How analysis and topology interact in bivariant K-theory

Ralf Meyer

VASBI ICM Satellite Conference on K-theory and Noncommutative Geometry 5.8.2006

The goal

- We will review some basic properties of bivariant K-theory for C^* -algebras, focussing on its universal property and universal coefficient theorems.
- We will see a general scheme for the study of Assembly Maps and Universal Coefficient Theorems in the context of C^{*}-algebra K-theory:
 - the original problem is replaced by a *localisation* that is purely topological;
 - the original problem and its localisation are related using analysis.

1 Triangulated categories of C^* -algebras

1.1 Kasparov Theory and E-theory

- We want to view Kasparov Theory as a C*-algebraic analogue of the derived category of *motives*.
- A functor F from the category C^* of (separable) C^* -algebras to an additive category \mathcal{A} is called

stable if $F(A) \xrightarrow{\cong} F(\mathbb{K}(\ell^2 \mathbb{N}) \otimes A);$

homotopy invariant if $F(A) \xrightarrow{\cong} F(C([0,1],A));$

split-exact if it is exact on *split* extensions;

exact if it is *half*-exact on all extensions.

Definition 1. Let $C^* \to KK$ and $C^* \to E$ be the *universal* functors that are stable and split-exact or exact.

Theorem 2 (Higson). stable & split-exact \implies homotopy invariant

Question 3. Do KK and E exist? — Yes, obviously.Can we describe KK and E explicitly?

Some historic comments

Atiyah tried to construct K-homology via elliptic differential operators.

Brown-Douglas-Fillmore related K-homology to C^* -algebra extensions.

Kasparov defined KK via generalised elliptic operators and related it to extensions.

Cuntz described $\operatorname{KK}(A, B)$ as the set of homotopy classes of *-homomorphisms $qA \to B \otimes \mathbb{K}$ or $q(A \otimes \mathbb{K}) \to q(B \otimes \mathbb{K})$, where $qA = \operatorname{ker}(A \sqcup A \xrightarrow{(\operatorname{id},\operatorname{id})} A)$, and almost stated its universal property.

Higson stated the *universal property* of KK and defined E via its universal property.

Connes-Higson realised E(A, B) using asymptotic morphisms

 $A \otimes C_0(\mathbb{R}, \mathbb{K}) \to B \otimes C_0(\mathbb{R}, \mathbb{K}).$

Equivariant generalisations

Let G be a locally compact group.

Definition 4. A functor F on G- C^* -algebras is called *stable* if

 $A \otimes \mathbb{K}(\mathcal{H}_1) \to A \otimes \mathbb{K}(\mathcal{H}_1 \oplus \mathcal{H}_2) \leftarrow A \otimes \mathbb{K}(\mathcal{H}_2)$

are isomorphisms for all G-Hilbert spaces.

Definition 5. KK^G and E^G are the universal stable (split) exact functors on the category of G- C^* -algebras.

References

 R. Meyer. Equivariant Kasparov theory and generalized homomorphisms. K-theory 21, 2000.

Properties of KK and E

- Bott periodicity
- KK^G is exact for *certain* extensions.
- $\mathrm{KK}_*(\mathbb{C}, A) \cong \mathrm{K}_*(A)$ and $\mathrm{E}_*(\mathbb{C}, A) \cong \mathrm{K}_*(A)$.
- KK^G and E^G are *triangulated* categories, with triangles defined by *mapping cone* triangles.
- KK^G and E^G are *tensor* triangulated categories.
- The universal property yields a natural transformation $\mathrm{KK}^G_*(A, B) \to \mathrm{E}^G_*(A, B)$, which is an isomorphism if G is trivial and A is nuclear.

• Universal Coefficient Theorem: If A is KK-equivalent to a commutative C^* -algebra, then there is a natural exact sequence

 $\operatorname{Ext}(\operatorname{K}_*(A), \operatorname{K}_{1-*}(B)) \longrightarrow \operatorname{KK}_*(A, B) \twoheadrightarrow \operatorname{Hom}(\operatorname{K}_*(A), \operatorname{K}_*(B)).$

• Is there a nuclear C^* -algebra for which this fails?

Commutative versus non-commutative topology

- Separable *commutative* C^* -algebras are equivalent to pointed *compact* metrisable spaces.
- The thick subcategory of KK where the UCT holds is equivalent to a full subcategory of a similar localisation of the *stable homotopy category*.
- Its right-orthogonal complement is the thick subcategory \mathcal{N} of C^* -algebras with $K_*(A) = 0$.
- This subcategory is not tractable by topological methods.
 Question 6. Does N have any non-zero compact objects?
 What are the thick subcategories of N?

What is the analogy to motives?

- KK^G and E^G are *universal* homology theories (for suitable notions of homology theory).
- We need and have a more *concrete description*.
- They form triangulated tensor categories.
- Correspondences from X to Y generate $KK_*(C_0(X), C_0(Y))$ (Connes-Skandalis).

$$-Y \xleftarrow{f}_{\text{K-oriented}} Z \xrightarrow{g}_{\text{proper}} X$$
$$-f_! \in \text{KK}_* (C_0(Z), C_0(Y)) \quad g^* \in \text{KK}_* (C_0(X), C_0(Z))$$
$$-f_! \circ g^* \in \text{KK}_* (C_0(X), C_0(Y))$$

Other triangulated categories

- Relaxing our requirements for homology theories further, we can define other universal triangulated categories of C^* -algebras.
- *Thom*: add homotopy invariance, replace stability by *matrix-stability*, get *connective* version of E-theory which is still functorial for *finite* correspondences.
- Other *alternative*: require stability for compact operators and suspensions, homotopy invariance, and Puppe exact sequences

2 Assembly maps with spaces and C^* -algebras

2.1 Classifying spaces and homotopy quotients

Idea: replace a badly behaved groupoid by a homotopy equivalent one with better properties (free, proper)

EG universal free proper G -space		$BG \ G \backslash EG$
\mathcal{EG} universal	proper G-space	$\mathcal{BG}\ Gackslash \mathcal{EG}$

Definition 7. Homotopy quotient: $G \setminus (X \times EG)$ Alternative: $G \setminus (X \times \mathcal{E}G)$

Example 8 (Homeomorphism $f: X \to X$). • take $E\mathbb{Z} = \mathcal{E}\mathbb{Z} = \mathbb{R}$

• homotopy quotient = mapping torus $X \times [0,1] / (0,x) \sim (1, f(x))$

Homotopy quotients and localisation

- $EG \rightarrow \star$ is *non-equivariant* homotopy equivalence
- $X_1 \xrightarrow{f} X_2$ non-equivariant homotopy equivalence $\iff X_1 \times EG \xrightarrow{f_*} X_2 \times EG$ *G-equivariant* homotopy equivalence
- Passage to $X \times EG$ localises at non-equivariant homotopy equivalences.
- $\mathcal{E}G \to \star$ is *H*-equivariant homotopy equivalence $\forall H \subseteq G$ compact
- $X_1 \xrightarrow{f} X_2$ *H*-equivariant homotopy equivalence $\forall H \subseteq G$ compact $\iff X_1 \times \mathcal{E}G \xrightarrow{f_*} X_2 \times \mathcal{E}G$ *G*-equivariant homotopy equivalence
- Passage to $X \times \mathcal{E}G$ localises at equivariant homotopy equivalences with respect to compact subgroups.

Range of the localisation

- $X \times EG \to X$ is a G-homotopy equivalence $\iff X$ is free and proper G-space
- $X \times \mathcal{E}G \to X$ is a *G*-homotopy equivalence $\iff X$ is proper *G*-space
- Summing up, up to G-homotopy equivalence the functors $_\times EG$ and $_\times \mathcal{E}G$ retract the category of G-spaces onto the subcategory of (free and) proper G-spaces.

2.2 Transition to C*-algebras

Transition to C^* -algebras

- we have no maps $C_0(X \times EG) \to C_0(X)$ or $C_0(X \times \mathcal{E}G) \to C_0(X)$ because $X \mapsto C_0(X)$ is only functorial for proper maps.
- If we use the pro- C^* -algebra $C(\mathcal{E}G) = \lim_{K \to C} C(K)$, where K runs through the compact subsets of $\mathcal{E}G$, we do get a map $C(X \times \mathcal{E}G) \to C(X)$, but there is no crossed product $G \ltimes C(X \times \mathcal{E}G)$.
- Solution: replace spaces by duals in KK^G :

Definition 9. A *G*-equivariant *dual* for a *G*-space *X* is a *G*-*C*^{*}-algebra P_X for which there exists a natural isomorphism

$$\operatorname{RKK}^G_*(X; A, B) \cong \operatorname{KK}^G_*(P_X \otimes A, B)$$

compatible with tensor products.

What is RKK^G ?

- Consider the transformation groupoid $G \ltimes X$.
- $G \ltimes X$ - C^* -algebras are G-equivariant bundles of C^* -algebras over X.
- Can define $KK^{G \ltimes X}$ and $E^{G \ltimes X}$ by universal properties, have similar properties as KK and E.
- A C^* -algebra A yields a constant bundle $C_0(X, A)$ over X.
- RKK^G_{*}(X; A, B) = KK^{G \vee X} (C₀(X, A), C₀(X, B))

Properties of duals

- If X is compact, then $\operatorname{RKK}^G_*(X; A, B) \cong \operatorname{KK}^G_*(A, C(X, B)).$
- $\operatorname{RKK}_*(X; \mathbb{C}, \mathbb{C})$ is the representable K-theory of X.
- A Cantor set has *no* dual.
- If X is a smooth spin manifold with isometric action of G preserving the spin structure, then $C_0(X)$ is a G-equivariant dual for X.
- Any locally finite, countable, finite-dimensional *simplicial complex* with simplicial action of G has a G-equivariant dual.
- $X \mapsto \operatorname{RKK}^G_*(X; A, B)$ is a homotopy invariant contravariant functor.
- $X \mapsto P_X$ is covariant functor
- Get $\operatorname{RKK}^G_*(X; A, B) \cong \operatorname{KK}^G_*(P_X \otimes A, B)$ from

 $D \in \mathrm{KK}^G_*(P_X, \mathbb{C}), \qquad \text{Dirac morphism}$ $\Theta \in \mathrm{RKK}^G_*(X; \mathbb{C}, P_X), \quad \text{local dual Dirac morphism}.$

Dual of $\mathcal{E}G$

- \forall locally compact groups $G, \mathcal{E}G$ has a dual.
- $\mathcal{E}G \to \star$ induces $D \in \mathrm{KK}^G(P_{\mathcal{E}G}, \mathbb{C})$ (Dirac morphism)
- D becomes invertible in $\operatorname{RKK}^G_*(\mathcal{E}G; P_{\mathcal{E}G}, \mathbb{C})$ and $\operatorname{KK}^H_*(P_{\mathcal{E}G}, \mathbb{C})$ for compact subgroups $H \subseteq G$
- The inverse is the local dual Dirac $\Theta \in \operatorname{RKK}^G_*(\mathcal{E}G; \mathbb{C}, P_X).$
- $D \otimes \mathrm{id}_A \in \mathrm{KK}^G(P_{\mathcal{E}G} \otimes A, A)$ localises KK^G at the weak equivalences.
- $D \otimes \mathrm{id}_A$ invertible $\iff A \mathrm{KK}^G$ -equivalent to proper G- C^* -algebra
- $K_*(G \ltimes_r (P_{\mathcal{E}G} \otimes A)) \to K_*(G \ltimes_r A)$ is the *Baum-Connes assembly map* with coefficients A.

2.3 How coarse geometry comes into play

Global dual Dirac

Definition 10. (Global) dual Dirac: $\eta \in \mathrm{KK}^G(\mathbb{C}, P_{\mathcal{E}G})$ with $p_{\mathcal{E}G}^*(\eta) = \Theta$

- equivalent: $D \otimes \eta = 1_{P_{\mathcal{E}G}}$ in $\mathrm{KK}^G(P_{\mathcal{E}G}, P_{\mathcal{E}G})$
- η exists \implies the assembly map is *split injective* with section induced by η .
- The existence of η is a *geometric* property of G:

Theorem 11 (Emerson and Meyer). Let G_1 and G_2 be torsion-free discrete groups with finite-dimensional BG. If G_1 and G_2 are coarsely equivalent and G_1 has a dual Dirac, so has G_2 .

• Idea of proof: existence of dual Dirac is equivalent to invertibility of

 $p_{\mathcal{E}G}^*$: KK^G ($\mathbb{C}, C_0(G)$) \rightarrow RKK^G ($\mathcal{E}G; \mathbb{C}, C_0(G)$).

This map only depends on the coarse space underlying G.

Summary

Our treatment of assembly maps for group actions fits into a general scheme:

- We want to compute some homology theory for C^* -algebras.
- First we *localise* the homology theory at a suitable class of weak equivalences.
- This should replace the problem by another one that is tractable by methods from algebraic topology.
- The comparison of the localised and the original problem will probably involve some analysis and special geometric properties of the setup.
- This is how Kasparov theory allows us to prove statements that cannot be proven purely topologically.