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Hermitian Bivariant Algebraic K-theory
Summary

Consider a commutative ring ¢ with involution with an element A € ¢ such that
A+ A* = 1; write Alg; for the category of /-algebras with involution compatible with
that of ¢, which we call %-algebras. In this thesis we develop a triangulated category
kk" and a functor j" : Alg; — kk" which we call bivariant algebraic hermitian K-
theory; the functor ;" satisfies homotopy invariance, matrix and hermitian stability
and is an excisive homology theory for extensions which are linearly split.

We also define a Weibel style homotopy invariant hermitian K-theory which we
denote as K H". We show that the category kk" recovers K Hl' as a representable
functor

We construct functors .U and .V which correspond to desuspensions of the functors
U’ and V' in Karoubi’s Fundamental Theorem: for a unital R € Alg; there is an
element 6, € K%(U”?R) which the cup product induces an isomorphism

KL (VI(R)) = K (U'(R)).

We prove an adjunction between kk" and the bivariant algebraic K-theory kk as
defined by Cortinas and Thom and use it to prove a version of Karoubi’s theorem
in kk": the product with the image of 6y in K H(U?¢) induces an isomorphism in
kk"

VA = (UA)

for any A € Alg;. This allows us to obtain a bivariant homotopic version of the
classical 12-term exact sequence of Karoubi for hermitian K-theory.

Keywords: hermitian algebraic K-theory, Karoubi’s fundamental theorem, ho-
motopy hermitian K-theory, bivariant algebraic K-theory, bivariant Witt groups
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K-teoria Algebraica Hermitiana Bivariante
Resumen

Consideremos un anillo conmutativo ¢ con involucién con un elemento A € £ tal que
A+ A" = 1; sea Alg; la categoria de f-algebras con involucién compatible con la de ¢
que llamamos *-algebras. En esta tesis desarrollamos una categoria triangulada kk”
y un funtor j" : Alg; — kk" que llamamos K -teoria hermitiana algebraica bivari-
ante; el funtor j” satisface invarianza homotdpica, estabilidad matricial y hermitiana
y es una teoria de homologia escisiva para extensiones que se parten linealmente.

También definimos una version invariante homotoépica estilo Weibel de la K-
teorfa hermitiana que notamos como K H”. Mostramos que la categoria kk" recupera
K H[ como funtor representable

Construimos funtores .U y .V que se corresponden con desuspensiones de los fun-
tores Uy V' en el Teorema Fundamental de Karoubi: para R € Alg; unital hay un
elemento 0y € K2((U”)R) cuyo producto cup induce un isomorfismo

KIVI(R) = K2 (U'(R)).

Probamos una adjuncién entre kk" vy la K-teoria algebraica bivariante kk definida
por Cortinas y Thom y la usamos para probar una versién del teorema de Karoubi
en kk": el producto con la imagen de 6§y en KH(U?() induce un isomorfismo en
kk"

VA = QMU A)

para todo A € Alg;. Esto nos permite obtener una versién bivariante homotoépica
de la clésica sucesion de 12 términos de Karoubi para la K-teoria hermitiana.

Palabras clave: K-teoria hermitiana algebraica, teorema fundamental de Karoubi,
K-teoria hermitiana homotépica, K-teoria algebraica bivariante, grupos bivariantes
de Witt
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Introduction

Since the introduction of Kasparov’s bivariant K-theory for C*-algebras K K [Kas80],
Higson’s theorem on the universality of K K [Hig87] and Cuntz’s foundational work
[Cun87; |Cun05], the development of bivariant versions of K-theory has been useful
and important in many computations. This ranges from applications to the Baum-
Connes conjecture, classification theory of C*-algebras such as the Elliott program
and the Kirchberg-Philips theorem but also to put some constructions in different
versions of K-theory — between different topological versions such as C*-algebras,
Banach (*-)algebras and bornological algebras and also algebraic K-theory — on
common ground. It also has been very fruitful in proving some cases of the Baum-
Connes conjecture.

Cortinas and Thom developed in |[CTO07] a bivariant version of algebraic K-
theory with many similarities to K K, adapting them to an algebraic setting. Let
¢ be a commutative ring and write Alg, as the category of (associative) algebras
over {. Also fix an underlying category 4 for Alg, such as that of sets or that of
¢-modules and a forgetful functor F' : Alg, — 4. Cortinas and Thom construct a
triangulated category kk which has the same objects as Alg, together with a functor
j : Algy — kk which is the identity on objects and satisfies:

e Matrix stability: the natural inclusion of A < M, A on the upper left corner
maps to an isomorphism through j.

e Polynomial homotopy invariance: the inclusion A — A[t] as constants maps
to an isomorphism through j.

e The functor j is an excisive homology theory for extensions which are split in
31, that is, for an extension

0—A—-B—-C—=0

in Alg, which has a section F(C') — F(B), there is a natural (with respect to
extensions) map 0 : Qj(C) — j(A) such that

Qj(C) = j(A) = j(B) = j(C)
is a triangle in kk.

Moreover, for any triangulated category ¥ and functor H : Alg, — ¥ which satisfies
the above mentioned properties, there is a unique triangulated functor H : kk — %
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such that H = H o j. A very important property of kk is that it recovers Weibel’s
homotopy K-theory as a representable functor

There have been alternative constructions of kk by Garkusha — who also con-
structed bivarant K-theory versions without matrix stability — [Garl3; |Garl4}
Garl6] and Rodriguez Cirone [Rod20]. Also, there have been generalizations of
the original construction of kk to algebras with an action of a group and group
graded algebras |Ell14] and to algebras with quantum group actions |EIl18].

In this thesis we construct a generalization of kk which incorporates algebras
with involution: for a ring R, an involution is a ring morphism (—)* : R — R with
(r*)* = r. Suppose now that ¢ has an involution and an element A which satisfies

A+ A" =1 (Intro.1)

Consider the category Alg; of (-algebras with involution compatible with the invo-
lution of /.

Let R € Alg; unital and ¢ € R central unitary (i.e. ¢! = ¢*). An element
¢ € R is called e-hermitian if ¢* = £¢. For an invertible e-hermitian element, we
define R? as the *-ring which is the same as R as rings but with involution

r? = ¢ lr*o.

When A < R is a *-ideal, this involution restricts to a new involution in A and we
also write A? for A equipped with involution. We say a functor H : Alg; — € is
hermitian stable if for any R € Alg; unital and A < R and invertible e-hermitian
elements ¢, € R the inclusion on the upper left corner

ig: A® = My(A)*¥

is mapped to an isomorphism through H.

In Chapter 3 we construct a triangulated category kk” which has the same objects
as Alg; together with a functor 5" : Alg; — kk" which is the identity on objects. One
of the key pieces in this construction is the ability to fix some standard polynomial
homotopies commonly occurring on K-theory (such as rotation homotopies) which
are not involution preserving; this is mainly fixed with Lemma [I.2.3} the existence
of the element is essential. The main result in Chapter 3 is the following:

Theorem (Theoremand Theorem There is a triangulated category
kk" and an excisive homology theory functor j* : Alg; — kk™ which is matricially
and hermitian stable and polynomial homotopy invariant.

Furthermore, the functor j" : Alg; — kk" is universal between the matricially
and hermitan stable, polynomial homotopy invariant excisive homology theories.

For a unital ring with involution R and a central unitary element ¢ € R, recall
the hermitan algebraic K-theory spectra . K"(R) as defined in [Lod76]. In Chapter
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2 we define a Weibel style homotopy invariant version of . K”(R) which we denote
KH!R).

In Chapter 4 we discuss some standard computations such as classification of
the image through ;" of coproducts, the Toeplitz algebra, and the Cohn algebra
of a finite graph and also prove the algebraic analogue of the Pimsner-Voiculescu
sequence. We also show the following result:

Theorem(Theorem [4.2.1)) There is a natural isomorphism
homy,.n (¢, A) = KHIA). (Intro.2)

For a unital x-ring R, there are natural maps between the K-theory spectra and
the hermitian K-theory spectra induced by the hyperbolic and the forgetful maps

hyp :K(R) — .K"(R)  forg:.K"(R) — K(R)

Write .U(R) and .V(R) for the homotopy fibers of these maps. Assume that R has
an element as in (Intro.1)). Karoubi’s Fundamental Theorem for hermitian K-theory
[Kar80] shows that there are natural homotopy equivalences

V(R) ~ Q_U(R).

Moreover, Karoubi constructs functors U’, V' for rings with involutions such that
there are homotopy equivalences

K" U'R) ~ U(R) and .K"(V'R) ~ V(R).
Karoubi also shows that there is a natural equivalence
K" (UV'R) ~ _.K"(R).
Thus, we can rephrase Karoubi’s fundamental theorem as the equivalence
KMR) ~ Q? _K"((U)?R). (Intro.3)

The equivalence is induced by the cup product with an element in 6, €
LK(UA(2)).

In Chapter 5 we show that kk” has a adjunction with kk which is analogue to the
maps hyp and forg in the homotopy invariant setting. Then we construct functors
U,V o Alg; — Alg; such that composing with the functor of homotopy hermitian
algebraic K-theory we recover the homotopy versions of .} and .U up to a degree
shift. Using the aforementioned adjunction we show that .U and .V have analogue
properties in kk" to those of U’ and V' for hermitian K-theory. Write 6 for the
image of 0y in _y K H}(U?{). The main result of Chapter 5 is

Theorem (Theorem and Corollary [5.3.2) The product with € induces for
every A € Alg; an isomorphism in kk"

JHA) = (L U(A)), (Intro.4)

vi
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which gives an isomorphism in kk"
J"(VA) = UA).

Let R be a unital x-ring with an element A\ which satisfies . The invo-
lution of R induces an involution g — (¢*)~! in GLy(R) which in turn induces a
natural action of Z/2 in K,(R); for x € K,,(R) write T for this action. Recall the
Witt and coWitt groups W, (R) and W/ (R) and write k,(R) and k], (R) for the
Z/2-Tate cohomology groups of K,(R) with the aforementioned action. Using the
equivalence , Karoubi shows that there is a 12-term exact sequence:

kn+1(R) — —eWn+2(R) — serz(R) — k;z+1(R) — _5W7l7,+1(R) — —EWH(R)

I |

Wn+1(R) A WTIL+1(R) A k;LJrl(R) — 75WT/L(R) — Wn+2(R) — kn+1(R)

In the end of Chapter 5, we show that for bivariant adaptation of these groups
(Definition [5.3.6) and we have a 12-term exact sequence (Theorem [5.3.7)):

kni1(A,B) — _ Wy i92(A,B) — W)(A,B) — ki, (A, B) — _ W, (A, B) = _W,1(A,B)

[ |

Wos1(A, B) «— W, (A, B) «— k(A B) < _ W, (A, B) $— Wy2(A, B) «— k.(A, B)

The rest of this thesis is outlined the following way. In Chapter 1 we discuss
preliminary concepts and prove some useful lemmas that we will use throughout the
thesis. In Chapter 2 we recall the construction of hermitian K-theory, we define
K H" and prove some of its basic properties; we also discuss the product structure
of K" and how it passes to K H". We end the chapter recalling Karoubi’s Funda-
mental Theorem for hermitian algebraic K-theory. In Chapter 3 we construct the
category kk" and the functor j" : Alg; — kk"; first we prove the necessary technical
lemmas to construct the morphism sets and then we show some of its properties as a
triangulated category and how j" is a universal excisive homology theory with ma-
trix and hermitian stability and homotopy invariance. In Chapter 4 we proceed to
develop some computations as a matter of examples and show . In Chapter
5 we show the adjunction between kk" and kk and construct the functors U, V; we
prove some of their properties in order to show and obtain the 12-term
exact sequence from it.
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Chapter 1

Preliminaries

1.1 Rings and algebras with involution

Fix a commutative ring ¢. An /(-algebra is a ring A together with a symmetric
/-module structure such that the product is ¢-bilinear.

Suppose ¢ has an involution: a ring isomorphism x : ¢ — (°? = [, such that
(x*)* = z, for all z € £. A x-algebra over /, is an (-algebra A together with an
involution % : A — A that is semilinear with respect to the module action:

(za)* = x"a* for x € £ and a € A.

An (-algebra morphism is a ring morphism that is also an /~-bimodule morphism. We
write Alg, for the category of (-algebras with (-algebra morphisms and Alg; for the
category of x-algebras over ¢ with s-morphisms, that is, f-algebra morphisms that
preserve the involution. A *-ideal in a x-algebra is a two-sided ideal that is closed
under the action of ¢ and under the involution. For a *-ideal I < A, the quotient
A/I is also a x-algebra with the induced involution.

Example 1.1.1. For any commutative ring ¢, the identity map id : / — /¢ is an
involution; it is called the trivial involution. In the case of ¢ = Z it is the only
involution and Algz = Rings is the category of rings; the category Rings* = Alg;
is called the category of *-rings.

Example 1.1.2. Let A and B be x-algebras over . The tensor product A ®, B is
a x-algebra over ¢ with involution (a ® b)* = a* ® b*. In some cases we write LA
for L ®; A and write L : Alg; — Alg; for the functor given by tensoring with L.
Except when explicitly noted, all tensor products will be over /.

Example 1.1.3. Write M, for the ring of n x n matrices over ¢. The (-algebra M,
has a natural involution (a;)* = aj;.
More generally, let X be a set and define

I'sx ={a: X x X — {:im(a) is finite and
AN st. Vee X {ye X :a(z,y) # 0}, {y € X :a(y,x) # 0}| < N}.



1.1. Rings and algebras with involution 2

with convolution product and conjugate transposition

(ab)(z,y) = Y alz, 2)b(=, y),

zeX
a*(r,y) = aly,z)"

make I'x a x-algebra over /. We write Mx <I'x for the x-ideal of finitely supported
functions and Y x for the quotient I'x /My. We also write I' = 'y, M, = My and
> = Y. When X has cardinality n then M, = My = I'x. For a x-algebra A
we write 'y A, Mx A and Y x A for the tensor product of I'xy, My and Xx with A
respectively as in Example . We also write X% for X¢"

Example 1.1.4 (Unitalization). Let A be a s-algebra and define A = A @ ¢ as an
(-bimodule with the following multiplication and involution

(a,x)(b,y) = (ab+ ay + xb, xy)
(a,z)" = (a*, x").

The *-algebra A is unital and has a natural morphism A — A, a — (a,0) which
maps A isomorphically to an ideal in A. The quotient Z/A is isomorphic to ¢ and
the quotient map A= lis split by z — (0, z); whenever A is unital the unitalization
Ais isomorphic to A x ¢ by means of this splitting.

Example 1.1.5 (Amalgamated coproducts and sums). Let A, B,C € Alg; and
i:C — Aand j:C — B two smorphisms with retractions o : A — C and
f:B— C (ie. ai=1ide and fj = id¢). The amalgamated coproduct of A and B
over C'is the /-module

Alle B:=C®kera @ ker B @ (kera ®g ker ) @ (ker f ®g kera) @ - - -

Where each summand beyond the first is given by the tensor product of ker a and
ker 6 in all possible orderings with an increasing number of tensor factors. This
defines an (-algebra with product given by concatenation of elementary tensors and
extended by bilinearity. It also has an involution given by the involutions of A, B
and C and twisting the elementary tensors appropriately. In the case C' = 0, we
write A IT B; this is simply the coproduct of A and B as f-algebras.

The direct sum all tensors with two or more factors forms an ideal K < Allo B
and we define the amalgamated direct sum as the quotient

A®¢c B = Allc B/K.

When A = B and C = 0 we write Q(A) := AII A and 9,41 : A — QA for
the natural inclusions of A. The identity of id4 : A — A induces a *-morphism
ida ITidy : Q(A) — A and we write g(A) for the kernel of this map. There are also
two natural maps 7o, 7 : ¢(A) — A which are the restrictions of id4 I10 and 01Tid 4

to q(A).
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Example 1.1.6 (Free involutions and induction). Let A be a ring. Define inv(A) =
A @ A°P with involution (a,b)* = (b,a). This gives rise to an equivalence

inv : Alge = Algiy

with inverse A +— (1,0)A. There is a natural x-morphism 7 : ¢ — inv(¢) defined
by n(z) = (z,x*). We can restrict the action of an inv(¢)-algebra to ¢ through 7.
Composing the functor inv with the restriction of scalars gives rise to a functor

ind : Alge — Alg,.

This functor is right adjoint to the forgetful functor res : Alg; — Alg, with unit and
counit given by

na:A—ind(res(4)) = A A” (1.1.7)
a— (a,a”) and
pry :res(ind(B)) = B& B®” - B (1.1.8)
(z,y) =z

respectively.

Similarly, for an f-algebra A define ind'(A) := A Il A with involution which
permutes the copies of A. This gives a functor ind’ : Alg, — Alg; which is left
adjoint to res: Alg; — Alg, with unit and counit given by

Na: A—res(ind(A) = AT A (1.1.9)
a— to(a) + t1(a) and
idp IT0 : ind'(res(B)) = BIIB — B (1.1.10)

respectively.

Definition 1.1.11 (Hermitian elements and involutions). Let R be a unital ring
with involution and € € R. We say that ¢ is unitary if it is invertible and &* = ¢!
(e.g. e = £1).

For ¢ € R central unitary and ¢ € R, we say that ¢ is e-hermitian if ¢ = e¢*. If
¢ € R is invertible and e-hermitian then we can define a new involution in R by

r = r? =g lr*e.

We write R? for the ring R with this new involution. If S is another unital *-algebra
over ¢ and 1 is n-hermitian and invertible then ¢ ® ¢ € R ®,; S is € ® n-hermitian
and invertible and

(R®;S)*®Y = R? @ SV. (1.1.12)

Remark 1.1.13. Let R be a unital ring, A < R a *-ideal, ¢ € R central unitary
and ¢ € R an invertible e-hermitian. The involution defined in Definition [1.1.11
restricts properly to an involution on A and we write A? for A equipped with this
new involution.
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Definition 1.1.14. Let A be a ring with involution and u € A unitary. The map
ad(u) : A — A

T uzut

defines a *-isomorphism with inverse ad(u*).

Remark 1.1.15. Let R be a unital x-algebra over ¢, ¢ € R central unitary and
¢, € R invertible e-hermitian. If there exists u € R invertible such that v = u*¢u
then ad(u) : RY — R? is a *-isomorphism.

Example 1.1.16. Let Ry be an (-algebra and R = inv(Ry) € Alg;. If ¢ = (g9,€1) €
R is central unitary then ¢y and €; are central and

(1,1) = (g0,21)"(c0, 1)
= (e1,¢€0)(c0,€1)
= (€180, €0€1);

therefore, e, = £;'. We can deduce from this that any invertible e-hermitian element
¢ € R is of the form

¢ = (¢0> 5(;l¢0) = (17 ¢O)*(17 8(;1>(1> ¢0)
It follows from Remark [I.1.15| that R? = R(150") = R since g£o is central.

Example 1.1.17. Let P be a finitely generated projective /~-module. An e-hermitian
bilinear form is a map ¢ : P x P — { which is ¢-linear in the first coordinate and
satisfies

U(z,y) = e(y, x)".
We say that ¢ is non-degenerate if ¥(—,y) : P — P* is an isomorphism for all
y € P; in this case we say that the pair (P, 1)) is an e-hermitian module.
For an e-hermitian module (P, ), the non-degenracy of 1) induces an involution
on the f-algebra of ¢-linear endomorphisms End(P). This involution is determined
by the following property: for T € End(P) and z,y € P we have

Y(T(x),y) = Y(x, T (y)).

If P = ("is free, then End(P) = M, and the involution induced by the e-
hermitian form v, corresponds to an e-hermitan invertible h, and the involution

().

Example 1.1.18. Consider the invertible —1-hermitian element

1 0
hy = (O _1> € M.

We write ML = (My)"* as in Example [1.1.11] and M. A for M. @ A. We write
ty,i_ : £ — M, for the x-morphisms defined by the upper left and lower right
corner inclusions respectively.
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The element hy corresponds to the hyperbolic hermitian module: for H(¢) = ¢,
the —1-hermitian form

h((‘rlvyl)a <x27 y2)) = T1Y2 — T2Y1-

It is well known [see for example KV73| Theorem 1.4] that for any hermitian module
(P, 1)) then (P, —1) is also a hermitian module and

(Py)d (P,—y) =X H({) ® P.

in such a way that the bilinear forms are preserved through this isomorphism.
Similarly, let ¢ € ¢ be central unitary and consider the invertible e-hermitian

element
0 ¢
e (02 e

We write .My = (M) and .My A for .My ® A.
Due to (|1.1.12) we have the identity

My My = o M M. (1.1.19)

Let X be an infinite set and fix a bijection {1,2} x X = X. This bijection
together with (|1.1.19)) induces *-isomorphisms

oMy My My = My My gyx = e My M. (1.1.20)

Example 1.1.21 (Polynomial *-algebras). We consider the polynomial ring £[t]
with the involution which fixes ¢. For any 1-hermitian element o« € A the evaluation
map ev,, : {[t] — ¢ that maps ¢t — « is a *-morphism.
We write
P = ker(evq : £[t] — ¢) and
Q =ker(evy : P = 0).
for the path and loop algebras respectively. We also consider the Laurent polynomial
algebra ([t, t~!] with involution that interchanges t and t~!, t* = t~!. For any unitary
element u € ¢ we have an evaluation map ev, : {[t,t~'] — ¢ which maps t — u.
As with matrices we write A[t], A[t,t7!], PA and QA for {[t| @, A, ([t t71] @, A,
P ®¢ A and Q ® A respectively. We write Q" for Q®".

Example 1.1.22 (Simplicial x-algebras). Let n € Ny and
Uty ...t =] @ @ ([t,)
be the polynomial algebra in n variables. We define
(A" = Ltg, .. ]/t + -+t — 1),

b}
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This defines a simplicial x-algebra

A AP Alg,

[n] — (2",
and we write A2 for /2 ® A. Write & for the category of simplicial sets. Let X € &
and B, : A’ — Alg; be a simplicial -algebra. The set homg(X, B,) is an *-algebra.

For X € & and A € Alg; we define the x-algebra of functions on the simplicial set
X as

AX = homg (X, A%).

A pointed simplicial set (X, z) is a simplicial set X together with a map z : pt =
A% — X. Write ev, : AX — AP! for the induced *-morphism and define

AKX = ker(ev,).

Remark 1.1.23. Some of the x-algebras mentioned in Example|l.1.21]|are particular

cases of Example [1.1.22;

AST > AL,
AP >~ p A

and writing S* = A!'/AP for the simplicial circle,
AP > 04,
Throughout this thesis, we will often assume the following:
A-assumption 1.1.24. the ring contains an element A such that A + A\* = 1.

Example 1.1.25. The M-assumption [1.1.24] is satisfied for example when 2 is in-
vertible in putting A = 1/2. Another example is when ¢ = inv({;) for some ring ¢,
and A = (1,0).

Remark 1.1.26. Suppose that ¢ satisfies the A\-assumption [1.1.24] and let € € £ be

unitary, R be a unital *-algebra and ¢ € R be an invertible e-hermitian element.
Recall the matrices h4 and h. from Example[1.1.18, The matrix

Uy = (A; _Al*qb*) (1.1.27)

satisfies u}(h. ® 1)uy = hy ® ¢, whence ad(uy) : ML R? — .M, R is a x-isomorphism.
Taking R=/and ¢ = ¢ =1 we get My = 1 M.

6



1.2. Algebraic homotopies 7

1.2 Algebraic homotopies

Definition 1.2.1. Let A,B € Alg; and f,g : A — B two *-morphisms. We say
that f and g are elementary (algebraically) x-homotopic if there exists a *-morphism
H : A — Blt], called a x-homotopy, such that the diagram

A—T 5 Bl
(f:0 l(evo,evl)
Bx B

commutes. We say that f,g are (algebraically) x-homotopic if there exists a finite
sequence fo,...,fn : A — B of x-morphisms such that fy, = f, f, = ¢ and f;
is elementary x-homotopic to f;1; for ¢ = 0,...,n — 1; whenever f and g are *-
homotopic we write f ~* g.

It is immediate from this definition that homotopy is an equivalence relation
that is compatible with composition of *-morphisms. We write [A, B] for set of
equivalence classes of #-morphisms A — B modulo homotopy. The sets [—, —]
have a composition law and therefore are the arrows of a category [Alg;] which has
x-algebras as objects.

Definition 1.2.2. Let F' : Alg; — € be a functor. We say that F' is homotopy
invariant if F(f) = F(g) whenever f ~* g.

Let C' € Alg, and A, B C C subalgebras. Suppose u,v € C satisfy

uwAv C B and

avua’ = aa’ for all a,a’ € A.
Then
ad(u,v): A— B

a — uav

is an algebra morphism. We say that the pair (u,v) multiplies A into B. Let
Ug, U1, Vo, v1 € C such that (ug,vg) and (uy,v;) multiplies A into B. A homotopy
between the pairs (ug,vo) and (ui,vy) is a pair (u(t),v(t)) € C[t]* that multiplies
A (as constants in C[t]) into B[t] and that (u(i),v(i)) = (u;,v;) (for i = 0,1). In
this case ad(u(t),v(t)) : A — B][t] is a homotopy between ad(ug, vy) and ad(uy,vq).
Suppose now that C' is a *x-algebra and that A, B are x-subalgebras; when v = u*
and the pair (u,«*) multiplies A into B, we have that ad(u, u*) is a *-morphism. In
this case we say that u x-multiplies A into B. If u,w € C both *-multiply A into B,
a *-homotopy between u and w is an element z(t) € C[t] *-multiplying A into B][t]
such that z(0) = v and z(1) = w. We shall often encounter examples of elements
ug, u; € C' which *-multiply A into B that are homotopic via a pair (u(t), v(t)) with
u(t)* # v(t) so that the homotopy ad(u(t),v(t)) is not a *-morphism. This can be
fixed as follows.
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Lemma 1.2.3. Suppose { satisfies the A\-assumption|1.1.24. Let C' € Alg;, A,B C
C' *-subalgebras, ug, u; € C that x-multiply A into B and (v,w) € C[t]* a homotopy
between (ug, uy) and (uy,u}). Assume as well that

w* Aw, vAv* C Blt].
Then \ \ x( )
B *U—f- w* (v — w*
o, w) = ()\(v —w*) v+ )\*w*) € MClr)

s-multiplies i (A) into My B[t] and ad(c(u,v), c(u,v)*)oiy is a x-homotopy between
it ad(ug, uy) and iy ad(ug,uy).

Proof. A straightforward computation shows that
c(v,w)*e(v,w) = c(wv, wv).

Hence, for a,a’ € A we have

it (a)c(wv,wv)iy(a)
a(Nwv + AMwv)*)a")
i+ (Nawvd + Aa(wv)*a’)

i(a)e(v, w) e(v,w)is(a’) = iy (
(
(
i (Naad + MNa"*wva®)*)
(aa
(aa

(o

ir(ad' (N 4+ X))
iy (ad).

Similarly, ¢(v, w)is(A)c(v,w)* € MLB[t]. Thus, H = ad(c(u,v))is : A — MyBlt]
is a *-morphism and for i = 0,1 we get

ev;(c(u,v)) = e(u;,u;) = (%l 72) ,
so that ev; H = iy ad(u;, uf). O
Definition 1.2.4. Let p,g > 0 and n = p + ¢. Define
= (ML) @iy ® (My)®: ME™ — Mo

Lemma 1.2.5. Let p,q and n be as above, and let p',q > 0 be such that p' + ¢ =

0,410
n+1. Then ¥ 7% is x-homotopic to i’ et i

Proof. First observe that we have i +’ =i, and ifr’oz’+ = i?;li+. Therefore, tensoring
with identity maps we get

i = T (1.2.6)
for any r,s > 0. Next under the identification My ® My = My, 32, we have

ii’o(e”) = €(,1),(j,1) and z+ (e”) = €(1,i),(1,j)- One checks that the matrix
U = €1,1),(1,1) — €(1,2),(2,1) T €2,1),(1,2) T €(2,2),(2,2)

8
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is a unitary element of M$? and satisfies ad(u)iio = z&l. Moreover by [CTO07,
Section 6.4], there exists an invertible element u(t) € M$?[t] such that u(0) = 1 and
u(1) = u. Hence the composites of i%* with i}* and i are *-homotopic by Lemma
1.2.3, Tensoring on both sides with identity maps, we get that

-p,g+1.pt+l,q—1 % -p,g+l.pgq

Let p/,q' as in the statement. Permuting factors in the tensor product ME" we

obtain a *-isomorphism o : ME"" — ME"' such that ¢i??™ = i#. Hence we
have

AR A AR AR A (1.2.7)
for all p,q,p’, ¢’ as above. The lemma follows from (|1.2.7)) using the identity ((1.2.6)).

O

1.3 Ind-x-algebras

Definition 1.3.1. Let € be a category. An ind-object in € is a pair (C, I) consisting
of an upward filtered poset I and a functor C': I — €. We shall often write C; for
C(i) and (C});er or simply C, for and ind-object C' : [ — €.

The ind-objects of a category € form a category ind — € whose morphisms sets
are

homina—e((C4), (D)) = lim colim home (Cj, D;).

Any functor F' : € — © extends to F' : ind — € — ind — ® by applying F
indexwise; FI(C); = F(C;).

Example 1.3.2. Let ¢" : M,, — M, .1 be upper left corner inclusion and write M,
for the ind-*-algebra

Ny — Algz
(n—=n—+1) (M, 2 M,.,).
Similarly, recall Definition and write M$ for the ind-x-algebra.

.0,n

(n = n+ 1) — (M} 2 My,
For an infinite set X we write
MX = M:T:MX

Any bijection f : X — Y induces an isomorphism f, : My — My given by
the corresponding isomorphism My = My and tensoring with the corresponding
identities.



1.3. Ind-x-algebras 10

Example 1.3.3. For a finite simplicial set K, we write sd K for the barycentric
subdivision. This defines a functor sd : & — &. The barycentric subdivision is
equipped with a natural transformation A : sd — idg so called the last vertex map
|[GJ99, Chapter III, Section 4, p.193]. Iterating this map, one obtains a system of
simplicial sets

s K B sd K - S K.

Write sd® K for the (contravariant) functor

Ny — sSet
(n > n+1) sd" K L sd” K).

For each A € Alg; the composed functor A% gives an ind-x-algebra. This con-
struction also applies to pointed simplicial sets in a similar way.
Some particular examples of subdivision ind-*-algebras that we will use are

ASI _ Asd'(Sl,pt)’

A" = (A% )% and

PA = ATEPY,
Remark 1.3.4. The two endpoint inclusions AY — A! induce inclusions A? —
sd®* Al and evaluation maps ev; : A°A" 5 A2 — A Let f,g : A — B be
two homotopic s-morphisms. As such, there exists a chain of x-morphisms f =
fo, f1,- -, fn = g and homotopies H; : A — B[t], : = 0,...,n — 1 as in Definition
[1.2.1 These homotopies can then be “concatenated” to an ind-x-morphism H :
A — B"A' Conversely, it is easily seen that if two s-morphisms f,g : A — B
can be recovered from an ind-s-morphism H : A — B** 2" by composition with the

evaluation maps

evoH=f e H=g

then f and g are homotopic.

Definition 1.3.5. Let A, B € ind — Alg;, we write
[A, B] = homind—[Algz‘}(Aa B)

Lemma 1.3.6. Let X, Y be sets and f,g: X — Y bijections. Write, fi, g, : Mx —
My as in Example[1.3.9 Then [f.] = [g.] € [Mx, My].

Proof. Since homotopy is compatible with composition, we can reduce to the case
when X =Y and g =idyx. The matrix

=Y e

zeX

is a unitary element of I'y and f, is the restriction of ad(u) (tensored with the
identity). Then i ad(u) = ad(u @ 1)i.. Using [CTO07, Section 3.4] there is a

10
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homotopy (vy, vli € M,T'x[t]* of multipliers between ad(u @ 1) and ad(1 & u); thus,
2

using Lemma |1.2.3] we have that i%” ad(u@®1) is *-homotopic to i%” ad(1@u). Hence

0%, =307 ad(1 @ u)iy ~ iy ad(u @ 1)iy = i}%, ad(u)

and ad(u) induces the identity in [Mx, Mx]. O

1.4 Extensions

A x-algebra can be regarded as a set or an ¢-module in each case with or without
involution. Each of these four choices gives rise to an underlying category 4l and a
forgetful functor F': Alg; — Y which admits a left adjoint 7" : { — Alg; that is the
free x-algebra functor for such F. We write T = TF. For the rest of this thesis we
will fix one of the four choices as above for i, F' and T

An estension of *x-algebras is a sequence in Alg;

0ASBEC 0 (1.4.1)

where « is an isomorphism onto ker § and C' = im .
We say that a surjective x-morphism is split, if it has a right inverse; we say that
a surjective s-morphism f is semi-split if F(f) has right inverse in {{. We say an

extension (1.4.1)) is semi-split if f is.

For ind-*-algebras, a similar definition applies: a sequence in ind — Alg;

«

0 (A4) S (B) S (Cr) =0 (1.4.2)

is an extension of ind-x-algebras if a a kernel for § and 3 is a cokernel for a. It is
split if 5 admits a splitting and it is semi-split if F'(3) admits a splitting in ind — 4L.

Remark 1.4.3. If the underlying category 4 is the category of sets then every
extension is semi-split, since every surjective map admits a section.

Remark 1.4.4. If ¢ satisfies the A-assumption [1.1.24] then for a x-morphism f :
A — B for which F(f) admits a splitting s, the splitting can be averaged as s’ =
As+ A*s* in order to have an involution preserving splitting. Therefore, in this case,
if f admits an /-linear splitting, then it is semi-split for any choice of &l and F'.

Example 1.4.5. Let A € Alg;, we call the sequence
0— PA— Alt] &% A—0 (1.4.6)

the path extension. 1t is split by the inclusion A C A[t].
We call the sequence

0—=0QA—PATH A0 (1.4.7)

the loop extension. It admits an involution preserving (-linear splitting s(a) = ta.

11
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Let f : A — B be a xmorphism. The mapping path extension of f is the
extension induced by the pullback of the path extension of B along f

OB —— PBxgA 25 A

H l”“ " lf (1.4.8)

OB ——s PB —=  B.

We call Py := PB xp A the path algebra of f. The mapping path extension has
a natural (-linear involution preserving splitting s(a) = (£f(a),a). There is also
natural inclusion iy : ker(f) — Py given by is(z) = (0,z). The same applies to the
subdivided version which we write as Py := PB x g A.

Example 1.4.9. Let X be a set and A € Alg;. We call the sequence
0—>MxA—>FXA—>zxA—>O

the cone extension. By [CT07, first paragraph of p.92] it admits an (-linear splitting.
Let f: A — B be a s-morphism. The cone map extension of f is the extension
induced by the pullback of the cone extension of B along ¥ x f.

MxB —— I'xBxpYA — 5 YA
H l,m : lzxf (1.4.10)

MxB ——— I'xB ——— YxB.

We call I'x y := I'x B xg XA the cone algebra of f. The cone map extension has
an (-linear splitting given by composing Yxf x id : ¥xA — X xB x Y xA and the
splitting X x B — I'x B. As before, when X = N we omit it from notation.

For every algebra morphism f : A — B, the underlying map in 4, F'(f) : F(A) —
F(B) induces a map f : TA — B. In particular, for id : A — A, we have a natural
surjective transformation n4 : T(A) — A. Set

J(A) := ker(na),
this defines a functor J : Alg; — Alg;. The universal extension of A is the extension
0= J(A) =TA) 5 A—0

which is semi-split by the natural inclusion s : A — T'(A).
For a semi-split extension

05ALBSC S0

and a splitting s of F(g), define & := ngT"(s) : T(C) — B. The restriction of ¢ to
J(C') maps to A since

9€ = gnpT'(s) = ncT(9)T'(s) = nc-

12
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Write ¢ for the restriction of gto J(C). We call this map the classifying map of the
extension. There is a commutative diagram

0 y A I ,p—4 ¢ > 0
il T
00— J(O) — T(C) X5 ¢ > 0.

The definition of the classifying map & is clearly dependent of the splitting map
s; however, its homotopy class does not depend on s. Let s; and sy two different
splittings of ¢ and & and & be the corresponding classifying maps. Define H :
F(C) — F(A[t]) as

H(c) = (1 =1t)&i(c) + t&a(c).

Extend H to a sx-homomorphism H : T(C') — A[t] by adjunction. This map is an
elementary x-homotopy between 51 and 52 and therefore & and &, are homotopic;
thus, the classifying map is natural up to homotopy. This shows the reasoning in
calling the universal extension and the classifying map as such.

For an extension of ind-x-algebras, the same reasoning applies and thus for any
extension of ind-*-algebras, there is also a unique classifying map in ind — [Alg}].

Remark 1.4.11. Take the following commutative diagram in Alg;

0 At .p_ 9. > 0
[ b D
B/ g

0 s A f> s O s 0

where each row is a semi-split extension. Let £ be the classifying map associated
to the first row extension and & the classifying map associated the second row
extension. Due to the uniqueness of the classifying map, the square

J(C) — A

J(C) —S A
is commutative up to homotopy.

Example 1.4.12. Let A, B € Alg; such that B is flat as an (-module. Then, the
extension

0—-JA)®B—-T(A)®@®B—-A®B—0

is semi-split and we write the classifying map as
pap:J(A®B)— J(A) ® B.

13
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In the case the underlying category il is the category of /-modules, this map is
natural in A and B (up to homotopy).

Taking B = (X for some simplicial set X, we obtain a map
J(AX) — J(A)*. Similarly, for a pointed simplicial set (X,z) we obtain a map
J(AK)Y 5 ()X,

The loop extension ([1.4.7)) is a particular case of this setting, taking into account
the idenfications at the end of Example [[.1.22] We write the classifying map of the
loop extension ((1.4.7)) as

pa: J(A) = QA. (1.4.13)

This map also induces an ind-x-algebra map by composing p4 with the last vertex

map h, : QA — AS". As an abuse of notation we will write it as p4 : J(A) — AS.
For a map f : A — B, the classifying map of the mapping path extension (|1.4.8))

is ps := pp o J(f); this can be seen using Remark The same applies for the

subdivided version.

Example 1.4.14. For each A the sequence
0— JAF = T(4)% = A% =0
is a semi-split extension as in Example [[.4.12] We write
va: J(A%) = J(A)F (1.4.15)
for the classifying map of said extension. For m,n > 0, write
vt J(AT) = J(A)T

for the composition

sl
Y A8 Agnfl gl Yysn—1 ®S 2

1 gn—1 sn—1
A% A gt ¢ R

JAS T L gt 248 L ),

and ;" J(AS") — J™(A)S" for the composition

1,n

m— 1, m—2.1,n
ek J O y(ay) Vym—1(ay
_ _—

I (A% VA CICV N OO D R (CAL OVl I (A)

1.5 *-Quasi-homomorphisms

Definition 1.5.1. Let A, B € Alg;, C < B a *-ideal and f,f_ : A — B two *-
morphisms. We say that the pair (f,, f_) : A = B> C is a x-quasi-homomorphism
if fi(a) — f_(a) € C for every a € A. This is equivalent to the following statement:
if m: B — B/C is the quotient map, then 7wf, = 7f_.

Example 1.5.2. Recall from Example the algebras Q(A) and ¢(A). By defini-
tion, there is a *-quasi-homomorphism induced by the inclusions ¢g, t1 : A — Q(A):

(t0,01) + A= Q(A) = q(A).

14
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This *-quasi-homomorphism is universal in the following sense: let
(f+,f-) : A= B> C be a xquasi-homomorphism. Then there is a natural map
f+ I f: Q(A) — B. Since f II f- maps ¢(A) into C, we can compose to get

J+ O f-ouw=fi and
Jrfoou=f.

We call the restriction of f, I f_ to f : q(A) — C the classyfing map of the
k-quasi-homomorphism (f, f_).

Let € be an abelian category. A functor H : Alg; — € is split-exact if for every
split-exact extension
0—-A—-B—-C—0

the sequence
0— H(A)— H(B)—> H(C)—0

is exact in €.

Proposition 1.5.3 ([CMRO7, Section 3.1.1]). Let € be an abelian category and
E : Alg; — € a split-ezact functor.

e [or every x-quasi-homomorphism (fi, f-) : A = B> C there exists a mor-
phism
E(f+, f-) : E(A) = E(C)

induced by E(fy) — E(f-): E(A) — E(B).
o E(f+,0)=E(f}).

o If f+ = f_+ g where g(a)f-(a) = f-(a)g(a) = 0 for every a € A then
E(f—l-?f—) = E(g)

o If f:q(A) — C is the classifying map of (fy, f-) then

E(fy, f-) = E(f) o E(to, 11).

1.6 Stability

Definition 1.6.1. Let Fy, F5 : Alg; — Alg;, G : Alg; — € be functors, i : Fi} — F}
be a natural transformation and A € Alg;. We say that the functor G is i-stable at
A if the map G(ia) : G(F1(A)) — G(F2(A)) is an isomorphism. We say that G is
i-stable if it is i-stable at every A € Alg;.

Example 1.6.2. A functor F' is homotopy invariant as in Definition if and
only if it is stable for the canonical inclusion A — A[t].

15
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Example 1.6.3. Let X be a set, z,y € X and e, , € Mx the matrix unit

Cry(2,W) = O(ay) (zw)-

There is a natural map 7, : id Algs — My defined as

Z.z7A A= MxA
ar— ez, ®a.

Lemma 1.6.4. Let X be a set and i, be as in Example [1.6.5. If a functor G :
Alg; — € is iy-stable for some x then it is i, stable for any y € X. Moreover
G(iy) = G(iy) for any x,y € X.

Proof. We follow [Corll, Lemma 2.2.4]. There are permutation matrices os,03 €
MxA® Mx A of orders two and three such that both conjugate (i, p, 4 ®idary,a)iz a
into (iy a4 @ idarya)iy 4. Since permutation matrices are unitary, conjugation by
0o and o3 are x-isomorphisms. After applying G we get

G(ad(02))G((ie vy a @ idarca)iv,a) = Gl(ie iy a @ idaca)iy,a) (1.6.5)
= G(ad(03))G ((ia,p1x4 ® idarga)isa)

Since the orders of oy and o3 are coprime and all the maps in (1.6.5)) are isomor-
phisms, it follows that G(ad(o3)) and G(ad(os3)) are equal to the identity. Further-
more, since G (i py 4 ®1dary 4) is an isomorphism, we get that G(iy,4) = G(iy.4). O

Definition 1.6.6. We say that G is Mx-stable if it is i,-stable for some (therefore,
for any) x € X. In this case we write iy for any i,. If the set X is fixed, we simply
write . When X has cardinality n we write 4, : id — M, for ix.

Lemma 1.6.7. Let X be a set and x,y € X. Then the maps iyiy, 140, : € — My Mx
are x-homotopic.

Proof. Assume = # y and let X' = X \ {z,y}. Let

U = ey7x - 6513,9 + : : ez,z~
zeX’

It is easily seen that w is unitary in 'y and satisfies ad(u)i, = i,. Moreover, there
is a rotational homotopy u(t) € I'x[t] [CTO07, Section 3.4] such that u(0) = 1 and
u(1) = uw. Then, using Lemma we obtain the desired statement. O

Lemma 1.6.8. Let X be a set with at least two elements, H : Alg; — € be an
Mx-stable functor, A C B € Alg; and u € B such that

uA, Au* C A and

av*ua’ = ad’ for any a,a’ € A.

Then ad(u) : A — A is a x-homomorphism and H(ad(u)) = idga).

16
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Proof. The argument is as in [Corl1, Proposition 2.2.6]. We can assume B is unital
(changing B for B). Consider ué1 € M,B and observe that ad(u®1) : MyA — My A
is a x-homomorphism. Also, if i : A — M>A and i, : A — MyA are the inclusions
in the upper left corner and lower right corner respectively then

ad(u @ 1)ig = igad(u) and
ad(u @ 1)i; = 4.

Due to Lemma [1.6.4] applying G we get that G(ig) = G(i;) are isomorphisms.
Therefore,

Glio)G(ad(w)) = Glad(u @ 1))G (i)
— Glad(u® 1))G(ir)
= G(i1)
= G(ip);

so G(ad(u)) is the identity. O

Lemma 1.6.9. Let X be a set with at least two elements. Let € be category enriched
over abelian groups and H : Alg; — € be an Mx-stable functor. Then the map for
two distinct v,y € X, the map

e iz) Y=H(iy) "t
H(AGBA) H (ix®iy) H(iz) H(iy)

H(MyA) H(A)

induces the additive operation on H(A),

Proof. Write D =i, @i, : A A— MxAand V: H(A) @ H(A) — H(A) for the
operation in €. Using Lemma [1.6.4], the diagram

H(A) @ H(A) —2220% , H(A @ A)

I Jro

H(A) 20 o)

commutes O

Lemma 1.6.10. Let X,Y be two sets such that X has at least two elements and Y
has greater cardinality than X. Then, any My -stable functor G : Alg; — € is also
M -stable.

Proof. Since a bijection between sets induces a *-isomorphism between their matrix
algebras, we might assume that X C Y. We will prove the lemma in the case the
coefficients are A = ¢, the same proof applies for any coefficients. Writeinc: X — Y
for the natural inclusion map. Let x € X and i = i, : £ — Mx. Since G is My-
stable, G(inc o 7) is an isomorphism and therefore, G(i) is an split monomorphism
and G(inc) is an split epimorphism.

17
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Let 7: Mx ® My — My — Mx defined by 7(a ® b) = b ® a. We have
7(1 ® idpyy, )ine = inc ® 1. (1.6.11)

Let 0 : Y x X — Y x X be any bijection that restricts to coordinate permutation
on X x {x}. Also write o for the corresponding permutation matrix in My, x =
My ® Mx. Then we have

ad(o)(inc ® i) =i @ idp/, .

Since G(ad(0)) is the identity due to Lemma and G(i ® idyy, ) is an isomor-
phism, it follows that G(inc®1) is an isomorphism. Using we get that G (inc)
is also an split monomorphism, and therefore an isomorphism. Since G(incoi) is an
isomorphism it follows that G() is an isomorphism and that concludes the proof. [

Definition 1.6.12. Let A € Alg; and G : Alg; — € be a functor. We say that G is
hermitian stable on A if for every embedding A <R as a *-ideal in a unital x-algebra
R, every central unitary element ¢ € R and any two invertible e-hermitian elements
¢, € R, the functor G maps the upper left corner inclusion

i A = (MyA)@Y)
to an isomorphism.

Remark 1.6.13. Takinge =1, R = A and ¢ =1 = 1 in the previous definition,
we get that any hermitian stable functor is also i : id — M stable

Remark 1.6.14. Let (P, v) and (@, x) be hermitian modules as in Example[L.1.17]
Using , it follows that a hermitian stable functor G sends the map induced
by the inclusion

End(P)® A= End(P&Q)® A

to an isomorphism.

Proposition 1.6.15 ([cf. Ell14} Proposition 3.1.9]). Suppose ¢ satisfies the A-assumption
1.1.24land let G : Alg; — € be a Ms-stable functor. Then GoMy is hermitian stable.

Proof. Since ¢ satisfies the A-assumption, we can use Remark [1.1.26] to get isomor-
phisms

MyA® = _M,A and
Mo (MyA) Y = M, M, A.

Using the commutative diagram

M:A? ———— M,A

idary ®i¢l id. a1y ®i2l X

Mi(MQA)(¢€B¢) = EMQMQA = MQ(SMQA)

and the fact that i, is mapped to an isomorphism through G, we get that Go M (i)
is an isomorphism as desired. O

18
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Corollary 1.6.16. Assuming { and G : Alg; — € as in Proposition if G is
also i, -stable, then G is hermitian stable.

Proof. Since we have the commutative diagram

Ab AL A9

li(;/) lidMi ®i¢

(M2A)¢®w ’_+> Mi(MQA)¢@w,

using that G(iy) is an isomorphism and by Proposition|1.6.15| we also have G (id, ®
ip) is an isomorphism we get that G(is) is an isomorphism. O

19



Chapter 2

Hermitian Algebraic K-theory

In this chapter we recall the definition of the hermitian algebraic K-theory spectra
K" together with some properties. We also recall the definition of the Karoubi-
Villamayor hermitian K-theory KV" and we construct the analogue to Weibel’s
homotopy K-theory for the hermitian case K H". In Section 2.2 we also recall the
product structure of K and how it passes to K H". Finally in Section 2.3 we recall
Karoubi’s Fundamental Theorem with some associated reformulations and how it
passes to K H"; we will use this later in Chapter 5.

2.1 Definitions

Let A a #-ring. We write
UA)={r e A:z"x =zz", 2+ 2" + xa" = 0}.
The set U(A) is a group under the operation
rT-y=r+y+xy.

When A is unital, the group U(A) is isomorphic to the group of unitary elements of
A via the map xr — 1 + .
Let R be a unital ring, A < R a *x-ideal and € € R central unitary. Put

LO(A) = U( MM A).
By ([1.1.20) we have a group isomorphism
0(A4) =,0(:MA). (2.1.1)

The e-hermitian K-theory groups of a unital *-ring R are the stable homotopy
groups of a spectrum . K"R = {_K"R, } whose n-th spaceis . K"R, = QB.O(X""'R)*,
the loopspace of the +-construction [see |Lod76|, Section 3.1.6]. As usual we also
write

I (R) = mo((K"R) (neZ)

20



2.1. Definitions 21

for the n-th stable homotopy group. When € = 1 we drop it from the notation. For
a nonunital *-ring A, we put

n KMA) = ker(11 KM(Ay) — LK} 7). (2.1.2)

_ If A is unital, these groups agree with those defined above since in that case
Az =2 A x Z and using the fact that +-construction is additive, the kernel in (2.1.2])
recovers 41 K/*(A).

A ring A is called K-excisive if for any embedding A < R as an ideal of a unital
ring R and every unital homomorphism R — S mapping A isomorphically onto
an ideal of S, the map of relative K-theory spectra K(R : A) — K(S : A) is an
equivalence. The definition of a K" = | K"-excisive *ring is analogous.

Remark 2.1.3. Let A be a K-excisive ring that is a %-algebra over ¢, and suppose
that ¢ satisfies the A-assumption [.1.24] Let A < R be a x-ideal embedding into
a unital x-algebra and f : R — S be a unital x-algebra homomorphism mapping
and A isomorphically onto a *-ideal of S and ¢ € ¢ be a central unitary. By
[Bat11, Corollary 3.5.1] the map .K"(R : A) — .K"(S : A) is an equivalence. In
particular, if A is K-excisive then it is also K"-excisive. Taking all this into account,
and assuming that ¢ satisfies the A-assumption [1.1.24] we set, for any K-excisive
A € Alg;, unitary € € £ and n € Z,

K (A) = ker (K (A) — KR (0)). (2.1.4)

Remark 2.1.5. For n < 0 and not necessarily K-excisive A, we take as a defi-
nition. The non-positive hermitian  K-groups agree with Bass’
quadratic K-groups [Bas73| for the maximum form parameter. In particular, by
[Bas73|, Chapter III, Theorem 1.1] hermitian K-theory as defined above satisfies
excision in non-positive dimensions.

Remark 2.1.6. Let R be a unital x-ring. Suppose that R has an element \ that
satisfies the A-assumption [1.1.24] Let S € ¥ be the class of the matrix

O = O
= OO
o OO

Using the fact that the cup product with [S] € K!(X) induces an isomorphism
K!MR) = KIMNYXR) [Lod76, Théoreme 3.1.7], the group K['(R) can be described as
the set of formal differences [p| — [¢] where p,q € 1 MyM R are projections and
[p] = [p/] if there is a unitary matrix u €  MyM, R such that u conjugates p into p’
[KV73| Section 2].

For a class z = [p] — [¢] € K}(R) there are *-morphisms p,q : Z — {MaM R
mapping 1 to p and q respectively. These *-morphisms induce maps p., ¢. : K} (Z) —
K!(R) sending the class of [1] to [p] and [q] respectively. This implies that the x*-
quasi-homomorphism (p, q) : Z = 1 MaM R > 0, has an associated map (p., ¢.) =
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2.1. Definitions 22

e — @i : KMZ) — K[(R) which maps the class of [1] to z. This then implies that
the set of *-quasi-homomorphisms {Z = ; My M., R} maps surjectively onto K['(R)
sending each pair of x-quasi-homomorphisms to their corresponding associated map
evaluated at the class [1]. Since K[ satisfies excision, it follows that the same applies
to any *x-ring A: the set

qq(Z, A) = {Z = 1M2Moogz E 1M2MOOA}

maps surjectively to KJ(A). If A € Alg; then the same holds with ¢ substituted for
Z and (-linear, *-quasi-homomorphisms.

For a xring A and ¢ = 41, Karoubi and Villamayor also introduce hermitian
K-groups for n > 1. They agree with the homotopy groups of the simplicial group
-O(A?) up to a degree shift

KVMA) = 71,_1.0(A%)  (n>1).

The argument of |Corl1], Proposition 10.2.1] shows that the definition above is equiv-
alent to that given in [KV73]; we have

KV (A) = KVHQA) (0> 1),
Similarly, if A is unital, for all n > 1 we have
KVMA) = 1,B.0(A%) = 1, B.O(A*)" = 1,QB.O(SA%)". (2.1.7)

Applying K" to the path extension (1.4.6) and using excision, we obtain a
natural map

KH(A) > K (4) (0 <0).
For n € Z, the n'® homotopy e-hermitian K -theory group of A is

K Hy(A) = colim K", (A" A).

m>n

Remark 2.1.8. One can also describe . K H" in terms of . KV"; by [KV73, Théoréme
4.1], KV satisfies excision for the cone extension (1.4.10]). Hence we have a map

KVIA) = KV (ZA).
The argument of [CT07, Proposition 8.1.1] shows that

(Z™A).

n+m

K H,)(A) = colim KV,
Now assume that A is unital; let .K H(A) be the total spectrum of the simplicial
spectrum . K"(A%). We have

(574) = KHE(A).

n+m

(K H"(A)) = colim 7,4, QB0 A%) = colim . KV,
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2.2. Cup products in K H" 23

For any exact sequence
0—+A—B—B/A—=0

there is a natural index map 0 : K}'(B/A) — K!(A) [see Bas73), Chapter I11].
Remark 2.1.9. There is a natural comparison map ¢, : K" (A) — KH"(A). For
m < 0 this is just mapping to the colimit. For m > 0 and A unital, using the
description of (2.1.7) and the natural inclusion A — A%, we get a comparison map
., K!'(A) — KV then, by Remark [2.1.8] the comparison map factors
K (A) & KV(A) — KH"(A)

Using repeatedly the index map of the loop extension ([1.4.7) we get maps

KM(A) = KV'(A) =2 KVi(Q™ L A) — KVIHQ™A) = Ko(Q™A).
Finally, composing with the comparison map cy we arrive at K H}/(Q™A) = K H" (A).

Lemma 2.1.10. Homotopy hermitian K -theory is homotopy invariant, matricially
stable and satisfies excision.

Proof. The proof is the same as in non-hermitian K-theory [see |Corll] Theorem
5.1.1). 0

Lemma 2.1.11. Let € € ¢ be unitary. If either n < 0 or A is K"-excisive, then
there 1s a canonical isomorphism

KMA) =2 KM M,A).
Moreover for all A € Alg; we have a canonical isomorphism
KHMNA) 2 KHN.M,A)  (n € 7).

Proof. The isomorphism is canonical up to the choices of an element \ € ¢
in the A-assumption and a bijection {1,2} x X — X. By [Lod76, Lemme
1.2.7], if A is unital, then varying those choices has no effect on the homotopy type
of the induced isomorphism B.O(A)T = B1O(.MyA)". Applying this to X" A we
obtain the statement of the lemma for unital A. The nonunital case follows from
the unital one using split-exactness. The statement for .K H" follows by applying
the former case for 2" A and from the definition. O]

2.2 Cup products in KH"

Hermitian K-theory of unital *-rings is equipped with products |Lod76, Chapitre
I11]. Using that K" satisfies excision in nonpositive dimensions we obtain, for R, A €
Alg; with R unital, m € Z and n < 0, a natural product

K"(R) @z KM A) 5 K!

m-+n

(R® A). (2.2.1)

If moreover m < 0, we also obtain the product above for not necessarily unital R.
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2.2. Cup products in K H" 24

Remark 2.2.2. Using Lemma [2.1.11} the product (2.2.1)) also gives a product
K"(R)®z,KMNA) S K, (R® A). (2.2.3)

m+n

Remark 2.2.4. Let R, S be unital x-rings that satisfy A-assumption [1.1.24] using
the description of Remark [2.1.6] the cup product

KMNR) @z KMNS) & KM (R® S)

corresponds to the natural extension of scalars of projections [cf. Lod76, Section

3.1.4]: for [p] € VAR and [¢] € VLS

[p] x[q] = [p® q].

Lemma 2.2.5. Let R, S € Alg; be unital that satisfy the A-assumption |1.1.24 and
let I QS be a *-ideal. Assume that the sequence

0>R®I—-R®S—>R®(S/I)—0

1s exact and let O be the associated index map. Then the following diagram commutes

K§(R) @z K1(S/T) —— K{(R® (S/1))

[ Jo

KMNR)®z K}I) ——— KMR®I).

Proof. Because R is unital and satisfies the A-assumption, we may regard K(R) as
the group completion of the monoid V% (R) as in Remark [2.1.6] If g € 1 MyM,,(S/I)
is unitary, p € My M, R is a self-adjoint idempotent and 1,, € { My M, is the identity
matrix, then (see [Weil3| Corollary 1.6.1] for the non-hermitian case)

plxlg) = ®g+ (1, —p)®1,] € K (R® (S/I)) (2.2.6)
On the other hand, for any lift h € U(; MM, S) of g @ g~ we have
Olg] = [h1nh™"] = [1.].
Choosing the lift for (2.2.6)) as
POh+ (lon—(p&p)) @ Loy
we obtain 9([p] x [g]) = [p] * 9[g]. O

Lemma 2.2.7. Suppose { satisfies the A-assumption [1.1.24] Let m € Z, n < 0
and R, A € Alg; with R unital. Let O be the connecting map associated to the path
extension (1.4.6). Assume that max{n,m + n} < 0. Then the following diagram
commutes.

K3 (R) @z K (A) ———— K, (R® A)

lid®8 l@

K!(R) ®z K]!'_|(QA) —— K;Ln—l—n—l(R ® QA)

24



2.2. Cup products in K H" 25

Proof. Let j5 : £ — £@{ be the inclusion in the second summand. The path and loop
extensions, ([1.4.6) and ((1.4.7) respectively, are connected by a map of extensions

0 > P ak > (
H inc l]Q
0 s (] — gy

Let ¢ < 0. Applying Lemma with S =X[t], I = X¥Q and R = Y%A, and using
naturality and excision, we obtain that the boundary map 8 : K'(A) — K (QA)
is the cup product with 9([1]) € K" (Q2). The proof now follows from associativity
of *. O

Corollary 2.2.8. Suppose ( satisfies the A\-assumption|[1.1.24, Let R, A € Alg; with
R unital and let m,n € Z.

i) There is an associative product

*x: K'"(R) @z KH"(A) — KH"

m-+n

(R® A).

ii) Let ¢, : KINR) — KHMR) be the comparison map. Then for all m € Z and
€ € K (R), cn(§) = Exco([1]).

Proof. Part i) is immediate from Lemma upon taking colimits. For m < 0,
part ii) is clear from the construction of x and the definition of K H". For m > 0,
this follows from Remark and the fact that since KV" = K", the diagram

K!NR) @z K2 (Q) ——— K[, (QR)

lcfk ®id lc;

KVMR) @z KV (Q) —— KV (QR)
commutes. ]

Lemma 2.2.9. Suppose { satisfies the \-assumption [1.1.24, Let A, B € Alg; and
m,n € Z. Then (2.2.1) induces an associative product

KH" (A) @z KH"(B) —— KH"

m+n

(A® B).
If m <0 or A is unital, then the following diagram commutes

K}(A) ®z KH)(B) —— KH},_,
l&n@l /
KH;,LL(A) X7 KHJ;(B)

25
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2.3. Karoubi’s Fundamental Theorem 26

Proof. Lemma shows that the boundary map 0 : K* — K" | o is the cup
product with 9([1]) € K",(2). It follows that for all » < 0, the following diagram
commutes:

K}MA) @z K}(B) ——— K} (A® B)

lae@a lBQ
K} (QA) @z K| (QB) —— K3, _,(VPA® B).
Taking colimit along the columns we get the desired product map for r = s = 0. The

general case is obtained from the latter applying the suspension and loop functors as
many times as appropriate. Commutativity of the diagram in the statement follows

from Corollary O

Corollary 2.2.10. Let A € Alg; and n € Z, then .KH"(A) is a KH!(¢)-module
with the action induced by the product in Lemma[2.2.9

2.3 Karoubi’s Fundamental Theorem

Let A € Rings* and consider A = ind(res(A)) = A® A as in Example[1.1.6| There

are natural x-morphisms

du: A — My(A) (2.3.1)
(a,D) (g bo) ,
na:A— A (2.3.2)
a— (a,a").

Write U'A = Ty, and V'A = T, as in Example [1.4.9 This defines functors
U, V': Rings* — Rings* and write (U")", (V")™ (n > 0) for their repeated compo-
sition. As in Example there are natural maps U'A — YA and V'A — TA.
The projection on the first coordinate A — Ais not a x-morphism but is a ring

-~

morphism and as such it induces a map K(A) — K(A). Since for a unital ring (not
necessarily with involution) U (inv(R)) = GL(R), we have that . K"(inv(R)) ~ K(R)
and therefore .K"(R) ~ K(R). It follows using the cone extension from Example
that there are maps

O.K"(U'R) — K(R) Y™ _K"(R)
O.K"(V'R) — .K"(R) " K(R)

and that Q.K"(U'R) and Q.K"(V'R) are the homotopic fibers of the maps (¢g).
and (ng). respectively.
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2.3. Karoubi’s Fundamental Theorem 27

Theorem 2.3.3 (Karoubi, [Kar80|). There is an element 0y € _{K}(U')*Z) such
that:

i) The composite
KB (U)N2Z) —» 1 KMSUZ) = 1 KMNU'Z) = Ky(U'Z) — K1(SZ) = Ko(Z) 2% Ko(2) =2
maps Oy to 1.

i1) Assume that (-satisfies the A-assumption |1.1.24. Then, for every unital x-£-
algebra R, the product with 0y induces an isomorphism

o x —: KI'"(R) = _K!' ,(U)*R).

Proof. The element 6, of the present theorem appears under the name of ¢ in the
first line of [Kar80, Section 3.1]. Using the identifications

Q.K"(UV'R) ~ Q.K"(V'U'R) ~ .K"(R) (2.3.4)

as mentioned by Karoubi in [Kar80, Section 1.4], the current theorem is just another
way of phrasing Karoubi’s fundamental theorem

K"V'R) ~Q_K"(U'R).

Furthermore, the theorem as stated here is equivalent to that proved in [Kar80),
Section 3.5], which says that product with 6, induces an isomorphism

KN(V'R) = K" (U'R). =

Remark 2.3.5. Using Lemma [2.1.11} the Theorem is equivalent to the state-

ment that 6y induces an isomorphism
by —: KM(R) = L K!'y((U)R).

Corollary 2.3.6. Let A € Alg; and assume that ¢ satisfies the \-assumption|1.1.2]]
The element 0 = cy(6y) € LK HE((U')?Z) induces an isomorphism

0x—: KH'A) — _KH!",((U)*A)

Proof. Using that K" satisfies excision for n < 0 and Theorem we get that for
any A € Alg;, 0y induces an isomorphism

01 KP(A) 2 KNG (U)2A). (+ < —2)
This then follows from Corollary upon taking colimits. O
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2.3. Karoubi’s Fundamental Theorem 28

The 12-term exact sequence

Definition 2.3.7. Let R be a unital *-ring. The involution of R induces an involu-
tion g — (¢g*) ! in GL(R) which in turn induces a natural action of Z/2 in K,(R);
for x € K,(R) write T for this action. Define

(R)
W(R) = ker(K(R) 5 K (R)),
kn(R) :={x € K,(R) : T =x}/{x = y+ 7 for some y}, and
k(R):={x € K,(R) :T=—xz}/{x =y — 7 for some y}.

The groups .W,,(R) and .W,(R) are called the Witt and coWitt groups of R. The
groups k,(R) and k] (R) are the corresponding Z/2-Tate cohomology groups of
K,(R).

Theorem 2.3.8 (Suite exacte des douze, Karoubi [Kar80, Theoreme 4.3]). Assume
¢ satisfies the A-assumption|1.1.24] and let R € Alg; be a unital x-algebra. There is
an exact sequence

knia(R) — —Waia(R) — W(R) — K (R) — W0 (R) = - Wa(R)

I !

Wi (R) <— Wi (R) <= k1 (R) <= —Wi(R) <— Wipa(R) — knpa(R)
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Chapter 3

Bivariant Hermitian Algebraic
K-theory

In this chapter we construct the bivariant hermitian algebraic K-theory category
and develop some of its basic properties. This construction is based on the original
bivariant algebraic K-theory j : Alg, — kk made by Cortinas and Thom in [CTO07].
There are generalizations of kk to incorporate the action of groups and group graded
algebras [Ell14] and also for algebras with actions of quantum groups [EII1§]. In
Section 3.1 we develop the necessary results to construct kk" as a category and the
functor j" : Alg; — kk". Then in Section 3.2 we show it is triangulated and prove
how j" : Alg; — kk" is the universal excisive homology theory (defined in such
section) with matrix and hermitian stability and homotopy invariance.

From this chapter on we will assume that ¢ satisfies the A-assumption
without further mention.

3.1 The kk" category

Fix an infinte set X. A bijection X I X = X induces a x-homomorphism
Mx & Mx — Myx; write B for its ind-*-homotopy class. By Lemma [1.3.6] 5
is independent of the choice of bijection above.

Lemma 3.1.1 ([cf. [CT07, Section 4.1]). The map B together with the zero map,
makes Mx an abelian monoid object in ind — [Alg;]
Proof. Since any chosen bijection X II X = X also induces a bijection
XIOXIX = X in any possible association and these choices induce the same
class in ind — [Alg;], it is clear that B is associative. Similarly, the permutation
of copies of X in X IT X induce the same isomorphism as H and therefore it is
commutative.

Let Xy, X; € X be the corresponding subsets to X IT() and () IT X through the
bijection X IT X = X. Write fy : Xo — X and f; : X; — X the corresponding
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3.1. The kk" category 30

bijections. Then, we have
(o 110)*)(id 8 0) = iduq,
(O f1)"](0Bid) = idary-
Therefore the zero map is a neutral element for H. O

Similarly, any choice of bijection X x X = X gives rise to the same ind-*-
homotopy class of a x-homomorphism My ® Mx — My; we write pu for this
ind-*-homotopy class.

Lemma 3.1.2. The map p is an associative and commutative product in ind—[Alg}]
and the inclusion v : £ — Mx 1is an identity map for p. Furthermore p distributes
over B and therefore (Mx, 8, 11,0, [i]) is a semi-ring object in Ind — [Alg;].

Proof. Associativity and commutativity are proven in the same way as in the pre-
vious lemma and it is clear that 7 is an identity for p. Finally, the fact that u
distributes over H can be derived from the fact that there is a natural bijection

Xx(XITX)=Z(XxX)I(X xX)
and Lemma [.3.6 O
Let A, B € ind — Alg;. Put

{A, B} :=[A, MxB]; (3.1.3)
the monoid operation B on M x induces one on {A, B}.
Lemma 3.1.4. The product p induces a bilinear, associative composition law:

*x:{B,C} x {A,B} = {A,C}
(/] lg]) = [n @ ide] o [(idaty ® f)] 0 [g]-

Proof. Since changing the representative of the class [f] does not change the class
of [idp, ® f], it is clear that x is well defined. The fact that * is bilinear follows
from the fact that p distributes over H. Finally associativity follows from observing
that for any map h : C' - MxD, the diagram

idMX®idMX®h idMX®,LL®idD

Mx./\/lxc > MxMxMxD > MxMXD
M®idpl lﬂ@idD
id gy ©h id
MxC M >y MxMxD oo » MxD
commutes due to the associativity of . O]

Definition 3.1.5. Let {ind — Alg;}x be the category with the same objects as
ind — Alg;, where morphisms sets are given by and which is enriched over
the category of abelian monoids. Lemma also shows that for A € ind — Alg;
the inclusion ¢ : A — Mx A is the identity. Write {Alg;}x for full subcategory of
{ind — Alg;} x where the objects are in Alg; instead of ind — Alg;.
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3.1. The kk" category 31

Remark 3.1.6. Let A, B € Alg;. The algebra B2 has natural binary operation
called concatenation e : BA x B4 — B2; this induces a binary operation in [A, BS']:
for maps f,g: A — BS' we write f e g for their concatenation. The zero map is a
neutral element for this operation and the reversing map

0[t] — [t] (3.1.7)
t—1—1t

induces a *-morphism a : B®" — B such that [f e af] = [0]. Concatenation and H
distribute over each other in {A, BS'} [see |CT07, Section 3.3].

Lemma 3.1.8. Let A, B € Alg;. For n > 1, the concatenation and B operations
coincide in {A, BS"} and it is an abelian group with such operation.

Proof. As said in Remark [3.1.6, e and H distribute over each other, due to the
Eckmann-Hilton argument, both operations coincide. Since concatenation has an
inverse as discussed in the same remark, the abelian monoid {4, B%"} is a group. [

There is a canonical functor [Alg;] — {Alg;}, which is the identity on objects
and sends the class of a map f to that of if.

Lemma 3.1.9. The composite functor can : Alg; — [Alg;] — {Alg;} is homotopy
invariant, Mx-stable and iy -stable. Moreover any functor H : Alg; — € which is
homotopy invariant My -stable and i -stable, factors uniquely through can.

Proof. Since can factors through [Alg;], it is homotopy invariant by definition. More-
over for any functor H as in the statement, H factors through Alg; — [Alg}].

To see My stability, for any x € X, the inclusions ¢, 4 : A = MxA maps to
iz, At A — MxA in {Alg;}. The identity map MxA — MxA induces a map
MxA — Ain {Alg}} using the isomorphism MxMyx = My. It is immediate that
these maps are inverses to each another. induces the identity in {Alg;} so can is
Mx-stable. Similarly, since the ind-system M x is built with repeated composition
of i, , using Lemma [1.2.5( we get that it is i, stable.

Finally, for a functor H as in the statement of the lemma, as said before H
factors through [H] : [Alg;] — €. Since H is Mx-stable and i -stable, for any
B € Alg;, the map [H](ip : B — MxB) is an isomorphism in €, so we can define

{H}([f : A= MxB]) = [H](ip)~" o [H]([f])

It is easy to see that {H} defines a functor {H} : {Alg;} — € that factors H
through can. O]

Lemma 3.1.10. The canonical functor can : Alg; — {Alge} is hermitian stable.

Proof. Since { satisfies the A-assumption[1.1.24] the proof follows from Lemma|3.1.9
and Corollary [1.6.16}| O
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3.1. The kk" category 32

Lemma 3.1.11. Let R be a unital *-algebra, A < R a x-ideal and A\, s € R be
central elements satisfying the requirements of the element \ in the A-assumption

[11.2) Let
A1
Di =P\, = ()\l)\;« )\Z>

and let v; : A — 1 MyA, 1;(a) = p;a. Then can(ty) = can(te) is an isomorphism in
{Alg;}-

Proof. Let u; = uy, be as in (1.1.27) of Remark [1.1.26 Under the isomorphism
1My = My, 1; corresponds to ¢,. Thus can(s;) is an isomorphism. Moreover, since

u = ugu; ' € MyR is unitary, can(ad(u)) = id, ;4 by Lemma [1.6.8] we get
can(u) = can(ad(ugu; "))can () = can(ey). O

Lemma 3.1.12. The functor J : Alg; — Alg; passes down to a functor J :

{Alg;} — {Alg;}.

Proof. For a map [f] € [A, B], it easy to check using the universal extension that

the class [J(f)] € [J(A), J(B)] does not depend on the representative of the class f.
Recall the map ¢y, g : J(MxB) — MxJ(B) from Example[1.4.12] This induces

a map [¢] € {J(MxB), B}. For a map £ = [f] € {A, B}, define J(§) € {4, B} as

the class of the composition

J(A) 22 1M« B) & My J(B).
Using Remark [1.4.11] it is clear that this defines a functor. O

From here on, we shall abuse notation and use the same letter for the homotopy
class of a map f: A — B € ind — Alg; and for its image in {A, B}, and in case the
latter is an abelian group (e.g. if B = C®") we put —f for the inverse of can(f) in
that group.

Lemma 3.1.13. Let A, B € ind — Alg} and f € [A, B]. The the square

J(A) 22 1(B)
PA lPB

Asl idgl ®f BSI

18 homotopy commutative.

Proof. This is direct consequence of Remark [1.4.11} O

Lemma 3.1.14 ([cf. CMRO07, Lemma 6.30]). Let A € Alg;. Recall the maps p4 :
J(A) = QA and 4 : J(AS) — J(A)S from (L4.13) and (T.4.15) respectively.

Then the following diagram commutes in {ind — Alg;}.

J2(A) 2 J(A)

|

J(ASY).
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Proof. Recall the reversing map a : [t] — ([t] from (B.1.7). For an element p € ¢[t],
observe that evy(p) = evy(a(p)) and evy(p) = evg(a(p)). Writing P4 = kerevy, we
get that a(Pf) = P'¢ and a(P'l) = P{. Passing to the subdivision versions, for
any A € Alg;, a induces an isomorphism PA = P'A. Observe as well that since
P{N P'0 = Q then ker(evg : P'A — A) = AS',

Define

I =ker(PT(A) &5 T(A) X% A) = {p € PT(A) : evi(p) € J(A)}
and E as the pullback of the diagram

E " 7

=
| Jen

P J(A) =2 J(A).
The surjection pro : E — I is semi-split by p — (p,tevo(p)) and its kernel is
{(q,0) € E : evo(q) = 0)} 2 kerevo(P'J(A) — J(A)) = J(A)F.
Therefore, there is a semi-split extension
0o J(AY L EZS 150 (3.1.15)
Also, by definition of I, there is a semi-split extension

0—1—PTA) X255 A 0. (3.1.16)

Therefore there are maps of extensions

0—— JAS —2 s p P2 > 0
H pri eviy (3117)

I
levl . H (3.1.18)

0 —— J(A) —— T(A) 2= A > 0.

Let € : J(I) — J(A)S" be the classifying map of the extension (3.1.15). Using

Remark and Remark [3.1.6} it follows that the classifying map of the bottom
row of [B.L17) is —pyay : J2(A) = J(A)F". So from Remark [1.4.11] it follows that

the map of extensions (3.1.17)) gives the equality

{=id; g0 0 &= —pya)oJ(evy). (3.1.19)
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Similarly let ¢ : J(A) — I the classifying map of extension ({3.1.16)); the map of
extensions (|3.1.18) gives
eV OC = idJ(A) (3.1.20)

On the other hand, write 7 : I — AS' for the restriction of the map (idp @ 74) ® 0 :
PT(A) — PA (where e is concatenation). The map 7 lifts to a map ¢ : E — T(A)S'
by concatenation of paths in I and paths in P’J(A) which by definition of E they
coincide in the endpoints. This gives maps of extensions

o

0—— J@A)S —2 s p "2 4

H lq l" (3.1.21)

00— JAF — 5 T(A)F 2% 48t
0 y 1 » PT(A) 2% > 0
. lidp@? H (3.1.22)
0 > AS' y PA— 5 A > 0.

Since the classifying map of the bottom row of (3.1.21)) is v4 : J(AS") — J(A)S',
we get

§=1d; o 0§ =740 J(7). (3.1.23)
Also, since the classifying map of the bottom row of (3.1.22)) is p4, we have
pa=paocidy =no( (3.1.24)

Using (3.1.19),(3-1.20),(.1.23) and (3.1.24):

va o J(pa) =va0J(@) o J(()

= &0 J(()

= —pJ(a) © J(evi) o J(C)

= —PJ(4) []
Remark 3.1.25. The analogue of Lemma for algebras without involution
also holds as stated (this will be later deduced from the fact that kk is equivalent
kk" for a particular choice of £). This corrects a mistake in [CT07, Lemma 6.2.2],
where the sign is missing. A sign is also missing in the definition of composition in
the category kk |[CT07, Theorem 6.2.3], which is fixed below.

Let A,B € Alg;. As in [CT07, Section 6.1], using the functor J : {Alg;} —

{Alg;} of Lemma , there is a map

{A, B} - {JA,B%"}
§ = pp* J(E).

Thus one can form the colimit

kk"(A, B) = kk"(A, B) = colim{J"A, B*"}

34



3.2. j" as an excisive homology theory 35

Lemma 3.1.26. Let £ = [f] € {J™B,C"} and n = [g] € {J"A, BS"}; put
¢on = [(idsn @ f)] % (=1)™ g "] [J"(g)] € {J"(A), 057
This defines a bilinear composition law
kk"(B,C) @z kk"(A, B) — kk"(A, C)
@ Eon
Proof. This follows from Lemma [3.1.13] and Lemma [3.1.14] O

Therefore, the sets kk"(—, —) are the morphism sets of a category kk" with the
same objects as Alg;, where the identity map of A € Alg; is represented by the class
of i : A — MxA. Define a functor {Alg;} — kk" as the identity on objects and as
the canonical map to the colimit {A, B} — kk"(A, B) on arrows. Composing the
latter with the functor Alg; — {Alg;} we obtain a functor

gt Algy — kK", (3.1.27)

The category kk" together with the functor ;" is called bivariant algebraic hermitian
K -theory. We will often use the term kk"-equivalence between two *-algebras to
mean that their corresponding images in kk" are isomorphic.

3.2 ;" as an excisive homology theory

A triangulated category is a triple (T,Q<,7T) where T is an additive category, Qx :
T — T is a self-equivalence functor called the loop functor and 7 is a class of
sequences of morphisms in ¥

QOsC A —B—>C
called (distinguished) triangles such that they satisfy the following axioms:
TRO The class 7T is closed under isomorphisms and the sequence
QA —>0— A% 4
is a distinguished triangle.
TR1 For any map a : A — B in ¥, there is a distinguished triangle
Q<B—>C—>AS B.

TR2 For the sequences

ach AL Bl (3.2.1)
0B 2 a0.cbad B (3.2.2)

one is a distinguished triangle if and only if the other is. In this case we say

that (3.2.2) is a rotation of (3.2.1)).
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3.2. j" as an excisive homology theory 36

TR3 For any commutative diagram between distinguished triangles

O<C y A > B > ('

e bL

QzC' y A > B’ > C'

there exists a map « : A — A’ which makes the whole diagram commute.

TR4 Let a: A— Band f: B — C bemapsin ¥. There is a commutative diagram

020 —— QD —— QB —=25 Q0

% ht ht %
| h |
Q<C I, pr > A LN
Q<C s D' > B LN

in which each row and column is a distinguished triangle. Furthermore, the

square
0B =2, 0.0
| s
D" h D"
commutes.

Remark 3.2.3. Usually the axioms for triangulated categories are defined using the
inverse to the loop functor, called the suspension functor. In this thesis we present
the axiom in this way since it will be more natural to work with the loop functor.

Let ¥ be a triangulated category; write [n] for the n-fold loop functor in ¥. Let
& be the class of all semi-split extensions

0—-A—-B—C—0. (E)

An ezcisive homology theory on Alg; (with coefficients in ¥) is a functor H : Alg; —
T together with a family of maps

{0 : H(C)[1] > H(A): E€ &}
such that for every E € &£, the sequence
H(C)[1] 28 H(A) - H(B) - H(C)
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3.2. j" as an excisive homology theory 37

is a triangle in ¥ and the maps {Og} are compatible with maps of extensions in the
sense that for a commutative diagram between semi-split extensions

0 > A > C > 0 (E)

NN

0 > Al > B’ > ' > 0 (E)

the following diagram

1] = H(4)
(f3) lH(fl)
1] 2= H(AY)

H

()

F
(&)
commutes.

Remark 3.2.4. In a triangulated category, a sequence

OC s A BL o

with a splitting g : C — B (i.e. id¢ = fg), is always isomorphic to the split
distinguished triangle '
WS AB Apc

In particular, the first sequence is a distinguished triangle [NeeOl, Remark 1.2.7].

In what follows we will see that there is a natural triangulation of kk" which
makes the functor j* a homology theory.

Lemma 3.2.5. Let L € Alg] be flat as an (-module. The functor L = L ® — :
Algy — Alg; induces a functor L : kk" — kk".

Proof. Using the universal property described in Lemma|3.1.9] the functor descents

to {L} : {Alg;} — {Alg;}.
Next, recall the map

dar:J(L®A) = L®JA)
from Example [1.4.12] Write ¢} for the composition

nfl(

TUL @ A) LA (D g g (A)) = -

¢Jn71(A>‘L

L® J'(A).

For a map a € kk"(A, B) represented by [f : J*(A) — MxB""] define L ® a €
kk"(L ® A, L ® B) as the class of the composition

LA S Le(Aa) X2 Lo MxBY = Mx(L o B

Using Remark [1.4.11], it is clear that this definition gives a functor L : kk" —
kk". O
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3.2. j" as an excisive homology theory 38

Corollary 3.2.6 ([cf.|CT07, Section 6.6]). The functorsQ,Xx : Alg; — Alg; induce
functors Q, X x : kk" — kEk"

Proof. This follows from the previous lemma since €2 and Y x are flat. n

Lemma 3.2.7. Let f : A — B be semi-split x-morphism. Then, for any subdivision
Py = B Al x5 A of the path algebra, the inclusion ir:ker(f) — Pn s induced by
the inclusion is : ker(f) — Py and the last vertex map is invertible in kk".

Proof. The same proof as in |[CT07, Lemma 6.3.2] in the non-hermitian case works
verbatim. O

Corollary 3.2.8. The last vertex map h : QA — A5 s invertible in kk"; it
follows that in the ind-object AS' all the transition maps are kk"-equivalences.

Proof. This follows from Lemma by considering the loop extension (|1.4.7)
and that if P"A is the n-th subdivision of PA then the kernel of the induced map
ev? : P"A — A is isomorphic to A%4" 5" and that Peyp 18 Prev, - O

Definition 3.2.9. For a semi-split extension
0ALBSC S0 (E)

the Lemma m gives an kk"-equivalence A — P,. Define the connecting map as
the following morphism in kk"(QC, A):

Op 1 QC — P, & A, (3.2.10)

the composition of the natural map Q2C — F, of the mapping path extension of
Example and the inverse of A = P,.

Lemma 3.2.11. For a semi-split extension , the sequences

Qi" (g)

kkM(D, 0B) 289 pin(p, a0y 22 ik, 4) L)

Kk (D, B) -9 ki (D, )

HON

) VsV kkho, Dy 29 kB, D)

Kk (C, D) 290 ph (B, Dy 0 (®s)”

I kkM(A, D)
are exact.

Proof. This is proved in [CT07, Theorem 6.3.6 and Theorem 6.3.7] in the non-
hermitian case. The same proof works verbatim. O

Corollary 3.2.12. For any D € Alg}, the functors
kk"(D, ), kk"(—, D) : Alg; — b
are split exact.

Proof. This is [CT07, Corollary 6.3.4] in the non-hermitian case; again, the same
proof works. O]
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3.2. j" as an excisive homology theory 39

For R € Alg; unital, the %-algebra I'x R is what is known as a x-infinite-sum

algebra: define
o = Z €n2n and 6 = Z €n,2n+1;

neN neN

these elements satisfy the identities
afa=1= 0506
aa” + BpF = 1.

For a,b € 'y R, define

a®b=ca"ax+ 506
a® = Z(ﬁ*)na*aa6n7

neN

and for f,g: B — T'xR, write f®g: B—TxRand f*: B — I'yR for

f@g) = f(b)®g(b)
f(0) = f(b)>.

Then, it is straightforward to compute that
idI‘XR D id%OXR = ideR.

Lemma 3.2.13. There exists a unitary matrix (Q € M3I'x R such that for any
a,bel'xA

a®b

Q*

oo

0 0
00]Q=
0 0

o O 2

0 0
b 0
0 0
Proof. The matrix @) in [Wag72, p.355] can easily seen to be unitary in our case. [

Corollary 3.2.14. For any A € Alg;, the x-algebra T'x A is isomorphic to 0 in kk".

Proof. Assume A unital, the general case follows from split-exactness. From Lemma
3.2.13] Lemma|1.6.8] and Lemma [1.6.9] we get that

7" (idrya ®1dFS, 4) = 7" (idrya) + 5" (15 4);

since idr, 4 @ idp, 4 = idpya, it follows that j"(idry4) = 0 and therefore Ty A is
kk"-equivalent to 0. O]

Corollary 3.2.15. There is a natural kk"-equivalence QX x A = A. Since the func-
tors Xx and Q commute, it follows that they are inverse equivalences on kk".
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Proof. Write ¢ : 'y A — Y x A for the quotient map. Using Lemma [3.2.7] there is a
natural kk"-equivalence MxA = P,. On other hand, considering the mapping path
extension of ¢, there is a natural map QX xA — P,. Since I'x A is kk"-equivalent
to 0 for any A, it follows from Lemma [3.2.11] that for any D € Alg;, the inclusion
(0¥ xA — P, induces isomorphisms

kkM(QXx A, D) = kk"(P,, D).
Therefore there are kk"-equivalences QXA = P, = My A = A. O]
Lemma 3.2.16. The classifying map pa : J(A) — QA is an kk"-equivalence.

Proof. The algebras T'(A) and PA are contractible: there are x-homotopies Hy :
T(A) — T(A)[s] and H, : PA — PA[s| such that

€Vq H() = ldT(A) €Vo H() =0
eVlleidpA €VOH1 = 0.

These are defined as follows: Hj is the adjoint to the ¢-linear map

A = T(A)]s]

a — sa;
similarly, H; is defined by

PA — PAls]
p(t) = p(st).

Therefore, using the loop and the universal extensions in Lemma , there
are natural equivalences pyop : QA4 — QA and pyp : QA — J(A). Using naturality
of these maps and the map of extensions from the universal to the loop extension
that defines p4, the statement of the theorem follows. m

Let 7 be the class of sequences in kk"
QC —-A—-B—-C

which are isomorphic (as sequences) to the image of some mapping path extension
OB - P> AL B
Theorem 3.2.17. The triple (kk",Q,T) is a triangulated category.

Proof. This is proved in [CT07, Theorem 6.5.2] for the non-hermitian case. The
same proof works verbatim. O]

Theorem 3.2.18. The functor j" : Alg; — kk" together with the connecting maps
{0} form an excisive homology theory which is homotopy invariant and My and
hermitian stable.
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3.2. j" as an excisive homology theory 41

Proof. The fact that j" is homotopy invariant and My and hermitian stable follows
from Lemma and Lemma [3.2.11] By definition of the connecting map, for a
semi-split extension (E) the sequence

OC 2, A 5B C

is isomorphic (as a sequence) to the mapping path triangle of the extension. More-
over, the maps Jg are clearly natural on the extension (E). ]

Remark 3.2.19. Theorem [3.2.18| corrects an error in [CT07, Example 6.6.1] in
which the connecting map is wrongly defined.

Theorem 3.2.20. The functor j" : Alg; — kk" is universal in the following sense:
for any excisive homology theory H : Alg; — % that is homotopy invariant, Mx
and hermitian stable, there is a unique triangulated functor H : kk" — T such that
following diagram commutes

Algs 1 %

e
kM

Proof. This is |[CT07, Theorem 6.6.2] in the non-hermitian case. The same proof
works. u

Remark 3.2.21. As explained in Remark [I.4.4] the classes of extensions which
are semi-split with respect to the underlying categories of sets and /-modules agree
with those semi-split with respect to sets with involution and /-modules with involu-
tion. Hence by Theorem [3.2.20] the corresponding kk-theories are the same whether
involutions are included in the underlying category or not.

Let € be an abelian category. A functor H : Alg; — € is half-exact if for an
extension in Alg;
0—-A—-B—-C—=0

the sequence
H(A) — H(B) — H(C)
is exact.

Proposition 3.2.22. Let € be an abelian category and H : Alg; — € a functor.
Assume that H is half-exact, homotopy invariant and Mx and hermatian stable.
Then there is a unique homological functor H : kk" — € such that H o j" = H.

Proof. Again, the proof is the same as in [CT07, Theorem 6.6.6]. ]

Remark 3.2.23. For a map o € kk"(A, B) we will show how to describe H(a) for
a functor H as in Proposition first extend H to {H} as in Lemma [3.1.9}
next realize a as a class of a map f : J"(A) — MxMP" B 5", Composing with the
inverse of J"(A) — Q" A and using M x-stability, hermitian stability and Corollary
we get a map f : Q"A — Q"B in kk". It is immediate to see that f induces
the class of Q"(a), and therefore H(Q"(a)) is determined by {H}(f) and in turn

H(a) = {H}Z%f).
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From here on, we will fix X = N.

Remark 3.2.24. Let f : A — B be a semi-split *-morphism. One can also fit f
into other equivalent triangles instead of the one induced by P;. For example, take
the pullback of the natural map T'(B) — B along f
J(B) — T(B) xp A —— A
r
LT
J(B) — T(B) — B.

Write Ty := T'(B) x g A. Then, we have a commutative diagram

JB) — Ty — A—L5 B
b T e
QOB > Py »A—1. B

By Lemma , the vertical map JB — QB is a kk-equivalence. Since the first
three terms of the top row in form an extension, using the five lemma it
follows that the vertical map Ty — Py is a kk"-equivalence. Thus, the top row is
kk"-isomorphic to the bottom row, and is thus a triangle in k&k".

In a similar case, let T'y be as in Example [1.4.9] By Corollary [3.2.14] the classi-
fying map JX.B — M, B of the cone extension is a kk"-equivalence, and therefore
Tss — Ty is a kk"-equivalence by the same reasoning as before. Thus the vertical
maps in the commutative diagram below form an isomorphism of triangles in kk":

JSB — Ty —— ©A —L5 9B
l | H H (3.2.26)
zf
M. B a2y > LA » LB

Therefore, the bottom row of is a distinguished triangle in kk". The map
together with that of with X(f) substituted for f is a zig-zag of kk"-
equivalences. In particular I'y is kk"-equivalent to Pgy). Since YP; is isomorphic
to Psy, the bottom row of is isomorphic in kk" to the suspension of the
mapping path extension [1.4.9 associated to X f. Thus, we have an isomorphism of
triangles:

-h
M..B . T x4 2% yp
FE ]
B——yp —— A2 yp

Remark 3.2.27. Let (Alg;); C Alg; and kk}} C kk" be the full subcategories whose
objects are the x-algebras that are flat as /-modules and let j}” s (Alg) s — k‘k‘? be
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the restriction of j". Observe that (Alg}); is closed under J and under mapping
path extensions; hence k:k:? is triangulated and jj}} is excisive, homotopy invariant,
ty-stable and Mx-stable. Moreover, in the same way as in Theorem [3.2.20] the
functor j}l is universal among such functors.

Example 3.2.28. Let {; be any commutative ring and let ¢ = inv({y) and inv :
Alge, — Alg; be as in Example Recall the universal excisive matrix stable
and homotopy invariant homology theory j : Algs,, — kk. Then, the composition
j"oinv : Alg; — kk" is excisive, homotopy invariant and Mxy-stable; by universality
of j it induces a triangulated functor inv : kk,, — kkP'. Similarly, for the inverse
functor to inv,

res : Alg, — Algy,
B+~ (1,0)B
the composition j o res is excisive, homotopy invariant, Mx-stable and by Example
1.1.16|it is also hermitian stable. Hence it induces a functor res : kk! — kky, which
is inverse to inv. This shows that kk is a particular case of kk".
Similarly, for an arbitrary ¢, recall the adjunctions from Example [1.1.6}
res : Alg; +» Alg, : ind,
ind" : Alg, «» Alg; : res.
The same reasoning as before gives adjunctions
res : kk" < kk : ind,
ind’ : kk <> kE" : res.
Example 3.2.29. Let L € Alg}; then L ® — preserves semi-split extensions with
linear splittings if either L is flat as ¢-module or every semi-split extension is /(-
linearly split. In either case, j"(L ® —) : Alg; — kk" is homotopy invariant,
matricially stable, hermitian stable and excisive, and therefore induces a triangulated

functor L ® — : kk" — kk". By a similar argument, for kk;} as in Remark |3.2.27,
any L € Alg; induces a triangulated functor L ® — : k:k:? — kk".

Proposition 3.2.30. Let A, Ay € Alg; such that A;@— (i = 0,1) preserve linearly
split extensions. Then we have a natural bilinear, associative product

kkh(Alv AQ) X kkh(Bla B2) - kkh(Al & Bl) A2 X BQ)? (5777) = 5 ® n
that is compatible with composition in all variables.

Proof. Suppose first the case that Ay, Ay are flat as f~-modules. By Example [3.2.29]
A; ® — and — ® B; extend to functors 4; ® — : kk" — kk" and — ® B; : k:k:? — kk".
For § € kl{?h(Al,Ag) and ne kkh(Bl, BQ), set

§@n=({®idp,)o (ida, ®n).

It is straightforward to check that the product above has all the desired properties.
In the case semi-split extensions are always linearly split, then — ® B; extend to
the functors — ® B, : kk" — kk" and use the same definition as before. O
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Definition 3.2.31. Let ¢ € ¢ be a unitary, A, B € Alg; and n € Z. Put

MA,S"B)  ifn >
ki (A, B) = 4 PEARTB) ifn 20
kk"(A,Q™B) ifn<0
kkM(A, B) = kk"(A, .M, B)

Remark 3.2.32. Since  and X are inverse functors in kk" there are natural iso-
morphisms

KEM(Q"A,B)  ifn >0

kk'(A, B) =
w4, B) {kkh(Z”A,B) if n <0

Remark 3.2.33. Due to Remark |[1.1.26] there is a *-isomorphism M, = M. It
follows from this and from Theorem [3.2.20| that for all A, B € Alg;, iy : { — My
induces a canonical isomorphism

Example 3.2.34. The functor KH} : Alg; — KHJ}(¢) — Mod satisfies the hy-

pothesis of Proposition |3.2.22, Hence the functor K H ’5 of the proposition induces
a natural homomorphism

kk"(A, B) = homy o) (K Hy (A), K Hy (B))
Setting A = ¢ we obtain a natural map
kk"(¢,B) — KH}(B).

Proposition 3.2.35. The product from Proposition|3.2.30 maps to the cup product
from Lemma[2.2.9 under the map from Ezample[3.2.5). In other words, there is a
commutative diagram

kM0, A) @z kk"(¢, B) —— KH}(A) ®z KH}(B)
L [
kk"(¢(,A® B) ——— KH}INA® B).

Proof. Assume A, B unital and let « € kk"(¢, A) and 3 € kk"(¢, B). Using Remark
3.2.23| the corresponding elements in KH[(A) and KH}(B) are determined by

maps

Q"(a), : KHNQ™) — KH}(Q"A),
Q™(B), : KH}Q™) — KHNQ™B).

and evaluation at [1] € K H(¢). Since the product

kk"(¢, A) @z kk"(¢, B) — kk"(¢, A® B)
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extends the tensor product of algebras and due to Remark the cup product
corresponds to the extension of scalars, it follows that

Q@ B).[1] = Q" (). [1] x Q™ (8).[1].

From this, the statement follows in the unital case. The non-unital case follows from
the unital one and excision. O
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Chapter 4

Computations and the comparison
with KH"

In this chapter we show some computations in kk" as a matter of examples: in
Section 4.1 we characterize the image of the coproducts, of the Toeplitz algebra and
of the Cohn algebra of a graph and also give an algebraic analogue of the Pimsner-
Voiculescu sequecen. In Section 4.2 we show that the natural map kk"(¢, A) —
K H[!(A) as described in Example is an isomorphism.

4.1 Computations

Coproducts

Proposition 4.1.1. Let A, B € Alg;. Then the natural map AIIB - A® B is a
kk"-equivalence.

Proof. Define f: A® B — My(AIl B) as

ran =5 5)-

We will show that
§M(idp, @ To f) = j"(is : A® B — My(A D B)) (4.1.2)

and that
i"(form)=j"(iy: 1IB — My(AIl B)); (4.1.3)

it follows that j"(7) is left and right inversible and therefore an isomorphism in kk".
Identify AII B with its image through is in My(AIIB). Let u(t) € My(A Il B[t])
defined by

: 1 -t t
t = idaa Il ((t3 —2t) 1- t2> '
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It is easily shown that wu, is invertible, uy = id and

uiz(a)u; = fom(a) (a € A)

uyiz(bjuy = fom(b) (b€ B);
therefore, it follows from Lemma that the equality in (4.1.3]) stands. Similarly,
using the matrix m(u;) € My(A & B) we can conclude the equality in (4.1.2)). O

Corollary 4.1.4. The natural map Q(A) — A ® A is a kk"-equivalence and it
induces a kk"-equivalence my : q(A) — A.

Proof. This follows from Proposition and the commutative diagram between
split triangles in kk" (which are distinguished by Remark [3.2.4)):

04— g(A) —— Q(A) —— A

(A)
-
A

A —°% N LA A2y A

The fundamental theorem
Recall from Example [1.1.21] the Laurent polynomial algebra A[t,t~!]. Write
oA =ker(evy : Alt,t7'] — A).

The Toeplitz algebra T (over £) is the x-algebra generated by an element S such
that S*S = 1. We write 7y for the kernel of the map 7 — ¢ that sends S to 1.

Proposition 4.1.5. Let A be an algebra in Alg}. Then A[t,t7'] and A ® T A are
kk"-equivalent.

Proof. Consider the split extension
0—0A— Alt,t7] = A —0;

therefore, from Remark , it follows that A[t,t+71] is kk" equivalent to A ® g A.
We will show that oA is kk" equivalent to Y A. Since the coefficient ring A does
not matter in the following proof, we omit it from notation. The proof follows like
[CT07, Theorem 7.3.1 and Lemma 7.3.2].

Let f : 7 — A[t,t7!] be the *-morphism defined by S + ¢. This morphism
restricts to f| : 79 — o. On the other hand there is also a natural s-morphism
g : 7 — I' sending S to the matrix

O = O
= OO
o OO
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It is easy to see that g is injective; thus, 7 identifies with a x-subalgebra of I". In this
identification, the kernel of f| is mapped to M. This gives a commutative diagram

> 0

0 > M > Ty >
y I

If we show that 7y is kk-equivalent to 0, since we know that I' is kk-equivalent
to 0 by Corollary [3.2.14] we can use the five lemma and conclude that o is kk"-
equivalent to 3. For this we will construct a *-homotopy from 7y to M 7[t] that
when evaluated at ¢ = 0 is the natural inclusion and is null when evaluated at ¢ = 1.

First we define several x-morphisms ¢, ©1, 9, 3 : T — 7 ® 7 which are given by
defining them on the generator S as

P(S)=5*S*®1 (4.1.6)
01(8) =9*S* @1+ (1 -855)® S
w(S)=5S®1

03(8) = S*S* @1+ (1 - S5 ®1

All of these morphisms agree modulo the ideal M 7. Identify 7 with its image in "
and define elements u, v, € (7 ® 7)[t] C I'7[t] by

M +— Q

0 >y Mo > 0.

\
7

1—88%* (*—2t)S 0 0
tS* 1—-t2 0 0

Uy = 0 0 1 0 :
01

0 0

11—t (*—=2t) 0 0
t 1—t* 0 0

v, = 0 0 10 7
0 1

0 0

It is readily checked that wug,u;, vy and v; are unitary matrices and that 1 — u, and
1 — v; belong in the ideal M 7[t]. Write U; = c(us, u; ') and V; = c(v;,v; ') as in
Lemma [1.2.3] Define ®;,®5: 7 — M. (7 ® 7)[t] as
O,(5)=Usin (S®1)
Oy(S) = Vi (S®1).
The following identities are then satisfied:
evgo Py =evy oDy =i o,
evio®; =1,y and

eviody =i 3

48



4.1. Computations 49

Thus, restricting to 7y there are x-quasi-homomorphisms
((1)1, i+¢), ((I)Q, Z.,.w) 1T = MiT & T[t] E MiMOOT[t]

Using Proposition the *-quasi-homomorphisms (iyp1,747) and (iyps,i11)
induce the same morphisms in kk". Therefore, using hermitian stability the x-
quasi-homomorphisms (i1, 1) and (¢3,%) induce the same morphisms in kk”.

Finally, since ¢; is the orthogonal sum of ) and the inclusion 75 — M7 and @3
agrees with 1 when restricted to 7y, using Proposition this means that (y1,1))
induces the same morphism as the inclusion 7y — M7 in kk" and (3, 1) induces
the null morphism. Thus the inclusion 7y — M7 is null on kk". By M_-stability
this then implies that the inclusion 75 — 7 is null, which implies that 7y is kk"
equivalent to 0 since the following extension is split:

O—-17m—7—A—=0 O

Pimsner-Voiculescu sequence

In topological K-theory, the Pimsner-Voiculescu sequence relates the K-theory groups
of a crossed product A x Z with those of A. Here we present the algebraic analogue
of this sequence in our setting.

Given a x-automorphism o : A — A we define the crossed product A x, Z as the
¢-module A[t,t7!] but with multiplication given by the relation

tat™! = o(a)

and involution (at)* =t 'o(a)*.
Consider the x-subalgebra 7, of 7 ®, (A X, Z) generated by 1 ® A and S ® t.
This gives a semi-split extension

0= M A—= 7, = AX,Z — 0. (4.1.7)

Proposition 4.1.8. Let A be an algebra in Alg;. Then the sequence (4.1.7) induces
the distinguished triangle in kk"

id—j"(c™1)
DA A—— 5 A— Ax, 7.
Proof. Write k : A — 7, for the canonical inclusion. The same argument (with the
obvious modifications) as in [Cun05, Propositions 14.1 and 14.2] shows that there is
a commutative diagram in kk"

id—j" (oY)

QA X, Z > A ¥ A > A X, 7

| ol

I
X
q

N

so the statement of the proposition follows. n
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Cohn algebra of a graph

Let E be a directed graph, that is, a cuadruple (E°, E',r, s) where EY is the set of
vertices of the graph and E' is the set of edges, r,s : E' — E° are the source and
range of the edges. A pathin F is a sequence of edges eje, - - - €, where r(e;) = s(e;41)
fori=1,...,n—1; in this case we call n the length of the path. We define vertices
to be paths of length 0. We define P(FE) as the set of finite paths in F; the range
and source functions extend to r,s : P(E) — E° in the obvious way.

The Cohn path algebra C(E) of a graph E is the x-algebra generated by E° and
E' subject to the relations

VW = Oy ¥
vt =0
se)-e=e=r(e)-e

e f = 0esr(e)

for v,win E° and e, f € E.
There is a natural morphism ¢ : £(F") — C(FE) sending ev, to v. For a vertex
v € E° such that s71(v) is a finite set, we define

* -1
C(E) 3 m, = | 2ees 0@ T8 (0) 7
0 if s7H(v) =
The elements m, satisfy the identities
My = mb, M2 =My, MW = Gy My,
mye = Oy sy (W E E' ec EY). (4.1.9)

Write C™(F) for the algebra obteined from C'(E) by formally adjoining an element
m, for each vertex in F such that s~!(v) is infinite, subject to the identities (4.1]).
Let g, = v —m, € C™(F) and write

K(E) = (qu|v € E® s'(v) is finite non empty) C K(E) = (g,|v € E°)

for the corresponding ideals in C™(E).
Write 7 : (E) — K(E) for the *-morphism that maps ev, to ¢, and let ¢ :
C(F) — C™(FE) be determined by

5(2}) = My; 5(6) = EMyp(e)-

The same aregument as in [CM18, Remark 4.9] shows that 7 is a kk"-equivalence.
On other hand, the canonical inclusion ¢ : C(E) — C™(F) and £ determine a *-
quasi-homomorphism (4,¢) : C(E) = C™(E) > K FE). It is straightforward to see
that ip = &p —l—/z'\, therefore, using Proposition , we get

31, €)™ () = j"(ip, £p) = j"(€p, €p) + §"(3,0) = j"(3)
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Hence, j"(¢) has a left inverse j"(i)~j"(i,¢). We will show that j"(¢) is right
inversible and therefore an isomorphism.

Consider Mpg), the matrix ring indexed on the set P(E) and write €, g for its
units. Define 7, : C(E) = Mp)C(E) given on generators by

~

ir(v) = €0 @0, /Z'\T(e) = Es(e)r(e) ¥ €
for v € EY and e € E'. Also define ¢ : ﬁ(E) — Mpp)C(E) by
P(ag,p”) = €a,p O V.

There is a commutative diagram

(E) T R(E)

Pk

C(E) — MpgC(E).

Lemma 4.1.10. Let o € P(E) be a path and i, : C(E) — Mp)C(E) be the

inclusion in the a-diagonal coordinate (€n,). Then i, and i, induce the same iso-
morphism in kk".

Proof. Using Lemma [1.6.8] the class of 7, does not depend on « since ¢, and ig are
conjugates. So we assume o = w € E°. For each v € E°, v # w write

a, = (1 — tz)ewﬂu + (t3 — 2t)ewp + tepw + (1 — tz)ew
by = (1 — 1*)eww + (2t — t¥)ewn — tepw + (1 — 1%)ens

Ay = by = € -

Define C, = c¢(ay,b,) as in Lemma m Then we have a x-homotopy
H : C(E) = My Mpp C(E)[t] given by

H(U) = Cv?:Jr(Gvﬂ, ® U)Cv
H(€> = Cs(e)i—k(es(e),r(e) ® e)C’;(‘((e)

which satisfies evg H = ijT and evy H = 1,1,. Using hermitian stability we con-
clude that i, and i,, are the same in kk". O

Write A C Mpg)C(E) for the f-submodule generated by
8 = span{e, s ® aff* € Mp)C(E) : s(o) = 7(7), s(8) = r(0), r(a) =r(5)}.

It is readily checked that 2 is a *-subalgebra of Mpg)C(E), and Im/i\T, Imp C 2.
In particular, i, restricted to 2 induces a monomorphism in kk".
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Let I'p(g) be the cone algebra indexed by P(E). There is a *-morphism p :
C™(E) — I'pg) given by

r(a)=w
length a>1

Consider the *-morphism p' = p® 1: C"™(E) — I'p(gyC™(E). Then 2 is closed
by multiplication by elements on the image of p’ on both sides, so we can form the
semi-direct product C™(E) x 2. Define the algebra D as the quotient of C™(E) x 2
by the x-ideal

(aqB", —€ap ®@v:v =r(a) =r(B)).
It is shown on [CM18| Lemma 4.19] that 24 maps injectively to D, meaning it is
isomorphic to an ideal inside D. We then have a commutative diagram

JCCR RN K(E) — C™(E)

Lp F l: (4.1.11)
- > D

C(B) —=— A ,

where = is given by the composition of the inclusion C™(E) — C™(F) x 2 and the
projection C™(E) x A — D. Define )y = =, ¢y = Z£. It is easy to check that
Yy is orthogonal to i, so we can define P12 = U1 +%,. These x-morphisms define
k-quasi-homomorphisms

(Y0, Y1), (Yo, ¥1/2), (W1/2,91) : C(E) = D> A
Lemma 4.1.12. The *-quasi-homomorphism (1o, v1,2) induces the zero map in kk".

Proof. For each e € E' consider the matrices in I'p(gyC(E)|t]

u = 68(6)78(6)(1 — t2) ® ee” + € 5(e) @ te”
V) = €s(e),s(e) (1 — ) ® ee* + €s(e),e @ (2t — tHe.

Observe that multiplying by uf and v§ preserves . Put Uf = ¢((0,us), (0,0f)) €
M DI[t] and define a *-homotopy H : C(E) — M D|t] determined by

H(v) =i (v,0) (ve E°)
H(e) =iy (emy(e), 0) + Uit (0, €5(e).r(e) @ €) (e € EY)

Then H is a *-homotopy between ¢y and )/, and the *-quasi-homomorphism
(H,i41/2) is a x-homotopy between (1o, %1/2) and (1/2,%1/2). Therefore, by

Proposition 3"(¥9, 101 2) is the zero morphism ]

92



4.2. Comparison of with K H" 53

Theorem 4.1.13. The morphism ¢ : {F) — C(E) is a kk"-equivalence.
Proof. We have already checked that

J@)" (01" () = 5" (idgen)).
The commutative diagram and the previous lemma show that

F(@)5"(0,€) = "W, 1) = (W0, 1) + 5" (Wr2, 1) = 5 (W12, ¥1) = 5" (i)
And on other hand
J"(@)5"0.6) = 3" (13" ()" ()" 0. 6)

hence R R N

3"(ir) = 3" (in)5" (0)3" (715" (1, 6),
and since j(i,) is a monomorphism, this shows that

J"(deqe) = 3" (9)3" ()74 (.€)

as we wanted. O

4.2 Comparison of with K H"

Theorem 4.2.1 ([cf. CT07, Theorem 8.2.1]). The map from Ezample |3.2.34| gives
an isomorphism

KHMNA) 2 kk"(0, A).

Proof. Suppose first A unital, the general case follows from excision. Recall from
Remark the set of *-quasi-homomorphisms ¢q(¢, A) and the surjective map

qq(l, A) = K{'(A).

Using Example|1.5.2] for (eg, e1) € qq(¢, A), this x-quasi-homomorphism also induces
amap (e;) : gf — (MIM A which induces a map in kk",

qq(, A) — kk"(qt, MaM o A) = kk"(ql, A) (4.2.2)

(e, €1) = [ed]

Using Lemma [1.6.8) the map (4.2.2) sends equivalent classes in K to the same
morphism in kk", so the map then factors as

q(l, A) —— kkh(qt, A)

i /
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Using Corollary we have that 7 : ¢f — ¢ is induces a kk"-equivalence, therefore
we can compose to get
KIMNA) — kK" (¢, A).

Using excision for K" for n < 0, this gives a map

a: KHy(A) = colim Ky (S"Q" A) — colim k&" (£, ¥"Q"A) = kk((, A).

Write
B kk"(0,A) — KH}(A)

for the map in Example [3.2.34 We will show that o and 8 are inverses of each
other.

Using the description of § given in Remark for a self-adjoint idempotent
e € 1MIM, A, where A is unital, is immediate to see that Sa(cyle]) = cole]. This
implies that Ba is the identity in K H}(A).

To complete the proof we will show that « is surjective. Let ¢ : J"({) —
Mo ME* A 5™ represent a class in kk"(¢, A). Using the map £ — X"J"(f) in kk"
consider the induced map on K H}

KHMNO) — KHY (" J"(0))

and write e € K H}(X"J"(¢)) for the image of the element [1] € KH[(¢). Tt follows
from the definition of «, that a([1]) equals id, in kk"(¢,¢). Let then s : gf —
1 Mo M ¥ J™(0) be the associated map to a x-quasi-homomorphism that induces e.
Thus we have the follows equality in kk" (¢, X".J"0)

7"(8)5" (mo) ™! = afe). (4.2.3)

In turn, this shows that j"(x)j"(m) =t is the morphism that induces the kk" equiv-
alence £ ~ X"J"(f). On other hand, consider the commutative diagram in kk"

Zan(f) Xt ZnASdT S

ZT ¢
(—F 5 A
where the right arrow is an isomorphism because of Corollary It follows that

(Xn0).(e) € KHP (XA S™) =2 KH!(A) is the same class as j"(p).([1]) € KH}(A).
Therefore, using (4.2.3)) we have following equalities in kk"(¢, A):

a(p([1])) = a((E"p)i(e)) = (E"p)ale) = (X"p)j" (k)" (m0) ™' = ¢.

This concludes the proof. O
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Chapter 5

Karoubi’s Fundamental Theorem

in kk"

In this chapter we prove an analogous result to Theorem in the category kk".
For this, we develop some preliminary results about the induction and restriction
functors in Section 5.1; we then define functors U,V : Alg; — Alg; in Section 5.2,
which are similar to the functors U’, V' described in Section 2.3 and which in kk"
give equivalent functors up to suspension/looping; we also show that functors U, V/
satisfy analogous properties to the ones discussed in Section 2.3. Finally in Section
5.3 we use the functors U,V and the properties that were discussed in Section 5.2
to conclude Theorem [5.3.1l and Theorem [(.3.7

5.1 The functors ind, res and A

Recall the functors res : kk" — kk, and ind, ind’ : kk — kk" from Example [3.2.28|

Proposition 5.1.1. The functors res : kk" <+ kk : ind are both right and left adjoint
to one another; in other words, for every A € Alg; and B € Alg, there are natural
1somorphisms

kk(res(A), B) = kk"(A,ind(B)) and kk"(ind(B), A) = kk(B, res(A)).

Proof. Using Proposition the functors ind,ind’ : kk — kk" are naturally
equivalent, since one is right adjoint to res and the other is left adjoint, the result
follows. O

Remark 5.1.2. The unit and counit maps of the second adjunction in Proposition
are obtained from those of the adjunction between ind’ and res using the
projection 7 : ind’ — ind and the diagonal map ind — Msind’ as in the proof of
Proposition

Let A = ¢ & ¢ equipped with involution
(A, )" = (1", A7),
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5.1. The functors ind, res and A 56

For A € Alg; write AA for A® A and A : Alg; — Alg; for the associated functor.
Recall from Section 2.3 that for A € Alg; we write A = ind(res(A)). Then
A = AA via the isomorphism

AA = A
(z,y) = (z,y").

Under this identification, the maps 14 of (2.3.2) and ¢4 of (2.3.1) become the scalar
extensions of the embeddings

n:l— A (5.1.3)
r— (x, 1),
¢ N — My (5.1.4)

(z,y) = (g 2)

Remark 5.1.5. The functor induced by tensoring with A : kk" — kk" is left and
right adjoint to itself since A = indres(¢). Also, Proposition shows that

EE" (-, A(-)) = kk(res(:),res(+)).
In other words, A represents kk. In particular, we have
kK" (A () = RE" (- A())

for any unitary € € £. Moreover by Remark if R € Alg; is unital and € € R
is central unitary and W € R is an invertible e-hermitian element, then we have an
x-isomorphism

ad (1, 1) : AR — AR".

In particular, we have x-isomorphisms
AMy = A(Msy) = AM,.

Remark 5.1.6. Let t : A — A defined as t(z,y) = (y, z).Then ¢ is a x-automorphism,
with ¢? = id,; moreover using Remark one checks that the following diagram
commutes:

Thus, using Lemma [1.6.9| we get
7" (i) 75" (0)3" (@) = 3" (ida) + 5" (1).
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5.2 The functors U and V

Consider the path algebras (Example [1. of the maps and -
U=PF,and V =P,

For A € Alg;, write UA =U ® A and VA =V ® A; these are, respectively, the path
algebras of p ®idy : AA — 1 MyA and n®idy : A — AA. Because U and V are flat
¢-modules, they define functors U,V : kk" — kk" by Example [3.2.29

Remark 5.2.1. Recall the functors U’,V’ from Section 2.3. Using Remark [3.2.24]
and the isomorphism A AA, it follows that there are kk"-equivalences

U~ QU
V ~QV'L.

In Lemmas [5.2.2| and [5.2.6| we recast the equivalences of (2.3.4)) into the framework
of kk".

Lemma 5.2.2. There are kk"-equivalences

UAN ~ A and
VA~ QA.

Proof. Let us prove the first equivalence. To ease the notation we omit the functor
h
g™ Let

QMuA — UA — A2 229 ALA

be the triangle in kk" induced by the extension which defines UA. We have an
isomorphism

TIANPZAQA (5.2.3)

(21, 22) ® (23, 1) = (X123, T2Ts, T124, T2T3).
Put A\; = (0,1), A2 = (1,0) and ¢; : A — 1 MA as in Lemma 3.1.11] Let 5, : A —
A @ A (i =1,2) be the inclusions in each coordinate. Observe that

(p®idp) ot on)(z,y) = (Eg: 8; 58:2;) '

The matrix
. <(%6’—0§> (g?)) € My (ind(B)) (5.2.4)

is unitary and satisfies
ad(u) o1, = (¢ ®@idy) o7t oy A — | MyA.
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So by Lemma the following diagram commutes in kk"

Similarly, the diagram

commutes in kk". Let pr; : A®@A — A (z = 1,2) be the projections on each
coordinate. By Lemma [3.1.11| we have j"(1;) = j"(12); thus, using the previous
diagrams, the following solid arrow diagram commutes in kk":

UA N C R SN VY|
i 7—*1]\2 L1:L2T
A J1—J2 A @ A T1+m2 A

Since the lower row is split, it completes to a triangle by Remark Then,
because the middle and right vertical arrows are isomorphisms in kk”, we get that
the dashed map is an isomorphism in kk".

Next we prove the second isomorphism of the statement. Let

QA2 s VA —s A 1298 42

be the triangle in kk" induced by the extension defining VA. Let t be as in ([5.1.6));
one checks that the following square commutes

A n®idp A2
T (5.2.5)

JESEE R
The map 7 + Jot completes to a split distinguished triangle in kk"
OA — A 2525 A g A 2272 0
Rotating the split triangle above we get the triangle
QASA) = QA S A2 A g A,
Finally, (5.2.5) extends to a commutative diagram in kk":

VA y A — 1P A2

QiA ° /HX neet /%

It follows that the dashed map is an isomorphism. O]
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Lemma 5.2.6. There is a kk"-equivalence
VU ~ L.
In particular, VU ~ Q.

Proof. As before, we omit ;" from the notation. In view of Lemma [3.1.11], it suffices
to show that XV U is kk-equivalent to {M,. Let

QAU — VU — U 7299 Ap

be the triangle in k&" induced by the extension that defines VU. The kk" isomor-
phism between AU = UA and A established in Lemma is induced by mapping
A% to A @ A and then retracting onto the first coordinate. Using this fact we get
that there is a map of triangles in kk"

U M A s YWWU — YU

I
o |
P N

ﬂ > A y 1My — YU.

It follows that the dashed kk"-map is an isomorphism. O]

Remark 5.2.7. By Example [3.2.29] the isomorphisms of Lemmas [5.2.2 and [5.2.6
induce kk"-equivalences UAA ~ AA, VAA ~ QAA and VUA ~ QA for every
A e Alg;.

5.3 Bivariant version of Karoubi’s Fundamental
Theorem

Recall from Corollary the element 6 € K H(_; My(U")?(). Using Remark
and Theorem |4.2.1] we get an element 6 € kk"(¢, _; MyU?). Also, recall the product
induced by the tensor product from Proposition [3.2.30]

Theorem 5.3.1. Forall A € Alg}, the product with 6 induces a natural isomorphism
Oa:=0® j"(ida) : 5"(A) = j" (1 MU A).

Proof. By Example (3.2.29] it suffices to show that 8 = 6, is an isomorphism. Equiv-
alently, we need to see that

kE"(0,0), : kk"(€,0) — kk"(¢,,M,U?) and
k:k:h(_lMgUQ,Q)* : kkh(_1M2U2,€) — k’k‘h<_1MgU2, _1M2U2)

are isomorphisms.
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Taking into account hermitian stability and using Lemma [5.2.6] we see that
kk"(_1MyU?,0), is an isomorphism if and only if

KEM(0,0 a2 )e 0 kK6, 1 Mo(SV)?) — kk (€, —i My(SVU)?)

is an isomorphism. Hence the theorem will follow if we prove that (64), := kk"(¢,0,)
is an isomorphism for all A.

By Proposition [3.2.35| and the isomorphism of Theorem the map (04).
corresponds to the cup-product with 6, which by Corollary is an isomorphism.

]

Corollary 5.3.2. Let ¢ € ( be unitary. For every A € Alg;, there is a kk"-
equivalence

MV A~ _MUQA.

Proof. Tt is immediate from Theorem Lemma and Remark that
VA~ _{MUQA. The corollary follows from this applied to .MsA using the iso-
morphism

1M (cMa) = Mi(-cMa)
and hermitian stability. O

Lemma 5.3.3. Consider the kk"-equivalences UN ~ A of Lemmal[5.2.4 and MyA =
_1MyA of Remark . Then the following diagram commutes in kk":

A L) _1M2U2A

b

MQA — _1M2A

Proof. By part i) of Theorem [2.3.3, we have a commutative diagram in kk", where
as usual we have omitted j",

14 % _1M2U2 e _1M2AU

lm l (5.3.4)

MZA = ? _1M2A.

Let p=pri o7 : A2 = A; we have

p((21,22) @ (w3, 24)) = (X123, T2Z4).

Tensoring (5.3.4) with A and composing the resulting vertical maps with those
induced by p, we get another commutative diagram

A L _1M2U2A e _1M2AUA

l” | (5.3.5)

MQA = > _1M2A.
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Using the fact that the kk"-equivalence UA ~ A is induced by first mapping to A2
and then applying p, we obtain a commutative diagram in kk"

UA —— AUA
L
A

Tensoring with _; M, we obtain that the composite _ MoU?A — _; M,A in diagram
(5.3.5) is the map in the diagram of the proposition, finishing the proof. O

The bivariant 12-term exact sequence

Definition 5.3.6 (cf. Definition [2.3.7)). Let A, B € Alg;, € € £ unitary, .kk"(A, B)
as in Definition [3.2.31) and ¢ as in (5.1.6). Let n: ¢ — A and ¢ : A — ;M5 be as in
E13) and BLA). Put 3 = (1) 0 *(¢). Set

W (A, B) := coker(-kk"(A, AB) 2 _kk"(A, B))

W'(A, B) :=ker((kk"(A, B) 25 _kk"(A, AB))
k(A,B) := {x € kk"(A,AB) : x = t,a}/{x = y + t,y for some y}
K'(A, B) :={x € kk"(A,AB) : 2 = —t,x} /{x = y — t,y for some y}

If £ = 1 we omit it from the notation. Note that k& and k' do not need the e prescript
due to the isomorphism in Remark [5.1.5]

Theorem 5.3.7 ([cf. Kar80, Théoreme 4.3]). There is an eract sequence

k(A QB) — sW(A,Q*B) — W'(A,B) — K (A,QB) — _{W/'(A,QB) — ;W (A,QB)

| |

W(A,QB) «— W/(A,QB) «— K(A,QB) + _{W'(A,B) +— W(A,Q?B) +— k(A,QB)

Proof. As above, we omit j" in our notation. Write v for the map obtained upon ten-
soring the canonical map U — A with 2_; M5. Consider the following distinguished
triangles in kk"

v
(S
=
+
=

QA 9 s V

Q_1M2¢

02 My — 5 Q MU —2— Q| MyA O M.

Recall 7 : A2 2 A@A from (5.2.3)) and let 7 : Q_1 MyA? — Q(A®A) be the composite
in kk" of the isomorphism Remark [5.1.5, the inverse of the corner inclusion, and
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Qr. Using Lemma we get the following commutative diagram in kk":

QA 9 v —2% QO MU —%—5 Q_MyA

lﬂm? lvﬁ lQ—1M2U77 lQ(—leA)fi
QA2 9 L VA s O MuUA —2— O MyA2

b

QA@A) TGN ———— QA o AADA).

2l

A direct computation shows that 7o (An) : A — A @& A is the diagonal map.
Hence from the diagram we get following equality in kk"(QA, Q(A @ A))

T(Q_1 Mon)v00 = Q((911 — g2)) (w1 — tm2) (91 + 12))- (5.3.8)

Similarly, for h_; as in Example|[1.1.18| and 75 the upper left-hand corner inclu-
sion, we have in kk"(Q_1 MyA, Q(A @ A)

T(Q_1Man) = Qg1 + 72)(i2) " ad(1, hZ7).

Therefore, composing both sides of the equality ([5.3.8)) on the left with the projection
onto the first coordinate, we get

(c1)"tad(1, h=])vhd = Q(m — tma) (1 + 52)) = id — .
Thus, after using Remark and hermitian stability, with the identification
EE"(QA, Q_1 MyA) = EEM(QA, QA),

the composition 60 corresponds to id — ¢.

Because the *-algebras involved in the argument above are flat, for any B € Alg;
we map apply the functor — ® B of Example to obtain the same identity in
kkh(QAB, QAB).

Finally, apply the functor kk"(A, —) and the rest of the proof proceeds exactly
as in |[Kar80, Théoreme 4.3]. O

Corollary 5.3.9. Let € and H : Alg; — € be as in Proposition |3.2.22. The same
argument as in Theorem proves an analogous exact sequence for the groups
obtained substituting H(—) for kk"(A, =) in Definition .
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