UNIVERSIDAD DE BUENOS AIRES<br>Facultad de Ciencias Exactas y Naturales<br>Departamento de Matemática

## K-teoría Hermitiana Algebraica Bivariante

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Matemáticas

Santiago Javier Vega

Director de tesis y Consejero de estudios: Dr. Guillermo Cortiñas

## Hermitian Bivariant Algebraic $K$-theory <br> Summary

Consider a commutative ring $\ell$ with involution with an element $\lambda \in \ell$ such that $\lambda+\lambda^{*}=1$; write $A l g_{\ell}^{*}$ for the category of $\ell$-algebras with involution compatible with that of $\ell$, which we call $*$-algebras. In this thesis we develop a triangulated category $k k^{h}$ and a functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ which we call bivariant algebraic hermitian $K$ theory; the functor $j^{h}$ satisfies homotopy invariance, matrix and hermitian stability and is an excisive homology theory for extensions which are linearly split.

We also define a Weibel style homotopy invariant hermitian $K$-theory which we denote as $K H_{*}^{h}$. We show that the category $k k^{h}$ recovers $K H_{0}^{h}$ as a representable functor

$$
\operatorname{hom}_{k k^{h}}(\ell, A) \cong K H_{0}^{h}(A) .
$$

We construct functors ${ }_{\varepsilon} U$ and ${ }_{\varepsilon} V$ which correspond to desuspensions of the functors $U^{\prime}$ and $V^{\prime}$ in Karoubi's Fundamental Theorem: for a unital $R \in A l g_{\ell}^{*}$ there is an element $\theta_{0} \in K_{2}^{h}\left(U^{\prime 2} R\right)$ which the cup product induces an isomorphism

$$
{ }_{\varepsilon} K_{*}^{h}\left(V^{\prime}(R)\right) \cong{ }_{-\varepsilon} K_{*+1}^{h}\left(U^{\prime}(R)\right) .
$$

We prove an adjunction between $k k^{h}$ and the bivariant algebraic $K$-theory $k k$ as defined by Cortiñas and Thom and use it to prove a version of Karoubi's theorem in $k k^{h}$ : the product with the image of $\theta_{0}$ in $K H_{0}^{h}\left(U^{2} \ell\right)$ induces an isomorphism in $k k^{h}$

$$
j^{h}\left({ }_{\varepsilon} V A\right) \cong \Omega j^{h}\left({ }_{-} U A\right)
$$

for any $A \in A l g_{\ell}^{*}$. This allows us to obtain a bivariant homotopic version of the classical 12-term exact sequence of Karoubi for hermitian $K$-theory.

Keywords: hermitian algebraic $K$-theory, Karoubi's fundamental theorem, homotopy hermitian $K$-theory, bivariant algebraic $K$-theory, bivariant Witt groups

K-teoría Algebraica Hermitiana Bivariante<br>Resumen

Consideremos un anillo conmutativo $\ell$ con involución con un elemento $\lambda \in \ell$ tal que $\lambda+\lambda^{*}=1$; sea $A l g_{\ell}^{*}$ la categoría de $\ell$-algebras con involución compatible con la de $\ell$ que llamamos $*$-algebras. En esta tesis desarrollamos una categoría triangulada $k k^{h}$ y un funtor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ que llamamos $K$-teoría hermitiana algebraica bivariante; el funtor $j^{h}$ satisface invarianza homotópica, estabilidad matricial y hermitiana y es una teoría de homología escisiva para extensiones que se parten linealmente.

También definimos una versión invariante homotópica estilo Weibel de la $K$ teoría hermitiana que notamos como $K H_{*}^{h}$. Mostramos que la categoría $k k^{h}$ recupera $K H_{0}^{h}$ como funtor representable

$$
\operatorname{hom}_{k k^{h}}(\ell, A) \cong K H_{0}^{h}(A) .
$$

Construimos funtores ${ }_{\varepsilon} U$ y ${ }_{\varepsilon} V$ que se corresponden con desuspensiones de los funtores $U^{\prime}$ y $V^{\prime}$ en el Teorema Fundamental de Karoubi: para $R \in A l g_{\ell}^{*}$ unital hay un elemento $\theta_{0} \in K_{2}^{h}\left(\left(U^{\prime 2}\right) R\right)$ cuyo producto cup induce un isomorfismo

$$
{ }_{\varepsilon} K_{*}^{h}\left(V^{\prime}(R)\right) \cong{ }_{-\varepsilon} K_{*+1}^{h}\left(U^{\prime}(R)\right) .
$$

Probamos una adjunción entre $k k^{h}$ y la $K$-teoría algebraica bivariante $k k$ definida por Cortiñas y Thom y la usamos para probar una versión del teorema de Karoubi en $k k^{h}$ : el producto con la imagen de $\theta_{0}$ en $K H_{0}^{h}\left(U^{2} \ell\right)$ induce un isomorfismo en $k k^{h}$

$$
j^{h}\left({ }_{\varepsilon} V A\right) \cong \Omega j^{h}\left(-{ }_{-} U A\right)
$$

para todo $A \in A l g_{\ell}^{*}$. Esto nos permite obtener una versión bivariante homotópica de la clásica sucesión de 12 términos de Karoubi para la $K$-teoría hermitiana.

Palabras clave: $K$-teoría hermitiana algebraica, teorema fundamental de Karoubi, $K$-teoría hermitiana homotópica, $K$-teoría algebraica bivariante, grupos bivariantes de Witt

## Acknowledgements

## Introduction

Since the introduction of Kasparov's bivariant $K$-theory for $C^{*}$-algebras $K K$ Kas80], Higson's theorem on the universality of $K K$ [Hig87] and Cuntz's foundational work Cun87, Cun05, the development of bivariant versions of $K$-theory has been useful and important in many computations. This ranges from applications to the BaumConnes conjecture, classification theory of $C^{*}$-algebras such as the Elliott program and the Kirchberg-Philips theorem but also to put some constructions in different versions of $K$-theory - between different topological versions such as $C^{*}$-algebras, Banach (*-)algebras and bornological algebras and also algebraic $K$-theory - on common ground. It also has been very fruitful in proving some cases of the BaumConnes conjecture.

Cortiñas and Thom developed in CT07 a bivariant version of algebraic $K$ theory with many similarities to $K K$, adapting them to an algebraic setting. Let $\ell$ be a commutative ring and write $A l g_{\ell}$ as the category of (associative) algebras over $\ell$. Also fix an underlying category $\mathfrak{U}$ for $A l g_{\ell}$ such as that of sets or that of $\ell$-modules and a forgetful functor $F: A l g_{\ell} \rightarrow \mathfrak{U}$. Cortiñas and Thom construct a triangulated category $k k$ which has the same objects as $A l g_{\ell}$ together with a functor $j: A l g_{\ell} \rightarrow k k$ which is the identity on objects and satisfies:

- Matrix stability: the natural inclusion of $A \hookrightarrow M_{\infty} A$ on the upper left corner maps to an isomorphism through $j$.
- Polynomial homotopy invariance: the inclusion $A \rightarrow A[t]$ as constants maps to an isomorphism through $j$.
- The functor $j$ is an excisive homology theory for extensions which are split in $\mathfrak{U}$, that is, for an extension

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

in $A l g_{\ell}$ which has a section $F(C) \rightarrow F(B)$, there is a natural (with respect to extensions) map $\partial: \Omega j(C) \rightarrow j(A)$ such that

$$
\Omega j(C) \rightarrow j(A) \rightarrow j(B) \rightarrow j(C)
$$

is a triangle in $k k$.
Moreover, for any triangulated category $\mathfrak{T}$ and functor $H: A l g_{\ell} \rightarrow \mathfrak{T}$ which satisfies the above mentioned properties, there is a unique triangulated functor $\bar{H}: k k \rightarrow \mathfrak{T}$
such that $H=\bar{H} \circ j$. A very important property of $k k$ is that it recovers Weibel's homotopy $K$-theory as a representable functor

$$
\operatorname{hom}_{k k}(\ell, A)=K H_{0}(A) .
$$

There have been alternative constructions of $k k$ by Garkusha - who also constructed bivarant $K$-theory versions without matrix stability - Gar13; Gar14; Gar16] and Rodríguez Cirone [Rod20]. Also, there have been generalizations of the original construction of $k k$ to algebras with an action of a group and group graded algebras Ell14 and to algebras with quantum group actions Ell18.

In this thesis we construct a generalization of $k k$ which incorporates algebras with involution: for a ring $R$, an involution is a ring morphism $(-)^{*}: R \rightarrow R^{o p}$ with $\left(r^{*}\right)^{*}=r$. Suppose now that $\ell$ has an involution and an element $\lambda$ which satisfies

$$
\begin{equation*}
\lambda+\lambda^{*}=1 . \tag{Intro.1}
\end{equation*}
$$

Consider the category $A l g_{\ell}^{*}$ of $\ell$-algebras with involution compatible with the involution of $\ell$.

Let $R \in A l g_{\ell}^{*}$ unital and $\varepsilon \in R$ central unitary (i.e. $\varepsilon^{-1}=\varepsilon^{*}$ ). An element $\phi \in R$ is called $\varepsilon$-hermitian if $\phi^{*}=\varepsilon \phi$. For an invertible $\varepsilon$-hermitian element, we define $R^{\phi}$ as the $*$-ring which is the same as $R$ as rings but with involution

$$
r^{\phi}=\phi^{-1} r^{*} \phi .
$$

When $A \unlhd R$ is a $*$-ideal, this involution restricts to a new involution in $A$ and we also write $A^{\phi}$ for $A$ equipped with involution. We say a functor $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ is hermitian stable if for any $R \in A l g_{\ell}^{*}$ unital and $A \unlhd R$ and invertible $\varepsilon$-hermitian elements $\phi, \psi \in R$ the inclusion on the upper left corner

$$
i_{\phi}: A^{\phi} \rightarrow M_{2}(A)^{\phi \oplus \psi}
$$

is mapped to an isomorphism through $H$.
In Chapter 3 we construct a triangulated category $k k^{h}$ which has the same objects as $A l g_{\ell}^{*}$ together with a functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ which is the identity on objects. One of the key pieces in this construction is the ability to fix some standard polynomial homotopies commonly occurring on $K$-theory (such as rotation homotopies) which are not involution preserving; this is mainly fixed with Lemma 1.2.3; the existence of the element (Intro.1) is essential. The main result in Chapter 3 is the following:

Theorem (Theorem 3.2 .17 and Theorem 3.2.20) There is a triangulated category $k k^{h}$ and an excisive homology theory functor $j^{h}:$ Alg $_{\ell}^{*} \rightarrow k k^{h}$ which is matricially and hermitian stable and polynomial homotopy invariant.

Furthermore, the functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ is universal between the matricially and hermitan stable, polynomial homotopy invariant excisive homology theories.

For a unital ring with involution $R$ and a central unitary element $\varepsilon \in R$, recall the hermitan algebraic $K$-theory spectra ${ }_{\varepsilon} K^{h}(R)$ as defined in [Lod76]. In Chapter

2 we define a Weibel style homotopy invariant version of ${ }_{\varepsilon} K_{*}^{h}(R)$ which we denote ${ }_{\varepsilon} K H_{*}^{h}(R)$.

In Chapter 4 we discuss some standard computations such as classification of the image through $j^{h}$ of coproducts, the Toeplitz algebra, and the Cohn algebra of a finite graph and also prove the algebraic analogue of the Pimsner-Voiculescu sequence. We also show the following result:

Theorem(Theorem 4.2.1) There is a natural isomorphism

$$
\begin{equation*}
\operatorname{hom}_{k k^{h}}(\ell, A) \cong K H_{0}^{h}(A) \tag{Intro.2}
\end{equation*}
$$

For a unital $*$-ring $R$, there are natural maps between the $K$-theory spectra and the hermitian $K$-theory spectra induced by the hyperbolic and the forgetful maps

$$
\text { hyp }: K(R) \rightarrow{ }_{\varepsilon} K^{h}(R) \quad \text { forg }:_{\varepsilon} K^{h}(R) \rightarrow K(R)
$$

Write ${ }_{\varepsilon} \mathcal{U}(R)$ and ${ }_{\varepsilon} \mathcal{V}(R)$ for the homotopy fibers of these maps. Assume that $R$ has an element as in (Intro.1). Karoubi's Fundamental Theorem for hermitian $K$-theory Kar80] shows that there are natural homotopy equivalences

$$
{ }_{\varepsilon} \mathcal{V}(R) \sim \Omega_{-\varepsilon} \mathcal{U}(R)
$$

Moreover, Karoubi constructs functors $U^{\prime}, V^{\prime}$ for rings with involutions such that there are homotopy equivalences

$$
{ }_{\varepsilon} K^{h}\left(U^{\prime} R\right) \sim{ }_{\varepsilon} \mathcal{U}(R) \text { and }{ }_{\varepsilon} K^{h}\left(V^{\prime} R\right) \sim{ }_{\varepsilon} \mathcal{V}(R) .
$$

Karoubi also shows that there is a natural equivalence

$$
{ }_{\varepsilon} K^{h}\left(U^{\prime} V^{\prime} R\right) \sim{ }_{-\varepsilon} K^{h}(R) .
$$

Thus, we can rephrase Karoubi's fundamental theorem as the equivalence

$$
\begin{equation*}
{ }_{\varepsilon} K^{h}(R) \sim \Omega^{2}{ }_{-\varepsilon} K^{h}\left(\left(U^{\prime}\right)^{2} R\right) \tag{Intro.3}
\end{equation*}
$$

The equivalence (Intro.3) is induced by the cup product with an element in $\theta_{0} \in$ ${ }_{-1} K_{2}^{h}\left(\left(U^{\prime}\right)^{2}(\mathbb{Z})\right)$.

In Chapter 5 we show that $k k^{h}$ has a adjunction with $k k$ which is analogue to the maps hyp and forg in the homotopy invariant setting. Then we construct functors ${ }_{\varepsilon} U,{ }_{\varepsilon} V: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$ such that composing with the functor of homotopy hermitian algebraic $K$-theory we recover the homotopy versions of ${ }_{\varepsilon} \mathcal{V}$ and ${ }_{\varepsilon} \mathcal{U}$ up to a degree shift. Using the aforementioned adjunction we show that ${ }_{\varepsilon} U$ and ${ }_{\varepsilon} V$ have analogue properties in $k k^{h}$ to those of $U^{\prime}$ and $V^{\prime}$ for hermitian $K$-theory. Write $\theta$ for the image of $\theta_{0}$ in ${ }_{-1} K H_{0}^{h}\left(U^{2} \ell\right)$. The main result of Chapter 5 is

Theorem (Theorem 5.3.1 and Corollary 5.3.2) The product with $\theta$ induces for every $A \in A l g_{\ell}^{*}$ an isomorphism in $k k^{h}$

$$
\begin{equation*}
j^{h}(A) \cong j^{h}\left({ }_{-1} U^{2}(A)\right), \tag{Intro.4}
\end{equation*}
$$

which gives an isomorphism in $k k^{h}$

$$
j^{h}\left({ }_{\varepsilon} V A\right) \cong j^{h}\left({ }_{-\varepsilon} U A\right)
$$

Let $R$ be a unital $*$-ring with an element $\lambda$ which satisfies (Intro.1). The involution of $R$ induces an involution $g \rightarrow\left(g^{*}\right)^{-1}$ in $\mathrm{GL}_{\infty}(R)$ which in turn induces a natural action of $\mathbb{Z} / 2$ in $K_{*}(R)$; for $x \in K_{n}(R)$ write $\bar{x}$ for this action. Recall the Witt and coWitt groups ${ }_{\varepsilon} W_{n}(R)$ and ${ }_{\varepsilon} W_{n}^{\prime}(R)$ and write $k_{n}(R)$ and $k_{n}^{\prime}(R)$ for the $\mathbb{Z} / 2$-Tate cohomology groups of $K_{n}(R)$ with the aforementioned action. Using the equivalence Intro.3), Karoubi shows that there is a 12 -term exact sequence:


In the end of Chapter 5, we show that for bivariant adaptation of these groups (Definition 5.3.6) and we have a 12 -term exact sequence (Theorem 5.3.7):


The rest of this thesis is outlined the following way. In Chapter 1 we discuss preliminary concepts and prove some useful lemmas that we will use throughout the thesis. In Chapter 2 we recall the construction of hermitian $K$-theory, we define $K H^{h}$ and prove some of its basic properties; we also discuss the product structure of $K^{h}$ and how it passes to $K H^{h}$. We end the chapter recalling Karoubi's Fundamental Theorem for hermitian algebraic $K$-theory. In Chapter 3 we construct the category $k k^{h}$ and the functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$; first we prove the necessary technical lemmas to construct the morphism sets and then we show some of its properties as a triangulated category and how $j^{h}$ is a universal excisive homology theory with matrix and hermitian stability and homotopy invariance. In Chapter 4 we proceed to develop some computations as a matter of examples and show (Intro.2). In Chapter 5 we show the adjunction between $k k^{h}$ and $k k$ and construct the functors $U, V$; we prove some of their properties in order to show (Intro.4 and obtain the 12-term exact sequence from it.

## Chapter 1

## Preliminaries

### 1.1 Rings and algebras with involution

Fix a commutative ring $\ell$. An $\ell$-algebra is a ring $A$ together with a symmetric $\ell$-module structure such that the product is $\ell$-bilinear.

Suppose $\ell$ has an involution: a ring isomorphism $*: \ell \rightarrow \ell^{o p}=\ell$, such that $\left(x^{*}\right)^{*}=x$, for all $x \in \ell$. A $*$-algebra over $\ell$, is an $\ell$-algebra $A$ together with an involution $*: A \rightarrow A^{o p}$ that is semilinear with respect to the module action:

$$
(x a)^{*}=x^{*} a^{*} \text { for } x \in \ell \text { and } a \in A .
$$

An $\ell$-algebra morphism is a ring morphism that is also an $\ell$-bimodule morphism. We write $A l g_{\ell}$ for the category of $\ell$-algebras with $\ell$-algebra morphisms and $A l g_{\ell}^{*}$ for the category of $*$-algebras over $\ell$ with $*$-morphisms, that is, $\ell$-algebra morphisms that preserve the involution. A $*$-ideal in a $*$-algebra is a two-sided ideal that is closed under the action of $\ell$ and under the involution. For a $*$-ideal $I \unlhd A$, the quotient $A / I$ is also a $*$-algebra with the induced involution.

Example 1.1.1. For any commutative ring $\ell$, the identity map id : $\ell \rightarrow \ell$ is an involution; it is called the trivial involution. In the case of $\ell=\mathbb{Z}$ it is the only involution and $A l g_{\mathbb{Z}}=$ Rings is the category of rings; the category Rings* $=A l g_{\ell}^{*}$ is called the category of $*$-rings.

Example 1.1.2. Let $A$ and $B$ be $*$-algebras over $\ell$. The tensor product $A \otimes_{\ell} B$ is a $*$-algebra over $\ell$ with involution $(a \otimes b)^{*}=a^{*} \otimes b^{*}$. In some cases we write $L A$ for $L \otimes_{\ell} A$ and write $L: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$ for the functor given by tensoring with $L$. Except when explicitly noted, all tensor products will be over $\ell$.

Example 1.1.3. Write $M_{n}$ for the ring of $n \times n$ matrices over $\ell$. The $\ell$-algebra $M_{n}$ has a natural involution $\left(a_{i j}\right)^{*}=a_{j i}^{*}$.

More generally, let $X$ be a set and define

$$
\Gamma_{X}=\{a: X \times X \rightarrow \ell: \operatorname{im}(a) \text { is finite and }
$$

$$
\exists N \text { s.t. } \forall x \in X|\{y \in X: a(x, y) \neq 0\}|,|\{y \in X: a(y, x) \neq 0\}| \leq N\} .
$$

with convolution product and conjugate transposition

$$
\begin{gathered}
(a b)(x, y)=\sum_{z \in X} a(x, z) b(z, y), \\
a^{*}(x, y)=a(y, x)^{*}
\end{gathered}
$$

make $\Gamma_{X}$ a $*$-algebra over $\ell$. We write $M_{X} \unlhd \Gamma_{X}$ for the $*$-ideal of finitely supported functions and $\Sigma_{X}$ for the quotient $\Gamma_{X} / M_{X}$. We also write $\Gamma=\Gamma_{\mathbb{N}}, M_{\infty}=M_{\mathbb{N}}$ and $\Sigma=\Sigma_{\mathbb{N}}$. When $X$ has cardinality $n$ then $M_{n} \cong M_{X}=\Gamma_{X}$. For a $*$-algebra $A$ we write $\Gamma_{X} A, M_{X} A$ and $\Sigma_{X} A$ for the tensor product of $\Gamma_{X}, M_{X}$ and $\Sigma_{X}$ with $A$ respectively as in Example 1.1.2. We also write $\Sigma_{X}^{n}$ for $\Sigma_{X}^{\otimes n}$

Example 1.1.4 (Unitalization). Let $A$ be a $*$-algebra and define $\widetilde{A}=A \oplus \ell$ as an $\ell$-bimodule with the following multiplication and involution

$$
\begin{gathered}
(a, x)(b, y)=(a b+a y+x b, x y) \\
(a, x)^{*}=\left(a^{*}, x^{*}\right)
\end{gathered}
$$

The $*$-algebra $\widetilde{A}$ is unital and has a natural morphism $A \rightarrow \widetilde{A}, a \mapsto(a, 0)$ which maps $A$ isomorphically to an ideal in $\widetilde{A}$. The quotient $\widetilde{A} / A$ is isomorphic to $\ell$ and the quotient map $\widetilde{A} \rightarrow \ell$ is split by $x \mapsto(0, x)$; whenever $A$ is unital the unitalization $\widetilde{A}$ is isomorphic to $A \times \ell$ by means of this splitting.

Example 1.1.5 (Amalgamated coproducts and sums). Let $A, B, C \in A l g_{\ell}^{*}$ and $i: C \rightarrow A$ and $j: C \rightarrow B$ two $*$-morphisms with retractions $\alpha: A \rightarrow C$ and $\beta: B \rightarrow C$ (i.e. $\alpha i=\mathrm{id}_{C}$ and $\beta j=\mathrm{id}_{C}$ ). The amalgamated coproduct of $A$ and $B$ over $C$ is the $\ell$-module

$$
A \amalg_{C} B:=C \oplus \operatorname{ker} \alpha \oplus \operatorname{ker} \beta \oplus\left(\operatorname{ker} \alpha \otimes_{\widetilde{C}} \operatorname{ker} \beta\right) \oplus\left(\operatorname{ker} \beta \otimes_{\widetilde{C}} \operatorname{ker} \alpha\right) \oplus \cdots
$$

Where each summand beyond the first is given by the tensor product of $\operatorname{ker} \alpha$ and $\operatorname{ker} \beta$ in all possible orderings with an increasing number of tensor factors. This defines an $\ell$-algebra with product given by concatenation of elementary tensors and extended by bilinearity. It also has an involution given by the involutions of $A, B$ and $C$ and twisting the elementary tensors appropriately. In the case $C=0$, we write $A \amalg B$; this is simply the coproduct of $A$ and $B$ as $\ell$-algebras.

The direct sum all tensors with two or more factors forms an ideal $K \unlhd A \amalg_{C} B$ and we define the amalgamated direct sum as the quotient

$$
A \oplus_{C} B:=A \amalg_{C} B / K
$$

When $A=B$ and $C=0$ we write $Q(A):=A \amalg A$ and $\iota_{0}, \iota_{1}: A \rightarrow Q A$ for the natural inclusions of $A$. The identity of $\operatorname{id}_{A}: A \rightarrow A$ induces a $*$-morphism $\operatorname{id}_{A} \amalg \operatorname{id}_{A}: Q(A) \rightarrow A$ and we write $q(A)$ for the kernel of this map. There are also two natural maps $\pi_{0}, \pi_{1}: q(A) \rightarrow A$ which are the restrictions of $\mathrm{id}_{A} \amalg 0$ and $0 \amalg \mathrm{id}_{A}$ to $q(A)$.

Example 1.1.6 (Free involutions and induction). Let $A$ be a ring. Define $\operatorname{inv}(A)=$ $A \oplus A^{\text {op }}$ with involution $(a, b)^{*}=(b, a)$. This gives rise to an equivalence

$$
\text { inv : } A l g_{\ell} \rightarrow A l g_{\operatorname{inv}(\ell)}^{*}
$$

with inverse $A \mapsto(1,0) A$. There is a natural $*$-morphism $\eta: \ell \rightarrow \operatorname{inv}(\ell)$ defined by $\eta(x)=\left(x, x^{*}\right)$. We can restrict the action of an $\operatorname{inv}(\ell)$-algebra to $\ell$ through $\eta$. Composing the functor inv with the restriction of scalars gives rise to a functor

$$
\text { ind }: A l g_{\ell} \rightarrow A l g_{\ell}^{*} \text {. }
$$

This functor is right adjoint to the forgetful functor res: $A l g_{\ell}^{*} \rightarrow A l g_{\ell}$ with unit and counit given by

$$
\begin{align*}
& \eta_{A}: A \rightarrow \operatorname{ind}(\operatorname{res}(A))=A \oplus A^{o p}  \tag{1.1.7}\\
& \quad a \mapsto\left(a, a^{*}\right) \text { and } \\
& p r_{1}: \operatorname{res}(\operatorname{ind}(B))=B \oplus B^{o p} \rightarrow B  \tag{1.1.8}\\
& \quad(x, y) \mapsto x
\end{align*}
$$

respectively.
Similarly, for an $\ell$-algebra $A$ define $\operatorname{ind}^{\prime}(A):=A \amalg A$ with involution which permutes the copies of $A$. This gives a functor ind ${ }^{\prime}: A l g_{\ell} \rightarrow A l g_{\ell}^{*}$ which is left adjoint to res : $A l g_{\ell}^{*} \rightarrow A l g_{\ell}$ with unit and counit given by

$$
\begin{gather*}
\tilde{\eta}_{A}: A \rightarrow \operatorname{res}\left(\operatorname{ind}^{\prime}(A)\right)=A \amalg A  \tag{1.1.9}\\
a \mapsto \iota_{0}(a)+\iota_{1}(a) \text { and } \\
\operatorname{id}_{B} \amalg 0: \operatorname{ind}^{\prime}(\operatorname{res}(B))=B \amalg B \rightarrow B \tag{1.1.10}
\end{gather*}
$$

respectively.
Definition 1.1.11 (Hermitian elements and involutions). Let $R$ be a unital ring with involution and $\varepsilon \in R$. We say that $\varepsilon$ is unitary if it is invertible and $\varepsilon^{*}=\varepsilon^{-1}$ (e.g. $\varepsilon= \pm 1$ ).

For $\varepsilon \in R$ central unitary and $\phi \in R$, we say that $\phi$ is $\varepsilon$-hermitian if $\phi=\varepsilon \phi^{*}$. If $\phi \in R$ is invertible and $\varepsilon$-hermitian then we can define a new involution in $R$ by

$$
r \mapsto r^{\phi}:=\phi^{-1} r^{*} \phi
$$

We write $R^{\phi}$ for the ring $R$ with this new involution. If $S$ is another unital *-algebra over $\ell$ and $\psi$ is $\eta$-hermitian and invertible then $\phi \otimes \psi \in R \otimes_{\ell} S$ is $\varepsilon \otimes \eta$-hermitian and invertible and

$$
\begin{equation*}
\left(R \otimes_{\ell} S\right)^{\phi \otimes \psi}=R^{\phi} \otimes S^{\psi} \tag{1.1.12}
\end{equation*}
$$

Remark 1.1.13. Let $R$ be a unital ring, $A \unlhd R$ a $*$-ideal, $\varepsilon \in R$ central unitary and $\phi \in R$ an invertible $\varepsilon$-hermitian. The involution defined in Definition 1.1.11 restricts properly to an involution on $A$ and we write $A^{\phi}$ for $A$ equipped with this new involution.

Definition 1.1.14. Let $A$ be a ring with involution and $u \in A$ unitary. The map

$$
\begin{aligned}
\operatorname{ad}(u): A & \rightarrow A \\
x & \mapsto u x u^{-1}
\end{aligned}
$$

defines a $*$-isomorphism with inverse $\operatorname{ad}\left(u^{*}\right)$.
Remark 1.1.15. Let $R$ be a unital $*$-algebra over $\ell, \varepsilon \in R$ central unitary and $\phi, \psi \in R$ invertible $\varepsilon$-hermitian. If there exists $u \in R$ invertible such that $\psi=u^{*} \phi u$ then $\operatorname{ad}(u): R^{\psi} \rightarrow R^{\phi}$ is a $*$-isomorphism.

Example 1.1.16. Let $R_{0}$ be an $\ell$-algebra and $R=\operatorname{inv}\left(R_{0}\right) \in A l g_{\ell}^{*}$. If $\varepsilon=\left(\varepsilon_{0}, \varepsilon_{1}\right) \in$ $R$ is central unitary then $\varepsilon_{0}$ and $\varepsilon_{1}$ are central and

$$
\begin{aligned}
(1,1) & =\left(\varepsilon_{0}, \varepsilon_{1}\right)^{*}\left(\varepsilon_{0}, \varepsilon_{1}\right) \\
& =\left(\varepsilon_{1}, \varepsilon_{0}\right)\left(\varepsilon_{0}, \varepsilon_{1}\right) \\
& =\left(\varepsilon_{1} \varepsilon_{0}, \varepsilon_{0} \varepsilon_{1}\right)
\end{aligned}
$$

therefore, $\varepsilon_{1}=\varepsilon_{0}^{-1}$. We can deduce from this that any invertible $\varepsilon$-hermitian element $\phi \in R$ is of the form

$$
\phi=\left(\phi_{0}, \varepsilon_{0}^{-1} \phi_{0}\right)=\left(1, \phi_{0}\right)^{*}\left(1, \varepsilon_{0}^{-1}\right)\left(1, \phi_{0}\right) .
$$

It follows from Remark 1.1.15 that $R^{\phi} \cong R^{\left(1, \varepsilon_{0}^{-1}\right)}=R$ since $\varepsilon_{0}$ is central.
Example 1.1.17. Let $P$ be a finitely generated projective $\ell$-module. An $\varepsilon$-hermitian bilinear form is a map $\psi: P \times P \rightarrow \ell$ which is $\ell$-linear in the first coordinate and satisfies

$$
\psi(x, y)=\varepsilon \psi(y, x)^{*}
$$

We say that $\psi$ is non-degenerate if $\psi(-, y): P \rightarrow P^{*}$ is an isomorphism for all $y \in P$; in this case we say that the pair $(P, \psi)$ is an $\varepsilon$-hermitian module.

For an $\varepsilon$-hermitian module $(P, \psi)$, the non-degenracy of $\psi$ induces an involution on the $\ell$-algebra of $\ell$-linear endomorphisms $\operatorname{End}(P)$. This involution is determined by the following property: for $T \in \operatorname{End}(P)$ and $x, y \in P$ we have

$$
\psi(T(x), y)=\psi\left(x, T^{*}(y)\right)
$$

If $P=\ell^{n}$ is free, then $\operatorname{End}(P) \cong M_{n}$ and the involution induced by the $\varepsilon$ hermitian form $\psi$, corresponds to an $\varepsilon$-hermitan invertible $h_{\psi}$ and the involution $(-)^{h_{\psi}}$.
Example 1.1.18. Consider the invertible -1-hermitian element

$$
h_{ \pm}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \in M_{2}
$$

We write $M_{ \pm}=\left(M_{2}\right)^{h_{ \pm}}$as in Example 1.1.11 and $M_{ \pm} A$ for $M_{ \pm} \otimes A$. We write $i_{+}, i_{-}: \ell \rightarrow M_{ \pm}$for the $*$-morphisms defined by the upper left and lower right corner inclusions respectively.

The element $h_{ \pm}$corresponds to the hyperbolic hermitian module: for $H(\ell)=\ell^{2}$, the -1 -hermitian form

$$
h\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} y_{2}-x_{2} y_{1} .
$$

It is well known [see for example KV73, Theorem 1.4] that for any hermitian module $(P, \psi)$ then $(P,-\psi)$ is also a hermitian module and

$$
(P, \psi) \oplus(P,-\psi) \cong H(\ell) \otimes P
$$

in such a way that the bilinear forms are preserved through this isomorphism.
Similarly, let $\varepsilon \in \ell$ be central unitary and consider the invertible $\varepsilon$-hermitian element

$$
h_{\varepsilon}=\left(\begin{array}{ll}
0 & \varepsilon \\
1 & 0
\end{array}\right) \in M_{2} .
$$

We write ${ }_{\varepsilon} M_{2}=\left(M_{2}\right)^{h_{\varepsilon}}$ and ${ }_{\varepsilon} M_{2} A$ for ${ }_{\varepsilon} M_{2} \otimes A$.
Due to (1.1.12) we have the identity

$$
\begin{equation*}
{ }_{\varepsilon} M_{2} M_{2} \cong{ }_{\varepsilon \eta} M_{2} M_{2} . \tag{1.1.19}
\end{equation*}
$$

Let $X$ be an infinite set and fix a bijection $\{1,2\} \times X \cong X$. This bijection together with 1.1.19) induces $*$-isomorphisms

$$
\begin{equation*}
{ }_{\eta} M_{2}{ }_{\varepsilon} M_{2} M_{X} \cong{ }_{\eta \varepsilon} M_{2} M_{\{1,2\} \times X} \cong{ }_{\eta \varepsilon} M_{2} M_{X} . \tag{1.1.20}
\end{equation*}
$$

Example 1.1.21 (Polynomial *-algebras). We consider the polynomial ring $\ell[t]$ with the involution which fixes $t$. For any 1-hermitian element $\alpha \in A$ the evaluation map ev ${ }_{\alpha}: \ell[t] \rightarrow \ell$ that maps $t \mapsto \alpha$ is a $*$-morphism.

We write

$$
\begin{aligned}
P & =\operatorname{ker}\left(\mathrm{ev}_{0}: \ell[t] \rightarrow \ell\right) \text { and } \\
\Omega & =\operatorname{ker}\left(\mathrm{ev}_{1}: P \rightarrow \ell\right) .
\end{aligned}
$$

for the path and loop algebras respectively. We also consider the Laurent polynomial algebra $\ell\left[t, t^{-1}\right]$ with involution that interchanges $t$ and $t^{-1}, t^{*}=t^{-1}$. For any unitary element $u \in \ell$ we have an evaluation map $\mathrm{ev}_{u}: \ell\left[t, t^{-1}\right] \rightarrow \ell$ which maps $t \mapsto u$.

As with matrices we write $A[t], A\left[t, t^{-1}\right], P A$ and $\Omega A$ for $\ell[t] \otimes_{\ell} A, \ell\left[t, t^{-1}\right] \otimes_{\ell} A$, $P \otimes_{\ell} A$ and $\Omega \otimes A$ respectively. We write $\Omega^{n}$ for $\Omega^{\otimes n}$.

Example 1.1.22 (Simplicial $*$-algebras). Let $n \in \mathbb{N}_{0}$ and

$$
\ell\left[t_{1}, \ldots, t_{n}\right]=\ell\left[t_{1}\right] \otimes \cdots \otimes \ell\left[t_{n}\right]
$$

be the polynomial algebra in $n$ variables. We define

$$
\ell^{\Delta^{n}}:=\ell\left[t_{0}, \ldots, t_{n}\right] /\left\langle t_{0}+\cdots+t_{n}-1\right\rangle .
$$

This defines a simplicial *-algebra

$$
\begin{aligned}
\ell^{\Delta}: \Delta^{o p} & \rightarrow A l g_{\ell}^{*} \\
{[n] } & \mapsto \ell^{\Delta^{n}}
\end{aligned}
$$

and we write $A^{\Delta}$ for $\ell^{\Delta} \otimes A$. Write $\mathfrak{S}$ for the category of simplicial sets. Let $X \in \mathfrak{S}$ and $B_{\bullet}: \Delta^{o p} \rightarrow A l g_{\ell}^{*}$ be a simplicial $*$-algebra. The set $\operatorname{hom}_{\mathfrak{S}}\left(X, B_{\bullet}\right)$ is an $*$-algebra. For $X \in \mathfrak{S}$ and $A \in A l g_{\ell}^{*}$ we define the $*$-algebra of functions on the simplicial set $X$ as

$$
A^{X}:=\operatorname{hom}_{\mathfrak{S}}\left(X, A^{\Delta}\right)
$$

A pointed simplicial set $(X, x)$ is a simplicial set $X$ together with a map $x: \mathrm{pt}=$ $\Delta^{0} \rightarrow X$. Write $\mathrm{ev}_{x}: A^{X} \rightarrow A^{\text {pt }}$ for the induced $*$-morphism and define

$$
A^{(X, x)}:=\operatorname{ker}\left(\mathrm{ev}_{x}\right)
$$

Remark 1.1.23. Some of the $*$-algebras mentioned in Example 1.1 .21 are particular cases of Example 1.1.22;

$$
\begin{gathered}
A^{\Delta^{1}} \cong A[t] \\
A^{\left(\Delta^{1}, \mathrm{pt}\right)} \cong P A
\end{gathered}
$$

and writing $S^{1}=\Delta^{1} / \Delta^{0}$ for the simplicial circle,

$$
A^{\left(S^{1}, \mathrm{pt}\right)} \cong \Omega A
$$

Throughout this thesis, we will often assume the following:
$\lambda$-assumption 1.1.24. the ring contains an element $\lambda$ such that $\lambda+\lambda^{*}=1$.
Example 1.1.25. The $\lambda$-assumption 1.1 .24 is satisfied for example when 2 is invertible in putting $\lambda=1 / 2$. Another example is when $\ell=\operatorname{inv}\left(\ell_{0}\right)$ for some ring $\ell_{0}$ and $\lambda=(1,0)$.

Remark 1.1.26. Suppose that $\ell$ satisfies the $\lambda$-assumption 1.1 .24 and let $\varepsilon \in \ell$ be unitary, $R$ be a unital $*$-algebra and $\phi \in R$ be an invertible $\varepsilon$-hermitian element. Recall the matrices $h_{ \pm}$and $h_{\varepsilon}$ from Example 1.1.18. The matrix

$$
u_{\lambda}=\left(\begin{array}{cc}
1 & 1  \tag{1.1.27}\\
\lambda \phi^{*} & -\lambda^{*} \phi^{*}
\end{array}\right)
$$

satisfies $u_{\lambda}^{*}\left(h_{\varepsilon} \otimes 1\right) u_{\lambda}=h_{ \pm} \otimes \phi$, whence $\operatorname{ad}\left(u_{\lambda}\right): M_{ \pm} R^{\phi} \rightarrow{ }_{\varepsilon} M_{2} R$ is a $*$-isomorphism. Taking $R=\ell$ and $\varepsilon=\phi=1$ we get $M_{ \pm} \cong{ }_{1} M_{2}$.

### 1.2 Algebraic homotopies

Definition 1.2.1. Let $A, B \in A l g_{\ell}^{*}$ and $f, g: A \rightarrow B$ two $*$-morphisms. We say that $f$ and $g$ are elementary (algebraically) $*$-homotopic if there exists a $*$-morphism $H: A \rightarrow B[t]$, called a $*$-homotopy, such that the diagram

commutes. We say that $f, g$ are (algebraically) *-homotopic if there exists a finite sequence $f_{0}, \ldots, f_{n}: A \rightarrow B$ of $*$-morphisms such that $f_{0}=f, f_{n}=g$ and $f_{i}$ is elementary $*$-homotopic to $f_{i+1}$ for $i=0, \ldots, n-1$; whenever $f$ and $g$ are $*-$ homotopic we write $f \sim^{*} g$.

It is immediate from this definition that homotopy is an equivalence relation that is compatible with composition of $*$-morphisms. We write $[A, B]$ for set of equivalence classes of $*$-morphisms $A \rightarrow B$ modulo homotopy. The sets $[-,-]$ have a composition law and therefore are the arrows of a category $\left[A l g_{\ell}^{*}\right]$ which has *-algebras as objects.

Definition 1.2.2. Let $F: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be a functor. We say that $F$ is homotopy invariant if $F(f)=F(g)$ whenever $f \sim^{*} g$.

Let $C \in A l g_{\ell}$ and $A, B \subseteq C$ subalgebras. Suppose $u, v \in C$ satisfy

$$
\begin{gathered}
u A v \subseteq B \text { and } \\
a v u a^{\prime}=a a^{\prime} \text { for all } a, a^{\prime} \in A .
\end{gathered}
$$

Then

$$
\begin{aligned}
\operatorname{ad}(u, v): A & \rightarrow B \\
& a \mapsto u a v
\end{aligned}
$$

is an algebra morphism. We say that the pair $(u, v)$ multiplies $A$ into $B$. Let $u_{0}, u_{1}, v_{0}, v_{1} \in C$ such that $\left(u_{0}, v_{0}\right)$ and $\left(u_{1}, v_{1}\right)$ multiplies $A$ into $B$. A homotopy between the pairs $\left(u_{0}, v_{0}\right)$ and $\left(u_{1}, v_{1}\right)$ is a pair $(u(t), v(t)) \in C[t]^{2}$ that multiplies $A$ (as constants in $C[t])$ into $B[t]$ and that $(u(i), v(i))=\left(u_{i}, v_{i}\right)$ (for $\left.i=0,1\right)$. In this case $\operatorname{ad}(u(t), v(t)): A \rightarrow B[t]$ is a homotopy between $\operatorname{ad}\left(u_{0}, v_{0}\right)$ and $\operatorname{ad}\left(u_{1}, v_{1}\right)$. Suppose now that $C$ is a $*$-algebra and that $A, B$ are $*$-subalgebras; when $v=u^{*}$ and the pair $\left(u, u^{*}\right)$ multiplies $A$ into $B$, we have that $\operatorname{ad}\left(u, u^{*}\right)$ is a $*$-morphism. In this case we say that $u *$-multiplies $A$ into $B$. If $u, w \in C$ both $*$-multiply $A$ into $B$, a $*$-homotopy between $u$ and $w$ is an element $z(t) \in C[t] *$-multiplying $A$ into $B[t]$ such that $z(0)=u$ and $z(1)=w$. We shall often encounter examples of elements $u_{0}, u_{1} \in C$ which $*$-multiply $A$ into $B$ that are homotopic via a pair $(u(t), v(t))$ with $u(t)^{*} \neq v(t)$ so that the homotopy $\operatorname{ad}(u(t), v(t))$ is not a $*$-morphism. This can be fixed as follows.

Lemma 1.2.3. Suppose $\ell$ satisfies the $\lambda$-assumption 1.1.24. Let $C \in A l g_{\ell}^{*}, A, B \subseteq$ $C *$-subalgebras, $u_{0}, u_{1} \in C$ that $*$-multiply $A$ into $B$ and $(v, w) \in C[t]^{2}$ a homotopy between $\left(u_{0}, u_{0}^{*}\right)$ and ( $u_{1}, u_{1}^{*}$ ). Assume as well that

$$
w^{*} A w, v A v^{*} \subseteq B[t]
$$

Then

$$
c(v, w)=\left(\begin{array}{ll}
\lambda^{*} v+\lambda w^{*} & \lambda^{*}\left(v-w^{*}\right) \\
\lambda\left(v-w^{*}\right) & \lambda v+\lambda^{*} w^{*}
\end{array}\right) \in M_{ \pm} C[t]
$$

*-multiplies $i_{+}(A)$ into $M_{ \pm} B[t]$ and $\operatorname{ad}\left(c(u, v), c(u, v)^{*}\right) \circ i_{+}$is a $*$-homotopy between $i_{+} \operatorname{ad}\left(u_{0}, u_{0}^{*}\right)$ and $i_{+} \operatorname{ad}\left(u_{1}, u_{1}^{*}\right)$.

Proof. A straightforward computation shows that

$$
c(v, w)^{*} c(v, w)=c(w v, w v)
$$

Hence, for $a, a^{\prime} \in A$ we have

$$
\begin{aligned}
i_{+}(a) c(v, w)^{*} c(v, w) i_{+}\left(a^{\prime}\right) & =i_{+}(a) c(w v, w v) i_{+}\left(a^{\prime}\right) \\
& =i_{+}\left(a\left(\lambda^{*} w v+\lambda(w v)^{*}\right) a^{\prime}\right) \\
& =i_{+}\left(\lambda^{*} a w v a^{\prime}+\lambda a(w v)^{*} a^{\prime}\right) \\
& =i_{+}\left(\lambda^{*} a a^{\prime}+\lambda\left(a^{\prime *} w v a^{*}\right)^{*}\right) \\
& =i_{+}\left(a a^{\prime}\left(\lambda^{*}+\lambda\right)\right) \\
& =i_{+}\left(a a^{\prime}\right) .
\end{aligned}
$$

Similarly, $c(v, w) i_{+}(A) c(v, w)^{*} \subseteq M_{ \pm} B[t]$. Thus, $H=\operatorname{ad}(c(u, v)) i_{+}: A \rightarrow M_{ \pm} B[t]$ is a $*$-morphism and for $i=0,1$ we get

$$
\mathrm{ev}_{i}(c(u, v))=c\left(u_{i}, u_{i}\right)=\left(\begin{array}{cc}
u_{i} & 0 \\
0 & u_{i}
\end{array}\right)
$$

so that $\mathrm{ev}_{i} H=i_{+} \operatorname{ad}\left(u_{i}, u_{i}^{*}\right)$.
Definition 1.2.4. Let $p, q \geq 0$ and $n=p+q$. Define

$$
i_{+}^{p, q}:=\left(M_{ \pm}\right)^{\otimes p} \otimes i_{+} \otimes\left(M_{ \pm}\right)^{\otimes q}: M_{ \pm}^{\otimes n} \rightarrow M_{ \pm}^{\otimes n+1}
$$

Lemma 1.2.5. Let $p, q$ and $n$ be as above, and let $p^{\prime}, q^{\prime} \geq 0$ be such that $p^{\prime}+q^{\prime}=$ $n+1$. Then $i_{+}^{p^{\prime}, q^{\prime}} i_{+}^{p, q}$ is $*$-homotopic to $i_{+}^{0, n+1} i_{+}^{0, n}$.
Proof. First observe that we have $i_{+}^{0,0}=i_{+}$and $i_{+}^{1,0} i_{+}=i_{+}^{0,1} i_{+}$. Therefore, tensoring with identity maps we get

$$
\begin{equation*}
i_{+}^{r, s+1} i_{+}^{r, s}=i_{+}^{r+1, s} i_{+}^{r, s} \tag{1.2.6}
\end{equation*}
$$

for any $r, s \geq 0$. Next, under the identification $M_{2} \otimes M_{2}=M_{\{1,2\}^{2}}$, we have $i_{+}^{1,0}\left(e_{i, j}\right)=e_{(i, 1),(j, 1)}$ and $i_{+}^{0,1}\left(e_{i, j}\right)=e_{(1, i),(1, j)}$. One checks that the matrix

$$
u=e_{(1,1),(1,1)}-e_{(1,2),(2,1)}+e_{(2,1),(1,2)}+e_{(2,2),(2,2)}
$$

is a unitary element of $M_{ \pm}^{\otimes 2}$ and satisfies $\operatorname{ad}(u) i_{+}^{1,0}=i_{+}^{0,1}$. Moreover by CT07, Section 6.4], there exists an invertible element $u(t) \in M_{ \pm}^{\otimes 2}[t]$ such that $u(0)=1$ and $u(1)=u$. Hence the composites of $i_{+}^{0,2}$ with $i_{+}^{1,0}$ and $i_{+}^{0,1}$ are $*$-homotopic by Lemma 1.2.3. Tensoring on both sides with identity maps, we get that

$$
i_{+}^{p, q+1} i_{+}^{p+1, q-1} \sim^{*} i_{+}^{p, q+1} i_{+}^{p, q} .
$$

Let $p^{\prime}, q^{\prime}$ as in the statement. Permuting factors in the tensor product $M_{ \pm}^{\otimes n+1}$ we obtain a $*$-isomorphism $\sigma: M_{ \pm}^{\otimes n+1} \rightarrow M_{ \pm}^{\otimes n+1}$ such that $\sigma i_{+}^{p, q+1}=i_{+}^{p^{\prime}, q^{\prime}}$. Hence we have

$$
\begin{equation*}
i_{+}^{p^{\prime}, q^{\prime}} i_{+}^{p+1, q-1} \sim^{*} i_{+}^{p^{\prime,}, q^{\prime}} i_{+}^{p, q} \tag{1.2.7}
\end{equation*}
$$

for all $p, q, p^{\prime}, q^{\prime}$ as above. The lemma follows from 1.2.7) using the identity 1.2.6).

### 1.3 Ind-*-algebras

Definition 1.3.1. Let $\mathfrak{C}$ be a category. An ind-object in $\mathfrak{C}$ is a pair $(C, I)$ consisting of an upward filtered poset $I$ and a functor $C: I \rightarrow \mathfrak{C}$. We shall often write $C_{i}$ for $C(i)$ and $\left(C_{i}\right)_{i \in I}$ or simply $C$. for and ind-object $C: I \rightarrow \mathfrak{C}$.

The ind-objects of a category $\mathfrak{C}$ form a category ind $-\mathfrak{C}$ whose morphisms sets are

Any functor $F: \mathfrak{C} \rightarrow \mathfrak{D}$ extends to $F:$ ind $-\mathfrak{C} \rightarrow$ ind $-\mathfrak{D}$ by applying $F$ indexwise; $F(C)_{i}=F\left(C_{i}\right)$.

Example 1.3.2. Let $i^{n}: M_{n} \rightarrow M_{n+1}$ be upper left corner inclusion and write $M_{\bullet}$ for the ind-*-algebra

$$
\begin{aligned}
\mathbb{N}_{0} & \rightarrow A l g_{\ell}^{*} \\
(n \rightarrow n+1) & \mapsto\left(M_{n} \xrightarrow{i_{n}} M_{n+1}\right) .
\end{aligned}
$$

Similarly, recall Definition 1.2 .4 and write $M_{ \pm}^{\bullet}$ for the ind-*-algebra.

$$
\begin{aligned}
\mathbb{N}_{0} & \rightarrow A l g_{\ell}^{*} \\
(n \rightarrow n+1) & \mapsto\left(M_{ \pm}^{n} \xrightarrow{i_{+}^{0, n}} M_{ \pm}^{n+1}\right) .
\end{aligned}
$$

For an infinite set $X$ we write

$$
\mathcal{M}_{X}=M_{ \pm}^{\bullet} M_{X} .
$$

Any bijection $f: X \rightarrow Y$ induces an isomorphism $f_{*}: \mathcal{M}_{X} \rightarrow \mathcal{M}_{Y}$ given by the corresponding isomorphism $M_{X} \cong M_{Y}$ and tensoring with the corresponding identities.

Example 1.3.3. For a finite simplicial set $K$, we write sd $K$ for the barycentric subdivision. This defines a functor sd: $\mathfrak{S} \rightarrow \mathfrak{S}$. The barycentric subdivision is equipped with a natural transformation $h: \mathrm{sd} \rightarrow \mathrm{id}_{\mathfrak{S}}$ so called the last vertex map [GJ99, Chapter III, Section 4, p.193]. Iterating this map, one obtains a system of simplicial sets

$$
\cdots \xrightarrow{h} \mathrm{sd}^{n} K \xrightarrow{h} \mathrm{sd}^{n-1} K \rightarrow \cdots \rightarrow K
$$

Write $\mathrm{sd}{ }^{\bullet} K$ for the (contravariant) functor

$$
\begin{aligned}
\mathbb{N}_{0} & \rightarrow s \text { Set } \\
(n \rightarrow n+1) & \mapsto\left(\mathrm{sd}^{n+1} K \xrightarrow{h} \operatorname{sd}^{n} K\right) .
\end{aligned}
$$

For each $A \in A l g_{\ell}^{*}$ the composed functor $A^{\mathrm{sd}{ }^{\bullet} K}$ gives an ind-*-algebra. This construction also applies to pointed simplicial sets in a similar way.

Some particular examples of subdivision ind- - -algebras that we will use are

$$
\begin{aligned}
& A^{\mathbb{S}^{1}}=A^{\mathrm{sd}}{ }^{\bullet}\left(S^{1}, \mathrm{pt}\right) \\
& A^{\mathbb{S}^{n}}=\left(A^{\mathbb{S}^{n-1}}\right)^{\mathbb{S}^{1}} \text { and } \\
& \mathcal{P} A=A^{\mathrm{sd} \bullet(\Delta, \mathrm{pt})} .
\end{aligned}
$$

Remark 1.3.4. The two endpoint inclusions $\Delta^{0} \rightarrow \Delta^{1}$ induce inclusions $\Delta^{0} \rightarrow$ $\mathrm{sd}^{\bullet} \Delta^{1}$ and evaluation maps ev ${ }_{i}: A^{\mathrm{sd} \boldsymbol{d}^{1} \Delta^{1}} \rightarrow A^{\Delta^{0}}=A$. Let $f, g: A \rightarrow B$ be two homotopic $*$-morphisms. As such, there exists a chain of $*$-morphisms $f=$ $f_{0}, f_{1}, \ldots, f_{n}=g$ and homotopies $H_{i}: A \rightarrow B[t], i=0, \ldots, n-1$ as in Definition 1.2.1. These homotopies can then be "concatenated" to an ind-*-morphism $H$ : $A \rightarrow B^{\text {sd }} \Delta^{1}$. Conversely, it is easily seen that if two $*$-morphisms $f, g: A \rightarrow B$ can be recovered from an ind-*-morphism $H: A \rightarrow B^{\mathrm{sd}{ }^{\bullet} \Delta^{1}}$ by composition with the evaluation maps

$$
\operatorname{ev}_{0} H=f \quad \operatorname{ev}_{1} H=g
$$

then $f$ and $g$ are homotopic.
Definition 1.3.5. Let $A, B \in$ ind $-A l g_{\ell}^{*}$, we write

$$
[A, B]=\operatorname{hom}_{\text {ind }-\left[A l g_{\ell}^{*}\right]}(A, B)
$$

Lemma 1.3.6. Let $X, Y$ be sets and $f, g: X \rightarrow Y$ bijections. Write, $f_{*}, g_{*}: \mathcal{M}_{X} \rightarrow$ $\mathcal{M}_{Y}$ as in Example 1.3.2. Then $\left[f_{*}\right]=\left[g_{*}\right] \in\left[\mathcal{M}_{X}, \mathcal{M}_{Y}\right]$.

Proof. Since homotopy is compatible with composition, we can reduce to the case when $X=Y$ and $g=\operatorname{id}_{X}$. The matrix

$$
u=\sum_{x \in X} e_{f(x), x}
$$

is a unitary element of $\Gamma_{X}$ and $f_{*}$ is the restriction of $\operatorname{ad}(u)$ (tensored with the identity). Then $i_{+} \operatorname{ad}(u)=\operatorname{ad}(u \oplus 1) i_{+}$. Using CT07, Section 3.4] there is a
homotopy $\left(v_{0}, v_{1}\right) \in M_{2} \Gamma_{X}[t]^{2}$ of multipliers between $\operatorname{ad}(u \oplus 1)$ and $\operatorname{ad}(1 \oplus u)$; thus, using Lemma 1.2.3, we have that $i_{+}^{0,2} \operatorname{ad}(u \oplus 1)$ is $*$-homotopic to $i_{+}^{0,2} \operatorname{ad}(1 \oplus u)$. Hence

$$
i_{+}^{0,2} i_{+}=i_{+}^{0,2} \operatorname{ad}(1 \oplus u) i_{+} \sim i_{+}^{0,2} \operatorname{ad}(u \oplus 1) i_{+}=i_{+}^{0,2} i_{+} \operatorname{ad}(u)
$$

and $\operatorname{ad}(u)$ induces the identity in $\left[\mathcal{M}_{X}, \mathcal{M}_{X}\right]$.

### 1.4 Extensions

A $*$-algebra can be regarded as a set or an $\ell$-module in each case with or without involution. Each of these four choices gives rise to an underlying category $\mathfrak{U}$ and a forgetful functor $F: A l g_{\ell}^{*} \rightarrow \mathfrak{U}$ which admits a left adjoint $\widetilde{T}: \mathfrak{U} \rightarrow A l g_{\ell}^{*}$ that is the free $*$-algebra functor for such $F$. We write $T=\widetilde{T} F$. For the rest of this thesis we will fix one of the four choices as above for $\mathfrak{U}, F$ and $\widetilde{T}$.

An extension of $*$-algebras is a sequence in $A l g_{\ell}^{*}$

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0 \tag{1.4.1}
\end{equation*}
$$

where $\alpha$ is an isomorphism onto $\operatorname{ker} \beta$ and $C=\operatorname{im} \beta$.
We say that a surjective $*$-morphism is split, if it has a right inverse; we say that a surjective $*$-morphism $f$ is semi-split if $F(f)$ has right inverse in $\mathfrak{U}$. We say an extension (1.4.1) is semi-split if $\beta$ is.

For ind-*-algebras, a similar definition applies: a sequence in ind $-A l g_{\ell}^{*}$

$$
\begin{equation*}
0 \rightarrow\left(A_{i}\right) \xrightarrow{\alpha}\left(B_{j}\right) \xrightarrow{\beta}\left(C_{k}\right) \rightarrow 0 \tag{1.4.2}
\end{equation*}
$$

is an extension of ind-*-algebras if $\alpha$ a kernel for $\beta$ and $\beta$ is a cokernel for $\alpha$. It is split if $\beta$ admits a splitting and it is semi-split if $F(\beta)$ admits a splitting in ind $-\mathfrak{U}$.

Remark 1.4.3. If the underlying category $\mathfrak{U}$ is the category of sets then every extension is semi-split, since every surjective map admits a section.

Remark 1.4.4. If $\ell$ satisfies the $\lambda$-assumption 1.1.24, then for a $*$-morphism $f$ : $A \rightarrow B$ for which $F(f)$ admits a splitting $s$, the splitting can be averaged as $s^{\prime}=$ $\lambda s+\lambda^{*} s^{*}$ in order to have an involution preserving splitting. Therefore, in this case, if $f$ admits an $\ell$-linear splitting, then it is semi-split for any choice of $\mathfrak{U}$ and $F$.

Example 1.4.5. Let $A \in A l g_{\ell}^{*}$, we call the sequence

$$
\begin{equation*}
0 \rightarrow P A \rightarrow A[t] \xrightarrow{\mathrm{ev}_{0}} A \rightarrow 0 \tag{1.4.6}
\end{equation*}
$$

the path extension. It is split by the inclusion $A \subset A[t]$.
We call the sequence

$$
\begin{equation*}
0 \rightarrow \Omega A \rightarrow P A \xrightarrow{\mathrm{ev}_{1}} A \rightarrow 0 \tag{1.4.7}
\end{equation*}
$$

the loop extension. It admits an involution preserving $\ell$-linear splitting $s(a)=t a$.

Let $f: A \rightarrow B$ be a $*$-morphism. The mapping path extension of $f$ is the extension induced by the pullback of the path extension of $B$ along $f$


We call $P_{f}:=P B \times_{B} A$ the path algebra of $f$. The mapping path extension has a natural $\ell$-linear involution preserving splitting $s(a)=(t f(a), a)$. There is also natural inclusion $i_{f}: \operatorname{ker}(f) \rightarrow P_{f}$ given by $i_{f}(x)=(0, x)$. The same applies to the subdivided version which we write as $\mathcal{P}_{f}:=\mathcal{P} B \times{ }_{B} A$.

Example 1.4.9. Let $X$ be a set and $A \in A l g_{\ell}^{*}$. We call the sequence

$$
0 \rightarrow M_{X} A \rightarrow \Gamma_{X} A \rightarrow \Sigma_{X} A \rightarrow 0
$$

the cone extension. By [CT07, first paragraph of p.92] it admits an $\ell$-linear splitting.
Let $f: A \rightarrow B$ be a *-morphism. The cone map extension of $f$ is the extension induced by the pullback of the cone extension of $B$ along $\Sigma_{X} f$.


We call $\Gamma_{X, f}:=\Gamma_{X} B \times_{B} \Sigma A$ the cone algebra of $f$. The cone map extension has an $\ell$-linear splitting given by composing $\Sigma_{X} f \times$ id : $\Sigma_{X} A \rightarrow \Sigma_{X} B \times \Sigma_{X} A$ and the splitting $\Sigma_{X} B \rightarrow \Gamma_{X} B$. As before, when $X=\mathbb{N}$ we omit it from notation.

For every algebra morphism $f: A \rightarrow B$, the underlying map in $\mathfrak{U}, F(f): F(A) \rightarrow$ $F(B)$ induces a map $\tilde{f}: T A \rightarrow B$. In particular, for id: $A \rightarrow A$, we have a natural surjective transformation $\eta_{A}: T(A) \rightarrow A$. Set

$$
J(A):=\operatorname{ker}\left(\eta_{A}\right),
$$

this defines a functor $J: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$. The universal extension of $A$ is the extension

$$
0 \rightarrow J(A) \rightarrow T(A) \xrightarrow{\eta_{A}} A \rightarrow 0
$$

which is semi-split by the natural inclusion $s: A \rightarrow T(A)$.
For a semi-split extension

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

and a splitting $s$ of $F(g)$, define $\widehat{\xi}:=\eta_{B} T^{\prime}(s): T(C) \rightarrow B$. The restriction of $\hat{\xi}$ to $J(C)$ maps to $A$ since

$$
g \hat{\xi}=g \eta_{B} T^{\prime}(s)=\eta_{C} T(g) T^{\prime}(s)=\eta_{C}
$$

Write $\xi$ for the restriction of $\widehat{\xi}$ to $J(C)$. We call this map the classifying map of the extension. There is a commutative diagram


The definition of the classifying map $\xi$ is clearly dependent of the splitting map $s$; however, its homotopy class does not depend on $s$. Let $s_{1}$ and $s_{2}$ two different splittings of $g$ and $\xi_{1}$ and $\xi_{2}$ be the corresponding classifying maps. Define $H$ : $F(C) \rightarrow F(A[t])$ as

$$
H(c)=(1-t) \widehat{\xi}_{1}(c)+t \widehat{\xi}_{2}(c)
$$

Extend $H$ to a $*$-homomorphism $H: T(C) \rightarrow A[t]$ by adjunction. This map is an elementary $*$-homotopy between $\widehat{\xi}_{1}$ and $\widehat{\xi}_{2}$ and therefore $\xi_{1}$ and $\xi_{2}$ are homotopic; thus, the classifying map is natural up to homotopy. This shows the reasoning in calling the universal extension and the classifying map as such.

For an extension of ind-*-algebras, the same reasoning applies and thus for any extension of ind-*-algebras, there is also a unique classifying map in ind $-\left[A l g_{\ell}^{*}\right]$.

Remark 1.4.11. Take the following commutative diagram in $A l g_{\ell}^{*}$

where each row is a semi-split extension. Let $\xi$ be the classifying map associated to the first row extension and $\xi^{\prime}$ the classifying map associated the second row extension. Due to the uniqueness of the classifying map, the square

is commutative up to homotopy.
Example 1.4.12. Let $A, B \in A l g_{\ell}^{*}$ such that $B$ is flat as an $\ell$-module. Then, the extension

$$
0 \rightarrow J(A) \otimes B \rightarrow T(A) \otimes B \rightarrow A \otimes B \rightarrow 0
$$

is semi-split and we write the classifying map as

$$
\phi_{A, B}: J(A \otimes B) \rightarrow J(A) \otimes B
$$

In the case the underlying category $\mathfrak{U}$ is the category of $\ell$-modules, this map is natural in $A$ and $B$ (up to homotopy).

Taking $B=\ell^{X}$ for some simplicial set $X$, we obtain a map $J\left(A^{X}\right) \rightarrow J(A)^{X}$. Similarly, for a pointed simplicial set $(X, x)$ we obtain a map $J\left(A^{(X, x)}\right) \rightarrow J(A)^{(X, x)}$.

The loop extension (1.4.7) is a particular case of this setting, taking into account the idenfications at the end of Example 1.1.22. We write the classifying map of the loop extension 1.4.7 as

$$
\begin{equation*}
\rho_{A}: J(A) \rightarrow \Omega A . \tag{1.4.13}
\end{equation*}
$$

This map also induces an ind-*-algebra map by composing $\rho_{A}$ with the last vertex $\operatorname{map} h_{*}: \Omega A \rightarrow A^{\mathbb{S}^{1}}$. As an abuse of notation we will write it as $\rho_{A}: J(A) \rightarrow A^{\mathbb{S}^{1}}$.

For a map $f: A \rightarrow B$, the classifying map of the mapping path extension (1.4.8) is $\rho_{f}:=\rho_{B} \circ J(f)$; this can be seen using Remark 1.4.11. The same applies for the subdivided version.

Example 1.4.14. For each $A$ the sequence

$$
0 \rightarrow J(A)^{\mathbb{S}^{1}} \rightarrow T(A)^{\mathbb{S}^{1}} \rightarrow A^{\mathbb{S}^{1}} \rightarrow 0
$$

is a semi-split extension as in Example 1.4.12. We write

$$
\begin{equation*}
\gamma_{A}: J\left(A^{\mathbb{S}^{1}}\right) \rightarrow J(A)^{\mathbb{S}^{1}} \tag{1.4.15}
\end{equation*}
$$

for the classifying map of said extension. For $m, n \geq 0$, write

$$
\gamma_{A}^{1, n}: J\left(A^{\mathbb{S}^{n}}\right) \rightarrow J(A)^{\mathbb{S}^{n}}
$$

for the composition

$$
J\left(A^{s^{n}}\right) \xrightarrow{\gamma_{A} s^{n}} \xrightarrow{J\left(A^{s^{n-1}}\right) s^{s^{1}} \xrightarrow{\gamma_{A} s^{n-1} \otimes s^{1}}} J\left(A^{s^{n-2}} s^{s^{2}} \rightarrow \cdots \rightarrow J\left(A^{5^{1}}\right)^{s^{n-1}} \xrightarrow{\gamma_{A} \otimes s^{n-1}} J(A)^{s^{n}},\right.
$$

and $\gamma_{A}^{m, n}: J^{m}\left(A^{\mathbb{S}^{n}}\right) \rightarrow J^{m}(A)^{\mathbb{S}^{n}}$ for the composition

$$
J^{m}\left(A^{s^{n}}\right) \xrightarrow{J^{m-1}\left(\left(\mathcal{A}_{A}^{1, n}\right)\right.} J^{m-1}\left(J(A)^{s^{n}}\right) \xrightarrow{J^{m-2}\left(\gamma_{J}^{1, n}(A)\right)} J^{m-2}\left(J^{2}(A)^{5^{n}}\right) \rightarrow \cdots \rightarrow J\left(J^{m-1}(A)^{s^{n}}\right) \xrightarrow{\gamma_{j m-1}^{1, n}(A)} J^{m}(A)^{1^{n}}
$$

## 1.5 *-Quasi-homomorphisms

Definition 1.5.1. Let $A, B \in A l g_{\ell}^{*}, C \unlhd B$ a $*$-ideal and $f_{+}, f_{-}: A \rightarrow B$ two $*-$ morphisms. We say that the pair $\left(f_{+}, f_{-}\right): A \rightrightarrows B \unrhd C$ is a $*$-quasi-homomorphism if $f_{+}(a)-f_{-}(a) \in C$ for every $a \in A$. This is equivalent to the following statement: if $\pi: B \rightarrow B / C$ is the quotient map, then $\pi f_{+}=\pi f_{-}$.

Example 1.5.2. Recall from Example 1.1 .5 the algebras $Q(A)$ and $q(A)$. By definition, there is a $*$-quasi-homomorphism induced by the inclusions $\iota_{0}, \iota_{1}: A \rightarrow Q(A)$ :

$$
\left(\iota_{0}, \iota_{1}\right): A \rightrightarrows Q(A) \unrhd q(A)
$$

This *-quasi-homomorphism is universal in the following sense: let $\left(f_{+}, f_{-}\right): A \rightrightarrows B \unrhd C$ be a $*$-quasi-homomorphism. Then there is a natural map $f_{+} \amalg f_{-}: Q(A) \rightarrow B$. Since $f_{+} \amalg f_{-}$maps $q(A)$ into $C$, we can compose to get

$$
\begin{aligned}
& f_{+} \amalg f_{-} \circ \iota_{0}=f_{+} \text {and } \\
& f_{+} \amalg f_{-} \circ \iota_{1}=f_{-} .
\end{aligned}
$$

We call the restriction of $f_{+} \amalg f_{-}$to $f: q(A) \rightarrow C$ the classyfing map of the *-quasi-homomorphism ( $f_{+}, f_{-}$).

Let $\mathfrak{C}$ be an abelian category. A functor $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ is split-exact if for every split-exact extension

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

the sequence

$$
0 \rightarrow H(A) \rightarrow H(B) \rightarrow H(C) \rightarrow 0
$$

is exact in $\mathfrak{C}$.
Proposition 1.5.3 ([CMR07, Section 3.1.1]). Let $\mathfrak{C}$ be an abelian category and $E: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ a split-exact functor.

- For every $*$-quasi-homomorphism $\left(f_{+}, f_{-}\right): A \rightrightarrows B \unrhd C$ there exists a morphism

$$
E\left(f_{+}, f_{-}\right): E(A) \rightarrow E(C)
$$

induced by $E\left(f_{+}\right)-E\left(f_{-}\right): E(A) \rightarrow E(B)$.

- $E\left(f_{+}, 0\right)=E\left(f_{+}\right)$.
- If $f_{+}=f_{-}+g$ where $g(a) f_{-}(a)=f_{-}(a) g(a)=0$ for every $a \in A$ then $E\left(f_{+}, f_{-}\right)=E(g)$.
- If $f: q(A) \rightarrow C$ is the classifying map of $\left(f_{+}, f_{-}\right)$then

$$
E\left(f_{+}, f_{-}\right)=E(f) \circ E\left(\iota_{0}, \iota_{1}\right) .
$$

### 1.6 Stability

Definition 1.6.1. Let $F_{1}, F_{2}: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}, G: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be functors, $i: F_{1} \rightarrow F_{2}$ be a natural transformation and $A \in A l g_{\ell}^{*}$. We say that the functor $G$ is $i$-stable at $A$ if the map $G\left(i_{A}\right): G\left(F_{1}(A)\right) \rightarrow G\left(F_{2}(A)\right)$ is an isomorphism. We say that $G$ is $i$-stable if it is $i$-stable at every $A \in A l g_{\ell}^{*}$.

Example 1.6.2. A functor $F$ is homotopy invariant as in Definition 1.2 .2 if and only if it is stable for the canonical inclusion $A \rightarrow A[t]$.

Example 1.6.3. Let $X$ be a set, $x, y \in X$ and $e_{x, y} \in M_{X}$ the matrix unit

$$
e_{x, y}(z, w)=\delta_{(x, y),(z, w)} .
$$

There is a natural map $i_{x}: \operatorname{id}_{A l g_{\ell}^{*}} \rightarrow M_{X}$ defined as

$$
\begin{aligned}
i_{x, A}: A & \rightarrow M_{X} A \\
a & \mapsto e_{x, x} \otimes a .
\end{aligned}
$$

Lemma 1.6.4. Let $X$ be a set and $i_{x}$ be as in Example 1.6.3. If a functor $G$ : Alg $g_{\ell}^{*} \rightarrow \mathfrak{C}$ is $i_{x}$-stable for some $x$ then it is $i_{y}$ stable for any $y \in X$. Moreover $G\left(i_{x}\right)=G\left(i_{y}\right)$ for any $x, y \in X$.

Proof. We follow [Cor11, Lemma 2.2.4]. There are permutation matrices $\sigma_{2}, \sigma_{3} \in$ $M_{X} A \otimes M_{X} A$ of orders two and three such that both conjugate $\left(i_{x, M_{X} A} \otimes \mathrm{id}_{M_{X} A}\right) i_{x, A}$ into $\left(i_{x, M_{X} A} \otimes \operatorname{id}_{M_{X} A}\right) i_{y, A}$. Since permutation matrices are unitary, conjugation by $\sigma_{2}$ and $\sigma_{3}$ are $*$-isomorphisms. After applying $G$ we get

$$
\begin{gather*}
G\left(\operatorname{ad}\left(\sigma_{2}\right)\right) G\left(\left(i_{x, M_{X} A} \otimes \operatorname{id}_{M_{X} A}\right) i_{x, A}\right)=G\left(\left(i_{x, M_{X} A} \otimes \operatorname{id}_{M_{X} A}\right) i_{y, A}\right)  \tag{1.6.5}\\
=G\left(\operatorname{ad}\left(\sigma_{3}\right)\right) G\left(\left(i_{x, M_{X} A} \otimes \operatorname{id}_{M_{X} A}\right) i_{x, A}\right)
\end{gather*}
$$

Since the orders of $\sigma_{2}$ and $\sigma_{3}$ are coprime and all the maps in (1.6.5) are isomorphisms, it follows that $G\left(\operatorname{ad}\left(\sigma_{2}\right)\right)$ and $G\left(\operatorname{ad}\left(\sigma_{3}\right)\right)$ are equal to the identity. Furthermore, since $G\left(i_{x, M_{X} A} \otimes \operatorname{id}_{M_{X} A}\right)$ is an isomorphism, we get that $G\left(i_{x, A}\right)=G\left(i_{y, A}\right)$.

Definition 1.6.6. We say that $G$ is $M_{X}$-stable if it is $i_{x}$-stable for some (therefore, for any) $x \in X$. In this case we write $i_{X}$ for any $i_{x}$. If the set $X$ is fixed, we simply write $i$. When $X$ has cardinality $n$ we write $i_{n}: \operatorname{id} \rightarrow M_{n}$ for $i_{X}$.

Lemma 1.6.7. Let $X$ be a set and $x, y \in X$. Then the maps $i_{+} i_{x}, i_{+} i_{y}: \ell \rightarrow M_{ \pm} M_{X}$ are *-homotopic.

Proof. Assume $x \neq y$ and let $X^{\prime}=X \backslash\{x, y\}$. Let

$$
u=e_{y, x}-e_{x, y}+\sum_{z \in X^{\prime}} e_{z, z} .
$$

It is easily seen that $u$ is unitary in $\Gamma_{X}$ and satisfies $\operatorname{ad}(u) i_{x}=i_{y}$. Moreover, there is a rotational homotopy $u(t) \in \Gamma_{X}[t]$ CT07, Section 3.4] such that $u(0)=1$ and $u(1)=u$. Then, using Lemma 1.2 .3 we obtain the desired statement.

Lemma 1.6.8. Let $X$ be a set with at least two elements, $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be an $M_{X}$-stable functor, $A \subseteq B \in A l g_{\ell}^{*}$ and $u \in B$ such that

$$
\begin{gathered}
u A, A u^{*} \subseteq A \text { and } \\
a u^{*} u a^{\prime}=a a^{\prime} \text { for any } a, a^{\prime} \in A .
\end{gathered}
$$

Then $\operatorname{ad}(u): A \rightarrow A$ is $a *$-homomorphism and $H(\operatorname{ad}(u))=\operatorname{id}_{H(A)}$.

Proof. The argument is as in Cor11, Proposition 2.2.6]. We can assume $B$ is unital (changing $B$ for $\widetilde{B}$ ). Consider $u \oplus 1 \in M_{2} B$ and observe that $\operatorname{ad}(u \oplus 1): M_{2} A \rightarrow M_{2} A$ is a $*$-homomorphism. Also, if $i_{0}: A \rightarrow M_{2} A$ and $i_{1}: A \rightarrow M_{2} A$ are the inclusions in the upper left corner and lower right corner respectively then

$$
\begin{aligned}
\operatorname{ad}(u \oplus 1) i_{0} & =i_{0} \operatorname{ad}(u) \text { and } \\
\operatorname{ad}(u \oplus 1) i_{1} & =i_{1} .
\end{aligned}
$$

Due to Lemma 1.6.4 applying $G$ we get that $G\left(i_{0}\right)=G\left(i_{1}\right)$ are isomorphisms. Therefore,

$$
\begin{aligned}
G\left(i_{0}\right) G(\operatorname{ad}(u)) & =G(\operatorname{ad}(u \oplus 1)) G\left(i_{0}\right) \\
& =G(\operatorname{ad}(u \oplus 1)) G\left(i_{1}\right) \\
& =G\left(i_{1}\right) \\
& =G\left(i_{0}\right) ;
\end{aligned}
$$

so $G(\operatorname{ad}(u))$ is the identity.
Lemma 1.6.9. Let $X$ be a set with at least two elements. Let $\mathfrak{C}$ be category enriched over abelian groups and $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be an $M_{X}$-stable functor. Then the map for two distinct $x, y \in X$, the map

$$
H(A \oplus A) \xrightarrow{H\left(i_{x} \oplus i_{y}\right)} H\left(M_{X} A\right) \xrightarrow{H\left(i_{x}\right)^{-1}=H\left(i_{y}\right)^{-1}} H(A)
$$

induces the additive operation on $H(A)$,
Proof. Write $D=i_{x} \oplus i_{y}: A \oplus A \rightarrow M_{X} A$ and $\nabla: H(A) \oplus H(A) \rightarrow H(A)$ for the operation in $\mathfrak{C}$. Using Lemma 1.6.4, the diagram

commutes
Lemma 1.6.10. Let $X, Y$ be two sets such that $X$ has at least two elements and $Y$ has greater cardinality than $X$. Then, any $M_{Y}$-stable functor $G: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ is also $M_{X}$-stable.

Proof. Since a bijection between sets induces a $*$-isomorphism between their matrix algebras, we might assume that $X \subseteq Y$. We will prove the lemma in the case the coefficients are $A=\ell$, the same proof applies for any coefficients. Write inc : $X \hookrightarrow Y$ for the natural inclusion map. Let $x \in X$ and $i=i_{x}: \ell \rightarrow M_{X}$. Since $G$ is $M_{Y^{-}}$ stable, $G(\mathrm{inc} \circ i)$ is an isomorphism and therefore, $G(i)$ is an split monomorphism and $G($ inc $)$ is an split epimorphism.

Let $\tau: M_{X} \otimes M_{Y} \rightarrow M_{Y} \rightarrow M_{X}$ defined by $\tau(a \otimes b)=b \otimes a$. We have

$$
\begin{equation*}
\tau\left(i \otimes \mathrm{id}_{M_{Y}}\right) \mathrm{inc}=\operatorname{inc} \otimes i . \tag{1.6.11}
\end{equation*}
$$

Let $\sigma: Y \times X \rightarrow Y \times X$ be any bijection that restricts to coordinate permutation on $X \times\{x\}$. Also write $\sigma$ for the corresponding permutation matrix in $M_{Y \times X}=$ $M_{Y} \otimes M_{X}$. Then we have

$$
\operatorname{ad}(\sigma)(\operatorname{inc} \otimes i)=i \otimes \operatorname{id}_{M_{X}} .
$$

Since $G(\operatorname{ad}(\sigma))$ is the identity due to Lemma 1.6 .4 and $G\left(i \otimes \operatorname{id}_{M_{X}}\right)$ is an isomorphism, it follows that $G($ inc $\otimes i)$ is an isomorphism. Using (1.6.11) we get that $G($ inc $)$ is also an split monomorphism, and therefore an isomorphism. Since $G($ inco $i)$ is an isomorphism it follows that $G(i)$ is an isomorphism and that concludes the proof.

Definition 1.6.12. Let $A \in A l g_{\ell}^{*}$ and $G: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be a functor. We say that $G$ is hermitian stable on $A$ if for every embedding $A \unlhd R$ as a $*$-ideal in a unital $*$-algebra $R$, every central unitary element $\varepsilon \in R$ and any two invertible $\varepsilon$-hermitian elements $\phi, \psi \in R$, the functor $G$ maps the upper left corner inclusion

$$
i_{\phi}: A^{\phi} \rightarrow\left(M_{2} A\right)^{(\phi \oplus \psi)}
$$

to an isomorphism.
Remark 1.6.13. Taking $\varepsilon=1, R=\widetilde{A}$ and $\phi=\psi=1$ in the previous definition, we get that any hermitian stable functor is also $i_{2}: \mathrm{id} \rightarrow M_{2}$ stable

Remark 1.6.14. Let $(P, \psi)$ and $(Q, \chi)$ be hermitian modules as in Example 1.1.17. Using (1.1.18), it follows that a hermitian stable functor $G$ sends the map induced by the inclusion

$$
\operatorname{End}(P) \otimes A \rightarrow \operatorname{End}(P \oplus Q) \otimes A
$$

to an isomorphism.
Proposition 1.6.15 ([cf. Ell14, Proposition 3.1.9]). Suppose $\ell$ satisfies the $\lambda$-assumption 1.1.24 and let $G: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be a $M_{2}$-stable functor. Then $G \circ M_{ \pm}$is hermitian stable.

Proof. Since $\ell$ satisfies the $\lambda$-assumption, we can use Remark 1.1 .26 to get isomorphisms

$$
\begin{aligned}
M_{ \pm} A^{\phi} & \cong{ }_{\varepsilon} M_{2} A \text { and } \\
M_{ \pm}\left(M_{2} A\right)^{(\phi \oplus \psi)} & \cong{ }_{\varepsilon} M_{2} M_{2} A .
\end{aligned}
$$

Using the commutative diagram

and the fact that $i_{2}$ is mapped to an isomorphism through $G$, we get that $G \circ M_{ \pm}\left(i_{\phi}\right)$ is an isomorphism as desired.

Corollary 1.6.16. Assuming $\ell$ and $G: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ as in Proposition 1.6.15, if $G$ is also $i_{+}$-stable, then $G$ is hermitian stable.

Proof. Since we have the commutative diagram

using that $G\left(i_{+}\right)$is an isomorphism and by Proposition 1.6.15 we also have $G\left(\mathrm{id}_{M_{ \pm}} \otimes\right.$ $\left.i_{\phi}\right)$ is an isomorphism we get that $G\left(i_{\phi}\right)$ is an isomorphism.

## Chapter 2

## Hermitian Algebraic $K$-theory

In this chapter we recall the definition of the hermitian algebraic $K$-theory spectra $K^{h}$ together with some properties. We also recall the definition of the KaroubiVillamayor hermitian $K$-theory $K V^{h}$ and we construct the analogue to Weibel's homotopy $K$-theory for the hermitian case $K H^{h}$. In Section 2.2 we also recall the product structure of $K^{h}$ and how it passes to $K H^{h}$. Finally in Section 2.3 we recall Karoubi's Fundamental Theorem with some associated reformulations and how it passes to $K H^{h}$; we will use this later in Chapter 5.

### 2.1 Definitions

Let $A$ a $*$-ring. We write

$$
\mathcal{U}(A)=\left\{x \in A: x^{*} x=x x^{*}, x+x^{*}+x x^{*}=0\right\} .
$$

The set $\mathcal{U}(A)$ is a group under the operation

$$
x \cdot y=x+y+x y .
$$

When $A$ is unital, the group $\mathcal{U}(A)$ is isomorphic to the group of unitary elements of $A$ via the map $x \rightarrow 1+x$.

Let $R$ be a unital ring, $A \unlhd R$ a $*$-ideal and $\varepsilon \in R$ central unitary. Put

$$
{ }_{\varepsilon} \mathcal{O}(A)=\mathcal{U}\left({ }_{\varepsilon} M_{2} M_{\infty} A\right) .
$$

By 1.1.20 we have a group isomorphism

$$
\begin{equation*}
{ }_{\varepsilon} \mathcal{O}(A) \cong{ }_{1} \mathcal{O}\left({ }_{\varepsilon} M_{2} A\right) . \tag{2.1.1}
\end{equation*}
$$

The $\varepsilon$-hermitian $K$-theory groups of a unital $*$-ring $R$ are the stable homotopy groups of a spectrum ${ }_{\varepsilon} K^{h} R=\left\{{ }_{\varepsilon} K^{h} R_{n}\right\}$ whose $n$-th space is ${ }_{\varepsilon} K_{n}^{h} R_{n}=\Omega B_{\varepsilon} \mathcal{O}\left(\Sigma^{n+1} R\right)^{+}$, the loopspace of the + -construction [see Lod76, Section 3.1.6]. As usual we also write

$$
{ }_{\varepsilon} K_{n}^{h}(R)=\pi_{n}\left({ }_{\varepsilon} K^{h} R\right) \quad(n \in \mathbb{Z})
$$

for the $n$-th stable homotopy group. When $\varepsilon=1$ we drop it from the notation. For a nonunital $*$-ring $A$, we put

$$
\begin{equation*}
{ }_{ \pm 1} K_{n}^{h}(A)=\operatorname{ker}\left({ }_{ \pm 1} K_{n}^{h}\left(\tilde{A}_{\mathbb{Z}}\right) \rightarrow_{ \pm} K_{h}^{h}(\mathbb{Z})\right) . \tag{2.1.2}
\end{equation*}
$$

If $A$ is unital, these groups agree with those defined above since in that case $\widetilde{A}_{\mathbb{Z}} \cong A \times \mathbb{Z}$ and using the fact that +-construction is additive, the kernel in (2.1.2) recovers ${ }_{ \pm 1} K_{n}^{h}(A)$.

A ring $A$ is called $K$-excisive if for any embedding $A \unlhd R$ as an ideal of a unital ring $R$ and every unital homomorphism $R \rightarrow S$ mapping $A$ isomorphically onto an ideal of $S$, the map of relative $K$-theory spectra $K(R: A) \rightarrow K(S: A)$ is an equivalence. The definition of a $K^{h}={ }_{1} K^{h}$-excisive $*$-ring is analogous.

Remark 2.1.3. Let $A$ be a $K$-excisive ring that is a $*$-algebra over $\ell$, and suppose that $\ell$ satisfies the $\lambda$-assumption 1.1.24. Let $A \unlhd R$ be a $*$-ideal embedding into a unital $*$-algebra and $f: R \rightarrow S$ be a unital $*$-algebra homomorphism mapping and $A$ isomorphically onto a $*$-ideal of $S$ and $\varepsilon \in \ell$ be a central unitary. By Bat11, Corollary 3.5.1] the map ${ }_{\varepsilon} K^{h}(R: A) \rightarrow{ }_{\varepsilon} K^{h}(S: A)$ is an equivalence. In particular, if $A$ is $K$-excisive then it is also $K^{h}$-excisive. Taking all this into account, and assuming that $\ell$ satisfies the $\lambda$-assumption 1.1 .24 , we set, for any $K$-excisive $A \in A l g_{\ell}^{*}$, unitary $\varepsilon \in \ell$ and $n \in \mathbb{Z}$,

$$
\begin{equation*}
{ }_{\varepsilon} K_{n}^{h}(A)=\operatorname{ker}\left({ }_{\varepsilon} K_{n}^{h}(\tilde{A}) \rightarrow_{\varepsilon} K_{n}^{h}(\ell)\right) \tag{2.1.4}
\end{equation*}
$$

Remark 2.1.5. For $n \leq 0$ and not necessarily $K$-excisive $A$, we take (2.1.4) as a definition. The non-positive hermitian $K$-groups agree with Bass' quadratic $K$-groups Bas73 for the maximum form parameter. In particular, by Bas73, Chapter III, Theorem 1.1] hermitian $K$-theory as defined above satisfies excision in non-positive dimensions.

Remark 2.1.6. Let $R$ be a unital $*$-ring. Suppose that $R$ has an element $\lambda$ that satisfies the $\lambda$-assumption 1.1.24. Let $S \in \Sigma$ be the class of the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Using the fact that the cup product with $[S] \in K_{1}^{h}(\Sigma)$ induces an isomorphism $K_{0}^{h}(R) \cong K_{1}^{h}(\Sigma R)$ Lod76, Théorème 3.1.7], the group $K_{0}^{h}(R)$ can be described as the set of formal differences $[p]-[q]$ where $p, q \in{ }_{1} M_{2} M_{\infty} R$ are projections and $[p]=\left[p^{\prime}\right]$ if there is a unitary matrix $u \in{ }_{1} M_{2} M_{n} R$ such that $u$ conjugates $p$ into $p^{\prime}$ KV73, Section 2].

For a class $x=[p]-[q] \in K_{0}^{h}(R)$ there are $*$-morphisms $p, q: \mathbb{Z} \rightarrow{ }_{1} M_{2} M_{\infty} R$ mapping 1 to $p$ and $q$ respectively. These $*$-morphisms induce maps $p_{*}, q_{*}: K_{0}^{h}(\mathbb{Z}) \rightarrow$ $K_{0}^{h}(R)$ sending the class of [1] to $[p]$ and $[q]$ respectively. This implies that the $*-$ quasi-homomorphism $(p, q): \mathbb{Z} \rightrightarrows{ }_{1} M_{2} M_{\infty} R \unrhd 0$, has an associated map $\left(p_{*}, q_{*}\right)=$
$p_{*}-q_{*}: K_{0}^{h}(\mathbb{Z}) \rightarrow K_{0}^{h}(R)$ which maps the class of [1] to $x$. This then implies that the set of $*$-quasi-homomorphisms $\left\{\mathbb{Z} \rightrightarrows{ }_{1} M_{2} M_{\infty} R\right\}$ maps surjectively onto $K_{0}^{h}(R)$ sending each pair of $*$-quasi-homomorphisms to their corresponding associated map evaluated at the class [1]. Since $K_{0}^{h}$ satisfies excision, it follows that the same applies to any $*$-ring $A$ : the set

$$
q q(\mathbb{Z}, A):=\left\{\mathbb{Z} \rightrightarrows{ }_{1} M_{2} M_{\infty} \widetilde{A}_{\mathbb{Z}} \unrhd{ }_{1} M_{2} M_{\infty} A\right\}
$$

maps surjectively to $K_{0}^{h}(A)$. If $A \in A l g_{\ell}^{*}$ then the same holds with $\ell$ substituted for $\mathbb{Z}$ and $\ell$-linear, $*$-quasi-homomorphisms.

For a $*$-ring $A$ and $\varepsilon= \pm 1$, Karoubi and Villamayor also introduce hermitian $K$-groups for $n \geq 1$. They agree with the homotopy groups of the simplicial group ${ }_{\varepsilon} \mathcal{O}\left(A^{\Delta}\right)$ up to a degree shift

$$
{ }_{\varepsilon} K V_{n}^{h}(A)=\pi_{n-1 \varepsilon} \mathcal{O}\left(A^{\Delta}\right) \quad(n \geq 1)
$$

The argument of [Cor11, Proposition 10.2.1] shows that the definition above is equivalent to that given in (KV73]; we have

$$
{ }_{\varepsilon} K V_{n+1}^{h}(A)={ }_{\varepsilon} K V_{1}^{h}\left(\Omega^{n} A\right) \quad(n \geq 1)
$$

Similarly, if $A$ is unital, for all $n \geq 1$ we have

$$
\begin{equation*}
{ }_{\varepsilon} K V_{n}^{h}(A)=\pi_{n} B_{\varepsilon} \mathcal{O}\left(A^{\Delta}\right)=\pi_{n} B_{\varepsilon} \mathcal{O}\left(A^{\Delta}\right)^{+}=\pi_{n} \Omega B_{\varepsilon} \mathcal{O}\left(\Sigma A^{\Delta}\right)^{+} . \tag{2.1.7}
\end{equation*}
$$

Applying ${ }_{\varepsilon} K_{n}^{h}$ to the path extension 1.4.6 and using excision, we obtain a natural map

$$
{ }_{\varepsilon} K_{n}^{h}(A) \rightarrow{ }_{\varepsilon} K_{n-1}^{h}(\Omega A) \quad(n \leq 0)
$$

For $n \in \mathbb{Z}$, the $n^{\text {th }}$ homotopy $\varepsilon$-hermitian $K$-theory group of $A$ is

$$
{ }_{\varepsilon} K H_{n}^{h}(A)=\underset{m \geq n}{\operatorname{colim}_{\varepsilon}} K_{-m}^{h}\left(\Omega^{m+n} A\right)
$$

Remark 2.1.8. One can also describe $\varepsilon_{\varepsilon} K H_{n}^{h}$ in terms of ${ }_{\varepsilon} K V^{h}$; by KV73, Théorème 4.1], ${ }_{\varepsilon} K V^{h}$ satisfies excision for the cone extension (1.4.10). Hence we have a map

$$
{ }_{\varepsilon} K V_{n}^{h}(A) \rightarrow{ }_{\varepsilon} K V_{n+1}^{h}(\Sigma A) .
$$

The argument of CT07, Proposition 8.1.1] shows that

$$
{ }_{\varepsilon} K H_{n}^{h}(A) \underset{m}{\operatorname{colim}_{\varepsilon}} K V_{n+m}^{h}\left(\Sigma^{m} A\right) .
$$

Now assume that $A$ is unital; let ${ }_{\varepsilon} K H(A)$ be the total spectrum of the simplicial spectrum ${ }_{\varepsilon} K^{h}\left(A^{\Delta}\right)$. We have

$$
\pi_{n}\left({ }_{\varepsilon} K H^{h}(A)\right)=\underset{m}{\operatorname{colim}} \pi_{n+m} \Omega B_{\varepsilon} O\left(\Sigma^{m} A^{\Delta}\right)^{+}=\underset{n}{\operatorname{colim}_{\varepsilon}} K V_{n+m}^{h}\left(\Sigma^{m} A\right)={ }_{\varepsilon} K H_{n}^{h}(A) .
$$

For any exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow B / A \rightarrow 0
$$

there is a natural index map $\partial: K_{1}^{h}(B / A) \rightarrow K_{0}^{h}(A)$ [see Bas73, Chapter III].
Remark 2.1.9. There is a natural comparison map $c_{m}: K_{m}^{h}(A) \rightarrow K H_{m}^{h}(A)$. For $m \leq 0$ this is just mapping to the colimit. For $m>0$ and $A$ unital, using the description of (2.1.7) and the natural inclusion $A \rightarrow A^{\Delta}$, we get a comparison map $c_{m}^{\prime}: K_{m}^{h}(A) \rightarrow K V_{m}^{h}$, then, by Remark 2.1.8, the comparison map factors

$$
K_{m}^{h}(A) \xrightarrow{c_{m}^{\prime}} K V_{m}^{h}(A) \rightarrow K H_{m}^{h}(A)
$$

Using repeatedly the index map of the loop extension (1.4.7) we get maps

$$
K_{m}^{h}(A) \rightarrow K V_{m}^{h}(A) \cong K V_{1}\left(\Omega^{m-1} A\right) \rightarrow K V_{0}^{h}\left(\Omega^{m} A\right)=K_{0}\left(\Omega^{m} A\right) .
$$

Finally, composing with the comparison map $c_{0}$ we arrive at $K H_{0}^{h}\left(\Omega^{m} A\right) \cong K H_{m}^{h}(A)$.
Lemma 2.1.10. Homotopy hermitian $K$-theory is homotopy invariant, matricially stable and satisfies excision.

Proof. The proof is the same as in non-hermitian $K$-theory [see Cor11, Theorem 5.1.1].

Lemma 2.1.11. Let $\varepsilon \in \ell$ be unitary. If either $n \leq 0$ or $A$ is $K^{h}$-excisive, then there is a canonical isomorphism

$$
{ }_{\varepsilon} K_{n}^{h}(A) \cong K_{n}^{h}\left({ }_{\varepsilon} M_{2} A\right)
$$

Moreover for all $A \in A l g_{\ell}^{*}$ we have a canonical isomorphism

$$
{ }_{\varepsilon} K H_{n}^{h}(A) \cong K H_{n}^{h}\left({ }_{\varepsilon} M_{2} A\right) \quad(n \in \mathbb{Z})
$$

Proof. The isomorphism (2.1.1) is canonical up to the choices of an element $\lambda \in \ell$ in the $\lambda$-assumption 1.1 .24 and a bijection $\{1,2\} \times X \rightarrow X$. By Lod76, Lemme 1.2.7], if $A$ is unital, then varying those choices has no effect on the homotopy type of the induced isomorphism $B_{\varepsilon} \mathcal{O}(A)^{+} \cong B_{1} \mathcal{O}\left({ }_{\varepsilon} M_{2} A\right)^{+}$. Applying this to $\Sigma^{r} A$ we obtain the statement of the lemma for unital $A$. The nonunital case follows from the unital one using split-exactness. The statement for ${ }_{\varepsilon} K H^{h}$ follows by applying the former case for $\Omega^{r} A$ and from the definition.

### 2.2 Cup products in $K H^{h}$

Hermitian $K$-theory of unital $*$-rings is equipped with products Lod76, Chapitre III]. Using that $K^{h}$ satisfies excision in nonpositive dimensions we obtain, for $R, A \in$ Alg $g_{\ell}^{*}$ with $R$ unital, $m \in \mathbb{Z}$ and $n \leq 0$, a natural product

$$
\begin{equation*}
K_{m}^{h}(R) \otimes_{\mathbb{Z}} K_{n}^{h}(A) \xrightarrow{\star} K_{m+n}^{h}(R \otimes A) . \tag{2.2.1}
\end{equation*}
$$

If moreover $m \leq 0$, we also obtain the product above for not necessarily unital $R$.

Remark 2.2.2. Using Lemma 2.1.11, the product 2.2.1 also gives a product

$$
\begin{equation*}
{ }_{\varepsilon} K_{m}^{h}(R) \otimes_{\mathbb{Z}}{ }_{\eta} K_{n}^{h}(A) \xrightarrow{\star}{ }_{\varepsilon \eta} K_{m+n}^{h}(R \otimes A) . \tag{2.2.3}
\end{equation*}
$$

Remark 2.2.4. Let $R, S$ be unital $*$-rings that satisfy $\lambda$-assumption 1.1.24, using the description of Remark 2.1.6, the cup product

$$
K_{0}^{h}(R) \otimes_{\mathbb{Z}} K_{0}^{h}(S) \xrightarrow{\star} K_{0}^{h}(R \otimes S)
$$

corresponds to the natural extension of scalars of projections [cf. Lod76, Section 3.1.4]: for $[p] \in \mathcal{V}_{\infty}^{h} R$ and $[q] \in \mathcal{V}_{\infty}^{h} S$

$$
[p] \star[q]=[p \otimes q] .
$$

Lemma 2.2.5. Let $R, S \in A l g_{\ell}^{*}$ be unital that satisfy the $\lambda$-assumption 1.1.24 and let $I \unlhd S$ be $a *$-ideal. Assume that the sequence

$$
0 \rightarrow R \otimes I \rightarrow R \otimes S \rightarrow R \otimes(S / I) \rightarrow 0
$$

is exact and let $\partial$ be the associated index map. Then the following diagram commutes


Proof. Because $R$ is unital and satisfies the $\lambda$-assumption, we may regard $K_{0}^{h}(R)$ as the group completion of the monoid $\mathcal{V}_{\infty}^{h}(R)$ as in Remark 2.1.6. If $g \in{ }_{1} M_{2} M_{n}(S / I)$ is unitary, $p \in{ }_{1} M_{2} M_{n} R$ is a self-adjoint idempotent and $\mathbb{1}_{n} \in{ }_{1} M_{2} M_{n}$ is the identity matrix, then (see Wei13, Corollary 1.6.1] for the non-hermitian case)

$$
\begin{equation*}
[p] \star[g]=\left[p \otimes g+\left(\mathbb{1}_{n}-p\right) \otimes \mathbb{1}_{n}\right] \in K_{1}^{h}(R \otimes(S / I)) \tag{2.2.6}
\end{equation*}
$$

On the other hand, for any lift $h \in \mathcal{U}\left({ }_{1} M_{2} M_{2 n} S\right)$ of $g \oplus g^{-1}$ we have

$$
\partial[g]=\left[h \mathbb{1}_{n} h^{-1}\right]-\left[\mathbb{1}_{n}\right] .
$$

Choosing the lift for 2.2.6 as

$$
p \otimes h+\left(\mathbb{1}_{2 n}-(p \oplus p)\right) \otimes \mathbb{1}_{2 n}
$$

we obtain $\partial([p] \star[g])=[p] \star \partial[g]$.
Lemma 2.2.7. Suppose $\ell$ satisfies the $\lambda$-assumption 1.1.24. Let $m \in \mathbb{Z}, n \leq 0$ and $R, A \in A l g_{\ell}^{*}$ with $R$ unital. Let $\partial$ be the connecting map associated to the path extension 1.4.6). Assume that $\max \{n, m+n\} \leq 0$. Then the following diagram commutes.


Proof. Let $\jmath_{2}: \ell \rightarrow \ell \oplus \ell$ be the inclusion in the second summand. The path and loop extensions, 1.4.6 and 1.4.7 respectively, are connected by a map of extensions


Let $i \leq 0$. Applying Lemma 2.2.5 with $S=\Sigma[t], I=\Sigma \Omega$ and $R=\Sigma^{-i} \tilde{A}$, and using naturality and excision, we obtain that the boundary map $\partial: K_{i}^{h}(A) \rightarrow K_{i-1}^{h}(\Omega A)$ is the cup product with $\partial([1]) \in K_{-1}^{h}(\Omega)$. The proof now follows from associativity of $\star$.

Corollary 2.2.8. Suppose $\ell$ satisfies the $\lambda$-assumption 1.1.24. Let $R, A \in A l g_{\ell}^{*}$ with $R$ unital and let $m, n \in \mathbb{Z}$.
i) There is an associative product

$$
\star: K_{m}^{h}(R) \otimes_{\mathbb{Z}} K H_{n}^{h}(A) \rightarrow K H_{m+n}^{h}(R \otimes A) .
$$

ii) Let $c_{*}: K_{*}^{h}(R) \rightarrow K H_{*}^{h}(R)$ be the comparison map. Then for all $m \in \mathbb{Z}$ and $\xi \in K_{m}^{h}(R), c_{m}(\xi)=\xi \star c_{0}([1])$.

Proof. Part i) is immediate from Lemma 2.2 .7 upon taking colimits. For $m \leq 0$, part ii) is clear from the construction of $\star$ and the definition of $K H^{h}$. For $m>0$, this follows from Remark 2.1.9 and the fact that since $K V_{-1}^{h}=K_{-1}^{h}$, the diagram

commutes.
Lemma 2.2.9. Suppose $\ell$ satisfies the $\lambda$-assumption 1.1.24. Let $A, B \in A l g_{\ell}^{*}$ and $m, n \in \mathbb{Z}$. Then 2.2.1 induces an associative product

$$
K H_{m}^{h}(A) \otimes_{\mathbb{Z}} K H_{n}^{h}(B) \xrightarrow{\star} K H_{m+n}^{h}(A \otimes B) .
$$

If $m \leq 0$ or $A$ is unital, then the following diagram commutes


Proof. Lemma 2.2.7 shows that the boundary map $\partial: K_{*}^{h} \rightarrow K_{*-1}^{h} \circ \Omega$ is the cup product with $\partial([1]) \in K_{-1}^{h}(\Omega)$. It follows that for all $r \leq 0$, the following diagram commutes:


Taking colimit along the columns we get the desired product map for $r=s=0$. The general case is obtained from the latter applying the suspension and loop functors as many times as appropriate. Commutativity of the diagram in the statement follows from Corollary 2.2.8.

Corollary 2.2.10. Let $A \in A l g_{\ell}^{*}$ and $n \in \mathbb{Z}$, then ${ }_{\varepsilon} K H_{n}^{h}(A)$ is a $K H_{0}^{h}(\ell)$-module with the action induced by the product in Lemma 2.2.9.

### 2.3 Karoubi's Fundamental Theorem

Let $A \in$ Rings $^{*}$ and consider $\widehat{A}=\operatorname{ind}(\operatorname{res}(A))=A \oplus A^{o p}$ as in Example 1.1.6. There are natural $*$-morphisms

$$
\begin{align*}
\phi_{A}: \widehat{A} & \rightarrow M_{2}(A)  \tag{2.3.1}\\
(a, b) & \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & b^{*}
\end{array}\right), \\
\eta_{A}: A & \rightarrow \widehat{A}  \tag{2.3.2}\\
a & \mapsto\left(a, a^{*}\right) .
\end{align*}
$$

Write $U^{\prime} A=\Gamma_{\phi_{A}}$ and $V^{\prime} A=\Gamma_{\eta_{A}}$ as in Example 1.4.9. This defines functors $U^{\prime}, V^{\prime}:$ Rings ${ }^{*} \rightarrow$ Rings* and write $\left(U^{\prime}\right)^{n},\left(V^{\prime}\right)^{n}(n \geq 0)$ for their repeated composition. As in Example 1.4.9, there are natural maps $U^{\prime} A \rightarrow \Sigma \widehat{A}$ and $V^{\prime} A \rightarrow \Sigma A$. The projection on the first coordinate $\widehat{A} \rightarrow A$ is not a $*$-morphism but is a ring morphism and as such it induces a map $K(\widehat{A}) \rightarrow K(A)$. Since for a unital ring (not necessarily with involution) $\mathcal{U}(\operatorname{inv}(R))=\mathrm{GL}(R)$, we have that ${ }_{\varepsilon} K^{h}(\operatorname{inv}(R)) \sim K(R)$ and therefore ${ }_{\varepsilon} K^{h}(\widehat{R}) \sim K(R)$. It follows using the cone extension from Example 1.4.9 that there are maps

$$
\begin{aligned}
& \Omega_{\varepsilon} K^{h}\left(U^{\prime} R\right) \rightarrow K(R) \xrightarrow{\left(\phi_{R}\right)_{*}}{ }_{\varepsilon} K^{h}(R) \\
& \Omega_{\varepsilon} K^{h}\left(V^{\prime} R\right) \rightarrow{ }_{\varepsilon} K^{h}(R) \xrightarrow{\left(\eta_{R}\right)_{*}} K(R)
\end{aligned}
$$

and that $\Omega_{\varepsilon} K^{h}\left(U^{\prime} R\right)$ and $\Omega_{\varepsilon} K^{h}\left(V^{\prime} R\right)$ are the homotopic fibers of the maps $\left(\phi_{R}\right)_{*}$ and $\left(\eta_{R}\right)_{*}$ respectively.

Theorem 2.3.3 (Karoubi, Kar80). There is an element $\theta_{0} \in{ }_{-1} K_{2}^{h}\left(\left(U^{\prime}\right)^{2} \mathbb{Z}\right)$ such that:
i) The composite

$$
{ }_{-1} K_{2}^{h}\left(\left(U^{\prime}\right)^{2} \mathbb{Z}\right) \rightarrow{ }_{-1} K_{2}^{h}\left(\Sigma \widehat{U^{\prime} \mathbb{Z}}\right) \cong{ }_{-1} K_{1}^{h}\left(\widehat{U^{\prime} \mathbb{Z}}\right) \cong K_{1}\left(U^{\prime} \mathbb{Z}\right) \rightarrow K_{1}(\Sigma \widehat{\mathbb{Z}}) \cong K_{0}(\widehat{\mathbb{Z}}) \xrightarrow{p r_{1}} K_{0}(\mathbb{Z})=\mathbb{Z}
$$

maps $\theta_{0}$ to 1 .
ii) Assume that $\ell$-satisfies the $\lambda$-assumption 1.1.24. Then, for every unital $*-\ell$ algebra $R$, the product with $\theta_{0}$ induces an isomorphism

$$
\theta_{0} \star-:{ }_{\varepsilon} K_{*}^{h}(R) \cong{ }_{-\varepsilon} K_{*+2}^{h}\left(\left(U^{\prime}\right)^{2} R\right) .
$$

Proof. The element $\theta_{0}$ of the present theorem appears under the name of $\sigma$ in the first line of Kar80, Section 3.1]. Using the identifications

$$
\begin{equation*}
\Omega_{\varepsilon} K^{h}\left(U^{\prime} V^{\prime} R\right) \sim \Omega_{\varepsilon} K^{h}\left(V^{\prime} U^{\prime} R\right) \sim_{\varepsilon} K^{h}(R) \tag{2.3.4}
\end{equation*}
$$

as mentioned by Karoubi in Kar80, Section 1.4], the current theorem is just another way of phrasing Karoubi's fundamental theorem

$$
{ }_{\varepsilon} K^{h}\left(V^{\prime} R\right) \sim \Omega_{-\varepsilon} K^{h}\left(U^{\prime} R\right)
$$

Furthermore, the theorem as stated here is equivalent to that proved in Kar80, Section 3.5], which says that product with $\theta_{0}$ induces an isomorphism

$$
{ }_{\varepsilon} K_{*}^{h}\left(V^{\prime} R\right) \cong{ }_{-\varepsilon} K_{*+1}^{h}\left(U^{\prime} R\right) .
$$

Remark 2.3.5. Using Lemma 2.1.11, the Theorem 2.3 .3 is equivalent to the statement that $\theta_{0}$ induces an isomorphism

$$
\theta_{0} \star-: K_{*}^{h}(R) \cong{ }_{-1} K_{*+2}^{h}\left(\left(U^{\prime}\right)^{2} R\right) .
$$

Corollary 2.3.6. Let $A \in A l g_{\ell}^{*}$ and assume that $\ell$ satisfies the $\lambda$-assumption 1.1.24. The element $\theta=c_{2}\left(\theta_{0}\right) \in{ }_{-1} K H_{2}^{h}\left(\left(U^{\prime}\right)^{2} \mathbb{Z}\right)$ induces an isomorphism

$$
\theta \star-:_{\varepsilon} K H_{*}^{h}(A) \rightarrow{ }_{-\varepsilon} K H_{*+2}^{h}\left(\left(U^{\prime}\right)^{2} A\right)
$$

Proof. Using that $K_{n}^{h}$ satisfies excision for $n \leq 0$ and Theorem 2.3.3 we get that for any $A \in A l g_{\ell}^{*}, \theta_{0}$ induces an isomorphism

$$
\theta_{0}:{ }_{\varepsilon} K_{*}^{h}(A) \cong{ }_{-\varepsilon} K_{*+2}^{h}\left(\left(U^{\prime}\right)^{2} A\right) . \quad(* \leq-2)
$$

This then follows from Corollary 2.2 .8 upon taking colimits.

## The 12-term exact sequence

Definition 2.3.7. Let $R$ be a unital $*$-ring. The involution of $R$ induces an involution $g \rightarrow\left(g^{*}\right)^{-1}$ in $\mathrm{GL}_{\infty}(R)$ which in turn induces a natural action of $\mathbb{Z} / 2$ in $K_{*}(R)$; for $x \in K_{n}(R)$ write $\bar{x}$ for this action. Define

$$
\begin{aligned}
{ }_{\varepsilon} W_{n}(R) & :=\operatorname{coker}\left(K_{n}(R) \xrightarrow{\left(\phi_{R}\right)_{*}}{ }_{\varepsilon} K_{n}^{h}(R)\right), \\
{ }_{\varepsilon} W_{n}^{\prime}(R) & :=\operatorname{ker}\left({ }_{\varepsilon} K_{n}^{h}(R) \xrightarrow{\left(\eta_{R}\right)_{*}} K_{n}(R)\right), \\
k_{n}(R) & :=\left\{x \in K_{n}(R): \bar{x}=x\right\} /\{x=y+\bar{y} \text { for some } y\}, \text { and } \\
k_{n}^{\prime}(R) & :=\left\{x \in K_{n}(R): \bar{x}=-x\right\} /\{x=y-\bar{y} \text { for some } y\} .
\end{aligned}
$$

The groups ${ }_{\varepsilon} W_{n}(R)$ and ${ }_{\varepsilon} W_{n}^{\prime}(R)$ are called the Witt and coWitt groups of $R$. The groups $k_{n}(R)$ and $k_{n}^{\prime}(R)$ are the corresponding $\mathbb{Z} / 2$-Tate cohomology groups of $K_{n}(R)$.

Theorem 2.3.8 (Suite exacte des douze, Karoubi Kar80, Theoreme 4.3]). Assume $\ell$ satisfies the $\lambda$-assumption 1.1 .24 and let $R \in A l g_{\ell}^{*}$ be a unital $*$-algebra. There is an exact sequence


## Chapter 3

## Bivariant Hermitian Algebraic $K$-theory

In this chapter we construct the bivariant hermitian algebraic $K$-theory category and develop some of its basic properties. This construction is based on the original bivariant algebraic $K$-theory $j: A l g_{\ell} \rightarrow k k$ made by Cortiñas and Thom in [CT07]. There are generalizations of $k k$ to incorporate the action of groups and group graded algebras Ell14 and also for algebras with actions of quantum groups Ell18]. In Section 3.1 we develop the necessary results to construct $k k^{h}$ as a category and the functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$. Then in Section 3.2 we show it is triangulated and prove how $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ is the universal excisive homology theory (defined in such section) with matrix and hermitian stability and homotopy invariance.

From this chapter on we will assume that $\ell$ satisfies the $\lambda$-assumption 1.1.24 without further mention.

### 3.1 The $k k^{h}$ category

Fix an infinte set $X$. A bijection $X \amalg X \cong X$ induces a $*$-homomorphism $\mathcal{M}_{X} \oplus \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$; write $\boxplus$ for its ind-*-homotopy class. By Lemma 1.3.6, $\boxplus$ is independent of the choice of bijection above.

Lemma 3.1.1 ([cf. $[\mathrm{CT07}$, Section 4.1]). The map $\boxplus$ together with the zero map, makes $\mathcal{M}_{X}$ an abelian monoid object in ind $-\left[A l g_{\ell}^{*}\right]$

Proof. Since any chosen bijection $X \amalg X \cong X$ also induces a bijection $X \amalg X \amalg X \cong X$ in any possible association and these choices induce the same class in ind $-\left[A l g_{\ell}^{*}\right]$, it is clear that $\boxplus$ is associative. Similarly, the permutation of copies of $X$ in $X \amalg X$ induce the same isomorphism as $\boxplus$ and therefore it is commutative.

Let $X_{0}, X_{1} \subseteq X$ be the corresponding subsets to $X \amalg \emptyset$ and $\emptyset \amalg X$ through the bijection $X \amalg X \cong X$. Write $f_{0}: X_{0} \rightarrow X$ and $f_{1}: X_{1} \rightarrow X$ the corresponding
bijections. Then, we have

$$
\begin{aligned}
& {\left[\left(f_{0} \amalg \emptyset\right)^{*}\right](\operatorname{id} \boxplus 0)=\operatorname{id}_{\mathcal{M}_{X}}} \\
& {\left[\left(\emptyset \amalg f_{1}\right)^{*}\right](0 \boxplus \mathrm{id})=\operatorname{id}_{\mathcal{M}_{X}} .}
\end{aligned}
$$

Therefore the zero map is a neutral element for $\boxplus$.
Similarly, any choice of bijection $X \times X \cong X$ gives rise to the same ind-*homotopy class of a $*$-homomorphism $\mathcal{M}_{X} \otimes \mathcal{M}_{X} \rightarrow \mathcal{M}_{X}$; we write $\mu$ for this ind- - -homotopy class.

Lemma 3.1.2. The map $\mu$ is an associative and commutative product in ind - $\left[\right.$ Alg $\left.g_{\ell}^{*}\right]$ and the inclusion $i: \ell \rightarrow \mathcal{M}_{X}$ is an identity map for $\mu$. Furthermore $\mu$ distributes over $\boxplus$ and therefore $\left(\mathcal{M}_{X}, \boxplus, \mu, 0,[i]\right)$ is a semi-ring object in Ind $-\left[\right.$ Alg $\left.{ }_{\ell}^{*}\right]$.

Proof. Associativity and commutativity are proven in the same way as in the previous lemma and it is clear that $i$ is an identity for $\mu$. Finally, the fact that $\mu$ distributes over $\boxplus$ can be derived from the fact that there is a natural bijection

$$
X \times(X \amalg X) \cong(X \times X) \amalg(X \times X)
$$

and Lemma 1.3.6.
Let $A, B \in$ ind $-A l g_{\ell}^{*}$. Put

$$
\begin{equation*}
\{A, B\}:=\left[A, \mathcal{M}_{X} B\right] ; \tag{3.1.3}
\end{equation*}
$$

the monoid operation $\boxplus$ on $\mathcal{M}_{X}$ induces one on $\{A, B\}$.
Lemma 3.1.4. The product $\mu$ induces a bilinear, associative composition law:

$$
\begin{aligned}
\star:\{B, C\} \times\{A, B\} & \rightarrow\{A, C\} \\
([f],[g]) & \mapsto\left[\mu \otimes \operatorname{id}_{C}\right] \circ\left[\left(\operatorname{id}_{\mathcal{M}_{X}} \otimes f\right)\right] \circ[g] .
\end{aligned}
$$

Proof. Since changing the representative of the class $[f]$ does not change the class of $\left[\mathrm{id}_{\mathcal{M}_{X}} \otimes f\right]$, it is clear that $\star$ is well defined. The fact that $\star$ is bilinear follows from the fact that $\mu$ distributes over $\boxplus$. Finally associativity follows from observing that for any map $h: C \rightarrow \mathcal{M}_{X} D$, the diagram

commutes due to the associativity of $\mu$.
Definition 3.1.5. Let $\left\{\text { ind }-A l g_{\ell}^{*}\right\}_{X}$ be the category with the same objects as ind $-A l g_{\ell}^{*}$, where morphisms sets are given by (3.1.3) and which is enriched over the category of abelian monoids. Lemma 3.1.2 also shows that for $A \in$ ind $-A l g_{\ell}^{*}$ the inclusion $i: A \rightarrow \mathcal{M}_{X} A$ is the identity. Write $\left\{A l g_{\ell}^{*}\right\}_{X}$ for full subcategory of $\left\{\text { ind }-A l g_{\ell}^{*}\right\}_{X}$ where the objects are in $A l g_{\ell}^{*}$ instead of ind $-A l g_{\ell}^{*}$.

Remark 3.1.6. Let $A, B \in A l g_{\ell}^{*}$. The algebra $B^{\Delta}$ has natural binary operation called concatenation $\bullet: B^{\Delta} \times B^{\Delta} \rightarrow B^{\Delta}$; this induces a binary operation in $\left[A, B^{\mathbb{S}^{1}}\right]$ : for maps $f, g: A \rightarrow B^{\mathbb{S}^{1}}$ we write $f \bullet g$ for their concatenation. The zero map is a neutral element for this operation and the reversing map

$$
\begin{align*}
\ell[t] & \rightarrow \ell[t]  \tag{3.1.7}\\
t & \mapsto 1-t
\end{align*}
$$

induces a $*$-morphism $a: B^{\mathbb{S}^{1}} \rightarrow B^{\mathbb{S}^{1}}$ such that $[f \bullet a f]=[0]$. Concatenation and $\boxplus$ distribute over each other in $\left\{A, B^{\mathbb{S}^{1}}\right\}$ [see CT07, Section 3.3].

Lemma 3.1.8. Let $A, B \in A l g_{\ell}^{*}$. For $n \geq 1$, the concatenation and $\boxplus$ operations coincide in $\left\{A, B^{\mathbb{S}^{n}}\right\}$ and it is an abelian group with such operation.

Proof. As said in Remark 3.1.6, - and $\boxplus$ distribute over each other, due to the Eckmann-Hilton argument, both operations coincide. Since concatenation has an inverse as discussed in the same remark, the abelian monoid $\left\{A, B^{\mathbb{S}^{n}}\right\}$ is a group.

There is a canonical functor $\left[A l g_{\ell}^{*}\right] \rightarrow\left\{A l g_{\ell}^{*}\right\}$, which is the identity on objects and sends the class of a map $f$ to that of $i f$.

Lemma 3.1.9. The composite functor can : Alg $g_{\ell}^{*} \rightarrow\left[A l g_{\ell}^{*}\right] \rightarrow\left\{A l g_{\ell}^{*}\right\}$ is homotopy invariant, $M_{X}$-stable and $i_{+}$-stable. Moreover any functor $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ which is homotopy invariant $M_{X}$-stable and $i_{+}$-stable, factors uniquely through can.

Proof. Since can factors through $\left[A l g_{\ell}^{*}\right]$, it is homotopy invariant by definition. Moreover for any functor $H$ as in the statement, $H$ factors through $A l g_{\ell}^{*} \rightarrow\left[A l g_{\ell}^{*}\right]$.

To see $M_{X}$ stability, for any $x \in X$, the inclusions $i_{x, A}: A \rightarrow M_{X} A$ maps to $i_{x}, A: A \rightarrow M_{X} A$ in $\left\{A l g_{\ell}^{*}\right\}$. The identity map $M_{X} A \rightarrow M_{X} A$ induces a map $M_{X} A \rightarrow A$ in $\left\{A l g_{\ell}^{*}\right\}$ using the isomorphism $M_{X} M_{X} \cong M_{X}$. It is immediate that these maps are inverses to each another. induces the identity in $\left\{A l g_{\ell}^{*}\right\}$ so can is $M_{X}$-stable. Similarly, since the ind-system $\mathcal{M}_{X}$ is built with repeated composition of $i_{+}$, using Lemma 1.2 .5 we get that it is $i_{+}$stable.

Finally, for a functor $H$ as in the statement of the lemma, as said before $H$ factors through $[H]:\left[A l g_{\ell}^{*}\right] \rightarrow \mathfrak{C}$. Since $H$ is $M_{X}$-stable and $i_{+}$-stable, for any $B \in A l g_{\ell}^{*}$, the map $[H]\left(i_{B}: B \rightarrow \mathcal{M}_{X} B\right)$ is an isomorphism in $\mathfrak{C}$, so we can define

$$
\{H\}\left(\left[f: A \rightarrow \mathcal{M}_{X} B\right]\right)=[H]\left(i_{B}\right)^{-1} \circ[H]([f]) .
$$

It is easy to see that $\{H\}$ defines a functor $\{H\}:\left\{A l g_{\ell}^{*}\right\} \rightarrow \mathfrak{C}$ that factors $H$ through can.

Lemma 3.1.10. The canonical functor can : Alg $g_{\ell}^{*} \rightarrow\left\{A l g_{\ell}\right\}$ is hermitian stable.
Proof. Since $\ell$ satisfies the $\lambda$-assumption 1.1.24, the proof follows from Lemma 3.1.9 and Corollary 1.6.16.

Lemma 3.1.11. Let $R$ be a unital $*$-algebra, $A \unlhd R$ a*-ideal and $\lambda_{1}, \lambda_{2} \in R$ be central elements satisfying the requirements of the element $\lambda$ in the $\lambda$-assumption 1.1.24. Let

$$
p_{i}=p_{\lambda_{i}}=\left(\begin{array}{cc}
\lambda_{i}^{*} & 1 \\
\lambda_{i} \lambda_{i}^{*} & \lambda_{i}
\end{array}\right)
$$

and let $\iota_{i}: A \rightarrow{ }_{1} M_{2} A, \iota_{i}(a)=p_{i} a$. Then $\operatorname{can}\left(\iota_{1}\right)=\operatorname{can}\left(\iota_{2}\right)$ is an isomorphism in $\left\{A l g_{\ell}^{*}\right\}$.
Proof. Let $u_{i}=u_{\lambda_{i}}$ be as in 1.1.27) of Remark 1.1.26. Under the isomorphism ${ }_{1} M_{2} \cong M_{ \pm}, \iota_{i}$ corresponds to $\iota_{+}$. Thus can $\left(\iota_{i}\right)$ is an isomorphism. Moreover, since $u=u_{2} u_{1}^{-1} \in{ }_{1} M_{2} R$ is unitary, $\operatorname{can}(\operatorname{ad}(u))=\operatorname{id}_{1_{M_{2} A}}$ by Lemma 1.6.8, we get

$$
\operatorname{can}\left(\iota_{2}\right)=\operatorname{can}\left(\operatorname{ad}\left(u_{2} u_{1}^{-1}\right)\right) \operatorname{can}\left(\iota_{1}\right)=\operatorname{can}\left(\iota_{1}\right) .
$$

Lemma 3.1.12. The functor $J: A l g_{\ell}^{*} \rightarrow$ Alg $g_{\ell}^{*}$ passes down to a functor $J$ : $\left\{A l g_{\ell}^{*}\right\} \rightarrow\left\{A l g_{\ell}^{*}\right\}$.
Proof. For a map $[f] \in[A, B]$, it easy to check using the universal extension that the class $[J(f)] \in[J(A), J(B)]$ does not depend on the representative of the class $f$.

Recall the map $\phi_{M_{X}, B}: J\left(M_{X} B\right) \rightarrow M_{X} J(B)$ from Example 1.4.12. This induces a map $[\phi] \in\left\{J\left(\mathcal{M}_{X} B\right), B\right\}$. For a map $\xi=[f] \in\{A, B\}$, define $J(\xi) \in\{A, B\}$ as the class of the composition

$$
J(A) \xrightarrow{J(f)} J\left(\mathcal{M}_{X} B\right) \xrightarrow{\phi} \mathcal{M}_{X} J(B)
$$

Using Remark 1.4.11, it is clear that this defines a functor.
From here on, we shall abuse notation and use the same letter for the homotopy class of a map $f: A \rightarrow B \in$ ind $-A l g_{\ell}^{*}$ and for its image in $\{A, B\}$, and in case the latter is an abelian group (e.g. if $B=C^{\mathbb{S}^{n}}$ ) we put $-f$ for the inverse of $\operatorname{can}(f)$ in that group.
Lemma 3.1.13. Let $A, B \in$ ind $-A l g_{\ell}^{*}$ and $f \in[A, B]$. The the square

is homotopy commutative.
Proof. This is direct consequence of Remark 1.4.11.
Lemma 3.1.14 ([cf. CMR07, Lemma 6.30]). Let $A \in$ Alg $g_{\ell}^{*}$. Recall the maps $\rho_{A}$ : $J(A) \rightarrow \Omega A$ and $\gamma_{A}: J\left(A^{\mathbb{S}^{1}}\right) \rightarrow J(A)^{\mathbb{S}^{1}}$ from (1.4.13) and (1.4.15) respectively. Then the following diagram commutes in $\left\{\right.$ ind - Alg $\left._{\ell}^{*}\right\}$.


Proof. Recall the reversing map $a: \ell[t] \rightarrow \ell[t]$ from 3.1.7). For an element $p \in \ell[t]$, observe that $\mathrm{ev}_{0}(p)=\operatorname{ev}_{1}(a(p))$ and $\mathrm{ev}_{1}(p)=\operatorname{ev}_{0}(a(p))$. Writing $P^{\prime} \ell=\operatorname{ker}^{2} \mathrm{ev}_{1}$, we get that $a(P \ell)=P^{\prime} \ell$ and $a\left(P^{\prime} \ell\right)=P \ell$. Passing to the subdivision versions, for any $A \in A l g_{\ell}^{*}, a$ induces an isomorphism $\mathcal{P} A \cong \mathcal{P}^{\prime} A$. Observe as well that since $P \ell \cap P^{\prime} \ell=\Omega$ then $\operatorname{ker}\left(\operatorname{ev}_{0}: \mathcal{P}^{\prime} A \rightarrow A\right) \cong A^{\mathbb{S}^{1}}$.

Define

$$
I=\operatorname{ker}\left(\mathcal{P} T(A) \xrightarrow{\mathrm{ev}_{1}} T(A) \xrightarrow{\eta_{A}} A\right)=\left\{p \in \mathcal{P} T(A): \operatorname{ev}_{1}(p) \in J(A)\right\}
$$

and $E$ as the pullback of the diagram


The surjection $p r_{2}: E \rightarrow I$ is semi-split by $p \mapsto\left(p, t \mathrm{ev}_{0}(p)\right)$ and its kernel is

$$
\left.\left\{(q, 0) \in E: \operatorname{ev}_{0}(q)=0\right)\right\} \cong \operatorname{ker}^{\operatorname{ev}_{0}}\left(\mathcal{P}^{\prime} J(A) \rightarrow J(A)\right) \cong J(A)^{\mathbb{S}^{1}}
$$

Therefore, there is a semi-split extension

$$
\begin{equation*}
0 \rightarrow J(A)^{\mathbb{S}^{1}} \xrightarrow{i_{1}} E \xrightarrow{p r_{2}} I \rightarrow 0 \tag{3.1.15}
\end{equation*}
$$

Also, by definition of $I$, there is a semi-split extension

$$
\begin{equation*}
0 \rightarrow I \rightarrow \mathcal{P} T(A) \xrightarrow{\eta_{A} \mathrm{ev}_{1}} A \rightarrow 0 \tag{3.1.16}
\end{equation*}
$$

Therefore there are maps of extensions


Let $\xi: J(I) \rightarrow J(A)^{\mathbb{S}^{1}}$ be the classifying map of the extension 3.1.15). Using Remark 1.4.11 and Remark 3.1.6, it follows that the classifying map of the bottom row of (3.1.17) is $-\rho_{J(A)}: J^{2}(A) \rightarrow J(A)^{\mathbb{S}^{1}}$. So from Remark 1.4.11 it follows that the map of extensions (3.1.17) gives the equality

$$
\begin{equation*}
\xi=\operatorname{id}_{J(A)^{\mathrm{s}^{1}}} \circ \xi=-\rho_{J(A)} \circ J\left(\mathrm{ev}_{1}\right) \tag{3.1.19}
\end{equation*}
$$

Similarly let $\zeta: J(A) \rightarrow I$ the classifying map of extension (3.1.16); the map of extensions (3.1.18) gives

$$
\begin{equation*}
\mathrm{ev}_{1} \circ \zeta=\operatorname{id}_{J(A)} \tag{3.1.20}
\end{equation*}
$$

On the other hand, write $\bar{\eta}: I \rightarrow A^{\mathbb{S}^{1}}$ for the restriction of the map $\left(\operatorname{id}_{\mathcal{P}} \otimes \eta_{A}\right) \bullet 0$ : $\mathcal{P} T(A) \rightarrow \mathcal{P} A$ (where $\bullet$ is concatenation). The map $\bar{\eta}$ lifts to a map $q: E \rightarrow T(A)^{\mathbb{S}^{1}}$ by concatenation of paths in $I$ and paths in $\mathcal{P}^{\prime} J(A)$ which by definition of $E$ they coincide in the endpoints. This gives maps of extensions


Since the classifying map of the bottom row of (3.1.21) is $\gamma_{A}: J\left(A^{\mathbb{S}^{1}}\right) \rightarrow J(A)^{\mathbb{S}^{1}}$, we get

$$
\begin{equation*}
\xi=\operatorname{id}_{J(A)^{\mathrm{s}^{1}}} \circ \xi=\gamma_{A} \circ J(\bar{\eta}) . \tag{3.1.23}
\end{equation*}
$$

Also, since the classifying map of the bottom row of (3.1.22) is $\rho_{A}$, we have

$$
\begin{equation*}
\rho_{A}=\rho_{A} \circ \mathrm{id}_{A}=\bar{\eta} \circ \zeta \tag{3.1.24}
\end{equation*}
$$

Using (3.1.19), (3.1.20), (3.1.23) and (3.1.24):

$$
\begin{aligned}
\gamma_{A} \circ J\left(\rho_{A}\right) & =\gamma_{A} \circ J(\bar{\eta}) \circ J(\zeta) \\
& =\xi \circ J(\zeta) \\
& =-\rho_{J(A)} \circ J\left(\mathrm{ev}_{1}\right) \circ J(\zeta) \\
& =-\rho_{J(A)}
\end{aligned}
$$

Remark 3.1.25. The analogue of Lemma 3.1 .14 for algebras without involution also holds as stated (this will be later deduced from the fact that $k k$ is equivalent $k k^{h}$ for a particular choice of $\ell$ ). This corrects a mistake in CT07, Lemma 6.2.2], where the sign is missing. A sign is also missing in the definition of composition in the category $k k$ CT07, Theorem 6.2.3], which is fixed below.

Let $A, B \in A l g_{\ell}^{*}$. As in CT07, Section 6.1], using the functor $J:\left\{A l g_{\ell}^{*}\right\} \rightarrow$ $\left\{A l g_{\ell}^{*}\right\}$ of Lemma 3.1.12, there is a map

$$
\begin{aligned}
\{A, B\} & \rightarrow\left\{J A, B^{\mathbb{S}^{1}}\right\} \\
\xi & \mapsto \rho_{B} \star J(\xi) .
\end{aligned}
$$

Thus one can form the colimit

$$
k k^{h}(A, B)=k k^{h}(A, B)=\underset{n}{\operatorname{colim}}\left\{J^{n} A, B^{\mathbb{S}^{n}}\right\}
$$

Lemma 3.1.26. Let $\xi=[f] \in\left\{J^{m} B, C^{\mathbb{S}^{m}}\right\}$ and $\eta=[g] \in\left\{J^{n} A, B^{\mathbb{S}^{n}}\right\}$; put

$$
\xi \circ \eta=\left[\left(\operatorname{id}_{\mathbb{S}^{n}} \otimes f\right)\right] \star(-1)^{m n}\left[\gamma_{B}^{m, n}\right] \star\left[J^{m}(g)\right] \in\left\{J^{m+n}(A), C^{\mathbb{S}^{n+m}}\right\} .
$$

This defines a bilinear composition law

$$
\begin{aligned}
k k^{h}(B, C) \otimes_{\mathbb{Z}} k k^{h}(A, B) & \rightarrow k k^{h}(A, C) \\
\xi \otimes \eta & \mapsto \xi \circ \eta
\end{aligned}
$$

Proof. This follows from Lemma 3.1.13 and Lemma 3.1.14.
Therefore, the sets $k k^{h}(-,-)$ are the morphism sets of a category $k k^{h}$ with the same objects as $A l g_{\ell}^{*}$, where the identity map of $A \in A l g_{\ell}^{*}$ is represented by the class of $i: A \rightarrow \mathcal{M}_{X} A$. Define a functor $\left\{A l g_{\ell}^{*}\right\} \rightarrow k k^{h}$ as the identity on objects and as the canonical map to the colimit $\{A, B\} \rightarrow k k^{h}(A, B)$ on arrows. Composing the latter with the functor $A l g_{\ell}^{*} \rightarrow\left\{A l g_{\ell}^{*}\right\}$ we obtain a functor

$$
\begin{equation*}
j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h} . \tag{3.1.27}
\end{equation*}
$$

The category $k k^{h}$ together with the functor $j^{h}$ is called bivariant algebraic hermitian $K$-theory. We will often use the term $k k^{h}$-equivalence between two $*$-algebras to mean that their corresponding images in $k k^{h}$ are isomorphic.

## $3.2 j^{h}$ as an excisive homology theory

A triangulated category is a triple $\left(\mathfrak{T}, \Omega_{\mathfrak{T}}, \mathcal{T}\right)$ where $\mathfrak{T}$ is an additive category, $\Omega_{\mathfrak{T}}$ : $\mathfrak{T} \rightarrow \mathfrak{T}$ is a self-equivalence functor called the loop functor and $\mathcal{T}$ is a class of sequences of morphisms in $\mathfrak{T}$

$$
\Omega_{\mathfrak{x}} C \rightarrow A \rightarrow B \rightarrow C
$$

called (distinguished) triangles such that they satisfy the following axioms:
TR0 The class $\mathcal{T}$ is closed under isomorphisms and the sequence

$$
\Omega_{\mathfrak{I}} A \rightarrow 0 \rightarrow A \xrightarrow{\mathrm{id}_{A}} A
$$

is a distinguished triangle.
TR1 For any map $\alpha: A \rightarrow B$ in $\mathfrak{T}$, there is a distinguished triangle

$$
\Omega_{\mathfrak{I}} B \rightarrow C \rightarrow A \xrightarrow{\alpha} B .
$$

TR2 For the sequences

$$
\begin{gather*}
\Omega_{\mathfrak{T}} C \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{h} C,  \tag{3.2.1}\\
\Omega_{\mathfrak{T}} B \xrightarrow{-\Omega_{\mathfrak{F}} h} \Omega_{\mathfrak{T}} C \xrightarrow{f} A \xrightarrow{g} B \tag{3.2.2}
\end{gather*}
$$

one is a distinguished triangle if and only if the other is. In this case we say that (3.2.2) is a rotation of (3.2.1).

TR3 For any commutative diagram between distinguished triangles

there exists a map $\alpha: A \rightarrow A^{\prime}$ which makes the whole diagram commute.
TR4 Let $\alpha: A \rightarrow B$ and $\beta: B \rightarrow C$ be maps in $\mathfrak{T}$. There is a commutative diagram

in which each row and column is a distinguished triangle. Furthermore, the square

commutes.
Remark 3.2.3. Usually the axioms for triangulated categories are defined using the inverse to the loop functor, called the suspension functor. In this thesis we present the axiom in this way since it will be more natural to work with the loop functor.

Let $\mathfrak{T}$ be a triangulated category; write $[n]$ for the $n$-fold loop functor in $\mathfrak{T}$. Let $\mathcal{E}$ be the class of all semi-split extensions

$$
\begin{equation*}
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 . \tag{E}
\end{equation*}
$$

An excisive homology theory on $A l g_{\ell}^{*}$ (with coefficients in $\mathfrak{T}$ ) is a functor $H: A l g_{\ell}^{*} \rightarrow$ $\mathfrak{T}$ together with a family of maps

$$
\left\{\partial_{E}: H(C)[1] \rightarrow H(A): E \in \mathcal{E}\right\}
$$

such that for every $E \in \mathcal{E}$, the sequence

$$
H(C)[1] \xrightarrow{\partial_{E}} H(A) \rightarrow H(B) \rightarrow H(C)
$$

is a triangle in $\mathfrak{T}$ and the maps $\left\{\partial_{E}\right\}$ are compatible with maps of extensions in the sense that for a commutative diagram between semi-split extensions

the following diagram

$$
\begin{array}{ccc}
H(C)[1] & \stackrel{\partial_{E}}{\longrightarrow} & H(A) \\
\downarrow{ }^{H\left(f_{3}\right)} & & \underset{\sim}{\mid r\left(f_{1}\right)} \\
H\left(C^{\prime}\right)[1] & \xrightarrow{\partial_{E^{\prime}}} & H\left(A^{\prime}\right)
\end{array}
$$

commutes.
Remark 3.2.4. In a triangulated category, a sequence

$$
\Omega C \rightarrow A \rightarrow B \xrightarrow{f} C
$$

with a splitting $g: C \rightarrow B$ (i.e. $\operatorname{id}_{C}=f g$ ), is always isomorphic to the split distinguished triangle

$$
\Omega C \xrightarrow{0} A \xrightarrow{i_{1}} A \oplus C \xrightarrow{p r_{2}} C .
$$

In particular, the first sequence is a distinguished triangle [Nee01, Remark 1.2.7].
In what follows we will see that there is a natural triangulation of $k k^{h}$ which makes the functor $j^{h}$ a homology theory.

Lemma 3.2.5. Let $L \in A l g_{\ell}^{*}$ be flat as an $\ell$-module. The functor $L=L \otimes-$ : $A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$ induces a functor $L: k k^{h} \rightarrow k k^{h}$.

Proof. Using the universal property described in Lemma 3.1.9, the functor descents to $\{L\}:\left\{A l g_{\ell}^{*}\right\} \rightarrow\left\{A l g_{\ell}^{*}\right\}$.

Next, recall the map

$$
\phi_{A, L}: J(L \otimes A) \rightarrow L \otimes J(A)
$$

from Example 1.4.12. Write $\phi_{L}^{n}$ for the composition

$$
J^{n}(L \otimes A) \xrightarrow{J^{n-1}\left(\phi_{A, L}\right)} J^{n-1}(L \otimes J(A)) \rightarrow \cdots \xrightarrow{\phi_{J n-1}(A), L} L \otimes J^{n}(A) .
$$

For a map $\alpha \in k k^{h}(A, B)$ represented by $\left[f: J^{n}(A) \rightarrow \mathcal{M}_{X} B^{\mathbb{S}^{n}}\right]$ define $L \otimes \alpha \in$ $k k^{h}(L \otimes A, L \otimes B)$ as the class of the composition

$$
J^{n}(L \otimes A) \xrightarrow{\phi_{L}^{n}} L \otimes J^{n}(A) \xrightarrow{L \otimes f} L \otimes \mathcal{M}_{X} B^{\mathbb{S}^{n}} \cong \mathcal{M}_{X}(L \otimes B)^{\mathbb{S}^{n}} .
$$

Using Remark 1.4.11, it is clear that this definition gives a functor $L: k k^{h} \rightarrow$ $k k^{h}$.

Corollary 3.2.6 ([cf. CT07, Section 6.6]). The functors $\Omega, \Sigma_{X}:$ Alg $g_{\ell}^{*} \rightarrow$ Alg $g_{\ell}^{*}$ induce functors $\Omega, \Sigma_{X}: k k^{h} \rightarrow k k^{h}$

Proof. This follows from the previous lemma since $\Omega$ and $\Sigma_{X}$ are flat.
Lemma 3.2.7. Let $f: A \rightarrow B$ be semi-split $*$-morphism. Then, for any subdivision $\mathcal{P}_{n, f}=B^{\mathrm{sd}^{n} \Delta^{1}} \times_{B} A$ of the path algebra, the inclusion $i_{f}: \operatorname{ker}(f) \rightarrow \mathcal{P}_{n, f}$ induced by the inclusion $i_{f}: \operatorname{ker}(f) \rightarrow P_{f}$ and the last vertex map is invertible in $k k^{h}$.

Proof. The same proof as in [T07, Lemma 6.3.2] in the non-hermitian case works verbatim.

Corollary 3.2.8. The last vertex map $h: \Omega A \rightarrow A^{\mathrm{sd}^{n}} S^{1}$ is invertible in $k k^{h}$; it follows that in the ind-object $A^{\mathbb{S}^{1}}$ all the transition maps are $k k^{h}$-equivalences.

Proof. This follows from Lemma 3.2.7 by considering the loop extension 1.4.7) and that if $\mathcal{P}^{n} A$ is the $n$-th subdivision of $P A$ then the kernel of the induced map $\mathrm{ev}_{1}^{n}: \mathcal{P}^{n} A \rightarrow A$ is isomorphic to $A^{\mathrm{sd}^{n} S^{1}}$ and that $P_{\mathrm{ev}_{1}^{n}}$ is $\mathcal{P}_{n, \mathrm{ev}_{1}}$.

Definition 3.2.9. For a semi-split extension

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \tag{E}
\end{equation*}
$$

the Lemma 3.2 .7 gives an $k k^{h}$-equivalence $A \rightarrow P_{g}$. Define the connecting map as the following morphism in $k k^{h}(\Omega C, A)$ :

$$
\begin{equation*}
\partial_{E}: \Omega C \rightarrow P_{g} \approx A, \tag{3.2.10}
\end{equation*}
$$

the composition of the natural map $\Omega C \rightarrow P_{g}$ of the mapping path extension of Example 1.4.5 and the inverse of $A \xrightarrow{\sim} P_{g}$.
Lemma 3.2.11. For a semi-split extension $\sqrt{E}\rangle$, the sequences

$$
\begin{aligned}
& k k^{h}(D, \Omega B) \xrightarrow{\Omega j^{h}(g)_{*}^{*}} k k^{h}(D, \Omega C) \xrightarrow{\left(\partial_{E}\right)_{*}^{*}} k k^{h}(D, A) \xrightarrow{j^{h}(f)_{*}^{*}} k k^{h}(D, B) \xrightarrow{j^{h}(g)_{*}^{*}} k k^{h}(D, C) \\
& k k^{h}(C, D) \xrightarrow{j^{h}(g)^{*}} k k^{h}(B, D) \xrightarrow{j^{h}(f)^{*}} k k^{h}(A, D) \xrightarrow{\left(\partial_{E}\right)^{*}} k k^{h}(\Omega C, D) \xrightarrow{\Omega j^{h}(g)^{*}} k k^{h}(\Omega B, D)
\end{aligned}
$$

are exact.
Proof. This is proved in CT07, Theorem 6.3.6 and Theorem 6.3.7] in the nonhermitian case. The same proof works verbatim.

Corollary 3.2.12. For any $D \in A l g_{\ell}^{*}$, the functors

$$
k k^{h}(D,-), k k^{h}(-, D): A l g_{\ell}^{*} \rightarrow \mathfrak{A} \mathfrak{b}
$$

are split exact.
Proof. This is [CT07, Corollary 6.3.4] in the non-hermitian case; again, the same proof works.

For $R \in A l g_{\ell}^{*}$ unital, the $*$-algebra $\Gamma_{X} R$ is what is known as a $*$-infinite-sum algebra: define

$$
\alpha=\sum_{n \in \mathbb{N}} e_{n, 2 n} \text { and } \beta=\sum_{n \in \mathbb{N}} e_{n, 2 n+1} ;
$$

these elements satisfy the identities

$$
\begin{aligned}
& \alpha^{*} \alpha=1=\beta^{*} \beta \\
& \alpha \alpha^{*}+\beta \beta^{*}=1 .
\end{aligned}
$$

For $a, b \in \Gamma_{X} R$, define

$$
\begin{gathered}
a \oplus b=\alpha^{*} a \alpha+\beta^{*} b \beta \\
a^{\infty}=\sum_{n \in \mathbb{N}}\left(\beta^{*}\right)^{n} \alpha^{*} a \alpha \beta^{n},
\end{gathered}
$$

and for $f, g: B \rightarrow \Gamma_{X} R$, write $f \oplus g: B \rightarrow \Gamma_{X} R$ and $f^{\infty}: B \rightarrow \Gamma_{X} R$ for

$$
\begin{gathered}
f \oplus g(b)=f(b) \oplus g(b) \\
f^{\infty}(b)=f(b)^{\infty} .
\end{gathered}
$$

Then, it is straightforward to compute that

$$
\mathrm{id}_{\Gamma_{X} R} \oplus \mathrm{id}_{\Gamma_{X} R}^{\infty}=\mathrm{id}_{\Gamma_{X} R} .
$$

Lemma 3.2.13. There exists a unitary matrix $Q \in M_{3} \Gamma_{X} R$ such that for any $a, b \in \Gamma_{X} A$

$$
Q^{*}\left(\begin{array}{ccc}
a \oplus b & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) Q=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Proof. The matrix $Q$ in Wag72, p.355] can easily seen to be unitary in our case.
Corollary 3.2.14. For any $A \in A l g_{\ell}^{*}$, the $*$-algebra $\Gamma_{X} A$ is isomorphic to 0 in $k k^{h}$.
Proof. Assume $A$ unital, the general case follows from split-exactness. From Lemma 3.2.13, Lemma 1.6 .8 and Lemma 1.6.9 we get that

$$
j^{h}\left(\operatorname{id}_{\Gamma_{X} A} \oplus \mathrm{id}_{\Gamma_{X} A}^{\infty}\right)=j^{h}\left(\mathrm{id}_{\Gamma_{X} A}\right)+j^{h}\left(\mathrm{id}_{\Gamma_{X} A}^{\infty}\right) ;
$$

since $\operatorname{id}_{\Gamma_{X} A} \oplus \operatorname{id}_{\Gamma_{X} A}^{\infty}=\operatorname{id}_{\Gamma_{X} A}$, it follows that $j^{h}\left(\mathrm{id}_{\Gamma_{X} A}\right)=0$ and therefore $\Gamma_{X} A$ is $k k^{h}$-equivalent to 0 .

Corollary 3.2.15. There is a natural $k k^{h}$-equivalence $\Omega \Sigma_{X} A \cong A$. Since the functors $\Sigma_{X}$ and $\Omega$ commute, it follows that they are inverse equivalences on $k k^{h}$.

Proof. Write $q: \Gamma_{X} A \rightarrow \Sigma_{X} A$ for the quotient map. Using Lemma 3.2.7, there is a natural $k k^{h}$-equivalence $M_{X} A \cong P_{q}$. On other hand, considering the mapping path extension of $q$, there is a natural map $\Omega \Sigma_{X} A \rightarrow P_{q}$. Since $\Gamma_{X} A$ is $k k^{h}$-equivalent to 0 for any $A$, it follows from Lemma 3.2.11, that for any $D \in A l g_{\ell}^{*}$, the inclusion $\Omega \Sigma_{X} A \rightarrow P_{q}$ induces isomorphisms

$$
k k^{h}\left(\Omega \Sigma_{X} A, D\right) \cong k k^{h}\left(P_{q}, D\right)
$$

Therefore there are $k k^{h}$-equivalences $\Omega \Sigma A \cong P_{q} \cong M_{X} A \cong A$.
Lemma 3.2.16. The classifying map $\rho_{A}: J(A) \rightarrow \Omega A$ is an $k k^{h}$-equivalence.
Proof. The algebras $T(A)$ and $P A$ are contractible: there are $*$-homotopies $H_{0}$ : $T(A) \rightarrow T(A)[s]$ and $H_{1}: P A \rightarrow P A[s]$ such that

$$
\begin{array}{cc}
\mathrm{ev}_{1} H_{0}=\mathrm{id}_{T(A)} & \mathrm{ev}_{0} H_{0}=0 \\
\mathrm{ev}_{1} H_{1}=\mathrm{id}_{P A} & \mathrm{ev}_{0} H_{1}=0 .
\end{array}
$$

These are defined as follows: $H_{0}$ is the adjoint to the $\ell$-linear map

$$
\begin{aligned}
A & \rightarrow T(A)[s] \\
a & \mapsto s a ;
\end{aligned}
$$

similarly, $H_{1}$ is defined by

$$
\begin{aligned}
P A & \rightarrow P A[s] \\
p(t) & \mapsto p(s t)
\end{aligned}
$$

Therefore, using the loop 1.4.7) and the universal extensions in Lemma 3.2.11, there are natural equivalences $p_{\text {loop }}: \Omega A \rightarrow \Omega A$ and $p_{\text {univ }}: \Omega A \rightarrow J(A)$. Using naturality of these maps and the map of extensions from the universal to the loop extension that defines $\rho_{A}$, the statement of the theorem follows.

Let $\mathcal{T}$ be the class of sequences in $k k^{h}$

$$
\Omega C \rightarrow A \rightarrow B \rightarrow C
$$

which are isomorphic (as sequences) to the image of some mapping path extension

$$
\Omega B^{\prime} \rightarrow P_{f} \rightarrow A^{\prime} \xrightarrow{f} B^{\prime} .
$$

Theorem 3.2.17. The triple $\left(k k^{h}, \Omega, \mathcal{T}\right)$ is a triangulated category.
Proof. This is proved in CT07, Theorem 6.5.2] for the non-hermitian case. The same proof works verbatim.
Theorem 3.2.18. The functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ together with the connecting maps $\left\{\partial_{E}\right\}$ form an excisive homology theory which is homotopy invariant and $M_{X}$ and hermitian stable.

Proof. The fact that $j^{h}$ is homotopy invariant and $M_{X}$ and hermitian stable follows from Lemma 3.1.9 and Lemma 3.2.11. By definition of the connecting map, for a semi-split extension $(E)$ the sequence

$$
\Omega C \xrightarrow{\partial_{E}} A \rightarrow B \rightarrow C
$$

is isomorphic (as a sequence) to the mapping path triangle of the extension. Moreover, the maps $\partial_{E}$ are clearly natural on the extension $(E)$.
Remark 3.2.19. Theorem 3.2.18 corrects an error in CT07, Example 6.6.1] in which the connecting map is wrongly defined.
Theorem 3.2.20. The functor $j^{h}: A l g_{\ell}^{*} \rightarrow k k^{h}$ is universal in the following sense: for any excisive homology theory $H:$ Alg $g_{\ell}^{*} \rightarrow \mathfrak{T}$ that is homotopy invariant, $M_{X}$ and hermitian stable, there is a unique triangulated functor $\bar{H}: k k^{h} \rightarrow \mathfrak{T}$ such that following diagram commutes


Proof. This is [T07, Theorem 6.6.2] in the non-hermitian case. The same proof works.
Remark 3.2.21. As explained in Remark 1.4.4, the classes of extensions which are semi-split with respect to the underlying categories of sets and $\ell$-modules agree with those semi-split with respect to sets with involution and $\ell$-modules with involution. Hence by Theorem 3.2.20, the corresponding $k k$-theories are the same whether involutions are included in the underlying category or not.

Let $\mathfrak{C}$ be an abelian category. A functor $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ is half-exact if for an extension in $A l g_{\ell}^{*}$

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

the sequence

$$
H(A) \rightarrow H(B) \rightarrow H(C)
$$

is exact.
Proposition 3.2.22. Let $\mathfrak{C}$ be an abelian category and $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ a functor. Assume that $H$ is half-exact, homotopy invariant and $M_{X}$ and hermitian stable. Then there is a unique homological functor $\bar{H}: k k^{h} \rightarrow \mathfrak{C}$ such that $\bar{H} \circ j^{h}=H$.
Proof. Again, the proof is the same as in [CT07, Theorem 6.6.6].
Remark 3.2.23. For a map $\alpha \in k k^{h}(A, B)$ we will show how to describe $\bar{H}(\alpha)$ for a functor $H$ as in Proposition 3.2.22; first extend $H$ to $\{H\}$ as in Lemma 3.1.9, next realize $\alpha$ as a class of a map $f: J^{n}(A) \rightarrow M_{X} M_{ \pm}^{\otimes k} B^{\operatorname{sd}^{r} S^{n}}$. Composing with the inverse of $J^{n}(A) \rightarrow \Omega^{n} A$ and using $M_{X}$-stability, hermitian stability and Corollary 3.2.8 we get a map $\bar{f}: \Omega^{n} A \rightarrow \Omega^{n} B$ in $k k^{h}$. It is immediate to see that $\bar{f}$ induces the class of $\Omega^{n}(\alpha)$, and therefore $\bar{H}\left(\Omega^{n}(\alpha)\right)$ is determined by $\{H\}(\bar{f})$ and in turn $\bar{H}(\alpha)=\{H\}\left(\Sigma_{X}^{n} \bar{f}\right)$.

From here on, we will fix $X=\mathbb{N}$.
Remark 3.2.24. Let $f: A \rightarrow B$ be a semi-split $*$-morphism. One can also fit $f$ into other equivalent triangles instead of the one induced by $P_{f}$. For example, take the pullback of the natural map $T(B) \rightarrow B$ along $f$


Write $T_{f}:=T(B) \times_{B} A$. Then, we have a commutative diagram


By Lemma 3.2.16, the vertical map $J B \rightarrow \Omega B$ is a $k k^{h}$-equivalence. Since the first three terms of the top row in (3.2.25) form an extension, using the five lemma it follows that the vertical map $T_{f} \rightarrow P_{f}$ is a $k k^{h}$-equivalence. Thus, the top row is $k k^{h}$-isomorphic to the bottom row, and is thus a triangle in $k k^{h}$.

In a similar case, let $\Gamma_{f}$ be as in Example 1.4.9. By Corollary 3.2.14, the classifying map $J \Sigma B \rightarrow M_{\infty} B$ of the cone extension is a $k k^{h}$-equivalence, and therefore $T_{\Sigma f} \rightarrow \Gamma_{f}$ is a $k k^{h}$-equivalence by the same reasoning as before. Thus the vertical maps in the commutative diagram below form an isomorphism of triangles in $k k^{h}$ :


Therefore, the bottom row of $(\sqrt[3.2 .26]{ })$ is a distinguished triangle in $k k^{h}$. The map (3.2.26) together with that of (3.2.25) with $\Sigma(f)$ substituted for $f$ is a zig-zag of $k k^{h}$ equivalences. In particular $\Gamma_{f}$ is $k k^{h}$-equivalent to $P_{\Sigma f}$ ). Since $\Sigma P_{f}$ is isomorphic to $P_{\Sigma f}$, the bottom row of (3.2.26) is isomorphic in $k k^{h}$ to the suspension of the mapping path extension 1.4.9 associated to $\Sigma f$. Thus, we have an isomorphism of triangles:


Remark 3.2.27. Let $\left(A l g_{\ell}^{*}\right)_{f} \subset A l g_{\ell}^{*}$ and $k k_{f}^{h} \subset k k^{h}$ be the full subcategories whose objects are the $*$-algebras that are flat as $\ell$-modules and let $j_{f}^{h}:\left(A l g_{\ell}^{*}\right)_{f} \rightarrow k k_{f}^{h}$ be
the restriction of $j^{h}$. Observe that $\left(A l g_{\ell}^{*}\right)_{f}$ is closed under $J$ and under mapping path extensions; hence $k k_{f}^{h}$ is triangulated and $j_{f}^{h}$ is excisive, homotopy invariant, $\iota_{+}$-stable and $M_{X}$-stable. Moreover, in the same way as in Theorem 3.2.20, the functor $j_{f}^{h}$ is universal among such functors.
Example 3.2.28. Let $\ell_{0}$ be any commutative ring and let $\ell=\operatorname{inv}\left(\ell_{0}\right)$ and inv : $A l g_{\ell_{0}} \rightarrow A l g_{\ell}^{*}$ be as in Example 1.1.6. Recall the universal excisive matrix stable and homotopy invariant homology theory $j: A l g_{\ell_{0}} \rightarrow k k$. Then, the composition $j^{h} \circ$ inv : $A l g_{\ell}^{*} \rightarrow k k^{h}$ is excisive, homotopy invariant and $M_{X}$-stable; by universality of $j$ it induces a triangulated functor inv : $k k_{\ell_{0}} \rightarrow k k_{\ell}^{h}$. Similarly, for the inverse functor to inv,

$$
\text { res : } \begin{aligned}
A l g_{\ell}^{*} & \rightarrow A l g_{\ell_{0}} \\
B & \mapsto(1,0) B
\end{aligned}
$$

the composition $j$ o res is excisive, homotopy invariant, $M_{X}$-stable and by Example 1.1.16 it is also hermitian stable. Hence it induces a functor res : $k k_{\ell}^{h} \rightarrow k k_{\ell_{0}}$ which is inverse to inv. This shows that $k k$ is a particular case of $k k^{h}$.

Similarly, for an arbitrary $\ell$, recall the adjunctions from Example 1.1.6.

$$
\begin{aligned}
& \text { res : } A l g_{\ell}^{*} \leftrightarrow A l g_{\ell}: \text { ind }, \\
& \text { ind }^{\prime}: A l g_{\ell} \leftrightarrow A l g_{\ell}^{*}: \text { res. }
\end{aligned}
$$

The same reasoning as before gives adjunctions

$$
\begin{aligned}
& \text { res : } k k^{h} \leftrightarrow k k: \text { ind, } \\
& \text { ind }^{\prime}: k k \leftrightarrow k k^{h}: \text { res. }
\end{aligned}
$$

Example 3.2.29. Let $L \in A l g_{\ell}^{*}$; then $L \otimes$ - preserves semi-split extensions with linear splittings if either $L$ is flat as $\ell$-module or every semi-split extension is $\ell$ linearly split. In either case, $j^{h}(L \otimes-): A l g_{\ell}^{*} \rightarrow k k^{h}$ is homotopy invariant, matricially stable, hermitian stable and excisive, and therefore induces a triangulated functor $L \otimes-: k k^{h} \rightarrow k k^{h}$. By a similar argument, for $k k_{f}^{h}$ as in Remark 3.2.27, any $L \in A l g_{\ell}^{*}$ induces a triangulated functor $L \otimes-: k k_{f}^{h} \rightarrow k k^{h}$.
Proposition 3.2.30. Let $A_{1}, A_{2} \in A l g_{\ell}^{*}$ such that $A_{i} \otimes-(i=0,1)$ preserve linearly split extensions. Then we have a natural bilinear, associative product

$$
k k^{h}\left(A_{1}, A_{2}\right) \times k k^{h}\left(B_{1}, B_{2}\right) \rightarrow k k^{h}\left(A_{1} \otimes B_{1}, A_{2} \otimes B_{2}\right),(\xi, \eta) \mapsto \xi \otimes \eta
$$

that is compatible with composition in all variables.
Proof. Suppose first the case that $A_{1}, A_{2}$ are flat as $\ell$-modules. By Example 3.2.29, $A_{i} \otimes-$ and $-\otimes B_{i}$ extend to functors $A_{i} \otimes-: k k^{h} \rightarrow k k^{h}$ and $-\otimes B_{i}: k k_{f}^{h} \rightarrow k k^{h}$. For $\xi \in k k^{h}\left(A_{1}, A_{2}\right)$ and $\eta \in k k^{h}\left(B_{1}, B_{2}\right)$, set

$$
\xi \otimes \eta=\left(\xi \otimes \operatorname{id}_{B_{2}}\right) \circ\left(\operatorname{id}_{A_{1}} \otimes \eta\right)
$$

It is straightforward to check that the product above has all the desired properties.
In the case semi-split extensions are always linearly split, then $-\otimes B_{i}$ extend to the functors $-\otimes B_{i}: k k^{h} \rightarrow k k^{h}$ and use the same definition as before.

Definition 3.2.31. Let $\varepsilon \in \ell$ be a unitary, $A, B \in A l g_{\ell}^{*}$ and $n \in \mathbb{Z}$. Put

$$
\begin{gathered}
k k_{n}^{h}(A, B):= \begin{cases}k k^{h}\left(A, \Sigma^{n} B\right) & \text { if } n \geq 0 \\
k k^{h}\left(A, \Omega^{-n} B\right) & \text { if } n<0\end{cases} \\
{ }_{\varepsilon} k k_{n}^{h}(A, B):=k k_{n}^{h}\left(A,{ }_{\varepsilon} M_{2} B\right)
\end{gathered}
$$

Remark 3.2.32. Since $\Omega$ and $\Sigma$ are inverse functors in $k k^{h}$ there are natural isomorphisms

$$
k k_{n}^{h}(A, B) \cong \begin{cases}k k^{h}\left(\Omega^{n} A, B\right) & \text { if } n \geq 0 \\ k k^{h}\left(\Sigma^{-n} A, B\right) & \text { if } n<0\end{cases}
$$

Remark 3.2.33. Due to Remark 1.1.26, there is a $*$-isomorphism ${ }_{1} M_{2} \cong M_{ \pm}$. It follows from this and from Theorem 3.2 .20 that for all $A, B \in A l g_{\ell}^{*}, i_{+}: \ell \rightarrow M_{ \pm}$ induces a canonical isomorphism

$$
{ }_{1} k k_{*}^{h}(A, B) \cong k k_{*}^{h}(A, B) .
$$

Example 3.2.34. The functor $K H_{0}^{h}: A l g_{\ell}^{*} \rightarrow K H_{0}^{h}(\ell)-$ Mod satisfies the hypothesis of Proposition 3.2.22. Hence the functor $\overline{K H}_{0}^{h}$ of the proposition induces a natural homomorphism

$$
k k^{h}(A, B) \rightarrow \operatorname{hom}_{K H_{0}^{h}(\ell)}\left(K H_{0}^{h}(A), K H_{0}^{h}(B)\right)
$$

Setting $A=\ell$ we obtain a natural map

$$
k k^{h}(\ell, B) \rightarrow K H_{0}^{h}(B)
$$

Proposition 3.2.35. The product from Proposition 3.2 .30 maps to the cup product from Lemma 2.2.9 under the map from Example 3.2.34. In other words, there is a commutative diagram


Proof. Assume $A, B$ unital and let $\alpha \in k k^{h}(\ell, A)$ and $\beta \in k k^{h}(\ell, B)$. Using Remark 3.2.23, the corresponding elements in $K H_{0}^{h}(A)$ and $K H_{0}^{h}(B)$ are determined by maps

$$
\begin{aligned}
\Omega^{n}(\alpha)_{*}: K H_{0}^{h}\left(\Omega^{n}\right) & \rightarrow K H_{0}^{h}\left(\Omega^{n} A\right) \\
\Omega^{m}(\beta)_{*} & : K H_{0}^{h}\left(\Omega^{m}\right)
\end{aligned} \rightarrow K H_{0}^{h}\left(\Omega^{m} B\right) .
$$

and evaluation at $[1] \in K H_{0}^{h}(\ell)$. Since the product

$$
k k^{h}(\ell, A) \otimes_{\mathbb{Z}} k k^{h}(\ell, B) \rightarrow k k^{h}(\ell, A \otimes B)
$$

extends the tensor product of algebras and due to Remark 2.2.4 the cup product corresponds to the extension of scalars, it follows that

$$
\Omega^{n+m}(\alpha \otimes \beta)_{*}[1]=\Omega^{n}(\alpha)_{*}[1] \star \Omega^{m}(\beta)_{*}[1] .
$$

From this, the statement follows in the unital case. The non-unital case follows from the unital one and excision.

## Chapter 4

## Computations and the comparison with $K H^{h}$

In this chapter we show some computations in $k k^{h}$ as a matter of examples: in Section 4.1 we characterize the image of the coproducts, of the Toeplitz algebra and of the Cohn algebra of a graph and also give an algebraic analogue of the PimsnerVoiculescu sequecen. In Section 4.2 we show that the natural map $k k^{h}(\ell, A) \rightarrow$ $K H_{0}^{h}(A)$ as described in Example 3.2.28 is an isomorphism.

### 4.1 Computations

## Coproducts

Proposition 4.1.1. Let $A, B \in A l g_{\ell}^{*}$. Then the natural map $A \amalg B \rightarrow A \oplus B$ is a $k k^{h}$-equivalence.

Proof. Define $f: A \oplus B \rightarrow M_{2}(A \amalg B)$ as

$$
f(a, b)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

We will show that

$$
\begin{equation*}
j^{h}\left(\mathrm{id}_{M_{2}} \otimes \pi \circ f\right)=j^{h}\left(i_{2}: A \oplus B \rightarrow M_{2}(A \oplus B)\right) \tag{4.1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
j^{h}(f \circ \pi)=j^{h}\left(i_{2}: \amalg B \rightarrow \mathbb{M}_{2}(A \amalg B)\right) ; \tag{4.1.3}
\end{equation*}
$$

it follows that $j^{h}(\pi)$ is left and right inversible and therefore an isomorphism in $k k^{h}$.
Identify $A \amalg B$ with its image through $i_{2}$ in $M_{2}(A \amalg B)$. Let $u(t) \in M_{2}(\widetilde{A \amalg B}[t])$ defined by

$$
u_{t}=\operatorname{id}_{M_{2} A} \amalg\left(\begin{array}{cc}
1-t^{2} & t \\
\left(t^{3}-2 t\right) & 1-t^{2}
\end{array}\right) .
$$

It is easily shown that $u_{t}$ is invertible, $u_{0}=\mathrm{id}$ and

$$
\begin{array}{ll}
u_{1} i_{2}(a) u_{1}^{*}=f \circ \pi(a) & \\
u_{1} i_{2}(b) u_{1}^{*}=f \circ \pi(b) & \\
(b \in B) ;
\end{array}
$$

therefore, it follows from Lemma 1.2.3 that the equality in 4.1.3 stands. Similarly, using the matrix $\pi\left(u_{t}\right) \in M_{2}(\widetilde{A \oplus B})$ we can conclude the equality in 4.1.2).

Corollary 4.1.4. The natural map $Q(A) \rightarrow A \oplus A$ is a $k k^{h}$-equivalence and it induces a $k k^{h}$-equivalence $\pi_{0}: q(A) \rightarrow A$.

Proof. This follows from Proposition 4.1.1 and the commutative diagram between split triangles in $k k^{h}$ (which are distinguished by Remark 3.2.4):


## The fundamental theorem

Recall from Example 1.1.21 the Laurent polynomial algebra $A\left[t, t^{-1}\right]$. Write

$$
\sigma A=\operatorname{ker}\left(\mathrm{ev}_{1}: A\left[t, t^{-1}\right] \rightarrow A\right)
$$

The Toeplitz algebra $\tau$ (over $\ell$ ) is the $*$-algebra generated by an element $S$ such that $S^{*} S=1$. We write $\tau_{0}$ for the kernel of the map $\tau \rightarrow \ell$ that sends $S$ to 1 .
Proposition 4.1.5. Let $A$ be an algebra in $A l g_{\ell}^{*}$. Then $A\left[t, t^{-1}\right]$ and $A \oplus \Sigma A$ are $k k^{h}$-equivalent.
Proof. Consider the split extension

$$
0 \rightarrow \sigma A \rightarrow A\left[t, t^{-1}\right] \rightarrow A \rightarrow 0
$$

therefore, from Remark 3.2.4, it follows that $A\left[t, t^{-1}\right]$ is $k k^{h}$ equivalent to $A \oplus \sigma A$. We will show that $\sigma A$ is $k k^{h}$ equivalent to $\Sigma A$. Since the coefficient ring $A$ does not matter in the following proof, we omit it from notation. The proof follows like CT07, Theorem 7.3.1 and Lemma 7.3.2].

Let $f: \tau \rightarrow A\left[t, t^{-1}\right]$ be the $*$-morphism defined by $S \mapsto t$. This morphism restricts to $f \mid: \tau_{0} \rightarrow \sigma$. On the other hand there is also a natural $*$-morphism $g: \tau \rightarrow \Gamma$ sending $S$ to the matrix

$$
S \mapsto\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

It is easy to see that $g$ is injective; thus, $\tau$ identifies with a $*$-subalgebra of $\Gamma$. In this identification, the kernel of $f \mid$ is mapped to $M_{\infty}$. This gives a commutative diagram


If we show that $\tau_{0}$ is $k k^{h}$-equivalent to 0 , since we know that $\Gamma$ is $k k^{h}$-equivalent to 0 by Corollary 3.2.14, we can use the five lemma and conclude that $\sigma$ is $k k^{h_{-}}$ equivalent to $\Sigma$. For this we will construct a $*$-homotopy from $\tau_{0}$ to $M_{\infty} \tau[t]$ that when evaluated at $t=0$ is the natural inclusion and is null when evaluated at $t=1$.

First we define several $*$-morphisms $\psi, \varphi_{1}, \varphi_{2}, \varphi_{3}: \tau \rightarrow \tau \otimes \tau$ which are given by defining them on the generator $S$ as

$$
\begin{align*}
\psi(S) & =S^{2} S^{*} \otimes 1  \tag{4.1.6}\\
\varphi_{1}(S) & =S^{2} S^{*} \otimes 1+\left(1-S S^{*}\right) \otimes S \\
\varphi_{2}(S) & =S \otimes 1 \\
\varphi_{3}(S) & =S^{2} S^{*} \otimes 1+\left(1-S S^{*}\right) \otimes 1
\end{align*}
$$

All of these morphisms agree modulo the ideal $M_{\infty} \tau$. Identify $\tau$ with its image in $\Gamma$ and define elements $u_{t}, v_{t} \in(\tau \otimes \tau)[t] \subseteq \Gamma \tau[t]$ by

$$
\begin{gathered}
u_{t}=\left(\begin{array}{ccccc}
1-S S^{*} t^{2} & \left(t^{3}-2 t\right) S & 0 & 0 & \cdots \\
t S^{*} & 1-t^{2} & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \\
v_{t}=\left(\begin{array}{ccccc}
1-t^{2} & \left(t^{3}-2 t\right) & 0 & 0 & \cdots \\
t & 1-t^{2} & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
\end{gathered}
$$

It is readily checked that $u_{0}, u_{1}, v_{0}$ and $v_{1}$ are unitary matrices and that $1-u_{t}$ and $1-v_{t}$ belong in the ideal $M_{\infty} \tau[t]$. Write $U_{t}=c\left(u_{t}, u_{t}^{-1}\right)$ and $V_{t}=c\left(v_{t}, v_{t}^{-1}\right)$ as in Lemma 1.2.3. Define $\Phi_{1}, \Phi_{2}: \tau \rightarrow M_{ \pm}(\tau \otimes \tau)[t]$ as

$$
\begin{aligned}
& \Phi_{1}(S)=U_{t} i_{+}(S \otimes 1) \\
& \Phi_{2}(S)=V_{t} i_{+}(S \otimes 1) .
\end{aligned}
$$

The following identities are then satisfied:

$$
\begin{aligned}
& \mathrm{ev}_{0} \circ \Phi_{1}=\mathrm{ev}_{1} \circ \Phi_{2}=i_{+} \varphi_{2}, \\
& \mathrm{ev}_{1} \circ \Phi_{1}=i_{+} \varphi_{1} \text { and } \\
& \mathrm{ev}_{1} \circ \Phi_{2}=i_{+} \varphi_{3}
\end{aligned}
$$

Thus, restricting to $\tau_{0}$ there are $*$-quasi-homomorphisms

$$
\left(\Phi_{1}, i_{+} \psi\right),\left(\Phi_{2}, i_{+} \psi\right): \tau_{0} \rightrightarrows M_{ \pm} \tau \otimes \tau[t] \unrhd M_{ \pm} M_{\infty} \tau[t] .
$$

Using Proposition 1.5 .3 the $*$-quasi-homomorphisms $\left(i_{+} \varphi_{1}, i_{+} \psi\right)$ and $\left(i_{+} \varphi_{3}, i_{+} \psi\right)$ induce the same morphisms in $k k^{h}$. Therefore, using hermitian stability the $*-$ quasi-homomorphisms $\left(\varphi_{1}, \psi\right)$ and $\left(\varphi_{3}, \psi\right)$ induce the same morphisms in $k k^{h}$.

Finally, since $\varphi_{1}$ is the orthogonal sum of $\psi$ and the inclusion $\tau_{0} \rightarrow M_{\infty} \tau$ and $\varphi_{3}$ agrees with $\psi$ when restricted to $\tau_{0}$, using Proposition 1.5 .3 this means that $\left(\varphi_{1}, \psi\right)$ induces the same morphism as the inclusion $\tau_{0} \rightarrow M_{\infty} \tau$ in $k k^{h}$ and $\left(\varphi_{3}, \psi\right)$ induces the null morphism. Thus the inclusion $\tau_{0} \rightarrow M_{\infty} \tau$ is null on $k k^{h}$. By $M_{\infty}$-stability this then implies that the inclusion $\tau_{0} \rightarrow \tau$ is null, which implies that $\tau_{0}$ is $k k^{h}$ equivalent to 0 since the following extension is split:

$$
0 \rightarrow \tau_{0} \rightarrow \tau \rightarrow A \rightarrow 0
$$

## Pimsner-Voiculescu sequence

In topological $K$-theory, the Pimsner-Voiculescu sequence relates the $K$-theory groups of a crossed product $A \rtimes \mathbb{Z}$ with those of $A$. Here we present the algebraic analogue of this sequence in our setting.

Given a $*$-automorphism $\sigma: A \rightarrow A$ we define the crossed product $A \rtimes_{\sigma} \mathbb{Z}$ as the $\ell$-module $A\left[t, t^{-1}\right]$ but with multiplication given by the relation

$$
t a t^{-1}=\sigma(a)
$$

and involution $(a t)^{*}=t^{-1} \sigma(a)^{*}$.
Consider the $*$-subalgebra $\tau_{\sigma}$ of $\tau \otimes_{\ell}\left(A \rtimes_{\sigma} \mathbb{Z}\right)$ generated by $1 \otimes A$ and $S \otimes t$. This gives a semi-split extension

$$
\begin{equation*}
0 \rightarrow M_{\infty} A \rightarrow \tau_{\sigma} \rightarrow A \rtimes_{\sigma} \mathbb{Z} \rightarrow 0 \tag{4.1.7}
\end{equation*}
$$

Proposition 4.1.8. Let $A$ be an algebra in $A l g_{\ell}^{*}$. Then the sequence (4.1.7) induces the distinguished triangle in $k k^{h}$

$$
\Omega A \rightarrow A \xrightarrow{\text { id }-j^{h}\left(\sigma^{-1}\right)} A \rightarrow A \rtimes_{\sigma} \mathbb{Z} .
$$

Proof. Write $\kappa: A \rightarrow \tau_{\sigma}$ for the canonical inclusion. The same argument (with the obvious modifications) as in [Cun05, Propositions 14.1 and 14.2] shows that there is a commutative diagram in $k k^{h}$

so the statement of the proposition follows.

## Cohn algebra of a graph

Let $E$ be a directed graph, that is, a cuadruple $\left(E^{0}, E^{1}, r, s\right)$ where $E^{0}$ is the set of vertices of the graph and $E^{1}$ is the set of edges, $r, s: E^{1} \rightarrow E^{0}$ are the source and range of the edges. A path in $E$ is a sequence of edges $e_{1} e_{2} \cdots e_{n}$ where $r\left(e_{i}\right)=s\left(e_{i+1}\right)$ for $i=1, \ldots, n-1$; in this case we call $n$ the length of the path. We define vertices to be paths of length 0 . We define $\mathcal{P}(E)$ as the set of finite paths in $E$; the range and source functions extend to $r, s: \mathcal{P}(E) \rightarrow E^{0}$ in the obvious way.

The Cohn path algebra $C(E)$ of a graph $E$ is the $*$-algebra generated by $E^{0}$ and $E^{1}$ subject to the relations

$$
\begin{aligned}
v \cdot w & =\delta_{v, w} v \\
v^{*} & =v \\
s(e) \cdot e & =e=r(e) \cdot e \\
e^{*} f & =\delta_{e, f} r(e)
\end{aligned}
$$

for $v, w$ in $E^{0}$ and $e, f \in E^{1}$.
There is a natural morphism $\varphi: \ell^{\left(E^{0}\right)} \rightarrow C(E)$ sending ev ${ }_{v}$ to $v$. For a vertex $v \in E^{0}$ such that $s^{-1}(v)$ is a finite set, we define

$$
C(E) \ni m_{v}= \begin{cases}\sum_{e \in s^{-1}(e)} e e^{*} & \text { if } s^{-1}(v) \neq \emptyset \\ 0 & \text { if } s^{-1}(v)=\emptyset\end{cases}
$$

The elements $m_{v}$ satisfy the identities

$$
\begin{gather*}
m_{v}=m_{v}^{*}, m_{v}^{2}=m_{v}, m_{v} w=\delta_{v, w} m_{v} \\
m_{v} e=\delta_{v, s(e)} e \quad\left(w \in E^{0}, e \in E^{1}\right) \tag{4.1.9}
\end{gather*}
$$

Write $C^{m}(E)$ for the algebra obteined from $C(E)$ by formally adjoining an element $m_{v}$ for each vertex in $E$ such that $s^{-1}(v)$ is infinite, subject to the identities (4.1). Let $q_{v}=v-m_{v} \in C^{m}(E)$ and write

$$
\left.\mathcal{K}(E)=\left\langle q_{v}\right| v \in E^{0} s^{-1}(v) \text { is finite non empty }\right\rangle \subseteq \widehat{\mathcal{K}}(E)=\left\langle q_{v} \mid v \in E^{0}\right\rangle
$$

for the corresponding ideals in $C^{m}(E)$.
Write $\widehat{i}: \ell^{\left(E^{0}\right)} \rightarrow \widehat{\mathcal{K}}(E)$ for the $*$-morphism that maps ev $v$ to $q_{v}$ and let $\xi$ : $C(E) \rightarrow C^{m}(E)$ be determined by

$$
\xi(v)=m_{v} ; \quad \xi(e)=e m_{r(e)} .
$$

The same aregument as in [CM18, Remark 4.9] shows that $\widehat{i}$ is a $k k^{h}$-equivalence. On other hand, the canonical inclusion $i: C(E) \rightarrow C^{m}(E)$ and $\xi$ determine a $*-$ quasi-homomorphism $(i, \xi): C(E) \rightrightarrows C^{m}(E) \unrhd \widehat{\mathcal{K}}(E)$. It is straightforward to see that $i \varphi=\xi \varphi+\widehat{i}$, therefore, using Proposition 1.5.3, we get

$$
\left.\left.j^{h}(i, \xi) j^{h}(\varphi)=j^{h}(i \varphi, \xi \varphi)=j^{h}(\xi \varphi, \xi \varphi)+j^{h} \widehat{i}, 0\right)=j^{h} \widehat{i}\right)
$$

Hence, $j^{h}(\varphi)$ has a left inverse $\left.j^{h} \widehat{i}\right)^{-1} j^{h}(i, \xi)$. We will show that $j^{h}(\varphi)$ is right inversible and therefore an isomorphism.

Consider $M_{\mathcal{P}(E)}$, the matrix ring indexed on the set $\mathcal{P}(E)$ and write $\epsilon_{\alpha, \beta}$ for its units. Define $\widehat{i}_{\tau}: C(E) \rightarrow M_{\mathcal{P}(E)} C(E)$ given on generators by

$$
\widehat{i}_{\tau}(v)=\epsilon_{v, v} \otimes v, \quad \widehat{i}_{\tau}(e)=\epsilon_{s(e), r(e)} \otimes e
$$

for $v \in E^{0}$ and $e \in E^{1}$. Also define $\widehat{\varphi}: \widehat{\mathcal{K}}(E) \rightarrow M_{\mathcal{P}(E)} C(E)$ by

$$
\widehat{\varphi}\left(\alpha q_{v} \beta^{*}\right)=\epsilon_{\alpha, \beta} \otimes v .
$$

There is a commutative diagram


Lemma 4.1.10. Let $\alpha \in \mathcal{P}(E)$ be a path and $i_{\alpha}: C(E) \rightarrow M_{\mathcal{P}(E)} C(E)$ be the inclusion in the $\alpha$-diagonal coordinate $\left(e_{\alpha, \alpha}\right)$. Then $\widehat{i}_{\tau}$ and $i_{\alpha}$ induce the same isomorphism in $k k^{h}$.

Proof. Using Lemma 1.6.8, the class of $i_{\alpha}$ does not depend on $\alpha$ since $i_{\alpha}$ and $i_{\beta}$ are conjugates. So we assume $\alpha=w \in E^{0}$. For each $v \in E^{0}, v \neq w$ write

$$
\begin{aligned}
a_{v} & =\left(1-t^{2}\right) \epsilon_{w, w}+\left(t^{3}-2 t\right) \epsilon_{w, v}+t \epsilon_{v, w}+\left(1-t^{2}\right) \epsilon_{v, v} \\
b_{v} & =\left(1-t^{2}\right) \epsilon_{w, w}+\left(2 t-t^{3}\right) \epsilon_{w, v}-t \epsilon_{v, w}+\left(1-t^{2}\right) \epsilon_{v, v} \\
a_{w} & =b_{w}=\epsilon_{w, w} .
\end{aligned}
$$

Define $C_{v}=c\left(a_{v}, b_{v}\right)$ as in Lemma 1.2.3. Then we have a $*$-homotopy $H: C(E) \rightarrow M_{ \pm} M_{\mathcal{P}(E)} C(E)[t]$ given by

$$
\begin{aligned}
H(v) & =C_{v} i_{+}\left(\epsilon_{v, v} \otimes v\right) C_{v} \\
H(e) & =C_{s(e)} i_{+}\left(\epsilon_{s(e), r(e)} \otimes e\right) C_{r(e)}^{*}
\end{aligned}
$$

which satisfies $\mathrm{ev}_{0} H=i_{+} \widehat{i}_{\tau}$ and $\mathrm{ev}_{1} H=i_{+} i_{w}$. Using hermitian stability we conclude that $\widehat{i}_{\tau}$ and $i_{w}$ are the same in $k k^{h}$.

Write $\mathfrak{A} \subseteq M_{\mathcal{P}(E)} C(E)$ for the $\ell$-submodule generated by

$$
\mathfrak{A}=\operatorname{span}\left\{e_{\gamma, \delta} \otimes \alpha \beta^{*} \in M_{\mathcal{P}(E)} C(E): s(\alpha)=r(\gamma), s(\beta)=r(\delta), r(\alpha)=r(\beta)\right\} .
$$

It is readily checked that $\mathfrak{A}$ is a $*$-subalgebra of $M_{\mathcal{P}(E)} C(E)$, and $\operatorname{Im} \widehat{\mathrm{i}}_{\tau}, \operatorname{Im} \widehat{\varphi} \subseteq \mathfrak{A}$. In particular, $\widehat{i_{\tau}}$ restricted to $\mathfrak{A}$ induces a monomorphism in $k k^{h}$.

Let $\Gamma_{\mathcal{P}(E)}$ be the cone algebra indexed by $\mathcal{P}(E)$. There is a $*$-morphism $\rho$ : $C^{m}(E) \rightarrow \Gamma_{\mathcal{P}(E)}$ given by

$$
\begin{aligned}
\rho(v) & =\sum_{s(\alpha)=v} \epsilon_{\alpha, \alpha} \\
\rho(e) & =\sum_{r(\alpha)=r(e)} \epsilon_{e \alpha, \alpha} \\
\rho\left(m_{w}\right) & =\sum_{\substack{r(\alpha)=w \\
\text { length } \alpha \geq 1}} \epsilon_{\alpha, \alpha} .
\end{aligned}
$$

Consider the $*$-morphism $\rho^{\prime}=\rho \otimes 1: C^{m}(E) \rightarrow \Gamma_{\mathcal{P}(E)} \widetilde{C^{m}(E)}$. Then $\mathfrak{A}$ is closed by multiplication by elements on the image of $\rho^{\prime}$ on both sides, so we can form the semi-direct product $C^{m}(E) \ltimes \mathfrak{A}$. Define the algebra $D$ as the quotient of $C^{m}(E) \ltimes \mathfrak{A}$ by the $*$-ideal

$$
\left\langle\alpha q_{v} \beta^{*},-\epsilon_{\alpha, \beta} \otimes v: v=r(\alpha)=r(\beta)\right\rangle .
$$

It is shown on CM18, Lemma 4.19] that $\mathfrak{A}$ maps injectively to $D$, meaning it is isomorphic to an ideal inside $D$. We then have a commutative diagram

where $\Xi$ is given by the composition of the inclusion $C^{m}(E) \rightarrow C^{m}(E) \ltimes \mathfrak{A}$ and the projection $C^{m}(E) \rtimes \mathfrak{A} \rightarrow D$. Define $\psi_{0}=\Xi, \psi_{1}=\Xi \xi$. It is easy to check that $\psi_{1}$ is orthogonal to $\widehat{i}_{\tau}$ so we can define $\psi_{1 / 2}=\psi_{1}+\widehat{i}_{\tau}$. These $*$-morphisms define *-quasi-homomorphisms

$$
\left(\psi_{0}, \psi_{1}\right),\left(\psi_{0}, \psi_{1 / 2}\right),\left(\psi_{1 / 2}, \psi_{1}\right): C(E) \rightrightarrows D \triangleright \mathfrak{A}
$$

Lemma 4.1.12. The $*$-quasi-homomorphism $\left(\psi_{0}, \psi_{1 / 2}\right)$ induces the zero map in $k k^{h}$.
Proof. For each $e \in E^{1}$ consider the matrices in $\Gamma_{\mathcal{P}(E)} C(E)[t]$

$$
\begin{gathered}
u_{t}^{e}=\epsilon_{s(e), s(e)}\left(1-t^{2}\right) \otimes e e^{*}+\epsilon_{e, s(e)} \otimes t e^{*} \\
v_{t}^{e}=\epsilon_{s(e), s(e)}\left(1-t^{2}\right) \otimes e e^{*}+\epsilon_{s(e), e} \otimes\left(2 t-t^{3}\right) e
\end{gathered}
$$

Observe that multiplying by $u_{t}^{e}$ and $v_{t}^{e}$ preserves $\mathfrak{A}$. Put $U_{t}^{e}=c\left(\left(0, u_{t}^{e}\right),\left(0, v_{t}^{e}\right)\right) \in$ $M_{ \pm} D[t]$ and define a $*$-homotopy $H: C(E) \rightarrow M_{ \pm} D[t]$ determined by

$$
\begin{array}{ll}
H(v)=i_{+}(v, 0) & \left(v \in E^{0}\right) \\
H(e)=i_{+}\left(e m_{r(e)}, 0\right)+U_{t}^{e} i_{+}\left(0, \epsilon_{s(e), r(e)} \otimes e\right) & \left(e \in E^{1}\right)
\end{array}
$$

Then $H$ is a $*$-homotopy between $\psi_{0}$ and $\psi_{1 / 2}$ and the $*$-quasi-homomorphism $\left(H, i_{+} \psi_{1 / 2}\right)$ is a $*$-homotopy between $\left(\psi_{0}, \psi_{1 / 2}\right)$ and $\left(\psi_{1 / 2}, \psi_{1 / 2}\right)$. Therefore, by Proposition 1.5.3 $j^{h}\left(\psi_{0}, \psi_{1 / 2}\right)$ is the zero morphism

Theorem 4.1.13. The morphism $\varphi: \ell^{\left(E^{0}\right)} \rightarrow C(E)$ is a $k k^{h}$-equivalence.
Proof. We have already checked that

$$
\left.j^{h} \widehat{i}\right)^{-1} j^{h}(i, \xi) j^{h}(\varphi)=j^{h}\left(\operatorname{id}_{\ell\left(E^{0}\right)}\right) .
$$

The commutative diagram (4.1.11) and the previous lemma show that

$$
j^{h}(\widehat{\varphi}) j^{h}(i, \xi)=j^{h}\left(\psi_{0}, \psi_{1}\right)=j^{h}\left(\psi_{0}, \psi_{1 / 2}\right)+j^{h}\left(\psi_{1 / 2}, \psi_{1}\right)=j^{h}\left(\psi_{1 / 2}, \psi_{1}\right)=j^{h}\left(\widehat{i}_{\tau}\right)
$$

And on other hand

$$
j^{h}(\widehat{\varphi}) j^{h}(i, \xi)=j^{h}\left(\widehat{i}_{\tau}\right) j^{h}(\varphi) j^{h}(\widehat{i})^{-1} j^{h}(i, \xi)
$$

hence

$$
\left.j^{h}\left(\widehat{i_{\tau}}\right)=j^{h}\left(\widehat{i}_{\tau}\right) j^{h}(\varphi) j^{h} \widehat{i}\right)^{-1} j^{h}(i, \xi)
$$

and since $j^{h}\left(\widehat{i}_{\tau}\right)$ is a monomorphism, this shows that

$$
j^{h}\left(\operatorname{id}_{C(E)}\right)=j^{h}(\varphi) j^{h}(\widehat{i})^{-1} j^{h}(i, \xi)
$$

as we wanted.

### 4.2 Comparison of with $K H^{h}$

Theorem 4.2.1 ([cf. CT07, Theorem 8.2.1]). The map from Example 3.2.34 gives an isomorphism

$$
K H_{0}^{h}(A) \cong k k^{h}(\ell, A)
$$

Proof. Suppose first $A$ unital, the general case follows from excision. Recall from Remark 2.1.6 the set of $*$-quasi-homomorphisms $q q(\ell, A)$ and the surjective map

$$
q q(\ell, A) \rightarrow K_{0}^{h}(A)
$$

Using Example 1.5.2, for $\left(e_{0}, e_{1}\right) \in q q(\ell, A)$, this $*$-quasi-homomorphism also induces a map $\left(e_{i}\right): q \ell \rightarrow{ }_{1} M_{2}^{h} M_{\infty} A$ which induces a map in $k k^{h}$,

$$
\begin{align*}
q q(\ell, A) & \rightarrow k k^{h}\left(q \ell,{ }_{1} M_{2} M_{\infty} A\right) \cong k k^{h}(q \ell, A)  \tag{4.2.2}\\
\left(e_{0}, e_{1}\right) & \mapsto\left[e_{i}\right]
\end{align*}
$$

Using Lemma 1.6.8, the map 4.2.2 sends equivalent classes in $K_{0}^{h}$ to the same morphism in $k k^{h}$, so the map then factors as


Using Corollary 4.1.4 we have that $\pi_{0}: q \ell \rightarrow \ell$ is induces a $k k^{h}$-equivalence, therefore we can compose to get

$$
K_{0}^{h}(A) \rightarrow k k^{h}(\ell, A)
$$

Using excision for $K_{n}^{h}$ for $n \leq 0$, this gives a map

$$
\alpha: K H_{0}^{h}(A)=\underset{n}{\operatorname{colim}} K_{0}^{h}\left(\Sigma^{n} \Omega^{n} A\right) \rightarrow \underset{n}{\operatorname{colim}} k k^{h}\left(\ell, \Sigma^{n} \Omega^{n} A\right)=k k(\ell, A) .
$$

Write

$$
\beta: k k^{h}(\ell, A) \rightarrow K H_{0}^{h}(A)
$$

for the map in Example 3.2.34. We will show that $\alpha$ and $\beta$ are inverses of each other.

Using the description of $\beta$ given in Remark 3.2.23, for a self-adjoint idempotent $e \in{ }_{1} M_{2}^{h} M_{\infty} A$, where $A$ is unital, is immediate to see that $\beta \alpha\left(c_{0}[e]\right)=c_{0}[e]$. This implies that $\beta \alpha$ is the identity in $K H_{0}^{h}(A)$.

To complete the proof we will show that $\alpha$ is surjective. Let $\varphi: J^{n}(\ell) \rightarrow$ $M_{\infty} M_{ \pm}^{\otimes k} A^{\text {sd}}{ }^{r} S^{n}$ represent a class in $k k^{h}(\ell, A)$. Using the map $\ell \rightarrow \Sigma^{n} J^{n}(\ell)$ in $k k^{h}$ consider the induced map on $K H_{0}^{h}$

$$
K H_{0}^{h}(\ell) \rightarrow K H_{0}^{h}\left(\Sigma^{n} J^{n}(\ell)\right)
$$

and write $e \in K H_{0}^{h}\left(\Sigma^{n} J^{n}(\ell)\right)$ for the image of the element $[1] \in K H_{0}^{h}(\ell)$. It follows from the definition of $\alpha$, that $\alpha([1])$ equals $\operatorname{id}_{\ell}$ in $k k^{h}(\ell, \ell)$. Let then $\kappa: q \ell \rightarrow$ ${ }_{1} M_{2} M_{\infty} \Sigma^{n} J^{n}(\ell)$ be the associated map to a $*$-quasi-homomorphism that induces $e$. Thus we have the follows equality in $k k^{h}\left(\ell, \Sigma^{n} J^{n} \ell\right)$

$$
\begin{equation*}
j^{h}(\kappa) j^{h}\left(\pi_{0}\right)^{-1}=\alpha(e) \tag{4.2.3}
\end{equation*}
$$

In turn, this shows that $j^{h}(\kappa) j^{h}\left(\pi_{0}\right)^{-1}$ is the morphism that induces the $k k^{h}$ equivalence $\ell \sim \Sigma^{n} J^{n}(\ell)$. On other hand, consider the commutative diagram in $k k^{h}$

where the right arrow is an isomorphism because of Corollary 3.2.8. It follows that $\left(\Sigma^{n} \varphi\right)_{*}(e) \in K H_{0}^{h}\left(\Sigma^{n} A^{\text {sd }^{r} S^{n}}\right) \cong K H_{0}^{h}(A)$ is the same class as $j^{h}(\varphi)_{*}([1]) \in K H_{0}^{h}(A)$. Therefore, using (4.2.3) we have following equalities in $k k^{h}(\ell, A)$ :

$$
\alpha\left(\varphi_{*}([1])\right)=\alpha\left(\left(\Sigma^{n} \varphi\right)_{*}(e)\right)=\left(\Sigma^{n} \varphi\right) \alpha(e)=\left(\Sigma^{n} \varphi\right) j^{h}(\kappa) j^{h}\left(\pi_{0}\right)^{-1}=\varphi
$$

This concludes the proof.

## Chapter 5

## Karoubi's Fundamental Theorem in $k k^{h}$

In this chapter we prove an analogous result to Theorem 2.3.3 in the category $k k^{h}$. For this, we develop some preliminary results about the induction and restriction functors in Section 5.1; we then define functors $U, V: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$ in Section 5.2, which are similar to the functors $U^{\prime}, V^{\prime}$ described in Section 2.3 and which in $k k^{h}$ give equivalent functors up to suspension/looping; we also show that functors $U, V$ satisfy analogous properties to the ones discussed in Section 2.3. Finally in Section 5.3 we use the functors $U, V$ and the properties that were discussed in Section 5.2 to conclude Theorem 5.3.1 and Theorem 5.3.7.

### 5.1 The functors ind, res and $\Lambda$

Recall the functors res : $k k^{h} \rightarrow k k$, and ind, ind ${ }^{\prime}: k k \rightarrow k k^{h}$ from Example 3.2.28.
Proposition 5.1.1. The functors res : $k k^{h} \leftrightarrow k k$ : ind are both right and left adjoint to one another; in other words, for every $A \in A l g_{\ell}^{*}$ and $B \in$ Alge there are natural isomorphisms

$$
k k(\operatorname{res}(A), B) \cong k k^{h}(A, \operatorname{ind}(B)) \text { and } k k^{h}(\operatorname{ind}(B), A) \cong k k(B, \operatorname{res}(A))
$$

Proof. Using Proposition 4.1.1, the functors ind, ind ${ }^{\prime}: k k \rightarrow k k^{h}$ are naturally equivalent, since one is right adjoint to res and the other is left adjoint, the result follows.

Remark 5.1.2. The unit and counit maps of the second adjunction in Proposition 5.1.1 are obtained from those of the adjunction between ind' and res using the projection $\pi$ : ind ${ }^{\prime} \rightarrow$ ind and the diagonal map ind $\rightarrow M_{2} \mathrm{ind}^{\prime}$ as in the proof of Proposition 4.1.1.

Let $\Lambda=\ell \oplus \ell$ equipped with involution

$$
(\lambda, \mu)^{*}=\left(\mu^{*}, \lambda^{*}\right)
$$

For $A \in A l g_{\ell}^{*}$ write $\Lambda A$ for $\Lambda \otimes A$ and $\Lambda: A l g_{\ell}^{*} \rightarrow A l g_{\ell}^{*}$ for the associated functor.
Recall from Section 2.3 that for $A \in A l g_{\ell}^{*}$ we write $\widehat{A}=\operatorname{ind}(\operatorname{res}(A))$. Then $\widehat{A} \cong \Lambda A$ via the isomorphism

$$
\begin{aligned}
\Lambda A & \rightarrow \widehat{A} \\
(x, y) & \mapsto\left(x, y^{*}\right) .
\end{aligned}
$$

Under this identification, the maps $\eta_{A}$ of (2.3.2) and $\varphi_{A}$ of 2.3.1) become the scalar extensions of the embeddings

$$
\begin{align*}
\eta: \ell & \rightarrow \Lambda  \tag{5.1.3}\\
x & \mapsto(x, x), \\
\phi: \Lambda & \rightarrow{ }_{1} M_{2}  \tag{5.1.4}\\
(x, y) & \mapsto\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) .
\end{align*}
$$

Remark 5.1.5. The functor induced by tensoring with $\Lambda: k k^{h} \rightarrow k k^{h}$ is left and right adjoint to itself since $\Lambda \cong$ ind res $(\ell)$. Also, Proposition 5.1.1 shows that

$$
k k^{h}(\cdot, \Lambda(\cdot)) \cong k k(\operatorname{res}(\cdot), \operatorname{res}(\cdot))
$$

In other words, $\Lambda$ represents $k k$. In particular, we have

$$
{ }_{\varepsilon} k k^{h}(\cdot, \Lambda(\cdot)) \cong k k^{h}(\cdot, \Lambda(\cdot))
$$

for any unitary $\varepsilon \in \ell$. Moreover by Remark 1.1.26, if $R \in A l g_{\ell}^{*}$ is unital and $\varepsilon \in R$ is central unitary and $\Psi \in R$ is an invertible $\varepsilon$-hermitian element, then we have an *-isomorphism

$$
\operatorname{ad}\left(1, \Psi^{-1}\right): \Lambda R \rightarrow \Lambda R^{\Psi} .
$$

In particular, we have $*$-isomorphisms

$$
\Lambda M_{ \pm} \cong \Lambda\left({ }_{\varepsilon} M_{2}\right) \cong \Lambda M_{2}
$$

Remark 5.1.6. Let $t: \Lambda \rightarrow \Lambda$ defined as $t(x, y)=(y, x)$.Then $t$ is a $*$-automorphism, with $t^{2}=\mathrm{id}_{\Lambda}$; moreover using Remark 5.1.5 one checks that the following diagram commutes:


Thus, using Lemma 1.6 .9 we get

$$
j^{h}\left(i_{2}\right)^{-1} j^{h}(\eta) j^{h}(\phi)=j^{h}\left(\mathrm{id}_{\Lambda}\right)+j^{h}(t) .
$$

### 5.2 The functors $U$ and $V$

Consider the path algebras (Example 1.4.5) of the maps (5.1.4) and (5.1.3),

$$
U=P_{\phi} \text { and } \quad V=P_{\eta} .
$$

For $A \in A l g_{\ell}^{*}$, write $U A=U \otimes A$ and $V A=V \otimes A$; these are, respectively, the path algebras of $\phi \otimes \operatorname{id}_{A}: \Lambda A \rightarrow{ }_{1} M_{2} A$ and $\eta \otimes \operatorname{id}_{A}: A \rightarrow \Lambda A$. Because $U$ and $V$ are flat $\ell$-modules, they define functors $U, V: k k^{h} \rightarrow k k^{h}$ by Example 3.2.29.

Remark 5.2.1. Recall the functors $U^{\prime}, V^{\prime}$ from Section 2.3. Using Remark 3.2.24 and the isomorphism $\widehat{A} \cong \Lambda A$, it follows that there are $k k^{h}$-equivalences

$$
\begin{aligned}
U & \sim \Omega U^{\prime} \ell \\
V & \sim \Omega V^{\prime} \ell .
\end{aligned}
$$

In Lemmas 5.2 .2 and 5.2 .6 we recast the equivalences of 2.3 .4 into the framework of $k k^{h}$.

Lemma 5.2.2. There are $k k^{h}$-equivalences

$$
\begin{aligned}
& U \Lambda \sim \Lambda \text { and } \\
& V \Lambda \sim \Omega \Lambda
\end{aligned}
$$

Proof. Let us prove the first equivalence. To ease the notation we omit the functor $j^{h}$. Let

$$
\Omega_{1} M_{2} \Lambda \rightarrow U \Lambda \rightarrow \Lambda^{2} \xrightarrow{\phi \otimes \mathrm{id}_{\Lambda}}{ }_{1} M_{2} \Lambda
$$

be the triangle in $k k^{h}$ induced by the extension which defines $U \Lambda$. We have an isomorphism

$$
\begin{align*}
\tau: \Lambda^{2} & \cong \Lambda \oplus \Lambda  \tag{5.2.3}\\
\left(x_{1}, x_{2}\right) \otimes\left(x_{3}, x_{4}\right) & \mapsto\left(x_{1} x_{3}, x_{2} x_{4}, x_{1} x_{4}, x_{2} x_{3}\right)
\end{align*}
$$

Put $\lambda_{1}=(0,1), \lambda_{2}=(1,0)$ and $\iota_{i}: \Lambda \rightarrow{ }_{1} M_{2} \Lambda$ as in Lemma 3.1.11. Let $\jmath_{i}: \Lambda \rightarrow$ $\Lambda \oplus \Lambda(i=1,2)$ be the inclusions in each coordinate. Observe that

$$
\left(\left(\phi \otimes \mathrm{id}_{\Lambda}\right) \circ \tau^{-1} \circ \jmath_{1}\right)(x, y)=\left(\begin{array}{cc}
(x, 0) & (0,0) \\
(0,0) & (0, y)
\end{array}\right) .
$$

The matrix

$$
u=\left(\begin{array}{cc}
(1,-1) & (1,1)  \tag{5.2.4}\\
(0,0) & (-1,1)
\end{array}\right) \in{ }_{1} M_{2}(\operatorname{ind}(\tilde{B}))
$$

is unitary and satisfies

$$
\operatorname{ad}(u) \circ \iota_{1}=\left(\phi \otimes \operatorname{id}_{\Lambda}\right) \circ \tau^{-1} \circ \jmath_{1}: \Lambda \rightarrow_{1} M_{2} \Lambda .
$$

So by Lemma 1.6.8, the following diagram commutes in $k k^{h}$


Similarly, the diagram

commutes in $k k^{h}$. Let $p r_{i}: \Lambda \oplus \Lambda \rightarrow \Lambda(i=1,2)$ be the projections on each coordinate. By Lemma 3.1.11 we have $j^{h}\left(\iota_{1}\right)=j^{h}\left(\iota_{2}\right)$; thus, using the previous diagrams, the following solid arrow diagram commutes in $k k^{h}$ :


Since the lower row is split, it completes to a triangle by Remark 3.2.4. Then, because the middle and right vertical arrows are isomorphisms in $k k^{h}$, we get that the dashed map is an isomorphism in $k k^{h}$.

Next we prove the second isomorphism of the statement. Let

$$
\Omega \Lambda^{2} \rightarrow V \Lambda \rightarrow \Lambda \xrightarrow{\eta \otimes i \mathrm{id}_{\Lambda}} \Lambda^{2}
$$

be the triangle in $k k^{h}$ induced by the extension defining $V \Lambda$. Let $t$ be as in 5.1.6; one checks that the following square commutes


The map $\jmath_{1}+\jmath_{2} t$ completes to a split distinguished triangle in $k k^{h}$

$$
\Omega \Lambda \rightarrow \Lambda \xrightarrow{\jmath_{1}+\jmath_{2} t} \Lambda \oplus \Lambda \xrightarrow{\pi_{1}-t \pi_{2}} \Lambda .
$$

Rotating the split triangle above we get the triangle

$$
\Omega(\Lambda \oplus \Lambda) \rightarrow \Omega \Lambda \xrightarrow{0} \Lambda \xrightarrow{\jmath_{1}+\jmath_{2} t} \Lambda \oplus \Lambda .
$$

Finally, (5.2.5) extends to a commutative diagram in $k k^{h}$ :


It follows that the dashed map is an isomorphism.

Lemma 5.2.6. There is a $k k^{h}$-equivalence

$$
\Sigma V U \sim \ell
$$

In particular, $V U \sim \Omega$.
Proof. As before, we omit $j^{h}$ from the notation. In view of Lemma 3.1.11, it suffices to show that $\Sigma V U$ is $k k^{h}$-equivalent to ${ }_{1} M_{2}$. Let

$$
\Omega \Lambda U \rightarrow V U \rightarrow U \xrightarrow{\eta \otimes \mathrm{id} U} \Lambda U
$$

be the triangle in $k k^{h}$ induced by the extension that defines $V U$. The $k k^{h}$ isomorphism between $\Lambda U=U \Lambda$ and $\Lambda$ established in Lemma 5.2 .2 is induced by mapping $\Lambda^{2}$ to $\Lambda \oplus \Lambda$ and then retracting onto the first coordinate. Using this fact we get that there is a map of triangles in $k k^{h}$


It follows that the dashed $k k^{h}$-map is an isomorphism.
Remark 5.2.7. By Example 3.2.29, the isomorphisms of Lemmas 5.2.2 and 5.2.6 induce $k k^{h}$-equivalences $U \Lambda A \sim \Lambda A, V \Lambda A \sim \Omega \Lambda A$ and $V U A \sim \Omega A$ for every $A \in A l g_{\ell}^{*}$.

### 5.3 Bivariant version of Karoubi's Fundamental Theorem

Recall from Corollary 2.3.6, the element $\theta \in K H_{2}^{h}\left({ }_{-1} M_{2}\left(U^{\prime}\right)^{2} \ell\right)$. Using Remark 5.2.1 and Theorem 4.2.1, we get an element $\theta \in k k^{h}\left(\ell,{ }_{-1} M_{2} U^{2}\right)$. Also, recall the product induced by the tensor product from Proposition 3.2.30.

Theorem 5.3.1. For all $A \in A l g_{\ell}^{*}$, the product with $\theta$ induces a natural isomorphism

$$
\theta_{A}:=\theta \otimes j^{h}\left(\mathrm{id}_{A}\right): j^{h}(A) \cong j^{h}\left({ }_{-1} M_{2} U^{2} A\right) .
$$

Proof. By Example 3.2.29, it suffices to show that $\theta=\theta_{\ell}$ is an isomorphism. Equivalently, we need to see that

$$
\begin{aligned}
k k^{h}(\ell, \theta)_{*}: k k^{h}(\ell, \ell) & \rightarrow k k^{h}\left(\ell,{ }_{1} M_{2} U^{2}\right) \text { and } \\
k k^{h}\left({ }_{-1} M_{2} U^{2}, \theta\right)_{*}: k k^{h}\left({ }_{-1} M_{2} U^{2}, \ell\right) & \rightarrow k k^{h}\left({ }_{-1} M_{2} U^{2},{ }_{-1} M_{2} U^{2}\right)
\end{aligned}
$$

are isomorphisms.

Taking into account hermitian stability and using Lemma 5.2.6, we see that $k k^{h}\left({ }_{-1} M_{2} U^{2}, \theta\right)_{*}$ is an isomorphism if and only if

$$
k k^{h}\left(\ell, \theta_{-1} M_{2}(\Sigma V)^{2}\right)_{*}: k k^{h}\left(\ell,_{-1} M_{2}(\Sigma V)^{2}\right) \rightarrow k k\left(\ell,_{-1} M_{2}(\Sigma V U)^{2}\right)
$$

is an isomorphism. Hence the theorem will follow if we prove that $\left(\theta_{A}\right)_{*}:=k k^{h}\left(\ell, \theta_{A}\right)$ is an isomorphism for all $A$.

By Proposition 3.2.35 and the isomorphism of Theorem 4.2.1, the map $\left(\theta_{A}\right)_{*}$ corresponds to the cup-product with $\theta$, which by Corollary 2.3 .6 is an isomorphism.

Corollary 5.3.2. Let $\varepsilon \in \ell$ be unitary. For every $A \in A l g_{\ell}^{*}$, there is a $k k^{h}$ equivalence

$$
{ }_{\varepsilon} M_{2} V A \sim{ }_{-\varepsilon} M_{2} U \Omega A
$$

Proof. It is immediate from Theorem 5.3.1, Lemma 5.2.6 and Remark 5.2.7 that $V A \sim{ }_{-1} M_{2} U \Omega A$. The corollary follows from this applied to ${ }_{\varepsilon} M_{2} A$ using the isomorphism

$$
{ }_{-1} M_{2}\left({ }_{\varepsilon} M_{2}\right) \cong M_{ \pm}\left(-\varepsilon M_{2}\right)
$$

and hermitian stability.
Lemma 5.3.3. Consider the $k k^{h}$-equivalences $U \Lambda \sim \Lambda$ of Lemma 5.2.2 and $M_{2} \Lambda \cong$ ${ }_{-1} M_{2} \Lambda$ of Remark 5.1.5. Then the following diagram commutes in $k k^{h}$ :


Proof. By part i) of Theorem 2.3.3, we have a commutative diagram in $k k^{h}$, where as usual we have omitted $j^{h}$,


Let $p=p r_{1} \circ \tau: \Lambda^{2} \rightarrow \Lambda$; we have

$$
p\left(\left(x_{1}, x_{2}\right) \otimes\left(x_{3}, x_{4}\right)\right)=\left(x_{1} x_{3}, x_{2} x_{4}\right) .
$$

Tensoring (5.3.4 with $\Lambda$ and composing the resulting vertical maps with those induced by $p$, we get another commutative diagram


Using the fact that the $k k^{h}$-equivalence $U \Lambda \sim \Lambda$ is induced by first mapping to $\Lambda^{2}$ and then applying $p$, we obtain a commutative diagram in $k k^{h}$


Tensoring with ${ }_{-1} M_{2}$ we obtain that the composite ${ }_{-1} M_{2} U^{2} \Lambda \rightarrow{ }_{-1} M_{2} \Lambda$ in diagram (5.3.5) is the map in the diagram of the proposition, finishing the proof.

## The bivariant 12 -term exact sequence

Definition 5.3.6 (cf. Definition 2.3.7). Let $A, B \in A l g_{\ell}^{*}, \varepsilon \in \ell$ unitary, ${ }_{\varepsilon} k k^{h}(A, B)$ as in Definition 3.2.31 and $t$ as in (5.1.6). Let $\eta: \ell \rightarrow \Lambda$ and $\varphi: \Lambda \rightarrow{ }_{1} M_{2}$ be as in (5.1.3) and (5.1.4). Put $\bar{\varphi}=j^{h}\left(\iota_{1}\right)^{-1} \circ j^{h}(\varphi)$. Set

$$
\begin{aligned}
{ }_{\varepsilon} W(A, B) & :=\operatorname{coker}\left({ }_{\varepsilon} k k^{h}(A, \Lambda B) \xrightarrow{\bar{\varphi}_{*}}{ }_{\varepsilon} k k^{h}(A, B)\right) \\
{ }_{\varepsilon} W^{\prime}(A, B) & :=\operatorname{ker}\left({ }_{\varepsilon} k k^{h}(A, B) \xrightarrow{\eta_{*}}{ }_{\varepsilon} k k^{h}(A, \Lambda B)\right) \\
k(A, B) & :=\left\{x \in k k^{h}(A, \Lambda B): x=t_{*} x\right\} /\left\{x=y+t_{*} y \text { for some } y\right\} \\
k^{\prime}(A, B) & :=\left\{x \in k k^{h}(A, \Lambda B): x=-t_{*} x\right\} /\left\{x=y-t_{*} y \text { for some } y\right\}
\end{aligned}
$$

If $\varepsilon=1$ we omit it from the notation. Note that $k$ and $k^{\prime}$ do not need the $\varepsilon$ prescript due to the isomorphism in Remark 5.1.5.

Theorem 5.3.7 ([cf. Kar80, Théorème 4.3]). There is an exact sequence


Proof. As above, we omit $j^{h}$ in our notation. Write $\nu$ for the map obtained upon tensoring the canonical map $U \rightarrow \Lambda$ with $\Omega_{-1} M_{2}$. Consider the following distinguished triangles in $k k^{h}$


Recall $\tau: \Lambda^{2} \cong \Lambda \oplus \Lambda$ from (5.2.3) and let $\widetilde{\tau}: \Omega_{-1} M_{2} \Lambda^{2} \rightarrow \Omega(\Lambda \oplus \Lambda)$ be the composite in $k k^{h}$ of the isomorphism Remark 5.1.5, the inverse of the corner inclusion, and
$\Omega \tau$. Using Lemma 5.3.3 we get the following commutative diagram in $k k^{h}$ :


A direct computation shows that $\tau \circ(\Lambda \eta): \Lambda \rightarrow \Lambda \oplus \Lambda$ is the diagonal map. Hence from the diagram we get following equality in $k k^{h}(\Omega \Lambda, \Omega(\Lambda \oplus \Lambda))$

$$
\begin{equation*}
\left.\widetilde{\tau}\left(\Omega_{-1} M_{2} \eta\right) \nu \theta \partial=\Omega\left(\left(\jmath_{1}-\jmath_{2}\right)\right)\left(\pi_{1}-t \pi_{2}\right)\left(\jmath_{1}+\jmath_{2}\right)\right) . \tag{5.3.8}
\end{equation*}
$$

Similarly, for $h_{-1}$ as in Example 1.1 .18 and $i_{2}$ the upper left-hand corner inclusion, we have in $k k^{h}\left(\Omega_{-1} M_{2} \Lambda, \Omega(\Lambda \oplus \Lambda)\right.$

$$
\widetilde{\tau}\left(\Omega_{-1} M_{2} \eta\right)=\Omega\left(\jmath_{1}+\jmath_{2}\right)\left(i_{2}\right)^{-1} \operatorname{ad}\left(1, h_{-1}^{-1}\right) .
$$

Therefore, composing both sides of the equality (5.3.8) on the left with the projection onto the first coordinate, we get

$$
\left.\left(\iota_{1}\right)^{-1} \operatorname{ad}\left(1, h_{-1}^{-1}\right) \nu \theta \partial=\Omega\left(\pi_{1}-t \pi_{2}\right)\left(\jmath_{1}+\jmath_{2}\right)\right)=\mathrm{id}-t .
$$

Thus, after using Remark 5.1.5 and hermitian stability, with the identification

$$
k k^{h}\left(\Omega \Lambda, \Omega_{-1} M_{2} \Lambda\right) \cong k k^{h}(\Omega \Lambda, \Omega \Lambda)
$$

the composition $\nu \theta \partial$ corresponds to id $-t$.
Because the $*$-algebras involved in the argument above are flat, for any $B \in A l g_{\ell}^{*}$ we map apply the functor $-\otimes B$ of Example 3.2 .29 to obtain the same identity in $k k^{h}(\Omega \Lambda B, \Omega \Lambda B)$.

Finally, apply the functor $k k^{h}(A,-)$ and the rest of the proof proceeds exactly as in Kar80, Théorème 4.3].

Corollary 5.3.9. Let $\mathfrak{C}$ and $H: A l g_{\ell}^{*} \rightarrow \mathfrak{C}$ be as in Proposition 3.2.22. The same argument as in Theorem 5.3.7 proves an analogous exact sequence for the groups obtained substituting $H(-)$ for $k k^{h}(A,-)$ in Definition 5.3.6.

## Bibliography

[Bas73] Hyman Bass. "Unitary algebraic K-theory". In: Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). 1973, 57-265. Lecture Notes in Math., Vol. 343 (cit. on pp. 21, 23).
[Bat11] Naoufel Battikh. "Some applications of the fundamental theorem for hermitian K-theory". In: Missouri J. Math. Sci. 23.1 (2011), pp. 48-64 (cit. on p. 21).
[CM18] Guillermo Cortiñas and Diego Montero. "Algebraic bivariant K-theory and Leavitt path algebras". In: Journal of Noncommutative Geometry, to appear (2018). eprint: 1806.09204 (cit. on pp. 50, 52).
[CMR07] Joachim Cuntz, Ralf Meyer, and Jonathan M. Rosenberg. Topological and bivariant K-theory. Vol. 36. Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2007, pp. xii+262. ISBN: 978-3-7643-8398-5 (cit. on pp. 15, 32).
[Cor11] Guillermo Cortiñas. "Algebraic v. topological $K$-theory: a friendly match". In: Topics in algebraic and topological $K$-theory. Vol. 2008. Lecture Notes in Math. Springer, Berlin, 2011, pp. 103-165. Dor: 10.1007/978-3-642-15708-0\_3. urL: https://doi.org/10.1007/978-3-642-15708-0_3 (cit. on pp. 16, 17, 22, 23).
[CT07] Guillermo Cortiñas and Andreas Thom. "Bivariant algebraic $K$-theory". In: Journal für die Reine und Angewandte Mathematik. [Crelle's Journal] 610 (2007), pp. 71-123. ISSN: 0075-4102. DOI: 10.1515/CRELLE. 2007. 068, URL: https://doi.org/10.1515/CRELLE. 2007.068 (cit. on pp. iv, 9, 10, 12, 16, 22, 29, 31, 34, 38, 40, 41, 47, 53).
[Cun05] Joachim Cuntz. "Bivariant $K$-theory and the Weyl algebra". In: KTheory 35.1-2 (2005), pp. 93-137. ISSN: 0920-3036. DOI: $10.1007 /$ s10977-005-3464-0. URL: https://doi.org/10.1007/s10977-005-3464-0 (cit. on pp. iv, 49).
[Cun87] Joachim Cuntz. "A new look at K K-theory". In: K-Theory 1.1 (1987), pp. 31-51. ISSN: 0920-3036. DOI: $10.1007 /$ BF00533986, URL: https : //doi.org/10.1007/BF00533986 (cit. on p. iv).
[Ell14] Eugenia Ellis. "Equivariant algebraic $k k$-theory and adjointness theorems". In: J. Algebra 398 (2014), pp. 200-226. ISSN: 0021-8693. DOi: 10.1016/j.jalgebra.2013.09.023, uRL: https://doi.org/10.1016/ j.jalgebra.2013.09.023 (cit. on pp. v, 18, 29).
[Ell18] Eugenia Ellis. "Algebraic quantum kk-theory". In: Comm. Algebra 46.8 (2018), pp. 3642-3662. ISSN: 0092-7872. DOI: 10.1080/00927872.2018. 1424877. URL: https://doi.org/10.1080/00927872.2018.1424877 (cit. on pp. v, 29).
[Gar13] Grigory Garkusha. "Universal bivariant algebraic $K$-theories". In: J. Homotopy Relat. Struct. 8.1 (2013), pp. 67-116. ISSN: 2193-8407. DOI: 10. 1007/s40062-012-0013-4. URL: https://doi.org/10.1007/s40062-012-0013-4 (cit. on p. v).
[Gar14] Grigory Garkusha. "Algebraic Kasparov K-theory. I". In: Doc. Math. 19 (2014), pp. 1207-1269. ISSN: 1431-0635 (cit. on p. v).
[Gar16] Grigory Garkusha. "Algebraic Kasparov K-theory, II". In: Ann. K-Theory 1.3 (2016), pp. 275-316. ISSN: 2379-1683. DOI: 10.2140/akt. 2016.1. 275. URL: https://doi.org/10.2140/akt.2016.1.275 (cit. on p. v).
[GJ99] Paul G. Goerss and John F. Jardine. Simplicial homotopy theory. Birkhäuser, 1999 (cit. on p. 10 ).
[Hig87] Nigel Higson. "A characterization of KK-theory". In: Pacific J. Math. 126.2 (1987), pp. 253-276. ISSN: 0030-8730. URL: http://projecteuclid. org/euclid.pjm/1102699804 (cit. on p. iv).
[Kar80] Max Karoubi. "Le théorème fondamental de la $K$-théorie hermitienne". In: Ann. Math. 112 (1980), pp. 259-282 (cit. on pp. vi, 27, 28, 61, 62).
[Kas80] G. G. Kasparov. "The operator $K$-functor and extensions of $C^{*}$-algebras". In: Izv. Akad. Nauk SSSR Ser. Mat. 44.3 (1980), pp. 571-636, 719. ISSN: 0373-2436 (cit. on p. iv).
[KV73] Max Karoubi and Orlando Villamayor. " $K$-théorie algébrique et $K$ théorie topologique. II". In: Math. Scand. 32 (1973), pp. 57-86. ISSN: 0025-5521. DOI: $10.7146 /$ math.scand.a-11446. URL: https://doi. org/10.7146/math.scand. a-11446 (cit. on pp. 5, 21, 22).
[Lod76] Jean-Louis Loday. " $K$-théorie algébrique et représentations de groupes". In: Ann. Sci. École Norm. Sup. (4) 9.3 (1976), pp. 309-377. ISSN: 00129593. URL: http://www. numdam.org/item?id=ASENS_1976_4_9_3_ 309_0 (cit. on pp. v, 20, 21, 23, 24).
[Nee01] Amnon Neeman. Triangulated categories. 148. Princeton University Press, 2001 (cit. on p. 37).
[Rod20] Emanuel Rodríguez Cirone. "The loop-stable homotopy category of algebras". In: J. Algebra 555 (2020), pp. 157-222. ISSN: 0021-8693. DOi: 10.1016/j.jalgebra.2020.02.024. URL: https://doi.org/10.1016/ j.jalgebra.2020.02.024 (cit. on p. v).
[Wag72] J. B. Wagoner. "Delooping classifying spaces in algebraic $K$-theory". In: Topology 11 (1972), pp. 349-370. ISSN: 0040-9383. DOI: 10.1016/0040-9383(72)90031-6. URL: https://doi.org/10.1016/0040-9383(72) 90031-6 (cit. on p. 39).
[Wei13] Charles A. Weibel. The $K$-book. Vol. 145. Graduate Studies in Mathematics. An introduction to algebraic $K$-theory. American Mathematical Society, Providence, RI, 2013, pp. xii+618. ISBN: 978-0-8218-9132-2. DOI: $10.1090 / \mathrm{gsm} / 145$. URL: https://doi.org/10.1090/gsm/145 (cit. on p. 24).

