊗ FnA� H)

∂
��

Eq−1(F
nA� H)

where ∂ = Eq−1(ρ ⊗ 1 � 1). By Lemma 3.8.5, part iii), ∂ is a split surjection. It follows
that jn = 0; this concludes the proof. �

Example 3.8.7. The hypothesis of Theorem 3.8.6 are satisfied, for example, by the
functorial spectra K and KH .

9. Isomorphism conjectures with proper coefficients

9.1. The excisive case.

Theorem 3.9.1. Let E : Z − Cat → Spt be a functor. Assume that E is excisive,
additive and matrix-stable. Let A ∈ G−Rings be proper over a locally finite, finite
dimensional (G,F)-complex X. Then the assembly map

HG(E(G,F),E(A)) → E(A� G)

is a weak equivalence.
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Proof. If dimX = 0, this follows from Theorem 3.7.3. Let n > 0 and assume the
theorem true in dimensions < n. If dimX = n, and Y ⊂ X is the n−1-skeleton, we have
a pushout diagram ∐

i IndG
Hi

(Δn) �� X

∐
i IndG

Hi
(∂Δn) ��

��

Y

��

Here Hi ∈ F and the horizontal arrows are proper, since X is assumed locally finite.
Hence we obtain a pullback diagram⊕

i Z
(Δn) ⊗ Z(G /Hi)

��

Z(X)��

��⊕
i Z

(∂Δn) ⊗ Z(G /Hi) Z(Y )��

Let I = ker(Z(X) → Z(Y )) be the kernel of the restriction map; because the diagram
above is cartesian, I ∼= ⊕i ker(Z

(Δn) ⊗ Z(G /Hi) → ⊕i Z
(∂Δn) ⊗ Z(G /Hi)). The quotient

A/I · A is proper over Y , and I · A is proper over
∐

i IndG
Hi

(Δn), whence also over the
zero-dimensional

∐
i G /Hi, by Lemma 3.6.11. Thus the theorem is true for both A/I ·A

and I · A; because E is excisive by hypothesis, this implies that the theorem is also true
for A. �

Theorem 3.9.2. Let E : Z − Cat → Spt be a functor. Assume that E is excisive
and matrix stable, and that E∗ commutes with filtering colimits. Let F be a family of
subgroups of a group G. Let A ∈ G−Rings be proper over a locally finite (G,F)-complex
X. Then the assembly map

HG
∗ (E(G,F),E(A)) → E∗(A� G)

is an isomorphism.

Proof. By Lemma 3.6.10, we may write A as a filtering colimit A = colimiAi such
that each Ai is proper over a finite (G,F) complex. Because E∗ commutes with filtering
colimits by hypothesis, we may therefore restrict to the case when X is a finite (G,F)-
complex. Now apply Theorem 3.9.1. �

Example 3.9.3. Homotopy K-theory satisfies the hypothesis of Theorem 3.9.2.
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104 p., 2002.

31. C.A. Weibel, Mayer-Vietoris sequences and mod p K-theory, Algebraic K-theory, Proc. Conf., Ober-
wolfach 1980, Part I, Lect. Notes Math. 966, 390-407, 1982.

32. Charles A. Weibel, Homotopy algebraic K-theory, Algebraic K-theory and algebraic number theory,
Proc. Semin., Honolulu/Hawaii 1987, Contemp. Math. 83, 461-488, 1989.

33. , An introduction to homological algebra. 1st pbk-ed., Cambridge Studies in Advanced Math-
ematics. 38. Cambridge: Cambridge Univ. Press. xiv, 450 p, 1995.


