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K-teoŕıa Hermitiana Algebraica Bivariante

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires
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Hermitian Bivariant Algebraic K-theory
Summary

Consider a commutative ring ` with involution with an element λ ∈ ` such that
λ+λ∗ = 1; write Alg∗` for the category of `-algebras with involution compatible with
that of `, which we call ∗-algebras. In this thesis we develop a triangulated category
kkh and a functor jh : Alg∗` → kkh which we call bivariant algebraic hermitian K-
theory ; the functor jh satisfies homotopy invariance, matrix and hermitian stability
and is an excisive homology theory for extensions which are linearly split.

We also define a Weibel style homotopy invariant hermitian K-theory which we
denote as KHh

∗ . We show that the category kkh recovers KHh
0 as a representable

functor
homkkh(`, A) ∼= KHh

0 (A).

We construct functors εU and εV which correspond to desuspensions of the functors
U ′ and V ′ in Karoubi’s Fundamental Theorem: for a unital R ∈ Alg∗` there is an
element θ0 ∈ Kh

2 (U ′2R) which the cup product induces an isomorphism

εK
h
∗ (V ′(R)) ∼= −εK

h
∗+1(U ′(R)).

We prove an adjunction between kkh and the bivariant algebraic K-theory kk as
defined by Cortiñas and Thom and use it to prove a version of Karoubi’s theorem
in kkh: the product with the image of θ0 in KHh

0 (U2`) induces an isomorphism in
kkh

jh(εV A) ∼= Ωjh(−εUA)

for any A ∈ Alg∗` . This allows us to obtain a bivariant homotopic version of the
classical 12-term exact sequence of Karoubi for hermitian K-theory.

Keywords: hermitian algebraic K-theory, Karoubi’s fundamental theorem, ho-
motopy hermitian K-theory, bivariant algebraic K-theory, bivariant Witt groups

i



ii

K-teoŕıa Algebraica Hermitiana Bivariante
Resumen

Consideremos un anillo conmutativo ` con involución con un elemento λ ∈ ` tal que
λ+λ∗ = 1; sea Alg∗` la categoŕıa de `-algebras con involución compatible con la de `
que llamamos ∗-algebras. En esta tesis desarrollamos una categoŕıa triangulada kkh

y un funtor jh : Alg∗` → kkh que llamamos K-teoŕıa hermitiana algebraica bivari-
ante; el funtor jh satisface invarianza homotópica, estabilidad matricial y hermitiana
y es una teoŕıa de homoloǵıa escisiva para extensiones que se parten linealmente.

También definimos una versión invariante homotópica estilo Weibel de la K-
teoŕıa hermitiana que notamos comoKHh

∗ . Mostramos que la categoŕıa kkh recupera
KHh

0 como funtor representable

homkkh(`, A) ∼= KHh
0 (A).

Construimos funtores εU y εV que se corresponden con desuspensiones de los fun-
tores U ′ y V ′ en el Teorema Fundamental de Karoubi: para R ∈ Alg∗` unital hay un
elemento θ0 ∈ Kh

2 ((U ′2)R) cuyo producto cup induce un isomorfismo

εK
h
∗ (V ′(R)) ∼= −εK

h
∗+1(U ′(R)).

Probamos una adjunción entre kkh y la K-teoŕıa algebraica bivariante kk definida
por Cortiñas y Thom y la usamos para probar una versión del teorema de Karoubi
en kkh: el producto con la imagen de θ0 en KHh

0 (U2`) induce un isomorfismo en
kkh

jh(εV A) ∼= Ωjh(−εUA)

para todo A ∈ Alg∗` . Esto nos permite obtener una versión bivariante homotópica
de la clásica sucesión de 12 términos de Karoubi para la K-teoŕıa hermitiana.

Palabras clave: K-teoŕıa hermitiana algebraica, teorema fundamental de Karoubi,
K-teoŕıa hermitiana homotópica, K-teoŕıa algebraica bivariante, grupos bivariantes
de Witt
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Introduction

Since the introduction of Kasparov’s bivariantK-theory for C∗-algebrasKK [Kas80],
Higson’s theorem on the universality of KK [Hig87] and Cuntz’s foundational work
[Cun87; Cun05], the development of bivariant versions of K-theory has been useful
and important in many computations. This ranges from applications to the Baum-
Connes conjecture, classification theory of C∗-algebras such as the Elliott program
and the Kirchberg-Philips theorem but also to put some constructions in different
versions of K-theory — between different topological versions such as C∗-algebras,
Banach (∗-)algebras and bornological algebras and also algebraic K-theory — on
common ground. It also has been very fruitful in proving some cases of the Baum-
Connes conjecture.

Cortiñas and Thom developed in [CT07] a bivariant version of algebraic K-
theory with many similarities to KK, adapting them to an algebraic setting. Let
` be a commutative ring and write Alg` as the category of (associative) algebras
over `. Also fix an underlying category U for Alg` such as that of sets or that of
`-modules and a forgetful functor F : Alg` → U. Cortiñas and Thom construct a
triangulated category kk which has the same objects as Alg` together with a functor
j : Alg` → kk which is the identity on objects and satisfies:

• Matrix stability: the natural inclusion of A ↪→M∞A on the upper left corner
maps to an isomorphism through j.

• Polynomial homotopy invariance: the inclusion A → A[t] as constants maps
to an isomorphism through j.

• The functor j is an excisive homology theory for extensions which are split in
U, that is, for an extension

0→ A→ B → C → 0

in Alg` which has a section F (C)→ F (B), there is a natural (with respect to
extensions) map ∂ : Ωj(C)→ j(A) such that

Ωj(C)→ j(A)→ j(B)→ j(C)

is a triangle in kk.

Moreover, for any triangulated category T and functor H : Alg` → T which satisfies
the above mentioned properties, there is a unique triangulated functor H : kk → T
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such that H = H ◦ j. A very important property of kk is that it recovers Weibel’s
homotopy K-theory as a representable functor

homkk(`, A) = KH0(A).

There have been alternative constructions of kk by Garkusha — who also con-
structed bivarant K-theory versions without matrix stability — [Gar13; Gar14;
Gar16] and Rodŕıguez Cirone [Rod20]. Also, there have been generalizations of
the original construction of kk to algebras with an action of a group and group
graded algebras [Ell14] and to algebras with quantum group actions [Ell18].

In this thesis we construct a generalization of kk which incorporates algebras
with involution: for a ring R, an involution is a ring morphism (−)∗ : R→ Rop with
(r∗)∗ = r. Suppose now that ` has an involution and an element λ which satisfies

λ+ λ∗ = 1. (Intro.1)

Consider the category Alg∗` of `-algebras with involution compatible with the invo-
lution of `.

Let R ∈ Alg∗` unital and ε ∈ R central unitary (i.e. ε−1 = ε∗). An element
φ ∈ R is called ε-hermitian if φ∗ = εφ. For an invertible ε-hermitian element, we
define Rφ as the ∗-ring which is the same as R as rings but with involution

rφ = φ−1r∗φ.

When A E R is a ∗-ideal, this involution restricts to a new involution in A and we
also write Aφ for A equipped with involution. We say a functor H : Alg∗` → C is
hermitian stable if for any R ∈ Alg∗` unital and A E R and invertible ε-hermitian
elements φ, ψ ∈ R the inclusion on the upper left corner

iφ : Aφ →M2(A)φ⊕ψ

is mapped to an isomorphism through H.
In Chapter 3 we construct a triangulated category kkh which has the same objects

as Alg∗` together with a functor jh : Alg∗` → kkh which is the identity on objects. One
of the key pieces in this construction is the ability to fix some standard polynomial
homotopies commonly occurring on K-theory (such as rotation homotopies) which
are not involution preserving; this is mainly fixed with Lemma 1.2.3; the existence
of the element (Intro.1) is essential. The main result in Chapter 3 is the following:

Theorem (Theorem 3.2.17 and Theorem 3.2.20) There is a triangulated category
kkh and an excisive homology theory functor jh : Alg∗` → kkh which is matricially
and hermitian stable and polynomial homotopy invariant.

Furthermore, the functor jh : Alg∗` → kkh is universal between the matricially
and hermitan stable, polynomial homotopy invariant excisive homology theories.

For a unital ring with involution R and a central unitary element ε ∈ R, recall
the hermitan algebraic K-theory spectra εK

h(R) as defined in [Lod76]. In Chapter
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2 we define a Weibel style homotopy invariant version of εK
h
∗ (R) which we denote

εKH
h
∗ (R).

In Chapter 4 we discuss some standard computations such as classification of
the image through jh of coproducts, the Toeplitz algebra, and the Cohn algebra
of a finite graph and also prove the algebraic analogue of the Pimsner-Voiculescu
sequence. We also show the following result:

Theorem(Theorem 4.2.1) There is a natural isomorphism

homkkh(`, A) ∼= KHh
0 (A). (Intro.2)

For a unital ∗-ring R, there are natural maps between the K-theory spectra and
the hermitian K-theory spectra induced by the hyperbolic and the forgetful maps

hyp :K(R)→ εK
h(R) forg :εK

h(R)→ K(R)

Write εU(R) and εV(R) for the homotopy fibers of these maps. Assume that R has
an element as in (Intro.1). Karoubi’s Fundamental Theorem for hermitian K-theory
[Kar80] shows that there are natural homotopy equivalences

εV(R) ∼ Ω−εU(R).

Moreover, Karoubi constructs functors U ′, V ′ for rings with involutions such that
there are homotopy equivalences

εK
h(U ′R) ∼ εU(R) and εK

h(V ′R) ∼ εV(R).

Karoubi also shows that there is a natural equivalence

εK
h(U ′V ′R) ∼ −εKh(R).

Thus, we can rephrase Karoubi’s fundamental theorem as the equivalence

εK
h(R) ∼ Ω2

−εK
h((U ′)2R). (Intro.3)

The equivalence (Intro.3) is induced by the cup product with an element in θ0 ∈
−1K

h
2 ((U ′)2(Z)).

In Chapter 5 we show that kkh has a adjunction with kk which is analogue to the
maps hyp and forg in the homotopy invariant setting. Then we construct functors

εU, εV : Alg∗` → Alg∗` such that composing with the functor of homotopy hermitian
algebraic K-theory we recover the homotopy versions of εV and εU up to a degree
shift. Using the aforementioned adjunction we show that εU and εV have analogue
properties in kkh to those of U ′ and V ′ for hermitian K-theory. Write θ for the
image of θ0 in −1KH

h
0 (U2`). The main result of Chapter 5 is

Theorem (Theorem 5.3.1 and Corollary 5.3.2) The product with θ induces for
every A ∈ Alg∗` an isomorphism in kkh

jh(A) ∼= jh(−1U
2(A)), (Intro.4)
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which gives an isomorphism in kkh

jh(εV A) ∼= jh(−εUA).

Let R be a unital ∗-ring with an element λ which satisfies (Intro.1). The invo-
lution of R induces an involution g → (g∗)−1 in GL∞(R) which in turn induces a
natural action of Z/2 in K∗(R); for x ∈ Kn(R) write x for this action. Recall the
Witt and coWitt groups εWn(R) and εW

′
n(R) and write kn(R) and k′n(R) for the

Z/2-Tate cohomology groups of Kn(R) with the aforementioned action. Using the
equivalence (Intro.3), Karoubi shows that there is a 12-term exact sequence:

kn+1(R) −εWn+2(R) εW
′
n(R) k′n+1(R) −εW

′
n+1(R) −εWn(R)

Wn+1(R) W ′
n+1(R) k′n+1(R) −εW

′
n(R) Wn+2(R) kn+1(R)

In the end of Chapter 5, we show that for bivariant adaptation of these groups
(Definition 5.3.6) and we have a 12-term exact sequence (Theorem 5.3.7):

kn+1(A,B) −εWn+2(A,B) εW
′
n(A,B) k′n+1(A,B) −εW

′
n+1(A,B) −εWn+1(A,B)

εWn+1(A,B) εW
′
n+1(A,B) k′n+1(A,B) −εW

′
n(A,B) εWn+2(A,B) kn(A,B)

The rest of this thesis is outlined the following way. In Chapter 1 we discuss
preliminary concepts and prove some useful lemmas that we will use throughout the
thesis. In Chapter 2 we recall the construction of hermitian K-theory, we define
KHh and prove some of its basic properties; we also discuss the product structure
of Kh and how it passes to KHh. We end the chapter recalling Karoubi’s Funda-
mental Theorem for hermitian algebraic K-theory. In Chapter 3 we construct the
category kkh and the functor jh : Alg∗` → kkh; first we prove the necessary technical
lemmas to construct the morphism sets and then we show some of its properties as a
triangulated category and how jh is a universal excisive homology theory with ma-
trix and hermitian stability and homotopy invariance. In Chapter 4 we proceed to
develop some computations as a matter of examples and show (Intro.2). In Chapter
5 we show the adjunction between kkh and kk and construct the functors U, V ; we
prove some of their properties in order to show (Intro.4) and obtain the 12-term
exact sequence from it.

vii



Chapter 1

Preliminaries

1.1 Rings and algebras with involution

Fix a commutative ring `. An `-algebra is a ring A together with a symmetric
`-module structure such that the product is `-bilinear.

Suppose ` has an involution: a ring isomorphism ∗ : ` → `op = `, such that
(x∗)∗ = x, for all x ∈ `. A ∗-algebra over `, is an `-algebra A together with an
involution ∗ : A→ Aop that is semilinear with respect to the module action:

(xa)∗ = x∗a∗ for x ∈ ` and a ∈ A.

An `-algebra morphism is a ring morphism that is also an `-bimodule morphism. We
write Alg` for the category of `-algebras with `-algebra morphisms and Alg∗` for the
category of ∗-algebras over ` with ∗-morphisms, that is, `-algebra morphisms that
preserve the involution. A ∗-ideal in a ∗-algebra is a two-sided ideal that is closed
under the action of ` and under the involution. For a ∗-ideal I E A, the quotient
A/I is also a ∗-algebra with the induced involution.

Example 1.1.1. For any commutative ring `, the identity map id : ` → ` is an
involution; it is called the trivial involution. In the case of ` = Z it is the only
involution and AlgZ = Rings is the category of rings; the category Rings∗ = Alg∗`
is called the category of ∗-rings.

Example 1.1.2. Let A and B be ∗-algebras over `. The tensor product A⊗` B is
a ∗-algebra over ` with involution (a ⊗ b)∗ = a∗ ⊗ b∗. In some cases we write LA
for L ⊗` A and write L : Alg∗` → Alg∗` for the functor given by tensoring with L.
Except when explicitly noted, all tensor products will be over `.

Example 1.1.3. Write Mn for the ring of n× n matrices over `. The `-algebra Mn

has a natural involution (aij)
∗ = a∗ji.

More generally, let X be a set and define

ΓX = {a : X ×X → ` : im(a) is finite and

∃N s.t. ∀x ∈ X |{y ∈ X : a(x, y) 6= 0}|, |{y ∈ X : a(y, x) 6= 0}| ≤ N}.

1



1.1. Rings and algebras with involution 2

with convolution product and conjugate transposition

(ab)(x, y) =
∑
z∈X

a(x, z)b(z, y),

a∗(x, y) = a(y, x)∗

make ΓX a ∗-algebra over `. We write MX EΓX for the ∗-ideal of finitely supported
functions and ΣX for the quotient ΓX/MX . We also write Γ = ΓN, M∞ = MN and
Σ = ΣN. When X has cardinality n then Mn

∼= MX = ΓX . For a ∗-algebra A
we write ΓXA, MXA and ΣXA for the tensor product of ΓX , MX and ΣX with A
respectively as in Example 1.1.2. We also write Σn

X for Σ⊗nX

Example 1.1.4 (Unitalization). Let A be a ∗-algebra and define Ã = A⊕ ` as an
`-bimodule with the following multiplication and involution

(a, x)(b, y) = (ab+ ay + xb, xy)

(a, x)∗ = (a∗, x∗).

The ∗-algebra Ã is unital and has a natural morphism A → Ã, a 7→ (a, 0) which

maps A isomorphically to an ideal in Ã. The quotient Ã/A is isomorphic to ` and

the quotient map Ã→ ` is split by x 7→ (0, x); whenever A is unital the unitalization

Ã is isomorphic to A× ` by means of this splitting.

Example 1.1.5 (Amalgamated coproducts and sums). Let A,B,C ∈ Alg∗` and
i : C → A and j : C → B two ∗-morphisms with retractions α : A → C and
β : B → C (i.e. αi = idC and βj = idC). The amalgamated coproduct of A and B
over C is the `-module

AqC B := C ⊕ kerα⊕ ker β ⊕ (kerα⊗C̃ ker β)⊕ (ker β ⊗C̃ kerα)⊕ · · ·

Where each summand beyond the first is given by the tensor product of kerα and
ker β in all possible orderings with an increasing number of tensor factors. This
defines an `-algebra with product given by concatenation of elementary tensors and
extended by bilinearity. It also has an involution given by the involutions of A,B
and C and twisting the elementary tensors appropriately. In the case C = 0, we
write AqB; this is simply the coproduct of A and B as `-algebras.

The direct sum all tensors with two or more factors forms an ideal K EAqC B
and we define the amalgamated direct sum as the quotient

A⊕C B := AqC B/K.

When A = B and C = 0 we write Q(A) := A q A and ι0, ι1 : A → QA for
the natural inclusions of A. The identity of idA : A → A induces a ∗-morphism
idA q idA : Q(A)→ A and we write q(A) for the kernel of this map. There are also
two natural maps π0, π1 : q(A)→ A which are the restrictions of idAq 0 and 0q idA
to q(A).

2



1.1. Rings and algebras with involution 3

Example 1.1.6 (Free involutions and induction). Let A be a ring. Define inv(A) =
A⊕ Aop with involution (a, b)∗ = (b, a). This gives rise to an equivalence

inv : Alg` → Alg∗inv(`)

with inverse A 7→ (1, 0)A. There is a natural ∗-morphism η : ` → inv(`) defined
by η(x) = (x, x∗). We can restrict the action of an inv(`)-algebra to ` through η.
Composing the functor inv with the restriction of scalars gives rise to a functor

ind : Alg` → Alg∗` .

This functor is right adjoint to the forgetful functor res : Alg∗` → Alg` with unit and
counit given by

ηA : A→ ind(res(A)) = A⊕ Aop (1.1.7)

a 7→ (a, a∗) and

pr1 : res(ind(B)) = B ⊕Bop → B (1.1.8)

(x, y) 7→ x

respectively.
Similarly, for an `-algebra A define ind′(A) := A q A with involution which

permutes the copies of A. This gives a functor ind′ : Alg` → Alg∗` which is left
adjoint to res : Alg∗` → Alg` with unit and counit given by

η̃A : A→ res(ind′(A)) = Aq A (1.1.9)

a 7→ ι0(a) + ι1(a) and

idB q 0 : ind′(res(B)) = B qB → B (1.1.10)

respectively.

Definition 1.1.11 (Hermitian elements and involutions). Let R be a unital ring
with involution and ε ∈ R. We say that ε is unitary if it is invertible and ε∗ = ε−1

(e.g. ε = ±1).
For ε ∈ R central unitary and φ ∈ R, we say that φ is ε-hermitian if φ = εφ∗. If

φ ∈ R is invertible and ε-hermitian then we can define a new involution in R by

r 7→ rφ := φ−1r∗φ.

We write Rφ for the ring R with this new involution. If S is another unital ∗-algebra
over ` and ψ is η-hermitian and invertible then φ ⊗ ψ ∈ R ⊗` S is ε ⊗ η-hermitian
and invertible and

(R⊗` S)φ⊗ψ = Rφ ⊗ Sψ. (1.1.12)

Remark 1.1.13. Let R be a unital ring, A E R a ∗-ideal, ε ∈ R central unitary
and φ ∈ R an invertible ε-hermitian. The involution defined in Definition 1.1.11
restricts properly to an involution on A and we write Aφ for A equipped with this
new involution.

3



1.1. Rings and algebras with involution 4

Definition 1.1.14. Let A be a ring with involution and u ∈ A unitary. The map

ad(u) : A→ A

x 7→ uxu−1

defines a ∗-isomorphism with inverse ad(u∗).

Remark 1.1.15. Let R be a unital ∗-algebra over `, ε ∈ R central unitary and
φ, ψ ∈ R invertible ε-hermitian. If there exists u ∈ R invertible such that ψ = u∗φu
then ad(u) : Rψ → Rφ is a ∗-isomorphism.

Example 1.1.16. Let R0 be an `-algebra and R = inv(R0) ∈ Alg∗` . If ε = (ε0, ε1) ∈
R is central unitary then ε0 and ε1 are central and

(1, 1) = (ε0, ε1)∗(ε0, ε1)

= (ε1, ε0)(ε0, ε1)

= (ε1ε0, ε0ε1);

therefore, ε1 = ε−1
0 . We can deduce from this that any invertible ε-hermitian element

φ ∈ R is of the form

φ = (φ0, ε
−1
0 φ0) = (1, φ0)∗(1, ε−1

0 )(1, φ0).

It follows from Remark 1.1.15 that Rφ ∼= R(1,ε−1
0 ) = R since ε0 is central.

Example 1.1.17. Let P be a finitely generated projective `-module. An ε-hermitian
bilinear form is a map ψ : P × P → ` which is `-linear in the first coordinate and
satisfies

ψ(x, y) = εψ(y, x)∗.

We say that ψ is non-degenerate if ψ(−, y) : P → P ∗ is an isomorphism for all
y ∈ P ; in this case we say that the pair (P, ψ) is an ε-hermitian module.

For an ε-hermitian module (P, ψ), the non-degenracy of ψ induces an involution
on the `-algebra of `-linear endomorphisms End(P ). This involution is determined
by the following property: for T ∈ End(P ) and x, y ∈ P we have

ψ(T (x), y) = ψ(x, T ∗(y)).

If P = `n is free, then End(P ) ∼= Mn and the involution induced by the ε-
hermitian form ψ, corresponds to an ε-hermitan invertible hψ and the involution
(−)hψ .

Example 1.1.18. Consider the invertible −1-hermitian element

h± =

(
1 0
0 −1

)
∈M2.

We write M± = (M2)h± as in Example 1.1.11 and M±A for M± ⊗ A. We write
i+, i− : ` → M± for the ∗-morphisms defined by the upper left and lower right
corner inclusions respectively.

4



1.1. Rings and algebras with involution 5

The element h± corresponds to the hyperbolic hermitian module: for H(`) = `2,
the −1-hermitian form

h((x1, y1), (x2, y2)) = x1y2 − x2y1.

It is well known [see for example KV73, Theorem 1.4] that for any hermitian module
(P, ψ) then (P,−ψ) is also a hermitian module and

(P, ψ)⊕ (P,−ψ) ∼= H(`)⊗ P.

in such a way that the bilinear forms are preserved through this isomorphism.
Similarly, let ε ∈ ` be central unitary and consider the invertible ε-hermitian

element

hε =

(
0 ε
1 0

)
∈M2.

We write εM2 = (M2)hε and εM2A for εM2 ⊗ A.
Due to (1.1.12) we have the identity

εM2 ηM2
∼= εηM2M2. (1.1.19)

Let X be an infinite set and fix a bijection {1, 2} × X ∼= X. This bijection
together with (1.1.19) induces ∗-isomorphisms

ηM2 εM2MX
∼= ηεM2M{1,2}×X ∼= ηεM2MX . (1.1.20)

Example 1.1.21 (Polynomial ∗-algebras). We consider the polynomial ring `[t]
with the involution which fixes t. For any 1-hermitian element α ∈ A the evaluation
map evα : `[t]→ ` that maps t 7→ α is a ∗-morphism.

We write

P = ker(ev0 : `[t]→ `) and

Ω = ker(ev1 : P → `).

for the path and loop algebras respectively. We also consider the Laurent polynomial
algebra `[t, t−1] with involution that interchanges t and t−1, t∗ = t−1. For any unitary
element u ∈ ` we have an evaluation map evu : `[t, t−1]→ ` which maps t 7→ u.

As with matrices we write A[t], A[t, t−1], PA and ΩA for `[t]⊗`A, `[t, t−1]⊗`A,
P ⊗` A and Ω⊗ A respectively. We write Ωn for Ω⊗n.

Example 1.1.22 (Simplicial ∗-algebras). Let n ∈ N0 and

`[t1, . . . , tn] = `[t1]⊗ · · · ⊗ `[tn]

be the polynomial algebra in n variables. We define

`∆n

:= `[t0, . . . , tn]/〈t0 + · · ·+ tn − 1〉.

5



1.1. Rings and algebras with involution 6

This defines a simplicial ∗-algebra

`∆ : ∆op → Alg∗`

[n] 7→ `∆n

,

and we write A∆ for `∆⊗A. Write S for the category of simplicial sets. Let X ∈ S
and B• : ∆op → Alg∗` be a simplicial ∗-algebra. The set homS(X,B•) is an ∗-algebra.
For X ∈ S and A ∈ Alg∗` we define the ∗-algebra of functions on the simplicial set
X as

AX := homS(X,A∆).

A pointed simplicial set (X, x) is a simplicial set X together with a map x : pt =
∆0 → X. Write evx : AX → Apt for the induced ∗-morphism and define

A(X,x) := ker(evx).

Remark 1.1.23. Some of the ∗-algebras mentioned in Example 1.1.21 are particular
cases of Example 1.1.22:

A∆1 ∼= A[t],

A(∆1,pt) ∼= PA

and writing S1 = ∆1/∆0 for the simplicial circle,

A(S1,pt) ∼= ΩA.

Throughout this thesis, we will often assume the following:

λ-assumption 1.1.24. the ring contains an element λ such that λ+ λ∗ = 1.

Example 1.1.25. The λ-assumption 1.1.24 is satisfied for example when 2 is in-
vertible in putting λ = 1/2. Another example is when ` = inv(`0) for some ring `0

and λ = (1, 0).

Remark 1.1.26. Suppose that ` satisfies the λ-assumption 1.1.24 and let ε ∈ ` be
unitary, R be a unital ∗-algebra and φ ∈ R be an invertible ε-hermitian element.
Recall the matrices h± and hε from Example 1.1.18. The matrix

uλ =

(
1 1
λφ∗ −λ∗φ∗

)
(1.1.27)

satisfies u∗λ(hε⊗1)uλ = h±⊗φ, whence ad(uλ) : M±R
φ → εM2R is a ∗-isomorphism.

Taking R = ` and ε = φ = 1 we get M± ∼= 1M2.

6
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1.2 Algebraic homotopies

Definition 1.2.1. Let A,B ∈ Alg∗` and f, g : A → B two ∗-morphisms. We say
that f and g are elementary (algebraically) ∗-homotopic if there exists a ∗-morphism
H : A→ B[t], called a ∗-homotopy, such that the diagram

A B[t]

B ×B

H

(f,g) (ev0,ev1)

commutes. We say that f, g are (algebraically) ∗-homotopic if there exists a finite
sequence f0, . . . , fn : A → B of ∗-morphisms such that f0 = f , fn = g and fi
is elementary ∗-homotopic to fi+1 for i = 0, . . . , n − 1; whenever f and g are ∗-
homotopic we write f ∼∗ g.

It is immediate from this definition that homotopy is an equivalence relation
that is compatible with composition of ∗-morphisms. We write [A,B] for set of
equivalence classes of ∗-morphisms A → B modulo homotopy. The sets [−,−]
have a composition law and therefore are the arrows of a category [Alg∗` ] which has
∗-algebras as objects.

Definition 1.2.2. Let F : Alg∗` → C be a functor. We say that F is homotopy
invariant if F (f) = F (g) whenever f ∼∗ g.

Let C ∈ Alg` and A,B ⊆ C subalgebras. Suppose u, v ∈ C satisfy

uAv ⊆ B and

avua′ = aa′ for all a, a′ ∈ A.

Then

ad(u, v) : A→ B

a 7→ uav

is an algebra morphism. We say that the pair (u, v) multiplies A into B. Let
u0, u1, v0, v1 ∈ C such that (u0, v0) and (u1, v1) multiplies A into B. A homotopy
between the pairs (u0, v0) and (u1, v1) is a pair (u(t), v(t)) ∈ C[t]2 that multiplies
A (as constants in C[t]) into B[t] and that (u(i), v(i)) = (ui, vi) (for i = 0, 1). In
this case ad(u(t), v(t)) : A→ B[t] is a homotopy between ad(u0, v0) and ad(u1, v1).
Suppose now that C is a ∗-algebra and that A,B are ∗-subalgebras; when v = u∗

and the pair (u, u∗) multiplies A into B, we have that ad(u, u∗) is a ∗-morphism. In
this case we say that u ∗-multiplies A into B. If u,w ∈ C both ∗-multiply A into B,
a ∗-homotopy between u and w is an element z(t) ∈ C[t] ∗-multiplying A into B[t]
such that z(0) = u and z(1) = w. We shall often encounter examples of elements
u0, u1 ∈ C which ∗-multiply A into B that are homotopic via a pair (u(t), v(t)) with
u(t)∗ 6= v(t) so that the homotopy ad(u(t), v(t)) is not a ∗-morphism. This can be
fixed as follows.

7



1.2. Algebraic homotopies 8

Lemma 1.2.3. Suppose ` satisfies the λ-assumption 1.1.24. Let C ∈ Alg∗` , A,B ⊆
C ∗-subalgebras, u0, u1 ∈ C that ∗-multiply A into B and (v, w) ∈ C[t]2 a homotopy
between (u0, u

∗
0) and (u1, u

∗
1). Assume as well that

w∗Aw, vAv∗ ⊆ B[t].

Then

c(v, w) =

(
λ∗v + λw∗ λ∗(v − w∗)
λ(v − w∗) λv + λ∗w∗

)
∈M±C[t]

∗-multiplies i+(A) into M±B[t] and ad(c(u, v), c(u, v)∗)◦ i+ is a ∗-homotopy between
i+ ad(u0, u

∗
0) and i+ ad(u1, u

∗
1).

Proof. A straightforward computation shows that

c(v, w)∗c(v, w) = c(wv,wv).

Hence, for a, a′ ∈ A we have

i+(a)c(v, w)∗c(v, w)i+(a′) = i+(a)c(wv,wv)i+(a′)

= i+(a(λ∗wv + λ(wv)∗)a′)

= i+(λ∗awva′ + λa(wv)∗a′)

= i+(λ∗aa′ + λ(a′∗wva∗)∗)

= i+(aa′(λ∗ + λ))

= i+(aa′).

Similarly, c(v, w)i+(A)c(v, w)∗ ⊆ M±B[t]. Thus, H = ad(c(u, v))i+ : A → M±B[t]
is a ∗-morphism and for i = 0, 1 we get

evi(c(u, v)) = c(ui, ui) =

(
ui 0
0 ui

)
,

so that eviH = i+ ad(ui, u
∗
i ).

Definition 1.2.4. Let p, q ≥ 0 and n = p+ q. Define

ip,q+ := (M±)⊗p ⊗ i+ ⊗ (M±)⊗q : M⊗n
± →M⊗n+1

±

Lemma 1.2.5. Let p, q and n be as above, and let p′, q′ ≥ 0 be such that p′ + q′ =
n+ 1. Then ip

′,q′

+ ip,q+ is ∗-homotopic to i0,n+1
+ i0,n+ .

Proof. First observe that we have i0,0+ = i+ and i1,0+ i+ = i0,1+ i+. Therefore, tensoring
with identity maps we get

ir,s+1
+ ir,s+ = ir+1,s

+ ir,s+ (1.2.6)

for any r, s ≥ 0. Next, under the identification M2 ⊗ M2 = M{1,2}2 , we have

i1,0+ (ei,j) = e(i,1),(j,1) and i0,1+ (ei,j) = e(1,i),(1,j). One checks that the matrix

u = e(1,1),(1,1) − e(1,2),(2,1) + e(2,1),(1,2) + e(2,2),(2,2)

8



1.3. Ind-∗-algebras 9

is a unitary element of M⊗2
± and satisfies ad(u)i1,0+ = i0,1+ . Moreover by [CT07,

Section 6.4], there exists an invertible element u(t) ∈M⊗2
± [t] such that u(0) = 1 and

u(1) = u. Hence the composites of i0,2+ with i1,0+ and i0,1+ are ∗-homotopic by Lemma
1.2.3. Tensoring on both sides with identity maps, we get that

ip,q+1
+ ip+1,q−1

+ ∼∗ ip,q+1
+ ip,q+ .

Let p′, q′ as in the statement. Permuting factors in the tensor product M⊗n+1
± we

obtain a ∗-isomorphism σ : M⊗n+1
± → M⊗n+1

± such that σip,q+1
+ = ip

′,q′

+ . Hence we
have

ip
′,q′

+ ip+1,q−1
+ ∼∗ ip

′,q′

+ ip,q+ (1.2.7)

for all p, q, p′, q′ as above. The lemma follows from (1.2.7) using the identity (1.2.6).

1.3 Ind-∗-algebras

Definition 1.3.1. Let C be a category. An ind-object in C is a pair (C, I) consisting
of an upward filtered poset I and a functor C : I → C. We shall often write Ci for
C(i) and (Ci)i∈I or simply C• for and ind-object C : I → C.

The ind-objects of a category C form a category ind− C whose morphisms sets
are

homind−C((Ci), (Dj)) = lim←−
i

colim−−−→
j

homC(Ci, Dj).

Any functor F : C → D extends to F : ind − C → ind − D by applying F
indexwise; F (C)i = F (Ci).

Example 1.3.2. Let in : Mn → Mn+1 be upper left corner inclusion and write M•
for the ind-∗-algebra

N0 → Alg∗`

(n→ n+ 1) 7→ (Mn
in−→Mn+1).

Similarly, recall Definition 1.2.4 and write M•
± for the ind-∗-algebra.

N0 → Alg∗`

(n→ n+ 1) 7→ (Mn
±

i0,n+−−→Mn+1
± ).

For an infinite set X we write

MX = M•
±MX .

Any bijection f : X → Y induces an isomorphism f∗ : MX → MY given by
the corresponding isomorphism MX

∼= MY and tensoring with the corresponding
identities.

9



1.3. Ind-∗-algebras 10

Example 1.3.3. For a finite simplicial set K, we write sdK for the barycentric
subdivision. This defines a functor sd : S → S. The barycentric subdivision is
equipped with a natural transformation h : sd → idS so called the last vertex map
[GJ99, Chapter III, Section 4, p.193]. Iterating this map, one obtains a system of
simplicial sets

· · · h−→ sdnK
h−→ sdn−1K → · · · → K.

Write sd•K for the (contravariant) functor

N0 → sSet

(n→ n+ 1) 7→ (sdn+1K
h−→ sdnK).

For each A ∈ Alg∗` the composed functor Asd•K gives an ind-∗-algebra. This con-
struction also applies to pointed simplicial sets in a similar way.

Some particular examples of subdivision ind-∗-algebras that we will use are

AS1

= Asd•(S1,pt),

ASn = (ASn−1

)S
1

and

PA = Asd•(∆,pt).

Remark 1.3.4. The two endpoint inclusions ∆0 → ∆1 induce inclusions ∆0 →
sd•∆1 and evaluation maps evi : Asd•∆1 → A∆0

= A. Let f, g : A → B be
two homotopic ∗-morphisms. As such, there exists a chain of ∗-morphisms f =
f0, f1, . . . , fn = g and homotopies Hi : A → B[t], i = 0, . . . , n − 1 as in Definition
1.2.1. These homotopies can then be “concatenated” to an ind-∗-morphism H :
A → Bsd•∆1

. Conversely, it is easily seen that if two ∗-morphisms f, g : A → B
can be recovered from an ind-∗-morphism H : A→ Bsd•∆1

by composition with the
evaluation maps

ev0H = f ev1H = g

then f and g are homotopic.

Definition 1.3.5. Let A,B ∈ ind− Alg∗` , we write

[A,B] = homind−[Alg∗` ](A,B).

Lemma 1.3.6. Let X, Y be sets and f, g : X → Y bijections. Write, f∗, g∗ :MX →
MY as in Example 1.3.2. Then [f∗] = [g∗] ∈ [MX ,MY ].

Proof. Since homotopy is compatible with composition, we can reduce to the case
when X = Y and g = idX . The matrix

u =
∑
x∈X

ef(x),x

is a unitary element of ΓX and f∗ is the restriction of ad(u) (tensored with the
identity). Then i+ ad(u) = ad(u ⊕ 1)i+. Using [CT07, Section 3.4] there is a

10
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homotopy (v0, v1) ∈M2ΓX [t]2 of multipliers between ad(u⊕ 1) and ad(1⊕ u); thus,
using Lemma 1.2.3, we have that i0,2+ ad(u⊕1) is ∗-homotopic to i0,2+ ad(1⊕u). Hence

i0,2+ i+ = i0,2+ ad(1⊕ u)i+ ∼ i0,2+ ad(u⊕ 1)i+ = i0,2+ i+ ad(u)

and ad(u) induces the identity in [MX ,MX ].

1.4 Extensions

A ∗-algebra can be regarded as a set or an `-module in each case with or without
involution. Each of these four choices gives rise to an underlying category U and a
forgetful functor F : Alg∗` → U which admits a left adjoint T̃ : U→ Alg∗` that is the

free ∗-algebra functor for such F . We write T = T̃F . For the rest of this thesis we
will fix one of the four choices as above for U, F and T̃ .

An extension of ∗-algebras is a sequence in Alg∗`

0→ A
α−→ B

β−→ C → 0 (1.4.1)

where α is an isomorphism onto ker β and C = im β.
We say that a surjective ∗-morphism is split, if it has a right inverse; we say that

a surjective ∗-morphism f is semi-split if F (f) has right inverse in U. We say an
extension (1.4.1) is semi-split if β is.

For ind-∗-algebras, a similar definition applies: a sequence in ind− Alg∗`

0→ (Ai)
α−→ (Bj)

β−→ (Ck)→ 0 (1.4.2)

is an extension of ind-∗-algebras if α a kernel for β and β is a cokernel for α. It is
split if β admits a splitting and it is semi-split if F (β) admits a splitting in ind−U.

Remark 1.4.3. If the underlying category U is the category of sets then every
extension is semi-split, since every surjective map admits a section.

Remark 1.4.4. If ` satisfies the λ-assumption 1.1.24, then for a ∗-morphism f :
A → B for which F (f) admits a splitting s, the splitting can be averaged as s′ =
λs+λ∗s∗ in order to have an involution preserving splitting. Therefore, in this case,
if f admits an `-linear splitting, then it is semi-split for any choice of U and F .

Example 1.4.5. Let A ∈ Alg∗` , we call the sequence

0→ PA→ A[t]
ev0−−→ A→ 0 (1.4.6)

the path extension. It is split by the inclusion A ⊂ A[t].
We call the sequence

0→ ΩA→ PA
ev1−−→ A→ 0 (1.4.7)

the loop extension. It admits an involution preserving `-linear splitting s(a) = ta.

11
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Let f : A → B be a ∗-morphism. The mapping path extension of f is the
extension induced by the pullback of the path extension of B along f

ΩB PB ×B A A

ΩB PB B.

π1

π0
p

f

ev1

(1.4.8)

We call Pf := PB ×B A the path algebra of f . The mapping path extension has
a natural `-linear involution preserving splitting s(a) = (tf(a), a). There is also
natural inclusion if : ker(f)→ Pf given by if (x) = (0, x). The same applies to the
subdivided version which we write as Pf := PB ×B A.

Example 1.4.9. Let X be a set and A ∈ Alg∗` . We call the sequence

0→MXA→ ΓXA→ ΣXA→ 0

the cone extension. By [CT07, first paragraph of p.92] it admits an `-linear splitting.
Let f : A→ B be a ∗-morphism. The cone map extension of f is the extension

induced by the pullback of the cone extension of B along ΣXf .

MXB ΓXB ×B ΣA ΣXA

MXB ΓXB ΣXB.

π1

π0
p

ΣXf (1.4.10)

We call ΓX,f := ΓXB ×B ΣA the cone algebra of f . The cone map extension has
an `-linear splitting given by composing ΣXf × id : ΣXA → ΣXB × ΣXA and the
splitting ΣXB → ΓXB. As before, when X = N we omit it from notation.

For every algebra morphism f : A→ B, the underlying map in U, F (f) : F (A)→
F (B) induces a map f̃ : TA→ B. In particular, for id : A→ A, we have a natural
surjective transformation ηA : T (A)→ A. Set

J(A) := ker(ηA),

this defines a functor J : Alg∗` → Alg∗` . The universal extension of A is the extension

0→ J(A)→ T (A)
ηA−→ A→ 0

which is semi-split by the natural inclusion s : A→ T (A).
For a semi-split extension

0→ A
f−→ B

g−→ C → 0

and a splitting s of F (g), define ξ̂ := ηBT
′(s) : T (C) → B. The restriction of ξ̂ to

J(C) maps to A since

gξ̂ = gηBT
′(s) = ηCT (g)T ′(s) = ηC .

12
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Write ξ for the restriction of ξ̂ to J(C). We call this map the classifying map of the
extension. There is a commutative diagram

0 A B C 0

0 J(C) T (C) C 0.

f g

ξ

ηC

ξ̂

The definition of the classifying map ξ is clearly dependent of the splitting map
s; however, its homotopy class does not depend on s. Let s1 and s2 two different
splittings of g and ξ1 and ξ2 be the corresponding classifying maps. Define H :
F (C)→ F (A[t]) as

H(c) = (1− t)ξ̂1(c) + tξ̂2(c).

Extend H to a ∗-homomorphism H : T (C) → A[t] by adjunction. This map is an

elementary ∗-homotopy between ξ̂1 and ξ̂2 and therefore ξ1 and ξ2 are homotopic;
thus, the classifying map is natural up to homotopy. This shows the reasoning in
calling the universal extension and the classifying map as such.

For an extension of ind-∗-algebras, the same reasoning applies and thus for any
extension of ind-∗-algebras, there is also a unique classifying map in ind− [Alg∗` ].

Remark 1.4.11. Take the following commutative diagram in Alg∗`

0 A B C 0

0 A′ B′ C ′ 0

f

α

g

β γ

f ′ g′

where each row is a semi-split extension. Let ξ be the classifying map associated
to the first row extension and ξ′ the classifying map associated the second row
extension. Due to the uniqueness of the classifying map, the square

J(C) A

J(C ′) A′

ξ

J(γ) α

ξ′

is commutative up to homotopy.

Example 1.4.12. Let A,B ∈ Alg∗` such that B is flat as an `-module. Then, the
extension

0→ J(A)⊗B → T (A)⊗B → A⊗B → 0

is semi-split and we write the classifying map as

φA,B : J(A⊗B)→ J(A)⊗B.

13



1.5. ∗-Quasi-homomorphisms 14

In the case the underlying category U is the category of `-modules, this map is
natural in A and B (up to homotopy).

Taking B = `X for some simplicial set X, we obtain a map
J(AX)→ J(A)X . Similarly, for a pointed simplicial set (X, x) we obtain a map
J(A(X,x))→ J(A)(X,x).

The loop extension (1.4.7) is a particular case of this setting, taking into account
the idenfications at the end of Example 1.1.22. We write the classifying map of the
loop extension (1.4.7) as

ρA : J(A)→ ΩA. (1.4.13)

This map also induces an ind-∗-algebra map by composing ρA with the last vertex
map h∗ : ΩA→ AS1

. As an abuse of notation we will write it as ρA : J(A)→ AS1
.

For a map f : A→ B, the classifying map of the mapping path extension (1.4.8)
is ρf := ρB ◦ J(f); this can be seen using Remark 1.4.11. The same applies for the
subdivided version.

Example 1.4.14. For each A the sequence

0→ J(A)S
1 → T (A)S

1 → AS1 → 0

is a semi-split extension as in Example 1.4.12. We write

γA : J(AS1

)→ J(A)S
1

(1.4.15)

for the classifying map of said extension. For m,n ≥ 0, write

γ1,n
A : J(ASn)→ J(A)S

n

for the composition

J(A
Sn

)
γ
ASn
−−−−→ J(A

Sn−1
)
S1

γ
ASn−1 ⊗S1

−−−−−−−−−−→ J(A
Sn−2

)
S2 → · · · → J(A

S1
)
Sn−1 γA⊗Sn−1

−−−−−−−−→ J(A)
Sn
,

and γm,nA : Jm(ASn)→ Jm(A)S
n

for the composition

J
m

(A
Sn

)
Jm−1(γ

1,n
A

)
−−−−−−−−−−→ J

m−1
(J(A)

Sn
)
Jm−2(γ

1,n
J(A)

)

−−−−−−−−−−−→ J
m−2

(J
2
(A)

Sn
)→ · · · → J(J

m−1
(A)

Sn
)

γ
1,n

Jm−1(A)
−−−−−−−−−→ J

m
(A)

Sn

1.5 ∗-Quasi-homomorphisms

Definition 1.5.1. Let A,B ∈ Alg∗` , C E B a ∗-ideal and f+, f− : A → B two ∗-
morphisms. We say that the pair (f+, f−) : A⇒ BDC is a ∗-quasi-homomorphism
if f+(a)− f−(a) ∈ C for every a ∈ A. This is equivalent to the following statement:
if π : B → B/C is the quotient map, then πf+ = πf−.

Example 1.5.2. Recall from Example 1.1.5 the algebras Q(A) and q(A). By defini-
tion, there is a ∗-quasi-homomorphism induced by the inclusions ι0, ι1 : A→ Q(A):

(ι0, ι1) : A⇒ Q(A)D q(A).
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1.6. Stability 15

This ∗-quasi-homomorphism is universal in the following sense: let
(f+, f−) : A ⇒ B D C be a ∗-quasi-homomorphism. Then there is a natural map
f+ q f− : Q(A)→ B. Since f+ q f− maps q(A) into C, we can compose to get

f+ q f− ◦ ι0 = f+ and

f+ q f− ◦ ι1 = f−.

We call the restriction of f+ q f− to f : q(A) → C the classyfing map of the
∗-quasi-homomorphism (f+, f−).

Let C be an abelian category. A functor H : Alg∗` → C is split-exact if for every
split-exact extension

0→ A→ B → C → 0

the sequence

0→ H(A)→ H(B)→ H(C)→ 0

is exact in C.

Proposition 1.5.3 ([CMR07, Section 3.1.1]). Let C be an abelian category and
E : Alg∗` → C a split-exact functor.

• For every ∗-quasi-homomorphism (f+, f−) : A ⇒ B D C there exists a mor-
phism

E(f+, f−) : E(A)→ E(C)

induced by E(f+)− E(f−) : E(A)→ E(B).

• E(f+, 0) = E(f+).

• If f+ = f− + g where g(a)f−(a) = f−(a)g(a) = 0 for every a ∈ A then
E(f+, f−) = E(g).

• If f : q(A)→ C is the classifying map of (f+, f−) then

E(f+, f−) = E(f) ◦ E(ι0, ι1).

1.6 Stability

Definition 1.6.1. Let F1, F2 : Alg∗` → Alg∗` , G : Alg∗` → C be functors, i : F1 → F2

be a natural transformation and A ∈ Alg∗` . We say that the functor G is i-stable at
A if the map G(iA) : G(F1(A)) → G(F2(A)) is an isomorphism. We say that G is
i-stable if it is i-stable at every A ∈ Alg∗` .

Example 1.6.2. A functor F is homotopy invariant as in Definition 1.2.2 if and
only if it is stable for the canonical inclusion A→ A[t].

15
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Example 1.6.3. Let X be a set, x, y ∈ X and ex,y ∈MX the matrix unit

ex,y(z, w) = δ(x,y),(z,w).

There is a natural map ix : idAlg∗` →MX defined as

ix,A : A→MXA

a 7→ ex,x ⊗ a.

Lemma 1.6.4. Let X be a set and ix be as in Example 1.6.3. If a functor G :
Alg∗` → C is ix-stable for some x then it is iy stable for any y ∈ X. Moreover
G(ix) = G(iy) for any x, y ∈ X.

Proof. We follow [Cor11, Lemma 2.2.4]. There are permutation matrices σ2, σ3 ∈
MXA⊗MXA of orders two and three such that both conjugate (ix,MXA⊗ idMXA)ix,A
into (ix,MXA ⊗ idMXA)iy,A. Since permutation matrices are unitary, conjugation by
σ2 and σ3 are ∗-isomorphisms. After applying G we get

G(ad(σ2))G((ix,MXA ⊗ idMXA)ix,A) = G((ix,MXA ⊗ idMXA)iy,A) (1.6.5)

= G(ad(σ3))G((ix,MXA ⊗ idMXA)ix,A)

Since the orders of σ2 and σ3 are coprime and all the maps in (1.6.5) are isomor-
phisms, it follows that G(ad(σ2)) and G(ad(σ3)) are equal to the identity. Further-
more, since G(ix,MXA⊗idMXA) is an isomorphism, we get that G(ix,A) = G(iy,A).

Definition 1.6.6. We say that G is MX-stable if it is ix-stable for some (therefore,
for any) x ∈ X. In this case we write iX for any ix. If the set X is fixed, we simply
write i. When X has cardinality n we write in : id→Mn for iX .

Lemma 1.6.7. Let X be a set and x, y ∈ X. Then the maps i+ix, i+iy : `→M±MX

are ∗-homotopic.

Proof. Assume x 6= y and let X ′ = X \ {x, y}. Let

u = ey,x − ex,y +
∑
z∈X′

ez,z.

It is easily seen that u is unitary in ΓX and satisfies ad(u)ix = iy. Moreover, there
is a rotational homotopy u(t) ∈ ΓX [t] [CT07, Section 3.4] such that u(0) = 1 and
u(1) = u. Then, using Lemma 1.2.3 we obtain the desired statement.

Lemma 1.6.8. Let X be a set with at least two elements, H : Alg∗` → C be an
MX-stable functor, A ⊆ B ∈ Alg∗` and u ∈ B such that

uA,Au∗ ⊆ A and

au∗ua′ = aa′ for any a, a′ ∈ A.

Then ad(u) : A→ A is a ∗-homomorphism and H(ad(u)) = idH(A).

16



1.6. Stability 17

Proof. The argument is as in [Cor11, Proposition 2.2.6]. We can assume B is unital

(changing B for B̃). Consider u⊕1 ∈M2B and observe that ad(u⊕1) : M2A→M2A
is a ∗-homomorphism. Also, if i0 : A → M2A and i1 : A → M2A are the inclusions
in the upper left corner and lower right corner respectively then

ad(u⊕ 1)i0 = i0 ad(u) and

ad(u⊕ 1)i1 = i1.

Due to Lemma 1.6.4, applying G we get that G(i0) = G(i1) are isomorphisms.
Therefore,

G(i0)G(ad(u)) = G(ad(u⊕ 1))G(i0)

= G(ad(u⊕ 1))G(i1)

= G(i1)

= G(i0);

so G(ad(u)) is the identity.

Lemma 1.6.9. Let X be a set with at least two elements. Let C be category enriched
over abelian groups and H : Alg∗` → C be an MX-stable functor. Then the map for
two distinct x, y ∈ X, the map

H(A⊕ A)
H(ix⊕iy)−−−−−→ H(MXA)

H(ix)−1=H(iy)−1

−−−−−−−−−−→ H(A)

induces the additive operation on H(A),

Proof. Write D = ix ⊕ iy : A ⊕ A → MXA and ∇ : H(A) ⊕H(A) → H(A) for the
operation in C. Using Lemma 1.6.4, the diagram

H(A)⊕H(A) H(A⊕ A)

H(A) H(MXA)

inc1⊕inc2

∇ H(D)

H(ix)=H(iy)

commutes

Lemma 1.6.10. Let X, Y be two sets such that X has at least two elements and Y
has greater cardinality than X. Then, any MY -stable functor G : Alg∗` → C is also
MX-stable.

Proof. Since a bijection between sets induces a ∗-isomorphism between their matrix
algebras, we might assume that X ⊆ Y . We will prove the lemma in the case the
coefficients are A = `, the same proof applies for any coefficients. Write inc : X ↪→ Y
for the natural inclusion map. Let x ∈ X and i = ix : ` → MX . Since G is MY -
stable, G(inc ◦ i) is an isomorphism and therefore, G(i) is an split monomorphism
and G(inc) is an split epimorphism.

17



1.6. Stability 18

Let τ : MX ⊗MY →MY →MX defined by τ(a⊗ b) = b⊗ a. We have

τ(i⊗ idMY
)inc = inc⊗ i. (1.6.11)

Let σ : Y ×X → Y ×X be any bijection that restricts to coordinate permutation
on X × {x}. Also write σ for the corresponding permutation matrix in MY×X =
MY ⊗MX . Then we have

ad(σ)(inc⊗ i) = i⊗ idMX
.

Since G(ad(σ)) is the identity due to Lemma 1.6.4 and G(i ⊗ idMX
) is an isomor-

phism, it follows that G(inc⊗i) is an isomorphism. Using (1.6.11) we get that G(inc)
is also an split monomorphism, and therefore an isomorphism. Since G(inc◦ i) is an
isomorphism it follows that G(i) is an isomorphism and that concludes the proof.

Definition 1.6.12. Let A ∈ Alg∗` and G : Alg∗` → C be a functor. We say that G is
hermitian stable on A if for every embedding AER as a ∗-ideal in a unital ∗-algebra
R, every central unitary element ε ∈ R and any two invertible ε-hermitian elements
φ, ψ ∈ R, the functor G maps the upper left corner inclusion

iφ : Aφ → (M2A)(φ⊕ψ)

to an isomorphism.

Remark 1.6.13. Taking ε = 1, R = Ã and φ = ψ = 1 in the previous definition,
we get that any hermitian stable functor is also i2 : id→M2 stable

Remark 1.6.14. Let (P, ψ) and (Q,χ) be hermitian modules as in Example 1.1.17.
Using (1.1.18), it follows that a hermitian stable functor G sends the map induced
by the inclusion

End(P )⊗ A→ End(P ⊕Q)⊗ A
to an isomorphism.

Proposition 1.6.15 ([cf. Ell14, Proposition 3.1.9]). Suppose ` satisfies the λ-assumption
1.1.24 and let G : Alg∗` → C be a M2-stable functor. Then G◦M± is hermitian stable.

Proof. Since ` satisfies the λ-assumption, we can use Remark 1.1.26 to get isomor-
phisms

M±A
φ ∼= εM2A and

M±(M2A)(φ⊕ψ) ∼= εM2M2A.

Using the commutative diagram

M±A
φ

εM2A

M±(M2A)(φ⊕ψ)
εM2M2A M2(εM2A)

∼

idM±⊗iφ idεM2
⊗i2

i2

∼ ∼

and the fact that i2 is mapped to an isomorphism through G, we get that G◦M±(iφ)
is an isomorphism as desired.

18



1.6. Stability 19

Corollary 1.6.16. Assuming ` and G : Alg∗` → C as in Proposition 1.6.15, if G is
also i+-stable, then G is hermitian stable.

Proof. Since we have the commutative diagram

Aφ M±A
φ

(M2A)φ⊕ψ M±(M2A)φ⊕ψ,

i+

iφ idM±⊗iφ

i+

using that G(i+) is an isomorphism and by Proposition 1.6.15 we also have G(idM±⊗
iφ) is an isomorphism we get that G(iφ) is an isomorphism.

19



Chapter 2

Hermitian Algebraic K-theory

In this chapter we recall the definition of the hermitian algebraic K-theory spectra
Kh together with some properties. We also recall the definition of the Karoubi-
Villamayor hermitian K-theory KV h and we construct the analogue to Weibel’s
homotopy K-theory for the hermitian case KHh. In Section 2.2 we also recall the
product structure of Kh and how it passes to KHh. Finally in Section 2.3 we recall
Karoubi’s Fundamental Theorem with some associated reformulations and how it
passes to KHh; we will use this later in Chapter 5.

2.1 Definitions

Let A a ∗-ring. We write

U(A) = {x ∈ A : x∗x = xx∗, x+ x∗ + xx∗ = 0}.

The set U(A) is a group under the operation

x · y = x+ y + xy.

When A is unital, the group U(A) is isomorphic to the group of unitary elements of
A via the map x→ 1 + x.

Let R be a unital ring, AER a ∗-ideal and ε ∈ R central unitary. Put

εO(A) = U(εM2M∞A).

By (1.1.20) we have a group isomorphism

εO(A) ∼= 1O(εM2A). (2.1.1)

The ε-hermitian K-theory groups of a unital ∗-ring R are the stable homotopy
groups of a spectrum εK

hR = {εKhRn} whose n-th space is εK
h
nRn = ΩBεO(Σn+1R)+,

the loopspace of the +-construction [see Lod76, Section 3.1.6]. As usual we also
write

εK
h
n(R) = πn(εK

hR) (n ∈ Z)

20



2.1. Definitions 21

for the n-th stable homotopy group. When ε = 1 we drop it from the notation. For
a nonunital ∗-ring A, we put

±1K
h
n(A) = ker(±1K

h
n(ÃZ)→ ±K

h
h(Z)). (2.1.2)

If A is unital, these groups agree with those defined above since in that case
ÃZ ∼= A×Z and using the fact that +-construction is additive, the kernel in (2.1.2)
recovers ±1K

h
n(A).

A ring A is called K-excisive if for any embedding AER as an ideal of a unital
ring R and every unital homomorphism R → S mapping A isomorphically onto
an ideal of S, the map of relative K-theory spectra K(R : A) → K(S : A) is an
equivalence. The definition of a Kh = 1K

h-excisive ∗-ring is analogous.

Remark 2.1.3. Let A be a K-excisive ring that is a ∗-algebra over `, and suppose
that ` satisfies the λ-assumption 1.1.24. Let A E R be a ∗-ideal embedding into
a unital ∗-algebra and f : R → S be a unital ∗-algebra homomorphism mapping
and A isomorphically onto a ∗-ideal of S and ε ∈ ` be a central unitary. By
[Bat11, Corollary 3.5.1] the map εK

h(R : A) → εK
h(S : A) is an equivalence. In

particular, if A is K-excisive then it is also Kh-excisive. Taking all this into account,
and assuming that ` satisfies the λ-assumption 1.1.24, we set, for any K-excisive
A ∈ Alg∗` , unitary ε ∈ ` and n ∈ Z,

εK
h
n(A) = ker(εK

h
n(Ã)→ εK

h
n(`)). (2.1.4)

Remark 2.1.5. For n ≤ 0 and not necessarilyK-excisive A, we take (2.1.4) as a defi-
nition. The non-positive hermitian K-groups agree with Bass’
quadratic K-groups [Bas73] for the maximum form parameter. In particular, by
[Bas73, Chapter III, Theorem 1.1] hermitian K-theory as defined above satisfies
excision in non-positive dimensions.

Remark 2.1.6. Let R be a unital ∗-ring. Suppose that R has an element λ that
satisfies the λ-assumption 1.1.24. Let S ∈ Σ be the class of the matrix

0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
...

. . .

 .

Using the fact that the cup product with [S] ∈ Kh
1 (Σ) induces an isomorphism

Kh
0 (R) ∼= Kh

1 (ΣR) [Lod76, Théorème 3.1.7], the group Kh
0 (R) can be described as

the set of formal differences [p] − [q] where p, q ∈ 1M2M∞R are projections and
[p] = [p′] if there is a unitary matrix u ∈ 1M2MnR such that u conjugates p into p′

[KV73, Section 2].
For a class x = [p] − [q] ∈ Kh

0 (R) there are ∗-morphisms p, q : Z → 1M2M∞R
mapping 1 to p and q respectively. These ∗-morphisms induce maps p∗, q∗ : Kh

0 (Z)→
Kh

0 (R) sending the class of [1] to [p] and [q] respectively. This implies that the ∗-
quasi-homomorphism (p, q) : Z ⇒ 1M2M∞R D 0, has an associated map (p∗, q∗) =

21



2.1. Definitions 22

p∗ − q∗ : Kh
0 (Z) → Kh

0 (R) which maps the class of [1] to x. This then implies that
the set of ∗-quasi-homomorphisms {Z⇒ 1M2M∞R} maps surjectively onto Kh

0 (R)
sending each pair of ∗-quasi-homomorphisms to their corresponding associated map
evaluated at the class [1]. Since Kh

0 satisfies excision, it follows that the same applies
to any ∗-ring A: the set

qq(Z, A) := {Z⇒ 1M2M∞ÃZ D 1M2M∞A}

maps surjectively to Kh
0 (A). If A ∈ Alg∗` then the same holds with ` substituted for

Z and `-linear, ∗-quasi-homomorphisms.

For a ∗-ring A and ε = ±1, Karoubi and Villamayor also introduce hermitian
K-groups for n ≥ 1. They agree with the homotopy groups of the simplicial group

εO(A∆) up to a degree shift

εKV
h
n (A) = πn−1εO(A∆) (n ≥ 1).

The argument of [Cor11, Proposition 10.2.1] shows that the definition above is equiv-
alent to that given in [KV73]; we have

εKV
h
n+1(A) = εKV

h
1 (ΩnA) (n ≥ 1).

Similarly, if A is unital, for all n ≥ 1 we have

εKV
h
n (A) = πnBεO(A∆) = πnBεO(A∆)+ = πnΩBεO(ΣA∆)+. (2.1.7)

Applying εK
h
n to the path extension (1.4.6) and using excision, we obtain a

natural map

εK
h
n(A)→ εK

h
n−1(ΩA) (n ≤ 0).

For n ∈ Z, the nth homotopy ε-hermitian K-theory group of A is

εKH
h
n(A) = colim−−−→

m≥n
εK

h
−m(Ωm+nA).

Remark 2.1.8. One can also describe εKH
h
n in terms of εKV

h; by [KV73, Théorème
4.1], εKV

h satisfies excision for the cone extension (1.4.10). Hence we have a map

εKV
h
n (A)→ εKV

h
n+1(ΣA).

The argument of [CT07, Proposition 8.1.1] shows that

εKH
h
n(A) = colim−−−→

m

εKV
h
n+m(ΣmA).

Now assume that A is unital; let εKH(A) be the total spectrum of the simplicial
spectrum εK

h(A∆). We have

πn(εKH
h(A)) = colim−−−→

m

πn+mΩBεO(ΣmA∆)+ = colim−−−→
n

εKV
h
n+m(ΣmA) = εKH

h
n(A).
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2.2. Cup products in KHh 23

For any exact sequence

0→ A→ B → B/A→ 0

there is a natural index map ∂ : Kh
1 (B/A)→ Kh

0 (A) [see Bas73, Chapter III].

Remark 2.1.9. There is a natural comparison map cm : Kh
m(A) → KHh

m(A). For
m ≤ 0 this is just mapping to the colimit. For m > 0 and A unital, using the
description of (2.1.7) and the natural inclusion A→ A∆, we get a comparison map
c′m : Kh

m(A)→ KV h
m, then, by Remark 2.1.8, the comparison map factors

Kh
m(A)

c′m−→ KV h
m(A)→ KHh

m(A)

Using repeatedly the index map of the loop extension (1.4.7) we get maps

Kh
m(A)→ KV h

m(A) ∼= KV1(Ωm−1A)→ KV h
0 (ΩmA) = K0(ΩmA).

Finally, composing with the comparison map c0 we arrive atKHh
0 (ΩmA) ∼= KHh

m(A).

Lemma 2.1.10. Homotopy hermitian K-theory is homotopy invariant, matricially
stable and satisfies excision.

Proof. The proof is the same as in non-hermitian K-theory [see Cor11, Theorem
5.1.1].

Lemma 2.1.11. Let ε ∈ ` be unitary. If either n ≤ 0 or A is Kh-excisive, then
there is a canonical isomorphism

εK
h
n(A) ∼= Kh

n(εM2A).

Moreover for all A ∈ Alg∗` we have a canonical isomorphism

εKH
h
n(A) ∼= KHh

n(εM2A) (n ∈ Z).

Proof. The isomorphism (2.1.1) is canonical up to the choices of an element λ ∈ `
in the λ-assumption 1.1.24 and a bijection {1, 2} × X → X. By [Lod76, Lemme
1.2.7], if A is unital, then varying those choices has no effect on the homotopy type
of the induced isomorphism BεO(A)+ ∼= B1O(εM2A)+. Applying this to ΣrA we
obtain the statement of the lemma for unital A. The nonunital case follows from
the unital one using split-exactness. The statement for εKH

h follows by applying
the former case for ΩrA and from the definition.

2.2 Cup products in KHh

Hermitian K-theory of unital ∗-rings is equipped with products [Lod76, Chapitre
III]. Using that Kh satisfies excision in nonpositive dimensions we obtain, for R,A ∈
Alg∗` with R unital, m ∈ Z and n ≤ 0, a natural product

Kh
m(R)⊗Z K

h
n(A)

?−→ Kh
m+n(R⊗ A). (2.2.1)

If moreover m ≤ 0, we also obtain the product above for not necessarily unital R.

23



2.2. Cup products in KHh 24

Remark 2.2.2. Using Lemma 2.1.11, the product (2.2.1) also gives a product

εK
h
m(R)⊗Z ηK

h
n(A)

?−→ εηK
h
m+n(R⊗ A). (2.2.3)

Remark 2.2.4. Let R, S be unital ∗-rings that satisfy λ-assumption 1.1.24, using
the description of Remark 2.1.6, the cup product

Kh
0 (R)⊗Z K

h
0 (S)

?−→ Kh
0 (R⊗ S)

corresponds to the natural extension of scalars of projections [cf. Lod76, Section
3.1.4]: for [p] ∈ Vh∞R and [q] ∈ Vh∞S

[p] ? [q] = [p⊗ q].

Lemma 2.2.5. Let R, S ∈ Alg∗` be unital that satisfy the λ-assumption 1.1.24 and
let I E S be a ∗-ideal. Assume that the sequence

0→ R⊗ I → R⊗ S → R⊗ (S/I)→ 0

is exact and let ∂ be the associated index map. Then the following diagram commutes

Kh
0 (R)⊗Z K

h
1 (S/I) Kh

1 (R⊗ (S/I))

Kh
0 (R)⊗Z K

h
0 (I) Kh

0 (R⊗ I).

?

id⊗∂ ∂

?

Proof. Because R is unital and satisfies the λ-assumption, we may regard Kh
0 (R) as

the group completion of the monoid Vh∞(R) as in Remark 2.1.6. If g ∈ 1M2Mn(S/I)
is unitary, p ∈ 1M2MnR is a self-adjoint idempotent and 1n ∈ 1M2Mn is the identity
matrix, then (see [Wei13, Corollary 1.6.1] for the non-hermitian case)

[p] ? [g] = [p⊗ g + (1n − p)⊗ 1n] ∈ Kh
1 (R⊗ (S/I)) (2.2.6)

On the other hand, for any lift h ∈ U(1M2M2nS) of g ⊕ g−1 we have

∂[g] = [h1nh
−1]− [1n].

Choosing the lift for (2.2.6) as

p⊗ h+ (12n − (p⊕ p))⊗ 12n

we obtain ∂([p] ? [g]) = [p] ? ∂[g].

Lemma 2.2.7. Suppose ` satisfies the λ-assumption 1.1.24. Let m ∈ Z, n ≤ 0
and R,A ∈ Alg∗` with R unital. Let ∂ be the connecting map associated to the path
extension (1.4.6). Assume that max{n,m + n} ≤ 0. Then the following diagram
commutes.

Kh
m(R)⊗Z K

h
n(A) Kh

m+n(R⊗ A)

Kh
m(R)⊗Z K

h
n−1(ΩA) Kh

m+n−1(R⊗ ΩA)

?

id⊗∂ ∂

?

24



2.2. Cup products in KHh 25

Proof. Let 2 : `→ `⊕` be the inclusion in the second summand. The path and loop
extensions, (1.4.6) and (1.4.7) respectively, are connected by a map of extensions

Ω P `

Ω `[t] `⊕ `

inc

ev1

2

(ev0,ev1)

Let i ≤ 0. Applying Lemma 2.2.5 with S = Σ[t], I = ΣΩ and R = Σ−iÃ, and using
naturality and excision, we obtain that the boundary map ∂ : Kh

i (A) → Kh
i−1(ΩA)

is the cup product with ∂([1]) ∈ Kh
−1(Ω). The proof now follows from associativity

of ?.

Corollary 2.2.8. Suppose ` satisfies the λ-assumption 1.1.24. Let R,A ∈ Alg∗` with
R unital and let m,n ∈ Z.

i) There is an associative product

? : Kh
m(R)⊗Z KH

h
n(A)→ KHh

m+n(R⊗ A).

ii) Let c∗ : Kh
∗ (R) → KHh

∗ (R) be the comparison map. Then for all m ∈ Z and
ξ ∈ Kh

m(R), cm(ξ) = ξ ? c0([1]).

Proof. Part i) is immediate from Lemma 2.2.7 upon taking colimits. For m ≤ 0,
part ii) is clear from the construction of ? and the definition of KHh. For m > 0,
this follows from Remark 2.1.9 and the fact that since KV h

−1 = Kh
−1, the diagram

Kh
∗ (R)⊗Z K

h
−1(Ω) Kh

∗−1(ΩR)

KV h
∗ (R)⊗Z KV

h
−1(Ω) KV h

∗−1(ΩR)

?

c′∗⊗id c′∗

?

commutes.

Lemma 2.2.9. Suppose ` satisfies the λ-assumption 1.1.24. Let A,B ∈ Alg∗` and
m,n ∈ Z. Then (2.2.1) induces an associative product

KHh
m(A)⊗Z KH

h
n(B) KHh

m+n(A⊗B).?

If m ≤ 0 or A is unital, then the following diagram commutes

Kh
m(A)⊗Z KH

h
n(B) KHh

m+n(B)

KHh
m(A)⊗Z KH

h
n(B)

?

cm⊗1 ?
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2.3. Karoubi’s Fundamental Theorem 26

Proof. Lemma 2.2.7 shows that the boundary map ∂ : Kh
∗ → Kh

∗−1 ◦ Ω is the cup
product with ∂([1]) ∈ Kh

−1(Ω). It follows that for all r ≤ 0, the following diagram
commutes:

Kh
r (A)⊗Z K

h
r (B) Kh

2r(A⊗B)

Kh
r−1(ΩA)⊗Z K

h
r−1(ΩB) Kh

2r−2(Ω2A⊗B).

∂⊗∂

?

∂2

?

Taking colimit along the columns we get the desired product map for r = s = 0. The
general case is obtained from the latter applying the suspension and loop functors as
many times as appropriate. Commutativity of the diagram in the statement follows
from Corollary 2.2.8.

Corollary 2.2.10. Let A ∈ Alg∗` and n ∈ Z, then εKH
h
n(A) is a KHh

0 (`)-module
with the action induced by the product in Lemma 2.2.9.

2.3 Karoubi’s Fundamental Theorem

Let A ∈ Rings∗ and consider Â = ind(res(A)) = A⊕Aop as in Example 1.1.6. There
are natural ∗-morphisms

φA : Â→M2(A) (2.3.1)

(a, b) 7→
(
a 0
0 b∗

)
,

ηA : A→ Â (2.3.2)

a 7→ (a, a∗).

Write U ′A = ΓφA and V ′A = ΓηA as in Example 1.4.9. This defines functors
U ′, V ′ : Rings∗ → Rings∗ and write (U ′)n, (V ′)n (n ≥ 0) for their repeated compo-

sition. As in Example 1.4.9, there are natural maps U ′A → ΣÂ and V ′A → ΣA.
The projection on the first coordinate Â → A is not a ∗-morphism but is a ring
morphism and as such it induces a map K(Â)→ K(A). Since for a unital ring (not
necessarily with involution) U(inv(R)) = GL(R), we have that εK

h(inv(R)) ∼ K(R)

and therefore εK
h(R̂) ∼ K(R). It follows using the cone extension from Example

1.4.9 that there are maps

ΩεK
h(U ′R)→ K(R)

(φR)∗−−−→ εK
h(R)

ΩεK
h(V ′R)→ εK

h(R)
(ηR)∗−−−→ K(R)

and that ΩεK
h(U ′R) and ΩεK

h(V ′R) are the homotopic fibers of the maps (φR)∗
and (ηR)∗ respectively.
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2.3. Karoubi’s Fundamental Theorem 27

Theorem 2.3.3 (Karoubi, [Kar80]). There is an element θ0 ∈ −1K
h
2 ((U ′)2Z) such

that:

i) The composite

−1K
h
2 ((U ′)2Z)→ −1K

h
2 (ΣÛ ′Z) ∼= −1K

h
1 (Û ′Z) ∼= K1(U ′Z)→ K1(ΣẐ) ∼= K0(Ẑ)

pr1−−→ K0(Z) = Z

maps θ0 to 1.

ii) Assume that `-satisfies the λ-assumption 1.1.24. Then, for every unital ∗-`-
algebra R, the product with θ0 induces an isomorphism

θ0 ?− : εK
h
∗ (R) ∼= −εK

h
∗+2((U ′)2R).

Proof. The element θ0 of the present theorem appears under the name of σ in the
first line of [Kar80, Section 3.1]. Using the identifications

ΩεK
h(U ′V ′R) ∼ ΩεK

h(V ′U ′R) ∼ εK
h(R) (2.3.4)

as mentioned by Karoubi in [Kar80, Section 1.4], the current theorem is just another
way of phrasing Karoubi’s fundamental theorem

εK
h(V ′R) ∼ Ω−εK

h(U ′R).

Furthermore, the theorem as stated here is equivalent to that proved in [Kar80,
Section 3.5], which says that product with θ0 induces an isomorphism

εK
h
∗ (V ′R) ∼= −εK

h
∗+1(U ′R).

Remark 2.3.5. Using Lemma 2.1.11, the Theorem 2.3.3 is equivalent to the state-
ment that θ0 induces an isomorphism

θ0 ?− : Kh
∗ (R) ∼= −1K

h
∗+2((U ′)2R).

Corollary 2.3.6. Let A ∈ Alg∗` and assume that ` satisfies the λ-assumption 1.1.24.
The element θ = c2(θ0) ∈ −1KH

h
2 ((U ′)2Z) induces an isomorphism

θ ?− : εKH
h
∗ (A)→ −εKH

h
∗+2((U ′)2A)

Proof. Using that Kh
n satisfies excision for n ≤ 0 and Theorem 2.3.3 we get that for

any A ∈ Alg∗` , θ0 induces an isomorphism

θ0 : εK
h
∗ (A) ∼= −εK

h
∗+2((U ′)2A). (∗ ≤ −2)

This then follows from Corollary 2.2.8 upon taking colimits.
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The 12-term exact sequence

Definition 2.3.7. Let R be a unital ∗-ring. The involution of R induces an involu-
tion g → (g∗)−1 in GL∞(R) which in turn induces a natural action of Z/2 in K∗(R);
for x ∈ Kn(R) write x for this action. Define

εWn(R) := coker(Kn(R)
(φR)∗−−−→ εK

h
n(R)),

εW
′
n(R) := ker(εK

h
n(R)

(ηR)∗−−−→ Kn(R)),

kn(R) := {x ∈ Kn(R) : x = x}/{x = y + y for some y}, and

k′n(R) := {x ∈ Kn(R) : x = −x}/{x = y − y for some y}.

The groups εWn(R) and εW
′
n(R) are called the Witt and coWitt groups of R. The

groups kn(R) and k′n(R) are the corresponding Z/2-Tate cohomology groups of
Kn(R).

Theorem 2.3.8 (Suite exacte des douze, Karoubi [Kar80, Theoreme 4.3]). Assume
` satisfies the λ-assumption 1.1.24 and let R ∈ Alg∗` be a unital ∗-algebra. There is
an exact sequence

kn+1(R) −εWn+2(R) εW
′
n(R) k′n+1(R) −εW

′
n+1(R) −εWn(R)

Wn+1(R) W ′
n+1(R) k′n+1(R) −εW

′
n(R) Wn+2(R) kn+1(R)
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Chapter 3

Bivariant Hermitian Algebraic
K-theory

In this chapter we construct the bivariant hermitian algebraic K-theory category
and develop some of its basic properties. This construction is based on the original
bivariant algebraic K-theory j : Alg` → kk made by Cortiñas and Thom in [CT07].
There are generalizations of kk to incorporate the action of groups and group graded
algebras [Ell14] and also for algebras with actions of quantum groups [Ell18]. In
Section 3.1 we develop the necessary results to construct kkh as a category and the
functor jh : Alg∗` → kkh. Then in Section 3.2 we show it is triangulated and prove
how jh : Alg∗` → kkh is the universal excisive homology theory (defined in such
section) with matrix and hermitian stability and homotopy invariance.

From this chapter on we will assume that ` satisfies the λ-assumption 1.1.24
without further mention.

3.1 The kkh category

Fix an infinte set X. A bijection X q X ∼= X induces a ∗-homomorphism
MX ⊕ MX → MX ; write � for its ind-∗-homotopy class. By Lemma 1.3.6, �
is independent of the choice of bijection above.

Lemma 3.1.1 ([cf. CT07, Section 4.1]). The map � together with the zero map,
makes MX an abelian monoid object in ind− [Alg∗` ]

Proof. Since any chosen bijection X q X ∼= X also induces a bijection
X q X q X ∼= X in any possible association and these choices induce the same
class in ind − [Alg∗` ], it is clear that � is associative. Similarly, the permutation
of copies of X in X q X induce the same isomorphism as � and therefore it is
commutative.

Let X0, X1 ⊆ X be the corresponding subsets to X q ∅ and ∅ qX through the
bijection X q X ∼= X. Write f0 : X0 → X and f1 : X1 → X the corresponding
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3.1. The kkh category 30

bijections. Then, we have

[(f0 q ∅)∗](id� 0) = idMX

[(∅ q f1)∗](0� id) = idMX
.

Therefore the zero map is a neutral element for �.

Similarly, any choice of bijection X × X ∼= X gives rise to the same ind-∗-
homotopy class of a ∗-homomorphism MX ⊗ MX → MX ; we write µ for this
ind-∗-homotopy class.

Lemma 3.1.2. The map µ is an associative and commutative product in ind−[Alg∗` ]
and the inclusion i : ` →MX is an identity map for µ. Furthermore µ distributes
over � and therefore (MX ,�, µ, 0, [i]) is a semi-ring object in Ind− [Alg∗` ].

Proof. Associativity and commutativity are proven in the same way as in the pre-
vious lemma and it is clear that i is an identity for µ. Finally, the fact that µ
distributes over � can be derived from the fact that there is a natural bijection

X × (X qX) ∼= (X ×X)q (X ×X)

and Lemma 1.3.6.

Let A,B ∈ ind− Alg∗` . Put

{A,B} := [A,MXB]; (3.1.3)

the monoid operation � on MX induces one on {A,B}.

Lemma 3.1.4. The product µ induces a bilinear, associative composition law:

? : {B,C} × {A,B} → {A,C}
([f ], [g]) 7→ [µ⊗ idC ] ◦ [(idMX

⊗ f)] ◦ [g].

Proof. Since changing the representative of the class [f ] does not change the class
of [idMX

⊗ f ], it is clear that ? is well defined. The fact that ? is bilinear follows
from the fact that µ distributes over �. Finally associativity follows from observing
that for any map h : C →MXD, the diagram

MXMXC MXMXMXD MXMXD

MXC MXMXD MXD

idMX
⊗idMX

⊗h

µ⊗idD

idMX
⊗µ⊗idD

µ⊗idD

idMX
⊗h µ⊗idD

commutes due to the associativity of µ.

Definition 3.1.5. Let {ind − Alg∗`}X be the category with the same objects as
ind − Alg∗` , where morphisms sets are given by (3.1.3) and which is enriched over
the category of abelian monoids. Lemma 3.1.2 also shows that for A ∈ ind − Alg∗`
the inclusion i : A → MXA is the identity. Write {Alg∗`}X for full subcategory of
{ind− Alg∗`}X where the objects are in Alg∗` instead of ind− Alg∗` .
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3.1. The kkh category 31

Remark 3.1.6. Let A,B ∈ Alg∗` . The algebra B∆ has natural binary operation
called concatenation • : B∆×B∆ → B∆; this induces a binary operation in [A,BS1

]:
for maps f, g : A → BS1

we write f • g for their concatenation. The zero map is a
neutral element for this operation and the reversing map

`[t]→ `[t] (3.1.7)

t 7→ 1− t

induces a ∗-morphism a : BS1 → BS1
such that [f • af ] = [0]. Concatenation and �

distribute over each other in {A,BS1} [see CT07, Section 3.3].

Lemma 3.1.8. Let A,B ∈ Alg∗` . For n ≥ 1, the concatenation and � operations
coincide in {A,BSn} and it is an abelian group with such operation.

Proof. As said in Remark 3.1.6, • and � distribute over each other, due to the
Eckmann-Hilton argument, both operations coincide. Since concatenation has an
inverse as discussed in the same remark, the abelian monoid {A,BSn} is a group.

There is a canonical functor [Alg∗` ] → {Alg∗`}, which is the identity on objects
and sends the class of a map f to that of if .

Lemma 3.1.9. The composite functor can : Alg∗` → [Alg∗` ] → {Alg∗`} is homotopy
invariant, MX-stable and i+-stable. Moreover any functor H : Alg∗` → C which is
homotopy invariant MX-stable and i+-stable, factors uniquely through can.

Proof. Since can factors through [Alg∗` ], it is homotopy invariant by definition. More-
over for any functor H as in the statement, H factors through Alg∗` → [Alg∗` ].

To see MX stability, for any x ∈ X, the inclusions ix,A : A → MXA maps to
ix, A : A → MXA in {Alg∗`}. The identity map MXA → MXA induces a map
MXA → A in {Alg∗`} using the isomorphism MXMX

∼= MX . It is immediate that
these maps are inverses to each another. induces the identity in {Alg∗`} so can is
MX-stable. Similarly, since the ind-system MX is built with repeated composition
of i+, using Lemma 1.2.5 we get that it is i+ stable.

Finally, for a functor H as in the statement of the lemma, as said before H
factors through [H] : [Alg∗` ] → C. Since H is MX-stable and i+-stable, for any
B ∈ Alg∗` , the map [H](iB : B →MXB) is an isomorphism in C, so we can define

{H}([f : A→MXB]) = [H](iB)−1 ◦ [H]([f ]).

It is easy to see that {H} defines a functor {H} : {Alg∗`} → C that factors H
through can.

Lemma 3.1.10. The canonical functor can : Alg∗` → {Alg`} is hermitian stable.

Proof. Since ` satisfies the λ-assumption 1.1.24, the proof follows from Lemma 3.1.9
and Corollary 1.6.16.
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3.1. The kkh category 32

Lemma 3.1.11. Let R be a unital ∗-algebra, A E R a ∗-ideal and λ1, λ2 ∈ R be
central elements satisfying the requirements of the element λ in the λ-assumption
1.1.24. Let

pi = pλi =

(
λ∗i 1
λiλ

∗
i λi

)
and let ιi : A → 1M2A, ιi(a) = pia. Then can(ι1) = can(ι2) is an isomorphism in
{Alg∗`}.
Proof. Let ui = uλi be as in (1.1.27) of Remark 1.1.26. Under the isomorphism

1M2
∼= M±, ιi corresponds to ι+. Thus can(ιi) is an isomorphism. Moreover, since

u = u2u
−1
1 ∈ 1M2R is unitary, can(ad(u)) = id1M2A by Lemma 1.6.8, we get

can(ι2) = can(ad(u2u
−1
1 ))can(ι1) = can(ι1).

Lemma 3.1.12. The functor J : Alg∗` → Alg∗` passes down to a functor J :
{Alg∗`} → {Alg∗`}.
Proof. For a map [f ] ∈ [A,B], it easy to check using the universal extension that
the class [J(f)] ∈ [J(A), J(B)] does not depend on the representative of the class f .

Recall the map φMX ,B : J(MXB)→MXJ(B) from Example 1.4.12. This induces
a map [φ] ∈ {J(MXB), B}. For a map ξ = [f ] ∈ {A,B}, define J(ξ) ∈ {A,B} as
the class of the composition

J(A)
J(f)−−→ J(MXB)

φ−→MXJ(B).

Using Remark 1.4.11, it is clear that this defines a functor.

From here on, we shall abuse notation and use the same letter for the homotopy
class of a map f : A→ B ∈ ind−Alg∗` and for its image in {A,B}, and in case the
latter is an abelian group (e.g. if B = CSn) we put −f for the inverse of can(f) in
that group.

Lemma 3.1.13. Let A,B ∈ ind− Alg∗` and f ∈ [A,B]. The the square

J(A) J(B)

AS1
BS1

J(f)

ρA ρB

idS1⊗f

is homotopy commutative.

Proof. This is direct consequence of Remark 1.4.11.

Lemma 3.1.14 ([cf. CMR07, Lemma 6.30]). Let A ∈ Alg∗` . Recall the maps ρA :
J(A) → ΩA and γA : J(AS1

) → J(A)S
1

from (1.4.13) and (1.4.15) respectively.
Then the following diagram commutes in {ind− Alg∗`}.

J2(A) J(A)S
1

J(AS1
).

−ρJA

J(ρA)
γA
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3.1. The kkh category 33

Proof. Recall the reversing map a : `[t]→ `[t] from (3.1.7). For an element p ∈ `[t],
observe that ev0(p) = ev1(a(p)) and ev1(p) = ev0(a(p)). Writing P ′` = ker ev1, we
get that a(P`) = P ′` and a(P ′`) = P`. Passing to the subdivision versions, for
any A ∈ Alg∗` , a induces an isomorphism PA ∼= P ′A. Observe as well that since
P` ∩ P ′` = Ω then ker(ev0 : P ′A→ A) ∼= AS1

.
Define

I = ker(PT (A)
ev1−−→ T (A)

ηA−→ A) = {p ∈ PT (A) : ev1(p) ∈ J(A)}

and E as the pullback of the diagram

E I

P ′J(A) J(A).

pr2

pr1
p

ev1

ev0

The surjection pr2 : E → I is semi-split by p 7→ (p, t ev0(p)) and its kernel is

{(q, 0) ∈ E : ev0(q) = 0)} ∼= ker ev0(P ′J(A)→ J(A)) ∼= J(A)S
1

.

Therefore, there is a semi-split extension

0→ J(A)S
1 i1−→ E

pr2−−→ I → 0. (3.1.15)

Also, by definition of I, there is a semi-split extension

0→ I → PT (A)
ηA ev1−−−→ A→ 0. (3.1.16)

Therefore there are maps of extensions

0 J(A)S
1

E I 0

0 J(A)S
1 P ′J(A) J(A) 0.

i1 pr2

pr1 ev1

ev0

(3.1.17)

0 I PT (A) A 0

0 J(A) T (A) A 0.

ev1

ηA ev1

ev1

ηA

(3.1.18)

Let ξ : J(I) → J(A)S
1

be the classifying map of the extension (3.1.15). Using
Remark 1.4.11 and Remark 3.1.6, it follows that the classifying map of the bottom
row of (3.1.17) is −ρJ(A) : J2(A) → J(A)S

1
. So from Remark 1.4.11 it follows that

the map of extensions (3.1.17) gives the equality

ξ = idJ(A)S1 ◦ ξ = −ρJ(A) ◦ J(ev1). (3.1.19)
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3.1. The kkh category 34

Similarly let ζ : J(A) → I the classifying map of extension (3.1.16); the map of
extensions (3.1.18) gives

ev1 ◦ ζ = idJ(A) (3.1.20)

On the other hand, write η : I → AS1
for the restriction of the map (idP ⊗ ηA) • 0 :

PT (A)→ PA (where • is concatenation). The map η lifts to a map q : E → T (A)S
1

by concatenation of paths in I and paths in P ′J(A) which by definition of E they
coincide in the endpoints. This gives maps of extensions

0 J(A)S
1

E I 0

0 J(A)S
1

T (A)S
1

AS1
0.

i1 pr2

q η

idS1⊗ηA

(3.1.21)

0 I PT (A) A 0

0 AS1 PA A 0.

η

ηA ev1

idP⊗η

ev1

(3.1.22)

Since the classifying map of the bottom row of (3.1.21) is γA : J(AS1
)→ J(A)S

1
,

we get
ξ = idJ(A)S1 ◦ ξ = γA ◦ J(η). (3.1.23)

Also, since the classifying map of the bottom row of (3.1.22) is ρA, we have

ρA = ρA ◦ idA = η ◦ ζ (3.1.24)

Using (3.1.19),(3.1.20),(3.1.23) and (3.1.24):

γA ◦ J(ρA) = γA ◦ J(η) ◦ J(ζ)

= ξ ◦ J(ζ)

= −ρJ(A) ◦ J(ev1) ◦ J(ζ)

= −ρJ(A)

Remark 3.1.25. The analogue of Lemma 3.1.14 for algebras without involution
also holds as stated (this will be later deduced from the fact that kk is equivalent
kkh for a particular choice of `). This corrects a mistake in [CT07, Lemma 6.2.2],
where the sign is missing. A sign is also missing in the definition of composition in
the category kk [CT07, Theorem 6.2.3], which is fixed below.

Let A,B ∈ Alg∗` . As in [CT07, Section 6.1], using the functor J : {Alg∗`} →
{Alg∗`} of Lemma 3.1.12, there is a map

{A,B} → {JA,BS1}
ξ 7→ ρB ? J(ξ).

Thus one can form the colimit

kkh(A,B) = kkh(A,B) = colim−−−→
n

{JnA,BSn}

34



3.2. jh as an excisive homology theory 35

Lemma 3.1.26. Let ξ = [f ] ∈ {JmB,CSm} and η = [g] ∈ {JnA,BSn}; put

ξ ◦ η = [(idSn ⊗ f)] ? (−1)mn[γm,nB ] ? [Jm(g)] ∈ {Jm+n(A), CSn+m}.

This defines a bilinear composition law

kkh(B,C)⊗Z kk
h(A,B)→ kkh(A,C)

ξ ⊗ η 7→ ξ ◦ η

Proof. This follows from Lemma 3.1.13 and Lemma 3.1.14.

Therefore, the sets kkh(−,−) are the morphism sets of a category kkh with the
same objects as Alg∗` , where the identity map of A ∈ Alg∗` is represented by the class
of i : A→MXA. Define a functor {Alg∗`} → kkh as the identity on objects and as
the canonical map to the colimit {A,B} → kkh(A,B) on arrows. Composing the
latter with the functor Alg∗` → {Alg∗`} we obtain a functor

jh : Alg∗` → kkh. (3.1.27)

The category kkh together with the functor jh is called bivariant algebraic hermitian
K-theory. We will often use the term kkh-equivalence between two ∗-algebras to
mean that their corresponding images in kkh are isomorphic.

3.2 jh as an excisive homology theory

A triangulated category is a triple (T,ΩT, T ) where T is an additive category, ΩT :
T → T is a self-equivalence functor called the loop functor and T is a class of
sequences of morphisms in T

ΩTC → A→ B → C

called (distinguished) triangles such that they satisfy the following axioms:

TR0 The class T is closed under isomorphisms and the sequence

ΩTA→ 0→ A
idA−−→ A

is a distinguished triangle.

TR1 For any map α : A→ B in T, there is a distinguished triangle

ΩTB → C → A
α−→ B.

TR2 For the sequences

ΩTC
f−→ A

g−→ B
h−→ C, (3.2.1)

ΩTB
−ΩTh−−−→ ΩTC

f−→ A
g−→ B (3.2.2)

one is a distinguished triangle if and only if the other is. In this case we say
that (3.2.2) is a rotation of (3.2.1).
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3.2. jh as an excisive homology theory 36

TR3 For any commutative diagram between distinguished triangles

ΩTC A B C

ΩTC
′ A′ B′ C ′

ΩTγ β γ

there exists a map α : A→ A′ which makes the whole diagram commute.

TR4 Let α : A→ B and β : B → C be maps in T. There is a commutative diagram

Ω2
TC ΩTD ΩTB ΩTC

0 D′′′ D′′′ 0

ΩTC D′′ A C

ΩTC D′ B C

ΩTβ

h

j βα

α

β

in which each row and column is a distinguished triangle. Furthermore, the
square

ΩTB ΩTC

D′′′ D′′

ΩTβ

j

h

commutes.

Remark 3.2.3. Usually the axioms for triangulated categories are defined using the
inverse to the loop functor, called the suspension functor. In this thesis we present
the axiom in this way since it will be more natural to work with the loop functor.

Let T be a triangulated category; write [n] for the n-fold loop functor in T. Let
E be the class of all semi-split extensions

0→ A→ B → C → 0. (E)

An excisive homology theory on Alg∗` (with coefficients in T) is a functor H : Alg∗` →
T together with a family of maps

{∂E : H(C)[1]→ H(A) : E ∈ E}

such that for every E ∈ E , the sequence

H(C)[1]
∂E−→ H(A)→ H(B)→ H(C)
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3.2. jh as an excisive homology theory 37

is a triangle in T and the maps {∂E} are compatible with maps of extensions in the
sense that for a commutative diagram between semi-split extensions

0 A B C 0 (E)

0 A′ B′ C ′ 0 (E ′)

f1 f2 f3

the following diagram

H(C)[1] H(A)

H(C ′)[1] H(A′)

∂E

H(f3) H(f1)

∂E′

commutes.

Remark 3.2.4. In a triangulated category, a sequence

ΩC → A→ B
f−→ C

with a splitting g : C → B (i.e. idC = fg), is always isomorphic to the split
distinguished triangle

ΩC
0−→ A

i1−→ A⊕ C pr2−−→ C.

In particular, the first sequence is a distinguished triangle [Nee01, Remark 1.2.7].

In what follows we will see that there is a natural triangulation of kkh which
makes the functor jh a homology theory.

Lemma 3.2.5. Let L ∈ Alg∗` be flat as an `-module. The functor L = L ⊗ − :
Alg∗` → Alg∗` induces a functor L : kkh → kkh.

Proof. Using the universal property described in Lemma 3.1.9, the functor descents
to {L} : {Alg∗`} → {Alg∗`}.

Next, recall the map

φA,L : J(L⊗ A)→ L⊗ J(A)

from Example 1.4.12. Write φnL for the composition

Jn(L⊗ A)
Jn−1(φA,L)
−−−−−−→ Jn−1(L⊗ J(A))→ · · ·

φJn−1(A),L−−−−−−→ L⊗ Jn(A).

For a map α ∈ kkh(A,B) represented by [f : Jn(A) → MXB
Sn ] define L ⊗ α ∈

kkh(L⊗ A,L⊗B) as the class of the composition

Jn(L⊗ A)
φnL−→ L⊗ Jn(A)

L⊗f−−→ L⊗MXB
Sn ∼=MX(L⊗B)S

n

.

Using Remark 1.4.11, it is clear that this definition gives a functor L : kkh →
kkh.
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Corollary 3.2.6 ([cf. CT07, Section 6.6]). The functors Ω,ΣX : Alg∗` → Alg∗` induce
functors Ω,ΣX : kkh → kkh

Proof. This follows from the previous lemma since Ω and ΣX are flat.

Lemma 3.2.7. Let f : A→ B be semi-split ∗-morphism. Then, for any subdivision
Pn,f = Bsdn ∆1 ×B A of the path algebra, the inclusion if : ker(f)→ Pn,f induced by
the inclusion if : ker(f)→ Pf and the last vertex map is invertible in kkh.

Proof. The same proof as in [CT07, Lemma 6.3.2] in the non-hermitian case works
verbatim.

Corollary 3.2.8. The last vertex map h : ΩA → Asdn S1
is invertible in kkh; it

follows that in the ind-object AS1
all the transition maps are kkh-equivalences.

Proof. This follows from Lemma 3.2.7 by considering the loop extension (1.4.7)
and that if PnA is the n-th subdivision of PA then the kernel of the induced map
evn1 : PnA→ A is isomorphic to Asdn S1

and that Pevn1
is Pn,ev1 .

Definition 3.2.9. For a semi-split extension

0→ A
f−→ B

g−→ C → 0 (E)

the Lemma 3.2.7 gives an kkh-equivalence A → Pg. Define the connecting map as
the following morphism in kkh(ΩC,A):

∂E : ΩC → Pg
∼←− A, (3.2.10)

the composition of the natural map ΩC → Pg of the mapping path extension of
Example 1.4.5 and the inverse of A

∼−→ Pg.

Lemma 3.2.11. For a semi-split extension (E), the sequences

kkh(D,ΩB)
Ωjh(g)∗−−−−−→ kkh(D,ΩC)

(∂E)∗−−−−→ kkh(D,A)
jh(f)∗−−−−→ kkh(D,B)

jh(g)∗−−−−→ kkh(D,C)

kkh(C,D)
jh(g)∗−−−−→ kkh(B,D)

jh(f)∗−−−−→ kkh(A,D)
(∂E)∗−−−−→ kkh(ΩC,D)

Ωjh(g)∗−−−−−→ kkh(ΩB,D)

are exact.

Proof. This is proved in [CT07, Theorem 6.3.6 and Theorem 6.3.7] in the non-
hermitian case. The same proof works verbatim.

Corollary 3.2.12. For any D ∈ Alg∗` , the functors

kkh(D,−), kkh(−, D) : Alg∗` → Ab

are split exact.

Proof. This is [CT07, Corollary 6.3.4] in the non-hermitian case; again, the same
proof works.
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For R ∈ Alg∗` unital, the ∗-algebra ΓXR is what is known as a ∗-infinite-sum
algebra: define

α =
∑
n∈N

en,2n and β =
∑
n∈N

en,2n+1;

these elements satisfy the identities

α∗α = 1 = β∗β

αα∗ + ββ∗ = 1.

For a, b ∈ ΓXR, define

a⊕ b = α∗aα + β∗bβ

a∞ =
∑
n∈N

(β∗)nα∗aαβn,

and for f, g : B → ΓXR, write f ⊕ g : B → ΓXR and f∞ : B → ΓXR for

f ⊕ g(b) = f(b)⊕ g(b)

f∞(b) = f(b)∞.

Then, it is straightforward to compute that

idΓXR ⊕ id∞ΓXR = idΓXR.

Lemma 3.2.13. There exists a unitary matrix Q ∈ M3ΓXR such that for any
a, b ∈ ΓXA

Q∗

a⊕ b 0 0
0 0 0
0 0 0

Q =

a 0 0
0 b 0
0 0 0


Proof. The matrix Q in [Wag72, p.355] can easily seen to be unitary in our case.

Corollary 3.2.14. For any A ∈ Alg∗` , the ∗-algebra ΓXA is isomorphic to 0 in kkh.

Proof. Assume A unital, the general case follows from split-exactness. From Lemma
3.2.13, Lemma 1.6.8 and Lemma 1.6.9 we get that

jh(idΓXA ⊕ id∞ΓXA) = jh(idΓXA) + jh(id∞ΓXA);

since idΓXA ⊕ id∞ΓXA = idΓXA, it follows that jh(idΓXA) = 0 and therefore ΓXA is
kkh-equivalent to 0.

Corollary 3.2.15. There is a natural kkh-equivalence ΩΣXA ∼= A. Since the func-
tors ΣX and Ω commute, it follows that they are inverse equivalences on kkh.
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Proof. Write q : ΓXA→ ΣXA for the quotient map. Using Lemma 3.2.7, there is a
natural kkh-equivalence MXA ∼= Pq. On other hand, considering the mapping path
extension of q, there is a natural map ΩΣXA → Pq. Since ΓXA is kkh-equivalent
to 0 for any A, it follows from Lemma 3.2.11, that for any D ∈ Alg∗` , the inclusion
ΩΣXA→ Pq induces isomorphisms

kkh(ΩΣXA,D) ∼= kkh(Pq, D).

Therefore there are kkh-equivalences ΩΣA ∼= Pq ∼= MXA ∼= A.

Lemma 3.2.16. The classifying map ρA : J(A)→ ΩA is an kkh-equivalence.

Proof. The algebras T (A) and PA are contractible: there are ∗-homotopies H0 :
T (A)→ T (A)[s] and H1 : PA→ PA[s] such that

ev1H0 = idT (A) ev0H0 = 0

ev1H1 = idPA ev0H1 = 0.

These are defined as follows: H0 is the adjoint to the `-linear map

A→ T (A)[s]

a 7→ sa;

similarly, H1 is defined by

PA→ PA[s]

p(t) 7→ p(st).

Therefore, using the loop (1.4.7) and the universal extensions in Lemma 3.2.11, there
are natural equivalences ploop : ΩA→ ΩA and puniv : ΩA→ J(A). Using naturality
of these maps and the map of extensions from the universal to the loop extension
that defines ρA, the statement of the theorem follows.

Let T be the class of sequences in kkh

ΩC → A→ B → C

which are isomorphic (as sequences) to the image of some mapping path extension

ΩB′ → Pf → A′
f−→ B′.

Theorem 3.2.17. The triple (kkh,Ω, T ) is a triangulated category.

Proof. This is proved in [CT07, Theorem 6.5.2] for the non-hermitian case. The
same proof works verbatim.

Theorem 3.2.18. The functor jh : Alg∗` → kkh together with the connecting maps
{∂E} form an excisive homology theory which is homotopy invariant and MX and
hermitian stable.
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Proof. The fact that jh is homotopy invariant and MX and hermitian stable follows
from Lemma 3.1.9 and Lemma 3.2.11. By definition of the connecting map, for a
semi-split extension (E) the sequence

ΩC
∂E−→ A→ B → C

is isomorphic (as a sequence) to the mapping path triangle of the extension. More-
over, the maps ∂E are clearly natural on the extension (E).

Remark 3.2.19. Theorem 3.2.18 corrects an error in [CT07, Example 6.6.1] in
which the connecting map is wrongly defined.

Theorem 3.2.20. The functor jh : Alg∗` → kkh is universal in the following sense:
for any excisive homology theory H : Alg∗` → T that is homotopy invariant, MX

and hermitian stable, there is a unique triangulated functor H : kkh → T such that
following diagram commutes

Alg∗` T

kkh

H

jh

H

Proof. This is [CT07, Theorem 6.6.2] in the non-hermitian case. The same proof
works.

Remark 3.2.21. As explained in Remark 1.4.4, the classes of extensions which
are semi-split with respect to the underlying categories of sets and `-modules agree
with those semi-split with respect to sets with involution and `-modules with involu-
tion. Hence by Theorem 3.2.20, the corresponding kk-theories are the same whether
involutions are included in the underlying category or not.

Let C be an abelian category. A functor H : Alg∗` → C is half-exact if for an
extension in Alg∗`

0→ A→ B → C → 0

the sequence
H(A)→ H(B)→ H(C)

is exact.

Proposition 3.2.22. Let C be an abelian category and H : Alg∗` → C a functor.
Assume that H is half-exact, homotopy invariant and MX and hermitian stable.
Then there is a unique homological functor H : kkh → C such that H ◦ jh = H.

Proof. Again, the proof is the same as in [CT07, Theorem 6.6.6].

Remark 3.2.23. For a map α ∈ kkh(A,B) we will show how to describe H(α) for
a functor H as in Proposition 3.2.22: first extend H to {H} as in Lemma 3.1.9;
next realize α as a class of a map f : Jn(A)→MXM

⊗k
± Bsdr Sn . Composing with the

inverse of Jn(A) → ΩnA and using MX-stability, hermitian stability and Corollary
3.2.8 we get a map f : ΩnA → ΩnB in kkh. It is immediate to see that f induces
the class of Ωn(α), and therefore H(Ωn(α)) is determined by {H}(f) and in turn
H(α) = {H}(Σn

Xf).

41



3.2. jh as an excisive homology theory 42

From here on, we will fix X = N.

Remark 3.2.24. Let f : A → B be a semi-split ∗-morphism. One can also fit f
into other equivalent triangles instead of the one induced by Pf . For example, take
the pullback of the natural map T (B)→ B along f

J(B) T (B)×B A A

J(B) T (B) B.

p
f

Write Tf := T (B)×B A. Then, we have a commutative diagram

J(B) Tf A B

ΩB Pf A B

ρB

f

f

(3.2.25)

By Lemma 3.2.16, the vertical map JB → ΩB is a kkh-equivalence. Since the first
three terms of the top row in (3.2.25) form an extension, using the five lemma it
follows that the vertical map Tf → Pf is a kkh-equivalence. Thus, the top row is
kkh-isomorphic to the bottom row, and is thus a triangle in kkh.

In a similar case, let Γf be as in Example 1.4.9. By Corollary 3.2.14, the classi-
fying map JΣB → M∞B of the cone extension is a kkh-equivalence, and therefore
TΣf → Γf is a kkh-equivalence by the same reasoning as before. Thus the vertical
maps in the commutative diagram below form an isomorphism of triangles in kkh:

JΣB TΣf ΣA ΣB

M∞B Γf ΣA ΣB

Σf

Σf

(3.2.26)

Therefore, the bottom row of (3.2.26) is a distinguished triangle in kkh. The map
(3.2.26) together with that of (3.2.25) with Σ(f) substituted for f is a zig-zag of kkh-
equivalences. In particular Γf is kkh-equivalent to PΣf ). Since ΣPf is isomorphic
to PΣf , the bottom row of (3.2.26) is isomorphic in kkh to the suspension of the
mapping path extension 1.4.9 associated to Σf . Thus, we have an isomorphism of
triangles:

M∞B Γf ΣA ΣB

B ΣPf ΣA ΣB

∼= ∼= ∼=

jh(Σf)

∼=

Σjh(f)

Remark 3.2.27. Let (Alg∗` )f ⊂ Alg∗` and kkhf ⊂ kkh be the full subcategories whose

objects are the ∗-algebras that are flat as `-modules and let jhf : (Alg∗` )f → kkhf be
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the restriction of jh. Observe that (Alg∗` )f is closed under J and under mapping
path extensions; hence kkhf is triangulated and jhf is excisive, homotopy invariant,
ι+-stable and MX-stable. Moreover, in the same way as in Theorem 3.2.20, the
functor jhf is universal among such functors.

Example 3.2.28. Let `0 be any commutative ring and let ` = inv(`0) and inv :
Alg`0 → Alg∗` be as in Example 1.1.6. Recall the universal excisive matrix stable
and homotopy invariant homology theory j : Alg`0 → kk. Then, the composition
jh ◦ inv : Alg∗` → kkh is excisive, homotopy invariant and MX-stable; by universality
of j it induces a triangulated functor inv : kk`0 → kkh` . Similarly, for the inverse
functor to inv,

res : Alg∗` → Alg`0
B 7→ (1, 0)B

the composition j ◦ res is excisive, homotopy invariant, MX-stable and by Example
1.1.16 it is also hermitian stable. Hence it induces a functor res : kkh` → kk`0 which
is inverse to inv. This shows that kk is a particular case of kkh.

Similarly, for an arbitrary `, recall the adjunctions from Example 1.1.6:

res : Alg∗` ↔ Alg` : ind,

ind′ : Alg` ↔ Alg∗` : res.

The same reasoning as before gives adjunctions

res : kkh ↔ kk : ind,

ind′ : kk ↔ kkh : res.

Example 3.2.29. Let L ∈ Alg∗` ; then L ⊗ − preserves semi-split extensions with
linear splittings if either L is flat as `-module or every semi-split extension is `-
linearly split. In either case, jh(L ⊗ −) : Alg∗` → kkh is homotopy invariant,
matricially stable, hermitian stable and excisive, and therefore induces a triangulated
functor L ⊗ − : kkh → kkh. By a similar argument, for kkhf as in Remark 3.2.27,

any L ∈ Alg∗` induces a triangulated functor L⊗− : kkhf → kkh.

Proposition 3.2.30. Let A1, A2 ∈ Alg∗` such that Ai⊗− (i = 0, 1) preserve linearly
split extensions. Then we have a natural bilinear, associative product

kkh(A1, A2)× kkh(B1, B2)→ kkh(A1 ⊗B1, A2 ⊗B2), (ξ, η) 7→ ξ ⊗ η

that is compatible with composition in all variables.

Proof. Suppose first the case that A1, A2 are flat as `-modules. By Example 3.2.29,
Ai⊗− and −⊗Bi extend to functors Ai⊗− : kkh → kkh and −⊗Bi : kkhf → kkh.

For ξ ∈ kkh(A1, A2) and η ∈ kkh(B1, B2), set

ξ ⊗ η = (ξ ⊗ idB2) ◦ (idA1 ⊗ η).

It is straightforward to check that the product above has all the desired properties.
In the case semi-split extensions are always linearly split, then −⊗Bi extend to

the functors −⊗Bi : kkh → kkh and use the same definition as before.
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Definition 3.2.31. Let ε ∈ ` be a unitary, A,B ∈ Alg∗` and n ∈ Z. Put

kkhn(A,B) :=

{
kkh(A,ΣnB) if n ≥ 0

kkh(A,Ω−nB) if n < 0

εkk
h
n(A,B) := kkhn(A, εM2B)

Remark 3.2.32. Since Ω and Σ are inverse functors in kkh there are natural iso-
morphisms

kkhn(A,B) ∼=

{
kkh(ΩnA,B) if n ≥ 0

kkh(Σ−nA,B) if n < 0

Remark 3.2.33. Due to Remark 1.1.26, there is a ∗-isomorphism 1M2
∼= M±. It

follows from this and from Theorem 3.2.20 that for all A,B ∈ Alg∗` , i+ : ` → M±
induces a canonical isomorphism

1kk
h
∗ (A,B) ∼= kkh∗ (A,B).

Example 3.2.34. The functor KHh
0 : Alg∗` → KHh

0 (`) − Mod satisfies the hy-

pothesis of Proposition 3.2.22. Hence the functor KH
h

0 of the proposition induces
a natural homomorphism

kkh(A,B)→ homKHh
0 (`)(KH

h
0 (A), KHh

0 (B))

Setting A = ` we obtain a natural map

kkh(`, B)→ KHh
0 (B).

Proposition 3.2.35. The product from Proposition 3.2.30 maps to the cup product
from Lemma 2.2.9 under the map from Example 3.2.34. In other words, there is a
commutative diagram

kkh(`, A)⊗Z kk
h(`, B) KHh

0 (A)⊗Z KH
h
0 (B)

kkh(`, A⊗B) KHh
0 (A⊗B).

⊗ ?

Proof. Assume A,B unital and let α ∈ kkh(`, A) and β ∈ kkh(`, B). Using Remark
3.2.23, the corresponding elements in KHh

0 (A) and KHh
0 (B) are determined by

maps

Ωn(α)∗ : KHh
0 (Ωn)→ KHh

0 (ΩnA),

Ωm(β)∗ : KHh
0 (Ωm)→ KHh

0 (ΩmB).

and evaluation at [1] ∈ KHh
0 (`). Since the product

kkh(`, A)⊗Z kk
h(`, B)→ kkh(`, A⊗B)
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extends the tensor product of algebras and due to Remark 2.2.4 the cup product
corresponds to the extension of scalars, it follows that

Ωn+m(α⊗ β)∗[1] = Ωn(α)∗[1] ? Ωm(β)∗[1].

From this, the statement follows in the unital case. The non-unital case follows from
the unital one and excision.
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Chapter 4

Computations and the comparison
with KHh

In this chapter we show some computations in kkh as a matter of examples: in
Section 4.1 we characterize the image of the coproducts, of the Toeplitz algebra and
of the Cohn algebra of a graph and also give an algebraic analogue of the Pimsner-
Voiculescu sequecen. In Section 4.2 we show that the natural map kkh(`, A) →
KHh

0 (A) as described in Example 3.2.28 is an isomorphism.

4.1 Computations

Coproducts

Proposition 4.1.1. Let A,B ∈ Alg∗` . Then the natural map A q B → A⊕ B is a
kkh-equivalence.

Proof. Define f : A⊕B →M2(AqB) as

f(a, b) =

(
a 0
0 b

)
.

We will show that

jh(idM2 ⊗ π ◦ f) = jh(i2 : A⊕B →M2(A⊕B)) (4.1.2)

and that

jh(f ◦ π) = jh(i2 : qB →M2(AqB)); (4.1.3)

it follows that jh(π) is left and right inversible and therefore an isomorphism in kkh.

Identify AqB with its image through i2 in M2(AqB). Let u(t) ∈M2(ÃqB[t])
defined by

ut = idM2A q
(

1− t2 t
(t3 − 2t) 1− t2

)
.
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It is easily shown that ut is invertible, u0 = id and

u1i2(a)u∗1 = f ◦ π(a) (a ∈ A)

u1i2(b)u∗1 = f ◦ π(b) (b ∈ B);

therefore, it follows from Lemma 1.2.3 that the equality in (4.1.3) stands. Similarly,

using the matrix π(ut) ∈M2(Ã⊕B) we can conclude the equality in (4.1.2).

Corollary 4.1.4. The natural map Q(A) → A ⊕ A is a kkh-equivalence and it
induces a kkh-equivalence π0 : q(A)→ A.

Proof. This follows from Proposition 4.1.1 and the commutative diagram between
split triangles in kkh (which are distinguished by Remark 3.2.4):

ΩA q(A) Q(A) A

ΩA A A⊕ A A

0

π0 ∼

0 1 pr2

The fundamental theorem

Recall from Example 1.1.21 the Laurent polynomial algebra A[t, t−1]. Write

σA = ker(ev1 : A[t, t−1]→ A).

The Toeplitz algebra τ (over `) is the ∗-algebra generated by an element S such
that S∗S = 1. We write τ0 for the kernel of the map τ → ` that sends S to 1.

Proposition 4.1.5. Let A be an algebra in Alg∗` . Then A[t, t−1] and A ⊕ ΣA are
kkh-equivalent.

Proof. Consider the split extension

0→ σA→ A[t, t−1]→ A→ 0;

therefore, from Remark 3.2.4, it follows that A[t, t−1] is kkh equivalent to A ⊕ σA.
We will show that σA is kkh equivalent to ΣA. Since the coefficient ring A does
not matter in the following proof, we omit it from notation. The proof follows like
[CT07, Theorem 7.3.1 and Lemma 7.3.2].

Let f : τ → A[t, t−1] be the ∗-morphism defined by S 7→ t. This morphism
restricts to f | : τ0 → σ. On the other hand there is also a natural ∗-morphism
g : τ → Γ sending S to the matrix

S 7→


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
. . . . . .
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It is easy to see that g is injective; thus, τ identifies with a ∗-subalgebra of Γ. In this
identification, the kernel of f | is mapped to M∞. This gives a commutative diagram

0 M∞ τ0 σ 0

0 M∞ Γ Σ 0.

If we show that τ0 is kkh-equivalent to 0, since we know that Γ is kkh-equivalent
to 0 by Corollary 3.2.14, we can use the five lemma and conclude that σ is kkh-
equivalent to Σ. For this we will construct a ∗-homotopy from τ0 to M∞τ [t] that
when evaluated at t = 0 is the natural inclusion and is null when evaluated at t = 1.

First we define several ∗-morphisms ψ, ϕ1, ϕ2, ϕ3 : τ → τ ⊗ τ which are given by
defining them on the generator S as

ψ(S) = S2S∗ ⊗ 1 (4.1.6)

ϕ1(S) = S2S∗ ⊗ 1 + (1− SS∗)⊗ S
ϕ2(S) = S ⊗ 1

ϕ3(S) = S2S∗ ⊗ 1 + (1− SS∗)⊗ 1

All of these morphisms agree modulo the ideal M∞τ . Identify τ with its image in Γ
and define elements ut, vt ∈ (τ ⊗ τ)[t] ⊆ Γτ [t] by

ut =


1− SS∗t2 (t3 − 2t)S 0 0 · · ·

tS∗ 1− t2 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 ,

vt =


1− t2 (t3 − 2t) 0 0 · · ·
t 1− t2 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 ,

It is readily checked that u0, u1, v0 and v1 are unitary matrices and that 1− ut and
1 − vt belong in the ideal M∞τ [t]. Write Ut = c(ut, u

−1
t ) and Vt = c(vt, v

−1
t ) as in

Lemma 1.2.3. Define Φ1,Φ2 : τ →M±(τ ⊗ τ)[t] as

Φ1(S) = Uti+(S ⊗ 1)

Φ2(S) = Vti+(S ⊗ 1).

The following identities are then satisfied:

ev0 ◦Φ1 = ev1 ◦Φ2 = i+ϕ2,

ev1 ◦Φ1 = i+ϕ1 and

ev1 ◦Φ2 = i+ϕ3
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Thus, restricting to τ0 there are ∗-quasi-homomorphisms

(Φ1, i+ψ), (Φ2, i+ψ) : τ0 ⇒M±τ ⊗ τ [t]DM±M∞τ [t].

Using Proposition 1.5.3 the ∗-quasi-homomorphisms (i+ϕ1, i+ψ) and (i+ϕ3, i+ψ)
induce the same morphisms in kkh. Therefore, using hermitian stability the ∗-
quasi-homomorphisms (ϕ1, ψ) and (ϕ3, ψ) induce the same morphisms in kkh.

Finally, since ϕ1 is the orthogonal sum of ψ and the inclusion τ0 →M∞τ and ϕ3

agrees with ψ when restricted to τ0, using Proposition 1.5.3 this means that (ϕ1, ψ)
induces the same morphism as the inclusion τ0 → M∞τ in kkh and (ϕ3, ψ) induces
the null morphism. Thus the inclusion τ0 → M∞τ is null on kkh. By M∞-stability
this then implies that the inclusion τ0 → τ is null, which implies that τ0 is kkh

equivalent to 0 since the following extension is split:

0→ τ0 → τ → A→ 0

Pimsner-Voiculescu sequence

In topologicalK-theory, the Pimsner-Voiculescu sequence relates theK-theory groups
of a crossed product AoZ with those of A. Here we present the algebraic analogue
of this sequence in our setting.

Given a ∗-automorphism σ : A→ A we define the crossed product Aoσ Z as the
`-module A[t, t−1] but with multiplication given by the relation

tat−1 = σ(a)

and involution (at)∗ = t−1σ(a)∗.
Consider the ∗-subalgebra τσ of τ ⊗` (A oσ Z) generated by 1 ⊗ A and S ⊗ t.

This gives a semi-split extension

0→M∞A→ τσ → Aoσ Z→ 0. (4.1.7)

Proposition 4.1.8. Let A be an algebra in Alg∗` . Then the sequence (4.1.7) induces
the distinguished triangle in kkh

ΩA→ A
id−jh(σ−1)−−−−−−→ A→ Aoσ Z.

Proof. Write κ : A→ τσ for the canonical inclusion. The same argument (with the
obvious modifications) as in [Cun05, Propositions 14.1 and 14.2] shows that there is
a commutative diagram in kkh

ΩAoσ Z A A Aoσ Z

ΩAoσ Z M∞A τσ Aoσ Z,

id−jh(σ−1)

i κ

so the statement of the proposition follows.
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Cohn algebra of a graph

Let E be a directed graph, that is, a cuadruple (E0, E1, r, s) where E0 is the set of
vertices of the graph and E1 is the set of edges, r, s : E1 → E0 are the source and
range of the edges. A path in E is a sequence of edges e1e2 · · · en where r(ei) = s(ei+1)
for i = 1, . . . , n− 1; in this case we call n the length of the path. We define vertices
to be paths of length 0. We define P(E) as the set of finite paths in E; the range
and source functions extend to r, s : P(E)→ E0 in the obvious way.

The Cohn path algebra C(E) of a graph E is the ∗-algebra generated by E0 and
E1 subject to the relations

v · w = δv,wv

v∗ = v

s(e) · e = e = r(e) · e
e∗f = δe,fr(e)

for v, w in E0 and e, f ∈ E1.
There is a natural morphism ϕ : `(E0) → C(E) sending evv to v. For a vertex

v ∈ E0 such that s−1(v) is a finite set, we define

C(E) 3 mv =

{∑
e∈s−1(e) ee

∗ if s−1(v) 6= ∅
0 if s−1(v) = ∅.

The elements mv satisfy the identities

mv = m∗v, m
2
v = mv, mvw = δv,wmv,

mve = δv,s(e)e (w ∈ E0, e ∈ E1). (4.1.9)

Write Cm(E) for the algebra obteined from C(E) by formally adjoining an element
mv for each vertex in E such that s−1(v) is infinite, subject to the identities (4.1).
Let qv = v −mv ∈ Cm(E) and write

K(E) = 〈qv|v ∈ E0 s−1(v) is finite non empty〉 ⊆ K̂(E) = 〈qv|v ∈ E0〉

for the corresponding ideals in Cm(E).

Write î : `(E0) → K̂(E) for the ∗-morphism that maps evv to qv and let ξ :
C(E)→ Cm(E) be determined by

ξ(v) = mv; ξ(e) = emr(e).

The same aregument as in [CM18, Remark 4.9] shows that î is a kkh-equivalence.
On other hand, the canonical inclusion i : C(E) → Cm(E) and ξ determine a ∗-
quasi-homomorphism (i, ξ) : C(E) ⇒ Cm(E) D K̂(E). It is straightforward to see
that iϕ = ξϕ+ î, therefore, using Proposition 1.5.3, we get

jh(i, ξ)jh(ϕ) = jh(iϕ, ξϕ) = jh(ξϕ, ξϕ) + jh(̂i, 0) = jh(̂i)
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Hence, jh(ϕ) has a left inverse jh(̂i)−1jh(i, ξ). We will show that jh(ϕ) is right
inversible and therefore an isomorphism.

Consider MP(E), the matrix ring indexed on the set P(E) and write εα,β for its

units. Define îτ : C(E)→MP(E)C(E) given on generators by

îτ (v) = εv,v ⊗ v, îτ (e) = εs(e),r(e) ⊗ e

for v ∈ E0 and e ∈ E1. Also define ϕ̂ : K̂(E)→MP(E)C(E) by

ϕ̂(αqvβ
∗) = εα,β ⊗ v.

There is a commutative diagram

`(E0) K̂(E)

C(E) MP(E)C(E).

î

ϕ ϕ̂

îτ

Lemma 4.1.10. Let α ∈ P(E) be a path and iα : C(E) → MP(E)C(E) be the

inclusion in the α-diagonal coordinate (eα,α). Then îτ and iα induce the same iso-
morphism in kkh.

Proof. Using Lemma 1.6.8, the class of iα does not depend on α since iα and iβ are
conjugates. So we assume α = w ∈ E0. For each v ∈ E0, v 6= w write

av = (1− t2)εw,w + (t3 − 2t)εw,v + tεv,w + (1− t2)εv,v

bv = (1− t2)εw,w + (2t− t3)εw,v − tεv,w + (1− t2)εv,v

aw = bw = εw,w.

Define Cv = c(av, bv) as in Lemma 1.2.3. Then we have a ∗-homotopy
H : C(E)→M±MP(E)C(E)[t] given by

H(v) = Cvi+(εv,v ⊗ v)Cv

H(e) = Cs(e)i+(εs(e),r(e) ⊗ e)C∗r(e)

which satisfies ev0H = i+îτ and ev1H = i+iw. Using hermitian stability we con-
clude that îτ and iw are the same in kkh.

Write A ⊆MP(E)C(E) for the `-submodule generated by

A = span{eγ,δ ⊗ αβ∗ ∈MP(E)C(E) : s(α) = r(γ), s(β) = r(δ), r(α) = r(β)}.

It is readily checked that A is a ∗-subalgebra of MP(E)C(E), and Im îτ , Im ϕ̂ ⊆ A.

In particular, îτ restricted to A induces a monomorphism in kkh.
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Let ΓP(E) be the cone algebra indexed by P(E). There is a ∗-morphism ρ :
Cm(E)→ ΓP(E) given by

ρ(v) =
∑
s(α)=v

εα,α

ρ(e) =
∑

r(α)=r(e)

εeα,α

ρ(mw) =
∑

r(α)=w
length α≥1

εα,α.

Consider the ∗-morphism ρ′ = ρ⊗ 1 : Cm(E)→ ΓP(E)C̃m(E). Then A is closed
by multiplication by elements on the image of ρ′ on both sides, so we can form the
semi-direct product Cm(E)nA. Define the algebra D as the quotient of Cm(E)nA
by the ∗-ideal

〈αqvβ∗,−εα,β ⊗ v : v = r(α) = r(β)〉.
It is shown on [CM18, Lemma 4.19] that A maps injectively to D, meaning it is
isomorphic to an ideal inside D. We then have a commutative diagram

`(E0) K̂(E) Cm(E)

C(E) A D,

î

ϕ ϕ̂ Ξ

îτ

(4.1.11)

where Ξ is given by the composition of the inclusion Cm(E)→ Cm(E)nA and the
projection Cm(E) o A → D. Define ψ0 = Ξ, ψ1 = Ξξ. It is easy to check that
ψ1 is orthogonal to îτ so we can define ψ1/2 = ψ1 + îτ . These ∗-morphisms define
∗-quasi-homomorphisms

(ψ0, ψ1), (ψ0, ψ1/2), (ψ1/2, ψ1) : C(E)⇒ D B A

Lemma 4.1.12. The ∗-quasi-homomorphism (ψ0, ψ1/2) induces the zero map in kkh.

Proof. For each e ∈ E1 consider the matrices in ΓP(E)C(E)[t]

uet = εs(e),s(e)(1− t2)⊗ ee∗ + εe,s(e) ⊗ te∗

vet = εs(e),s(e)(1− t2)⊗ ee∗ + εs(e),e ⊗ (2t− t3)e.

Observe that multiplying by uet and vet preserves A. Put U e
t = c((0, uet ), (0, v

e
t )) ∈

M±D[t] and define a ∗-homotopy H : C(E)→M±D[t] determined by

H(v) = i+(v, 0) (v ∈ E0)

H(e) = i+(emr(e), 0) + U e
t i+(0, εs(e),r(e) ⊗ e) (e ∈ E1)

Then H is a ∗-homotopy between ψ0 and ψ1/2 and the ∗-quasi-homomorphism
(H, i+ψ1/2) is a ∗-homotopy between (ψ0, ψ1/2) and (ψ1/2, ψ1/2). Therefore, by
Proposition 1.5.3 jh(ψ0, ψ1/2) is the zero morphism
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Theorem 4.1.13. The morphism ϕ : `(E0) → C(E) is a kkh-equivalence.

Proof. We have already checked that

jh(̂i)−1jh(i, ξ)jh(ϕ) = jh(id`(E0)).

The commutative diagram (4.1.11) and the previous lemma show that

jh(ϕ̂)jh(i, ξ) = jh(ψ0, ψ1) = jh(ψ0, ψ1/2) + jh(ψ1/2, ψ1) = jh(ψ1/2, ψ1) = jh(̂iτ )

And on other hand

jh(ϕ̂)jh(i, ξ) = jh(̂iτ )j
h(ϕ)jh(̂i)−1jh(i, ξ)

hence
jh(̂iτ ) = jh(̂iτ )j

h(ϕ)jh(̂i)−1jh(i, ξ),

and since jh(̂iτ ) is a monomorphism, this shows that

jh(idC(E)) = jh(ϕ)jh(̂i)−1jh(i, ξ)

as we wanted.

4.2 Comparison of with KHh

Theorem 4.2.1 ([cf. CT07, Theorem 8.2.1]). The map from Example 3.2.34 gives
an isomorphism

KHh
0 (A) ∼= kkh(`, A).

Proof. Suppose first A unital, the general case follows from excision. Recall from
Remark 2.1.6 the set of ∗-quasi-homomorphisms qq(`, A) and the surjective map

qq(`, A)→ Kh
0 (A).

Using Example 1.5.2, for (e0, e1) ∈ qq(`, A), this ∗-quasi-homomorphism also induces
a map (ei) : q`→ 1M

h
2M∞A which induces a map in kkh,

qq(`, A)→ kkh(q`, 1M2M∞A) ∼= kkh(q`, A) (4.2.2)

(e0, e1) 7→ [ei]

Using Lemma 1.6.8, the map (4.2.2) sends equivalent classes in Kh
0 to the same

morphism in kkh, so the map then factors as

qq(`, A) kkh(q`, A)

Kh
0 (A)
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Using Corollary 4.1.4 we have that π0 : q`→ ` is induces a kkh-equivalence, therefore
we can compose to get

Kh
0 (A)→ kkh(`, A).

Using excision for Kh
n for n ≤ 0, this gives a map

α : KHh
0 (A) = colim−−−→

n

Kh
0 (ΣnΩnA)→ colim−−−→

n

kkh(`,ΣnΩnA) = kk(`, A).

Write
β : kkh(`, A)→ KHh

0 (A)

for the map in Example 3.2.34. We will show that α and β are inverses of each
other.

Using the description of β given in Remark 3.2.23, for a self-adjoint idempotent
e ∈ 1M

h
2M∞A, where A is unital, is immediate to see that βα(c0[e]) = c0[e]. This

implies that βα is the identity in KHh
0 (A).

To complete the proof we will show that α is surjective. Let ϕ : Jn(`) →
M∞M

⊗k
± Asdr Sn represent a class in kkh(`, A). Using the map ` → ΣnJn(`) in kkh

consider the induced map on KHh
0

KHh
0 (`)→ KHh

0 (ΣnJn(`))

and write e ∈ KHh
0 (ΣnJn(`)) for the image of the element [1] ∈ KHh

0 (`). It follows
from the definition of α, that α([1]) equals id` in kkh(`, `). Let then κ : q` →
1M2M∞ΣnJn(`) be the associated map to a ∗-quasi-homomorphism that induces e.
Thus we have the follows equality in kkh(`,ΣnJn`)

jh(κ)jh(π0)−1 = α(e). (4.2.3)

In turn, this shows that jh(κ)jh(π0)−1 is the morphism that induces the kkh equiv-
alence ` ∼ ΣnJn(`). On other hand, consider the commutative diagram in kkh

ΣnJn(`) ΣnAsdr Sn

` A

Σnϕ

∼

ϕ

∼

where the right arrow is an isomorphism because of Corollary 3.2.8. It follows that
(Σnϕ)∗(e) ∈ KHh

0 (ΣnAsdr Sn) ∼= KHh
0 (A) is the same class as jh(ϕ)∗([1]) ∈ KHh

0 (A).
Therefore, using (4.2.3) we have following equalities in kkh(`, A):

α(ϕ∗([1])) = α((Σnϕ)∗(e)) = (Σnϕ)α(e) = (Σnϕ)jh(κ)jh(π0)−1 = ϕ.

This concludes the proof.
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Chapter 5

Karoubi’s Fundamental Theorem
in kkh

In this chapter we prove an analogous result to Theorem 2.3.3 in the category kkh.
For this, we develop some preliminary results about the induction and restriction
functors in Section 5.1; we then define functors U, V : Alg∗` → Alg∗` in Section 5.2,
which are similar to the functors U ′, V ′ described in Section 2.3 and which in kkh

give equivalent functors up to suspension/looping; we also show that functors U, V
satisfy analogous properties to the ones discussed in Section 2.3. Finally in Section
5.3 we use the functors U, V and the properties that were discussed in Section 5.2
to conclude Theorem 5.3.1 and Theorem 5.3.7.

5.1 The functors ind, res and Λ

Recall the functors res : kkh → kk, and ind, ind′ : kk → kkh from Example 3.2.28.

Proposition 5.1.1. The functors res : kkh ↔ kk : ind are both right and left adjoint
to one another; in other words, for every A ∈ Alg∗` and B ∈ Alg` there are natural
isomorphisms

kk(res(A), B) ∼= kkh(A, ind(B)) and kkh(ind(B), A) ∼= kk(B, res(A)).

Proof. Using Proposition 4.1.1, the functors ind, ind′ : kk → kkh are naturally
equivalent, since one is right adjoint to res and the other is left adjoint, the result
follows.

Remark 5.1.2. The unit and counit maps of the second adjunction in Proposition
5.1.1 are obtained from those of the adjunction between ind′ and res using the
projection π : ind′ → ind and the diagonal map ind → M2ind′ as in the proof of
Proposition 4.1.1.

Let Λ = `⊕ ` equipped with involution

(λ, µ)∗ = (µ∗, λ∗).
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5.1. The functors ind, res and Λ 56

For A ∈ Alg∗` write ΛA for Λ⊗ A and Λ : Alg∗` → Alg∗` for the associated functor.

Recall from Section 2.3 that for A ∈ Alg∗` we write Â = ind(res(A)). Then

Â ∼= ΛA via the isomorphism

ΛA→ Â

(x, y) 7→ (x, y∗).

Under this identification, the maps ηA of (2.3.2) and ϕA of (2.3.1) become the scalar
extensions of the embeddings

η : `→ Λ (5.1.3)

x 7→ (x, x),

φ : Λ→ 1M2 (5.1.4)

(x, y) 7→
(
x 0
0 y

)
.

Remark 5.1.5. The functor induced by tensoring with Λ : kkh → kkh is left and
right adjoint to itself since Λ ∼= ind res(`). Also, Proposition 5.1.1 shows that

kkh(·,Λ(·)) ∼= kk(res(·), res(·)).

In other words, Λ represents kk. In particular, we have

εkk
h(·,Λ(·)) ∼= kkh(·,Λ(·))

for any unitary ε ∈ `. Moreover by Remark 1.1.26, if R ∈ Alg∗` is unital and ε ∈ R
is central unitary and Ψ ∈ R is an invertible ε-hermitian element, then we have an
∗-isomorphism

ad (1,Ψ−1) : ΛR→ ΛRΨ.

In particular, we have ∗-isomorphisms

ΛM± ∼= Λ(εM2) ∼= ΛM2.

Remark 5.1.6. Let t : Λ→ Λ defined as t(x, y) = (y, x).Then t is a ∗-automorphism,
with t2 = idΛ; moreover using Remark 5.1.5 one checks that the following diagram
commutes:

Λ 1M2Λ

M2Λ.

id 0

0 t



(id
1M2
⊗η)φ

∼

Thus, using Lemma 1.6.9 we get

jh(i2)−1jh(η)jh(φ) = jh(idΛ) + jh(t).
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5.2 The functors U and V

Consider the path algebras (Example 1.4.5) of the maps (5.1.4) and (5.1.3),

U = Pφ and V = Pη.

For A ∈ Alg∗` , write UA = U ⊗A and V A = V ⊗A; these are, respectively, the path
algebras of φ⊗ idA : ΛA→ 1M2A and η⊗ idA : A→ ΛA. Because U and V are flat
`-modules, they define functors U, V : kkh → kkh by Example 3.2.29.

Remark 5.2.1. Recall the functors U ′, V ′ from Section 2.3. Using Remark 3.2.24
and the isomorphism Â ∼= ΛA, it follows that there are kkh-equivalences

U ∼ ΩU ′`

V ∼ ΩV ′`.

In Lemmas 5.2.2 and 5.2.6 we recast the equivalences of (2.3.4) into the framework
of kkh.

Lemma 5.2.2. There are kkh-equivalences

UΛ ∼ Λ and

V Λ ∼ ΩΛ.

Proof. Let us prove the first equivalence. To ease the notation we omit the functor
jh. Let

Ω1M2Λ→ UΛ→ Λ2 φ⊗idΛ−−−→ 1M2Λ

be the triangle in kkh induced by the extension which defines UΛ. We have an
isomorphism

τ : Λ2 ∼= Λ⊕ Λ (5.2.3)

(x1, x2)⊗ (x3, x4) 7→ (x1x3, x2x4, x1x4, x2x3).

Put λ1 = (0, 1), λ2 = (1, 0) and ιi : Λ → 1M2Λ as in Lemma 3.1.11. Let i : Λ →
Λ⊕ Λ (i = 1, 2) be the inclusions in each coordinate. Observe that

((φ⊗ idΛ) ◦ τ−1 ◦ 1)(x, y) =

(
(x, 0) (0, 0)
(0, 0) (0, y)

)
.

The matrix

u =

(
(1,−1) (1, 1)
(0, 0) (−1, 1)

)
∈ 1M2(ind(B̃)) (5.2.4)

is unitary and satisfies

ad(u) ◦ ι1 = (φ⊗ idΛ) ◦ τ−1 ◦ 1 : Λ→ 1M2Λ.
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So by Lemma 1.6.8, the following diagram commutes in kkh

Λ Λ⊕ Λ

1M2Λ.

1

ι1
∼

(φ⊗idΛ)◦τ−1

Similarly, the diagram

Λ Λ⊕ Λ

1M2Λ

2

ι2
∼

(φ⊗idΛ)◦τ−1

commutes in kkh. Let pri : Λ ⊕ Λ → Λ (i = 1, 2) be the projections on each
coordinate. By Lemma 3.1.11 we have jh(ι1) = jh(ι2); thus, using the previous
diagrams, the following solid arrow diagram commutes in kkh:

UΛ Λ2
1M2Λ

Λ Λ⊕ Λ Λ.

ϕ⊗idΛ

1−2 π1+π2

τ−1 ∼ ι1=ι2

Since the lower row is split, it completes to a triangle by Remark 3.2.4. Then,
because the middle and right vertical arrows are isomorphisms in kkh, we get that
the dashed map is an isomorphism in kkh.

Next we prove the second isomorphism of the statement. Let

ΩΛ2 → V Λ→ Λ
η⊗idΛ−−−→ Λ2

be the triangle in kkh induced by the extension defining V Λ. Let t be as in (5.1.6);
one checks that the following square commutes

Λ Λ2

Λ Λ⊕ Λ.

η⊗idΛ

τ

1+2t

(5.2.5)

The map 1 + 2t completes to a split distinguished triangle in kkh

ΩΛ→ Λ
1+2t−−−→ Λ⊕ Λ

π1−tπ2−−−−→ Λ.

Rotating the split triangle above we get the triangle

Ω(Λ⊕ Λ)→ ΩΛ
0−→ Λ

1+2t−−−→ Λ⊕ Λ.

Finally, (5.2.5) extends to a commutative diagram in kkh:

V Λ Λ Λ2

ΩΛ Λ Λ.

η⊗idΛ

τ

0 1+2t

It follows that the dashed map is an isomorphism.
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Lemma 5.2.6. There is a kkh-equivalence

ΣV U ∼ `.

In particular, V U ∼ Ω.

Proof. As before, we omit jh from the notation. In view of Lemma 3.1.11, it suffices
to show that ΣV U is kkh-equivalent to 1M2. Let

ΩΛU → V U → U
η⊗idU−−−→ ΛU

be the triangle in kkh induced by the extension that defines V U . The kkh isomor-
phism between ΛU = UΛ and Λ established in Lemma 5.2.2 is induced by mapping
Λ2 to Λ ⊕ Λ and then retracting onto the first coordinate. Using this fact we get
that there is a map of triangles in kkh

U ΛU ΣV U ΣU

U Λ 1M2 ΣU.

η⊗idU

∼

φ

It follows that the dashed kkh-map is an isomorphism.

Remark 5.2.7. By Example 3.2.29, the isomorphisms of Lemmas 5.2.2 and 5.2.6
induce kkh-equivalences UΛA ∼ ΛA, V ΛA ∼ ΩΛA and V UA ∼ ΩA for every
A ∈ Alg∗` .

5.3 Bivariant version of Karoubi’s Fundamental

Theorem

Recall from Corollary 2.3.6, the element θ ∈ KHh
2 (−1M2(U ′)2`). Using Remark 5.2.1

and Theorem 4.2.1, we get an element θ ∈ kkh(`, −1M2U
2). Also, recall the product

induced by the tensor product from Proposition 3.2.30.

Theorem 5.3.1. For all A ∈ Alg∗` , the product with θ induces a natural isomorphism

θA := θ ⊗ jh(idA) : jh(A) ∼= jh(−1M2U
2A).

Proof. By Example 3.2.29, it suffices to show that θ = θ` is an isomorphism. Equiv-
alently, we need to see that

kkh(`, θ)∗ : kkh(`, `)→ kkh(`, 1M2U
2) and

kkh(−1M2U
2, θ)∗ : kkh(−1M2U

2, `)→ kkh(−1M2U
2, −1M2U

2)

are isomorphisms.
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Taking into account hermitian stability and using Lemma 5.2.6, we see that
kkh(−1M2U

2, θ)∗ is an isomorphism if and only if

kkh(`, θ−1M2(ΣV )2)∗ : kkh(`, −1M2(ΣV )2)→ kk(`, −1M2(ΣV U)2)

is an isomorphism. Hence the theorem will follow if we prove that (θA)∗ := kkh(`, θA)
is an isomorphism for all A.

By Proposition 3.2.35 and the isomorphism of Theorem 4.2.1, the map (θA)∗
corresponds to the cup-product with θ, which by Corollary 2.3.6 is an isomorphism.

Corollary 5.3.2. Let ε ∈ ` be unitary. For every A ∈ Alg∗` , there is a kkh-
equivalence

εM2V A ∼ −εM2UΩA.

Proof. It is immediate from Theorem 5.3.1, Lemma 5.2.6 and Remark 5.2.7 that
V A ∼ −1M2UΩA. The corollary follows from this applied to εM2A using the iso-
morphism

−1M2(εM2) ∼= M±(−εM2)

and hermitian stability.

Lemma 5.3.3. Consider the kkh-equivalences UΛ ∼ Λ of Lemma 5.2.2 and M2Λ ∼=
−1M2Λ of Remark 5.1.5. Then the following diagram commutes in kkh:

Λ −1M2U
2Λ

M2Λ −1M2Λ

θΛ

i2 ∼

∼

Proof. By part i) of Theorem 2.3.3, we have a commutative diagram in kkh, where
as usual we have omitted jh,

` −1M2U
2

−1M2ΛU

M2Λ −1M2Λ.

i2η

θ

∼

(5.3.4)

Let p = pr1 ◦ τ : Λ2 → Λ; we have

p((x1, x2)⊗ (x3, x4)) = (x1x3, x2x4).

Tensoring (5.3.4) with Λ and composing the resulting vertical maps with those
induced by p, we get another commutative diagram

Λ −1M2U
2Λ −1M2ΛUΛ

M2Λ −1M2Λ.

i2

θΛ

∼

(5.3.5)
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Using the fact that the kkh-equivalence UΛ ∼ Λ is induced by first mapping to Λ2

and then applying p, we obtain a commutative diagram in kkh

U2Λ ΛUΛ

Λ

Tensoring with −1M2 we obtain that the composite −1M2U
2Λ→ −1M2Λ in diagram

(5.3.5) is the map in the diagram of the proposition, finishing the proof.

The bivariant 12-term exact sequence

Definition 5.3.6 (cf. Definition 2.3.7). Let A,B ∈ Alg∗` , ε ∈ ` unitary, εkk
h(A,B)

as in Definition 3.2.31 and t as in (5.1.6). Let η : `→ Λ and ϕ : Λ→ 1M2 be as in
(5.1.3) and (5.1.4). Put ϕ = jh(ι1)−1 ◦ jh(ϕ). Set

εW (A,B) := coker(εkk
h(A,ΛB)

ϕ∗−→ εkk
h(A,B))

εW
′(A,B) := ker(εkk

h(A,B)
η∗−→ εkk

h(A,ΛB))

k(A,B) := {x ∈ kkh(A,ΛB) : x = t∗x}/{x = y + t∗y for some y}
k′(A,B) := {x ∈ kkh(A,ΛB) : x = −t∗x}/{x = y − t∗y for some y}

If ε = 1 we omit it from the notation. Note that k and k′ do not need the ε prescript
due to the isomorphism in Remark 5.1.5.

Theorem 5.3.7 ([cf. Kar80, Théorème 4.3]). There is an exact sequence

k(A,ΩB) −1W (A,Ω2B) W ′(A,B) k′(A,ΩB) −1W
′(A,ΩB) −1W (A,ΩB)

W (A,ΩB) W ′(A,ΩB) k′(A,ΩB) −1W
′(A,B) W (A,Ω2B) k(A,ΩB)

Proof. As above, we omit jh in our notation. Write ν for the map obtained upon ten-
soring the canonical map U → Λ with Ω−1M2. Consider the following distinguished
triangles in kkh

ΩΛ V ` Λ

Ω2
−1M2 Ω−1M2U Ω−1M2Λ Ω−1M2.

∂

θ∼

η

δ ν Ω−1M2φ

Recall τ : Λ2 ∼= Λ⊕Λ from (5.2.3) and let τ̃ : Ω−1M2Λ2 → Ω(Λ⊕Λ) be the composite
in kkh of the isomorphism Remark 5.1.5, the inverse of the corner inclusion, and
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Ωτ . Using Lemma 5.3.3 we get the following commutative diagram in kkh:

ΩΛ V Ω−1M2U Ω−1M2Λ

ΩΛ2 V Λ Ω−1M2UΛ Ω−1M2Λ2

Ω(Λ⊕ Λ) ΩΛ ΩΛ Ω(Λ⊕ Λ).

∂

ΩΛη

θ
∼

V η

ν

Ω−1M2Uη Ω(−1M2Λ)η

∂

Ωτ

θ
∼

∼
ν

∼ τ̃

Ω(π1−tπ2)

Ω(1−2)

A direct computation shows that τ ◦ (Λη) : Λ → Λ ⊕ Λ is the diagonal map.
Hence from the diagram we get following equality in kkh(ΩΛ,Ω(Λ⊕ Λ))

τ̃(Ω−1M2η)νθ∂ = Ω((1 − 2))(π1 − tπ2)(1 + 2)). (5.3.8)

Similarly, for h−1 as in Example 1.1.18 and i2 the upper left-hand corner inclu-
sion, we have in kkh(Ω−1M2Λ,Ω(Λ⊕ Λ)

τ̃(Ω−1M2η) = Ω(1 + 2)(i2)−1 ad(1, h−1
−1).

Therefore, composing both sides of the equality (5.3.8) on the left with the projection
onto the first coordinate, we get

(ι1)−1 ad(1, h−1
−1)νθ∂ = Ω(π1 − tπ2)(1 + 2)) = id− t.

Thus, after using Remark 5.1.5 and hermitian stability, with the identification

kkh(ΩΛ,Ω−1M2Λ) ∼= kkh(ΩΛ,ΩΛ),

the composition νθ∂ corresponds to id− t.
Because the ∗-algebras involved in the argument above are flat, for any B ∈ Alg∗`

we map apply the functor −⊗ B of Example 3.2.29 to obtain the same identity in
kkh(ΩΛB,ΩΛB).

Finally, apply the functor kkh(A,−) and the rest of the proof proceeds exactly
as in [Kar80, Théorème 4.3].

Corollary 5.3.9. Let C and H : Alg∗` → C be as in Proposition 3.2.22. The same
argument as in Theorem 5.3.7 proves an analogous exact sequence for the groups
obtained substituting H(−) for kkh(A,−) in Definition 5.3.6.
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