
ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEASTSQUARE APPROXIMATIONS �MAR��A G. ARMENTANOyAbstract. The aim of this paper is to obtain error estimates for moving least square approxima-tions in IRN . We prove that, under appropriatehypothesis on the weight function and the distributionof points, the method produces optimal order error estimates in L1 and L2 for the approximationsof the function and its �rst derivatives. These estimates are important in the analysis of Galerkinapproximations based on the moving least square method. In particular, our results provides errorestimates, optimal in order and regularity, for second order coercive problems.Key words. error estimates, moving least square, meshless methodAMS subject classi�cations. 65N15, 65N30, 65D10.1. Introduction. The moving least square method, MLS ([10],[8]), has beenused for the numerical solution of di�erential equations in several papers ( [11], [2],[3], [1]). For this kind of application it is very important to obtain error estimates forthe function and its derivatives which are not known up to now for the N-dimensionalcase.In [9] Levin analyzes the MLS method for a particular weight function obtainingerror estimates in the uniform norm for the approximation of a regular function in Ndimensions. However, he does not obtain error estimates for the derivatives. In [1],Armentano and Dur�an prove error estimates in L1 for the function and its derivativesin the one dimensional case. They consider a weight function with compact support,as is usually done in the application of MLS for di�erential equations.In this paper we obtain error estimates in L1 in N -dimensions which generalizesthe result given in [1]. The arguments used in one dimensional case can not beextended straight forward to higher dimensions. Indeed, the proof given in [1], isbased on the fact that the best polynomial approximation of degree m to a functionu, interpolates it at m+1 points. As fas as we know, an analogous result is not knownin more dimensions.On the other hand, for the analysis of Galerkin approximations it is enough to haveerror estimates in L2 based Sobolev norms. It is natural to expect that these kinds ofestimates hold under less regularity assumptions on the function than those requiredfor the approximation in the uniform norm. In this work we obtain error estimates inL2 norm for the approximation of the function and its �rst derivatives by the movingleast square method in N dimensions under optimal regularity assumptions. Theseestimates are obtained under hypotheses rather general on the set of points and onthe weight function used.So, these results provide the �rst proof of convergence of Galerkin approximationbased on the MLS method for second order coercive problems in the N-dimensionalcase.The paper is organized as follows. First, in the rest of this Section, we present themoving least square method. In Section 2 we obtain error estimates for the functionand its �rst derivatives in L1. Section 3 deals with the error estimates for the function�Supported by Universidad de Buenos Aires under grant TX048, ANPCyT under grant PICT03-00000-00137 and CONICET under grant PIP 0660/98yDepartamentodeMatem�atica, Facultad de Ciencias Exactas y Naturales, Universidad de BuenosAires, 1428 Buenos Aires, Argentina. (garmenta@dm.uba.ar)1



2 MARIA G. ARMENTANOand its �rst derivatives in L2. Finally, in Section 4 we analyze some particular cases forthe bidimensional case and prove that they verify the hypotheses required in Section2 and 3.The Moving Least Square Method . The Moving Least Square Methodcan be described as follows: Given R > 0 let 0 � �R � 1 be a function such thatsupp �R � BR(0) = fzj kzk � Rg and �1; �2; : : : ; �n points in 
 � IRN a convex setand let u1; u2; : : :un be the values of the function u in those points, i.e, uj = u(�j),1 � j � n.We denote by Pm the set of all polynomials of degree m or less and s = dim Pm.Let fp1; � � � ; psg be a basis of Pm.For each x 2 
 we consider P �(x; y) =Psk=1 pk(y)�k(x) where � is chosen such thatJx(�) = nXj=1�R(x� �j)(uj � sXk=1pk(�j)�k(x))2is minimized. We de�ne the approximation of u asû(x) = P �(x; x) = sXk=1pk(x)�k(x)(1.1)This approximation will be well de�ned if we guarantee that the minimization prob-lem has a solution. So we consider the following property:Property P: For each x 2 
, there is a subset of s points of f�1; � � � ; �ng wherethe Lagrange interpolation is possible and such that �R(x� �j) > 0 for those points�j . Remark 1.1. For N = 1 it is enough to have m + 1 points among f�1; � � � ; �ngsuch that �R(x��j) > 0 for those points �j . So, in this particular case our hypothesisis the same used in [1].Therefore we can de�ne < f; g >x=Pnj=1�R(x� �j)f(�j)g(�j ) and kfk2x =< f; f >x. So by a classical result (see for example [6]) we haveTheorem 1.1. Assume that the weight function satis�es property P. Then, forany x 2 
 there exists P �(x; �) 2 Pm which satis�es ku � P �(x; :)kx � ku� Pkx forall P 2 Pm.Since the polynomial P �(x; y) can be obtained solving the normal equations forthe minimization problem, an easy calculation shows that P �(x; x) may be written asP �(x; x) = nXj=1 �j(x)uj(1.2)where �j are functions with compact support and the same regularity than � ([8],section 2). We also note that if u 2 Pk with k � m, then û = u.2. Error Estimates in L1 and W 1;1. In this section we will obtain errorestimates in L1, in terms of the parameter R, in the approximation of u and its �rstderivatives.We introduce the following properties on the weight function. In order to simplifynotation we will drop the subscript R from the weight function �R. All the constantsappearing below are independent of R.



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS31. For each x 2 
 there exists a subset of s points of f�1; � � � ; �ng in BR2 (x)where the Lagrange interpolation is possible.2. 9c0 > 0 such that �(z) � c0 8z 2 BR2 (0).3. 9c# such that for all x 2 
, cardf�j 2 BR(x); 1 � j � ng < c#.4. For any x 2 
 there exists a constant cL such that the Lagrange basis func-tions associated with the set of points of 1) are bounded for cL in B2R(x).5. For any x 2 
 there exists a constant c0L such that the derivatives of theLagrange basis functions associated with the set of points of 1) are boundedfor c0LR in B2R(x).6. � 2 C1(BR(0)) \W 1;1(IRN ) and 9c1 > 0 such that kr�(z)kL1(IRN ) � c1R .First, we obtain the approximation order of û to u. We observe that in onedimensional case P �(x; �) is an interpolation polynomial of the function u in somepoints in BR(x) [1], but, as far as we know, it is not known whether this is true inmore dimensions. So, we introduce for any x 2 
 PI(x; �) the polynomial in Pm thatinterpolates u at the points 2 BR2 (x) that satisfy property 1) and use it to obtain theerror estimates.Theorem 2.1. Let x 2 
, if properties 1) to 4) hold then, there exists a constantC which depends on c0; c# and cL such that 8y 2 BR(x) \
:ju(y) � P �(x; y)j � Cku� PI(x; �)kL1(BR(x)\
)(2.1)where PI(x; �) is the polynomial in Pm that interpolates u at the points 2 BR2 (x) thatsatisfy property 1) . So, in particular taking y = x we have thatju(x)� û(x)j � Cku� PI(x; �)kL1(BR(x)\
)(2.2)where û(x) = P �(x; x)Proof. Given x 2 
, in view of property 1) there exist points �j1 ; �j2 ; � � � ; �js 2BR2 (x) such that the Lagrange basis function lji ; 1 � i � s are well de�ned andthe interpolation polynomial PI(x; �) exists. Using property 2) and the fact that P �attains the minimum we haveXk2fjig(u(�k) � P �(x; �k))2 � 1c0 Xk2fjig�(x� �k)(u(�k)� P �(x; �k))2(2.3) � 1c0 nXk=1�(x� �k)(u(�k) � P �(x; �k))2� 1c0 nXk=1�(x� �k)(u(�k) � PI(x; �k))2= 1c0 X�k2BR(x)\
�(x� �k)(u(�k)� PI(x; �k))2� C(c0; c#)ku� PI(x; �)k2L1(BR(x)\
)We note that 8y 2 BR(x) \ 
jPI(x; y)�P �(x; y)j2 � s Xk2fjig jlk(y)j2jPI(x; �k)�P �(x; �k)j2 = s Xk2fjig jlk(y)j2ju(�k)�P �(x; �k)j2so using property 4) and (2.3) we have thatjPI(x; y) � P �(x; y)j � C(c0; c#; cL)ku� PI(x; �)kL1(BR(x)\
)(2.4)



4 MARIA G. ARMENTANOand thereforeju(y)� P �(x; y)j � Cku� PI(x; �)kL1(BR(x)\
) 8y 2 BR(x) \
In particular taking y = x we conclude the proof.Now, we want to estimate the error in the approximation of the derivatives of u.This estimate is a consequence of the following Lemma which is a generalization ofLemma 3.1 in [1]Lemma 2.2. Let x 2 
 such that @P�(x;y)@xj exists for j = 1; � � � ; N . If properties 1)to 6) hold then, there exists a constant C = C(c0; c#; c1; cL) such that 8y 2 BR(x)\
,j = 1; � � � ; N : j@P �(x; y)@xj j � CRku� PI(x; �)kL1(B2R(x)\
)(2.5)Proof. To simplify notation we prove the result for j = 1 (Clearly the sameargument applies to any j). Given x 2 
, in view of property 1) there exist points�j1 ; �j2 ; � � � ; �js 2 BR2 (x) such that the polynomial interpolation exists. We will denotethe set fj1; � � � ; jsg by fjig. For any h > 0 we de�neS(x) = Xk2fjig jP �((x1 + h; x2; � � � ; xN ); �k)� P �(x; �k)j2(2.6)Then, by property 2)S(x) � 1c0 Xk2fjig�(x� �k)(P �((x1 + h; x2; � � � ; xN ); �k)� P �(x; �k))2� 1c0 nXk=1�(x� �k)(P �((x1 + h; x2; � � � ; xN); �k)� P �(x; �k))2= 1c0 nXk=1�(x� �k)(P �((x1 + h; x2; � � � ; xN); �k)� P �(x; �k))(P �((x1 + h; x2; � � � ; xN); �k)� u(�k))+ 1c0 nXk=1�(x� �k)(P �((x1 + h; x2; � � � ; xN); �k)� P �(x; �k))(u(�k)� P �(x; �k))Let Q be the polynomial of degree � m de�ned by Q(y) = P �((x1+h; x2; � � � ; xN); y)�P �(x; y), then since P � is the orthogonal projection in <;>x we have< u(y) � P �(x; y); Q(y) >x= nXk=1�(x� �k)Q(�k)(u(�k) � P �(x; �k)) = 0(2.7)Then, S(x) � 1c0 nXk=1�(x� �k)Q(�k)(P �((x1 + h; x2; � � � ; xN); �k)� u(�k))(2.8)Form property 6) 9 �k = �(�k; x) such that if h is small enough �(x� �k) =�((x1 + h; x2; � � � ; xN )� �k)� @�@x1 (�k)h. Then, replacing in (2.8) we obtainS(x) � 1c0 nXk=1�((x1 + h; x2; � � � ; xN) � �k)Q(�k)(P �((x1 + h; x2; � � � ; xN ); �k) � u(�k))



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS5� hc0 nXk=1 @�@x1 (�k)Q(�k)(P �((x1 + h; x2; � � � ; xN ); �k)� u(�k))Then using that < u(y) � P �((x1 + h; x2; � � � ; xN ); y); Q(y) >(x1+h;x2;���;xN )= 0and @�@x1 has compact support together with property 6) we haveS(x) � hc0 nXk=1 @�@x1 (�k)Q(�k)(u(�k)� P �((x1 + h; x2; � � � ; xN ); �k))� hc0 nXk=1 j @�@x1 (�k)jjQ(�k)jj(P �((x1 + h; x2; � � � ; xN); �k) � u(�k))j� hc1Rc0 X�k2B2R(x) jQ(�k)jj(P �((x1 + h; x2; � � � ; xN ); �k)� u(�k))jFrom Theorem 2.1 we know thatj(P �((x1 + h; x2; � � � ; xN ); �k)� u(�k))j � Cku� PI((x1 + h; x2; � � � ; xN ); �)kL1(BR(x1+h;x2;���;xN )\
)� Cku� PI((x1 + h; x2; � � � ; xN ); �)kL1(B2R(x)\
)where PI((x1+h; x2; � � � ; xN); �) is a polynomial that interpolates u at the points givenby property 1). We can suppose for h small enough that the points f�j1 ; � � � ; �jsg 2BR2 (x) are in BR2 ((x1 + h; x2; � � � ; xN ), so PI((x1+ h; x2; � � � ; xN ); �) can be chosen asPI(x; �) then we haveS(x) � C hR jku� PI(x; �)kL1(B2R(x)\
) X�k2B2R(x) jQ(�k)j(2.9)Since Q is a polynomial of degree � m it can be written asQ(y) = Xr2fjigQ(�r)lr(y)(2.10)where lr(y) are the Lagrange polynomial basis functions and therefore,X�k2B2R(x) jQ(�k)j � Xr2fjig jQ(�r)j( X�k2B2R(x) jlr(�k)j)From property 4) there exist a constant cL such that lr are bounded 8r 2 fjig andtherefore ( Xk2fjig jQ(�k)j)2 � s Xk2fjig jQ(�k)j2 = sS(x)� C hRku� PI(x; �)kL1(B2R(x)\
) Xk2fjig jQ(�k)jand therefore, Xk2fjig jQ(�k)j � C hRku� PI(x; �)kL1(B2R(x)\
)(2.11)



6 MARIA G. ARMENTANOSo, using this in (2.10) and property 4) again we obtain that 8y 2 BR(x) \
jQ(y)jh = jP �((x1 + h; x2; � � � ; xN); y) � P �(x; y)jh � CRku� PI(x; �)kL1(B2R(x)\
)and the proof concludes by taking h! 0.The following Theorem states the order of approximation for the derivativesTheorem 2.3. If properties 1) to 6) hold then, there exists C = C(c0; c1; c#; cL; c0L)such that for any x 2 
 and 1 � j � Nj @@xj (u� û)(x)j � Cf 1Rku�PI(x; �)kL1(B2R(x)\
)+k @@yj (u�PI(x; �))kL1(BR(x)\
)gProof. We want to estimate j @@xj fu(x)� P �(x; x)gj for 1 � j � N . We note that@@xjP �(x; x) = f@P �(x; y)@xj + @P �(x; y)@yj @yj@xj g���y=x(2.12)So, we will estimate j@u(y)@yj � @P�(x;y)@xj � @P�(x;y)@yj j, 8y 2 BR(x) \
.j@u(y)@yj �@P �(x; y)@xj �@P �(x; y)@yj j � j@u(y)@yj �@PI(x; y)@yj j+j@PI(x; y)@yj �@P �(x; y)@yj j+j@P �(x; y)@xj j(2.13)Using (2.4) and property 5) we have thatj@PI(x; y)@yj �@P �(x; y)@yj j � Xk2fjig j@lk(y)@yj jjPI(x; �k)�P �(x; �k)j � CRku�PI(x; �)kL1(BR(x)\
)(2.14)So, using this in (2.13) together with Lemma 2.2 we conclude the proof.Now, we will obtain the error estimates for the approximation of the function uand its �rst derivatives. In view of the lemmas it is enough to estimate the error forthe interpolation polynomial.Since the Lagrange basis associated with the points given by property 1) satisfyproperties 4) and 5), the error estimates follows by standard arguments for interpo-lation. So, we omit the proof of the following theorem and refer, for example, [7]Theorem 2.4. Let x 2 
, u 2 Cm+1(
) and properties 1), 4) and 5) hold thenthere exists a constant C = C(cL; c0L) such that 8y 2 BR(x) \
,ju(y) � PI(x; y)j � C maxj�j=m+1kD�ukL1(
)Rm+1maxj�j=1jD�(u(y) � PI(x; y))j � C maxj�j=m+1kD�ukL1(
)Rmwhere PI(x; �) is the polynomial which interpolates u at the points given by property1). So, as a consequence of this Theorem and the error estimates given by Theorem2.1 and Theorem 2.3 we haveCorollary 2.1. If properties 1) to 6) hold and u 2 Cm+1(
) then, there existsC which depends on c0; c#; c1; cL; c0L such that for each x 2 
ju(x)� û(x)j � Cmaxj�j=m+1kD�ukL1(
)Rm+1(2.15) jr(u� û)(x)j � C maxj�j=m+1kD�ukL1(
)Rm(2.16)



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS73. Error Estimates in L2 and W 12 . In the previous section we obtained op-timal order in L1 and W 1;1 under the assumption that u 2 Cm+1. Clearly, theseresults imply optimal order error estimates in L2 and H1. However, since in manycases the function to approximate is less regular, it is of interest to prove that the sameorder of convergence holds under weaker regularity assumptions, namely u 2 Hm+1.This is the goal of this section.Let f�1; � � � ; �lg points in 
 such that 
 � [li=1BR(�i) and the number of theballs that overlap is bounded independent of R.So, we will estimate ku� ûkL2(BR(�j )\
) for any j 2 f1; � � � ; lgTheorem 3.1. Let m + 1 > N2 , if properties 1) to 4) hold and u 2 Hm+1(
)there exists a constant C which depends on c0; c#; cL such that 8j 2 f1; � � � ; lgku� ûkL2(BR(�j )\
) � CRm+1jujHm+1(B2R(�j )\
)Proof. For any j 2 f1; � � � ; lg we want to estimateZBR(�j)\
 ju(y) � û(y)j2dy = ZBR(�j )\
 ju(y)� P �(y; y)j2dyFrom property 1), for any y 2 BR(�j)\
 there exist �j1(y); � � � ; �js(y) a subset off�1; � � � ; �ng points in BR2 (y)\
 such that the Lagrange interpolation is possible. So,we denote by PIu(y; �) = PI(y; �) the polynomial that interpolates u at those points.From Theorem 2.1 we haveZBR(�j )\
 ju(y) � P �(y; y)j2dy � C ZBR(�j )\
 ku(y) � PI(y; �)k2L1(BR(y)\
)dyFor any y 2 
 let Tmu be a polynomial of degree m such that if u 2 Hm+1(
) wehave thatku� TmukL1(BR(y)\
) � CRm+1�N2 jujHm+1(BR(y)\
) for m + 1 > N2(3.1) ku� TmukL2(BR(y)\
) � CRm+1jujHm+1(BR(y)\
)We can choose, for example, Tmu the Taylor polynomial averaged over BR(y) \ 
(see [4]). Thenku� PIukL1(BR(y)\
) � ku� TmukL1(BR(y)\
) + kPI(Tmu� u)kL1(BR(y)\
)We observe that PIv(x) =Psi=1 v(�ji)lji (x) where lji are the Lagrange basis, sofor property 4) we have thatkPIvkL1(BR(y)\
) � CkvkL1(BR(y)\
)where C depends of the bound of the Lagrange basis cL.Then, we have thatku� PIukL1(BR(y)\
) � Cku� TmukL1(BR(y)\
)(3.2) � CRm+1�N2 jujHm+1(BR(y)\
)



8 MARIA G. ARMENTANOand thereforefZBR(�j )\
 ju(y) � P �(y; y)j2dyg 12 � CRm+1�N2 fZBR(�j)\
 juj2Hm+1(BR(y)\
)dyg 12� CRm+1�N2 fZBR(�j)\
 juj2Hm+1(B2R(�j )\
)dyg 12� CRm+1jujHm+1(B2R(�j )\
)(3.3)Now, we will obtain the error estimates for the derivativesTheorem 3.2. Let m + 1 > N2 , if properties 1) to 6) hold and u 2 Hm+1(
).Then, there exists a constant C which depends on c0; c#; c1; cL; c0L such that 8j 2f1; � � � ; lg kr(u� û)kL2(BR(�j)\
) � CRmjujHm+1(B3R(�j )\
)Proof. We will consider RBR(�j)\
 j @u@yk (y)� @@ykP �(y; y)j2dy for k = 1; � � � ; N . Byproperty 1), for any �j , 1 � j � l there exists a polynomial PI(�j; �) that interpolatesu at a subset of f�1; � � � ; �ng in BR2 (�j) \
 then,ZBR(�j )\
 j @u@yk (y) � @@ykP �(y; y)j2dy � cfZBR(�j)\
 j @u@yk (y) � @PI@yk (�j; y)j2dy+ ZBR(�j )\
 j@PI@yk (�j; y) � @@yk P �(y; y)j2dyg(3.4)First we will consider the second term on the right hand side of (3.4). For anyy 2 BR(�j) \
 and z 2 BR(y) \
 we note that@@ykP �(y; y) = f@P �@yk (y; z) + @P �@zk (y; z)g���z=yThen, we will estimate j@PI@zk (�j; z)� (@P�@yk (y; z) + @P�@zk (y; z))j for any z 2 BR(y) \
.From Lemma 2.2 and the same argument used to obtain (3.2) we know that forany z 2 BR(y) \
j@P �@yk (y; z)j � CRku�PI(y; �)kL1(BR(y)\
) � CRku�TmukL1(BR(y)\
) � CRm�N2 jujHm+1(B2R(�j)\
)So we need to estimate j@PI@zk (�j ; z)� @P�@zk (y; z)j. We have thatj@PI@zk (�j ; z)� @P �@zk (y; z)j � j@PI@zk (�j; z)� @P �@zk (�j ; z)j+ j@P �@zk (�j; z)� @P �@zk (y; z)j(3.5)From (2.14) and the same argument used above we have, for the �rst term on theright hand side of (3.5), thatj@PI@zk (�j; z)� @P �@zk (�j; z)j � CRku� PI(�j; �)kL1(BR(�j )) � CRm�N2 jujHm+1(BR(�j ))



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS9For the second term on the right hand side of (3.5) we note that for any y 2 BR(�j)\
,@P�@zk (�j ; z) and @P�@zk (y; z) are polynomials in z of degree m � 1. Let f�j1 ; � � � ; �jsg 2BR2 (y) be the points given by property 1). using Lemma 2.2 (it is easy to check thatthe result (2.5) holds 8y 2 B2R(x)) together with property 4) we havej@P �@zk (y; z) � @P �@zk (�j; z)j = j sXi=1 @lji@zk (z)(P �(�j ; �ji) � P �(y; �ji))j� CR sXi=1 jryP �(�j ; �ji) � (�j � y)j � CRku� PI(�j ; �)kL1(B2R(�j )\
)� CRm�N2 jujHm+1(B3R(�j)\
)So, for any z 2 BR(y) \
 we have thatj@PI@zk (�j; z)� (@P �@yk (y; z) + @P �@zk (y; z))j � CRm�N2 jujHm+1(B3R(�j ))in particular taking z = y we havefZBR(�j)\
 j@PI@yk (�j; y) � @@yk (P �(y; y))j2dyg 12 � CRmjujHm+1(B3R(�j )\
)Now, we will consider the �rst term on the right hand side of (3.4).k @u@yk � @PI@yk (�j; �)kL2(BR(�j )\
) � k @u@yk � @Tmu@yk kL2(BR(�j)\
) + k@PI@yk (u� Tmu)kL2(BR(�j )\
)(3.6)But, since the Lagrange basis satis�es property 5) we havek@PI@yk (v)kL2(BR(�j )) � kvkL1(BR(�j)\
) sXi=1 k@lji@yk (y)kL2(BR(�j )\
) � CkvkL1(BR(�j )\
)RN2 �1Then, if v 2 H2(BR(�j) \
) using the Sobolev imbedding theorem we have thatkvkL1(BR(�j)\
) � cfR�N2 kvkL2(BR(�j)\
)+R�N2 +1jD�vjL2(BR(�j )\
)+R�N2 +2jD�vjL2(BR(�j)\
)gj�j=1;j�j=2Then, using (3.1) the second term on right hand side of (3.6) satis�esk@PI@yk (u� Tmu)kL2(BR(�j )\
) � CRku� TmukL2(BR(�j)\
) � CRmjujHm+1(BR(�j)\
)For the �rst term on right hand side of (3.6) we have that [4]k @u@yk � @Tmu@yk kL2(BR(�j)\
) � CRmjujHm+1(BR(�j)\
)So, the theorem is proved.



10 MARIA G. ARMENTANO4. Bounds for the Lagrange basis. In this section we will consider the caseN = 2 and we will show di�erent cases in which the Lagrange basis for m = 1; 2satisfy properties 4) and 5).For our subsequent analysis we introduce the following de�nition.Definition 4.1. For any x 2 
, let T be a triangle of vertices a1; a2; a3 2 BR2 (x)and � the diameter of the largest ball contained in T . We say that T satis�es theregularity condition with constant � > 0, independent of R and �, if R� � �First, we consider the case m = 1. An easy calculation shows that the followingresults holds ([4],[5])Lemma 4.2. Let m = 1. Given x 2 
 , if there are a1; a2; a3 in BR2 (x) such thatthe triangle T of vertices a1; a2; a3 veri�es the regularity condition then, there exists aconstant C = C(�) such that the Lagrange basis li associated with these points satisfy,8y 2 B2R(x) \
 and i = 1; 2; 3 jli(y)j � C(4.1) j@li(y)@yj j � CR 1 � j � 2(4.2)Now, we consider the case m = 2. We will obtain bounds for the Lagrange basisand its �rst derivatives for some distribution of points rather general as in Figure 1.
s s ss sa6 a5 a3a4a2a1 ssFigure 1In order to present the ideas we will consider �rst two particular cases of thesituation of Figure 1.Lemma 4.3. Let m = 2. Given x 2 
 we suppose that there are points aj ; 1 �j � 6 in BR2 (x) such that we have some of the following situationsi) aj; 1 � j � 6 are distributed as in Figure 2 and the triangles of vertices fa1; a2; a6g,fa2; a3; a4g and fa4; a5; a6g satisfy the regularity condition



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS11ii) aj ; 1 � j � 6 are distributed as in Figure 3 and the triangles of vertices fa1; a2; a6g,fa2; a3; a4g, fa4; a5; a6g and fa1; a2; a5g satisfy the regularity conditionthen, there exists a constant C = C(�) such that 8y 2 B2R(x) \ 
 the Lagrangebasis li, 1 � i � 6 satisfy jli(y)j � Cj @li@yj (y)j � CR 1 � j � 2Proof. Let x 2 
 , we consider a triangle T of vertices a1; a3; a5 in BR2 (x). LetLij be non-trivial linear functions that de�ne the lines such that ai; aj 2 Lij.First we will consider the case i). Let a2; a4; a6 points on the lines L13; L35; L15respectively as in Figure 2.
s s scpp cp c̀a6 a5 a3a4a2a1 L35L13L15Figure 2We will show that the Lagrange basis l1 2 P2 is bounded (the same argumentcan be used to obtain the bounds for the other Lagrange basis).Since l1 2 P2 vanishes in a3; a4; a5 2 L35 it follows that, l1 = 0 in L35 so we canwrite [4] l1 = L35q1 where q1 2 P1. But l1 vanishes in a2; a6 then q1 = 0 in L26 andconsequently l1 = cL35L26 and using that l1(a1) = 1 we determine the constant c.Therefore, an easy calculation show that 8y 2 B2R(x) \
 we havejl1(y)j � c R4(area of T135)(area of T126)j @l1@yj (y)j � c R3(area of T135) (area of T126) 1 � j � 2where Tijk is the triangle of vertices fai; aj; akg. Let �ijk be the diameter of the



12 MARIA G. ARMENTANOlargest ball contained in Tijk. We note that �135 � �234. So, since T234 satis�es theregularity condition we obtain the bounds.Now we consider the case ii). Note that we can build lj 2 P2 such that lj(ai) = �ijfor i; j = 1; 2; 4; 5; 6 by the same argument used above for the case i). So, we have thatl1 = c1L35L26 , l2 = c2L35L16 , l4 = c4L13L56 , l5 = c5L13L46 and l6 = c6L13L35where the constants cj are determined using that lj(aj) = 1. So, if the triangles ofvertices fa1; a2; a5g, fa1; a2; a6g, fa4; a5; a6g and fa2; a3; a4g, satisfy the regularitycondition then, an easy calculation shows that jljj � C and j @lj@yk j � CR ; k = 1; 2 andj = 1; 2; 4; 5; 6.This argument fails when we need to build the basis l3 because there is not a linewhich include 3 points di�erent to a3. However, we can obtain b3 2 P1 independent offl1; l2; l4; l5; l6g such that b3(a3) = 1 and b3��L15 = 0 and therefore and easy calculationshows that fl1; l2; b3; l4; l5; l6g satisfy the bounds.
s s ss sa6 a5 a3a4a2a1 ss sFigure 3Then the Lagrange basis l3 is l3(y) = b3(y)�Pj=1;���;6;j 6=3 b3(aj)lj(y) and conse-quently l3 satis�es the bounds .Finally, we will obtain the bounds for the Lagrange basis for a most general casegiven in Figure 1.Lemma 4.4. Let x 2 
 , m = 2 we suppose that there are points aj; 1 � j � 6in BR2 (x) as in Figure 1 such that the triangles of vertices fa1; a2; a5g, fa4; a5; a6g,fa1; a2; a6g fa2; a3; a4g and fa2; a3; a5g satisfy the regularity condition then, thereexists a constant C = C(�) such that 8y 2 B2R(x)\
 the Lagrange basis li, 1 � i � 6satisfy jli(y)j � Cj @li@yj (y)j � CR 1 � j � 2(4.3)



ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST SQUARE APPROXIMATIONS13Proof. By the same argument used in the Lemma given above we have that theLagrange basis lj 2 P2, 4 � j � 6 can be constructed as l4 = c4L13L56, l5 = c5L13L46,and l6 = c6L13L45, where cj can be obtained using that lj(aj) = 1 , 4 � j � 6. Also,we can obtain b1; b2 2 P1 such that b1 = c1L35 and b2 = c2L15 where cj are obtainedusing that bj(aj) = 1 , 1 � j � 2 Then fb1; b2; l4; l5; l6g are independent and satisfy(4.3) if the triangle of vertices fa1; a2; a5g, fa4; a5; a6g, fa1; a2; a6g and fa2; a3; a4gsatisfy the regularity condition.Therefore we need to construct b3 independent of the others, i.e, we will show thatthere exists b3 2 P2 with b3(a3) = 1 such that the following matrix be nonsingular.0BBBBBB@ 1 0 b3(a1) 0 0 0b1(a2) 1 b3(a2) 0 0 00 b2(a3) 1 0 0 0b1(a4) b2(a4) b3(a4) 1 0 00 0 b3(a5) 0 1 0b1(a6) b2(a6) b3(a6) 0 0 1 1CCCCCCAIt is enough to obtain b3 2 P2 such that the submatrix0@ 1 0 b3(a1)b1(a2) 1 b3(a2)0 b2(a3) 1 1Abe nonsingular. To obtain b3 we will work in the following reference triangle T̂ (Figure4)
c cccc

c â4 â5 = (1; 0)â6
â3 = (0; 1)
â1 = (0; 0)â2

Figure 4In this case the basis b̂1 and b̂2 de�ned above are b̂1(x̂; ŷ) = 1 � x̂ � ŷ andb̂2(x̂; ŷ) = ŷ̂a22 , where â2 = (0; â22) (we observe that since the triangle of vertices
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