ERROR ESTIMATES IN SOBOLEV SPACES FOR MOVING LEAST
SQUARE APPROXIMATIONS *
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Abstract. The aim of this paper is to obtain error estimates for moving least square approxima-
tions in RY . We prove that, under appropriate hypothesis on the weight function and the distribution
of points, the method produces optimal order error estimates in L™ and L? for the approximations
of the function and its first derivatives. These estimates are important in the analysis of Galerkin
approximations based on the moving least square method. In particular, our results provides error
estimates, optimal in order and regularity, for second order coercive problems.
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1. Introduction. The moving least square method, MLS ([10],[8]), has been

used for the numerical solution of differential equations in several papers ( [11], [2],
[3], [1]). For this kind of application it is very important to obtain error estimates for
the function and its derivatives which are not known up to now for the N-dimensional
case.
In [9] Levin analyzes the MLS method for a particular weight function obtaining
error estimates in the uniform norm for the approximation of a regular function in N
dimensions. However, he does not obtain error estimates for the derivatives. In [1],
Armentano and Duran prove error estimates in L* for the function and its derivatives
in the one dimensional case. They consider a weight function with compact support,
as 1s usually done in the application of MLS for differential equations.

In this paper we obtain error estimates in 2> in N-dimensions which generalizes
the result given in [1]. The arguments used in one dimensional case can not be
extended straight forward to higher dimensions. Indeed, the proof given in [1], is
based on the fact that the best polynomial approximation of degree m to a function
u, interpolates it at m+1 points. As fas as we know, an analogous result is not known
in more dimensions.

On the other hand, for the analysis of Galerkin approximationsit is enough to have
error estimates in L? based Sobolev norms. It is natural to expect that these kinds of
estimates hold under less regularity assumptions on the function than those required
for the approximation in the uniform norm. In this work we obtain error estimates in
L? norm for the approximation of the function and its first derivatives by the moving
least square method in N dimensions under optimal regularity assumptions. These
estimates are obtained under hypotheses rather general on the set of points and on
the weight function used.

So, these results provide the first proof of convergence of Galerkin approximation
based on the MLS method for second order coercive problems in the N-dimensional
case.

The paper is organized as follows. First, in the rest of this Section, we present the
moving least square method. In Section 2 we obtain error estimates for the function
and its first derivatives in L°°. Section 3 deals with the error estimates for the function
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and its first derivatives in L?. Finally, in Section 4 we analyze some particular cases for
the bidimensional case and prove that they verify the hypotheses required in Section

2 and 3.

The Moving Least Square Method . The Moving Least Square Method
can be described as follows: Given R > 0 let 0 < & < 1 be a function such that
supp ®r C Br(0) = {z] ||z|]] < R} and &1,&3,...,&, points in  C RY a convex set
and let uq,us,...u, be the values of the function u in those points, i.e, u; = u(¢;),
1<j<n

We denote by P, the set of all polynomials of degree m or less and s = dim P,,.
Let {p1,---,ps} be a basis of Pp,.
For each z € Q we consider P*(x,y) = >_;_, pr(y)ay (x) where o is chosen such that

Jo(a) =Y @r(x —&)(u; — > pr(&j)on(x))’
j=1 k=1
i1s minimized. We define the approximation of u as
(1.1) () = P(z,x) =Y pr(z)ag(x)
k=1

This approximation will be well defined if we guarantee that the minimization prob-
lem has a solution. So we consider the following property:

Property P: For each « € Q, there is a subset of s points of {&;,---,&,} where
the Lagrange interpolation is possible and such that ®r(x — &;) > 0 for those points
&

REMARK 1.1. For N =1 it is enough to have m + 1 points among {&1,---,&,}
such that ®r(x—¢&;) > 0 for those points &;. So, in this particular case our hypothesis
is the same used in [1].

Therefore we can define < f, g >,= Z?Il Dr(z—&)f(&)g(&) and || f]|2 =
< f,f >z. So by a classical result (see for example [6]) we have

THEOREM 1.1. Assume that the weight function satisfies property P. Then, for
any x € Q there exists P*(x,) € Py, which satisfies ||u — P*(x, )|z < ||u— P||z for
all P € P,,.

Since the polynomial P*(x,y) can be obtained solving the normal equations for
the minimization problem, an easy calculation shows that P*(z, z) may be written as

(1.2) P*(z,2) = Zﬁj(x)uj

where §; are functions with compact support and the same regularity than & ([8],
section 2). We also note that if u € Py, with k& < m, then @ = u.

2. Error Estimates in L and W1, In this section we will obtain error
estimates in L°° in terms of the parameter R, in the approximation of u and its first
derivatives.

We introduce the following properties on the weight function. In order to simplify
notation we will drop the subscript R from the weight function ®g. All the constants
appearing below are independent of R.
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1. For each & € Q there exists a subset of s points of {&;,---,&,} in B%(x)
where the Lagrange interpolation is possible.

2. Jeg > 0 such that ®(z) > ¢y Vz € B%(O).

. ey such that for all z € Q, card{é; € Br(z),1 <j<n} <ecg.

4. For any z € € there exists a constant ¢y such that the Lagrange basis func-
tions associated with the set of points of 1) are bounded for ¢ in Bag(z).

5. For any = €  there exists a constant ¢} such that the derivatives of the
Lagrange basis functions associated with the set of points of 1) are bounded

for % in Bap(z).

6. ® € C(Br(0))N Wl,OO(IRN) and Je; > 0 such that ||V<I>(z)||Lw(|RN) < &

First, we obtain the approximation order of u to u. We observe that in one

o

dimensional case P*(xz,-) is an interpolation polynomial of the function u in some
points in Br(z) [1], but, as far as we know, it is not known whether this is true in
more dimensions. So, we introduce for any « € Q Pr(x,-) the polynomial in Py, that
interpolates u at the points € B%(x) that satisfy property 1) and use it to obtain the
error estimates.

THEOREM 2.1. Let x € Q, if properties 1) to 4) hold then, there exists a constant
C' which depends on co,cy and cr such that Vy € Br(z) NQ:

(2.1) lu(y) — P*(z,y)| < Cllu = Pr(z, )| z=(Br(e)ng)

where Pr(x,-) is the polynomial in Py, that interpolates u at the points € B%(x) that
satisfy property 1) . So, in particular taking y = x we have that

(2.2) lu(z) — u(x)| < Cllu— Pr(z, )| (Br(s)nn)

where u(x) = P*(x, x)
Proof. Given z € Q, in view of property 1) there exist points &;,,&;,, -+, €, €
B%(x) such that the Lagrange basis function [;,,1 < ¢ < s are well defined and

the interpolation polynomial Pr(z,-) exists. Using property 2) and the fact that P*
attains the minimum we have

(23) Y (u(€) = P*(x,&))° Sci Y (e —&)(ulér) — P(x,&))

kedii O kefiir

%Z (x — &) (u(ér) — P*(2,&))°

IN

IN

=300~ €(u(E) - P, 6

=Y - @) (&) — P &)

Co
Ex€EBR(z)NQ
< Cleo, el = Pr(x, Mo (prgeinn
We note that Yy € Br(z) N Q

Pr(a, ) =P (e <5 3 Me@P1Prle, &)= P (e &) = s S 1a(w)lu(€e)P* (2,6

kedji} kedji}

so using property 4) and (2.3) we have that

(2.4) |Pr(z,y) — P"(2,y)| < Cleo, e, cr)llu = Pr(z, )| Lo (Br(e)ng)
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and therefore
lu(y) — P*(x,y)| < Cllu— Pr(z, )|lzo(Brx)na) Yy € Br(z)NQ

In particular taking y = « we conclude the proof. 0

Now, we want to estimate the error in the approximation of the derivatives of u.
This estimate is a consequence of the following Lemma which 1s a generalization of
Lemma 3.1 in [1]

LEMMA 2.2, Let x € Q such that % exists for j = 1,---  N. If properties 1)
to 6) hold then, there exists a constant C' = C(ep, c4, 1, cp) such that Vy € Br(z)NQ,
j=1,--,N:

IP*(x,y)

(2.5) s,

C
| < Fllu=Pr(e, )lzo=(Ban(ernn)

Proof. To simplify notation we prove the result for j = 1 (Clearly the same
argument applies to any j). Given x € €, in view of property 1) there exist points
&1, 8.6, € B% (z) such that the polynomial interpolation exists. We will denote

the set {ji, -+, 745} by {ji:}. For any h > 0 we define

(26) S($) = Z |P*((l‘1 + h’ Lo,y xN)agk‘) - P*($a€k)|2
keli}

Then, by property 2)

S(l‘) S i Z @(l‘—fk)(P*((l‘l +h,l‘2,~~~,l‘N),€k) — P*(l‘,fk))z

Co -
kedjit

YO = (P () ) — P )
k=1

IN

%Z(I)(x - gk)(P*((xl +h, x, - ",l‘N),fk) - P*($’€k))(P*((x1 +h, x, - ",l‘N),fk) - u(gk))

b3 B = (PN (b o), €) - P @Dl — (. 6)

Let @ be the polynomial of degree < m defined by Q(y) = P*((#1+h, 22, -, 2N),y)—
P*(x,y), then since P* is the orthogonal projection in <, >, we have

(2.7) <u(y) = P (2,9), Q) >o=Y_ ®(x — &)QE)(u(Sr) — P*(2,&)) =0

Then,

n

(28)  S() < — 30— EQUEN P (w1 + by s, o), &) — u(€e)

C
0 k=1

Form property 6) 360, = 0(&s, #) such that if h is small enough ®(z — &) =
(w1 + h, 2o, on) — &) — g—fl(ﬁk)h. Then, replacing in (2.8) we obtain

S(x) < %Z@((l‘l +hxa, o an) = E)QUER) (P ((x1 + hyza, 2N ), Ek) — ulér))
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- gz@m Ee) (P (21 + sz, en), &) — ul€))

Then using that < u(y) — P*((x1 + h, 22, -, 25),¥), Q(¥) >(e14hes,on)= 0
and has compact support together with property 6) we have

50 < 25 I (0, Qe)ulee) — P (o1 4 )60

| A

—ZI— OQENNP™ (21 + hy 22, -+ ), &) — ul(€r))]

s% D2 QNPT (1 + hyrs, - ) &) = (&)

0 ¢y eBan(e)
From Theorem 2.1 we know that
|(P™((x1 + P, 2o, - 2n), &) — w(&r))| < Cllu— Pr((z1 + h, 22, 2N), | Loo(Brei+h,e0, o x)n0Q)
<COllw— Pr((x1 4+ h,xa, -, 2x8), )| Loo(Bar(e)n)

where Pr((z1+h,z2, -, 2nN),) is a polynomial that interpolates u at the points given
by property 1). We can suppose for h small enough that the points {&;,,---,&;.} €
B%(x) are in B%((xl +h w2, xN), s0 Pr((x1+ h, 22, -, 2N), ) can be chosen as
Pr(x, ) then we have

h
(2.9) S(e) < Cplllu = Pr(z, )llze(Ban(ene) > Q)]
ExE€EBar(x)

Since () is a polynomial of degree < m it can be written as

(2.10) Q) = D Q&Y
re{ji}
where [.(y) are the Lagrange polynomial basis functions and therefore,
dYooleEI< DD IREIC Do IED

Er€Bar(x) redji} ExE€EBar(x)

From property 4) there exist a constant cg such that [, are bounded Yr € {j;} and
therefore

(D 1QE)D* <s > 1QE)* = sS(x)

kedji} ke{ji}
h
< CEHU — Pr(x, ~)||Lw(32R(x)nﬂ) Z |Q(Ek)]
ke{ji}
and therefore,
h
(2.11) > Q)] < Cplle = Pr(w, Ml=(Bonirine

kedji}
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So, using this in (2.10) and property 4) again we obtain that Yy € Br(x) N Q2

|Q(y)| _ |P*(($1 + h’ L2, ", $N)’ y) — P*($’ y)|
R h
and the proof concludes by taking h — 0. O
The following Theorem states the order of approximation for the derivatives
THEOREM 2.3. If properties 1) to 6) hold then, there exists C = C(co, 1, ¢4, ¢, ¢r)
such that for any x € Q and 1 < j < N

0 N 1 d
a—xj(“ —u)(@)] < Clgllu=Pr(z, )| L=Ban(r)ne) + |l 8—%@ = Pr(, )llz=(Br(o)na)}

C
< EHU — Pr(z,)||Loo(Bon(z)nn)

Proof. We want to estimate |%{u(r) — P*(x,2)}| for 1 <j < N. We note that

0 . _ 0P (x,y) | 0P (x,y) Oy
(2.12) 6l‘]’ P ($’ $) - { 6l‘]’ + 63/]' 6l‘]’ }‘
So, we will estimate |6g;f) - 6P;i€’y) — 6P;§/j’y) |, Yy € Br(x)NQ.
Ju(y) OP*(x,y) OP*(x,y) Ju(y) 0Pr(w,y), OPr(x,y) OP*(x,y), ,0P*(z,y)
| == — = — | < == — |+l — = —|+| —|
Jy; Ox; Jy; Jy; Jy; Jy; Jy; Ox;

(2.13)
Using (2.4) and property 5) we have that

OPr(z,y) OP*(x,y Ol (y y C
20y 0P 5o B )P (o, )] < Sl PrCe Dl e

0u; 0 el Y
(2.14)
So, using this in (2.13) together with Lemma 2.2 we conclude the proof. O

Now, we will obtain the error estimates for the approximation of the function u
and its first derivatives. In view of the lemmas it is enough to estimate the error for
the interpolation polynomial.

Since the Lagrange basis associated with the points given by property 1) satisfy
properties 4) and 5), the error estimates follows by standard arguments for interpo-
lation. So, we omit the proof of the following theorem and refer, for example, [7]

THEOREM 2.4. Let v € Q, u € C™L(Q) and properties 1), 4) and 5) hold then
there exists a constant C' = C(cp, ;) such that Vy € Br(z) N,

|u(y) — Pr(z,y)| < C mazja)zm1[| D ul|poe () ™
maz|q)=1|D*(u(y) — Pr(z,y))| < C maajqjzmy1l| D ul| Lo (o) R™
where Pr(x,-) is the polynomial which interpolates w at the points given by property

1).

So, as a consequence of this Theorem and the error estimates given by Theorem
2.1 and Theorem 2.3 we have

COROLLARY 2.1. If properties 1) to 6) hold and w € C™F1(Q) then, there exists
C' which depends on cg, ey, c1,cr, ¢ such that for each x € Q

(2.15) lu(z) — a(z)| < Cma$|ﬁ|:m+1||Dﬁu||Lw(Q)Rm+1

(2.16) [V (u—a)(z)| < C mazgj=m1||D° v ooy R™
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3. Error Estimates in L? and W.. In the previous section we obtained op-
timal order in L* and W under the assumption that v € C™t!. Clearly, these
results imply optimal order error estimates in L? and H'. However, since in many
cases the function to approximate is less regular, it is of interest to prove that the same
order of convergence holds under weaker regularity assumptions, namely v € H™+!,
This is the goal of this section.

Let {n, -, m} points in Q such that Q@ C U!_, Br(n;) and the number of the
balls that overlap is bounded independent of R.

So, we will estimate ||u — @||L2(Br(y;)nn) for any j € {1,---, 1}

THEOREM 3.1. Let m+ 1 > %, if properties 1) to 4) hold and v € H™1(Q)
there exists a constant C' which depends on co, cq,cp such that Vi e {1,--- .1}

ot = #2230, < CR™ ul g3t 00

Proof. For any j € {1,---,1} we want to estimate

/ ) — )Py = | lu(y) — P*(y, )| dy
Br(n;)nQ2

Br(n;)NQ

From property 1), for any y € Br(n;) N€2 there exist &, (y), - - -, ;. (y) a subset of
{&, -+, &, } points in B%(y) N €2 such that the Lagrange interpolation is possible. So,
we denote by Pru(y,-) = Pr(y, ) the polynomial that interpolates u at those points.
From Theorem 2.1 we have

/ lu(y) — P*(y,9)|*dy < C u() = Pr(y, W sy 9
Br(n;)NQ Br(n; )N

For any y € Q let T™u be a polynomial of degree m such that if v € H™+1(Q) we
have that

_ N
[|u — TmuHLoo(BR(y)nQ) < CR™1-3 |U|Hm+1(BR(y)nQ) for m+1> 0l

(3.1)

e = T™ul| L2(Br(y)na) < CR™Hulgmir(Bayine)

We can choose, for example, T™u the Taylor polynomial averaged over Br(y) N
(see [4]). Then

It — PrullLos(Bry)na) < l|lu—T"u|lLoBry)na) + [|P1{(T"u — w)||L=(Br(y)nn)

We observe that Prv(z) = >.0_, v(&,)lj,(z) where [;, are the Lagrange basis, so
for property 4) we have that

1ProllLee(Bryina) < CllvllLe(Briy)na)

where C' depends of the bound of the Lagrange basis cr.
Then, we have that

(3.2) lw — Prul| e (Br(y)na) < Cllu — T™u|| Lo (Br(y)nn)

< CR™ = Ful gt By
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and therefore

{/ [u(y) = P, y)|2di‘/}5 < CR™Mm={ |U|12qm+1(BR(y)nﬂ)dy}5
Br(n;)n$ o
serm uffm Saady)E
) { BR(%')OQ| [t (Ban(nne) 49}
(3.3) < CR™ M ul gt (Byr(n; 100
0

Now, we will obtain the error estimates for the derivatives
THEOREM 3.2. Let m+ 1 > %, if properties 1) to 6) hold and v € H™T1(Q).
Then, there exists a constant C' which depends on co,cp,cq,cr, ¢ such that Vj €

{1’...’[}

IV (u = @)lz2Brinne) < CR™ |ulmmtr(Ban(n;na)
Proof. We will consider fBR(n Jno |6yk( y) — 6yk P*(y,y)|*dyfork =1,---,N. By

property 1), for any n; , 1 < j <[ there exists a polynomial P;(7;, -) that interpolates
u at a subset of {&,---,&,} in B%(nj) N € then,

Ou 0 ) u op, 2
—(y) — —P" dy<e Oy = 2y
/BR(m)ﬂﬂ |8yk( ) Qg (v, v)l { Br(n;)NQ |3yk( ) Qg (15, 9)l
OPr o ,
3.4 +/ D " - —P b d
N Br(n;)ng2 5y (10 ¥) = g P w)l v}

First we will consider the second term on the right hand side of (3.4). For any
y € Br(n;) N Q and z € Br(y) N we note that

0 op* op*
— _p* I Sl el
o (v, 9) {6yk (y,2) + o (y,2)}

z=y

Then, we will estimate |6PI (nj,z) — (%1;: (y,2) + %Z (y,2))| for any z € Br(y) N

From Lemma 2.2 and the same argument used to obtain (3.2) we know that for
any z € Br(y) N Q2

or* C Cp m e
|G W < Rllu=Prly llz=(srwinn) < Fllu=T"ullr=(Brwinn) < CR™ [ulgms (Baninnn)

So we need to estimate |gf}f (nj,z) — %(y, z)|. We have that

*

OPr oP* OPr oP* oP oP
(77]’ )_E(n]’ )|+| (77]’ )_E(y"z”

Gy = Gl <15
(3.5)

From (2.14) and the same argument used above we have, for the first term on the

right hand side of (3.5), that

oP; ap* C N
|az (nj,2) — E(W,Z)I < gllw=Pr(ng, essrin,y < CR™ = |ulgmss (i, )
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For the second term on the right hand side of (3.5) we note that for any y € Br(n; )N,

%Z (nj,2) and 6zk (y, z) are polynomials in z of degree m — 1. Let {&;,,---,&.} €

B%(y) be the points given by property 1). using Lemma 2.2 (it is easy to check that
the result (2.5) holds Yy € Bag(#)) together with property 4) we have

op* al;
|E( z) — 77], |_|Z = P*(n;,&.) — P (9,65.))]

* C
< R Z IVy P (0;,&,)  (nj — )| < EHU — Pr(;, ')HLw(BQR(oj)nQ)

< CR™ Sl gt (Ban(ny o)
So, for any z € Br(y) N we have that

0Py oP* oP* Y
|E(7h’az) - (%(y, z) + E(y’ 2))| < CR™™ 2 |U|Hm+1(BaR(77j))

in particular taking z = y we have

0Py d gy 11
- P* , d 2 < CRm U| gt (By (s
{ /B ) = P ) < CR

Now, we will consider the first term on the right hand side of (3.4).

12 ou 8P1( )i | ou 8Tmu
ay ay 77]’ L2(BR(77])OQ) =~ y 6yk

(3.6)

OPr -
||L2(BR(nj)nn) + ||%(U =T U)||L2(BR(nj)ﬂﬂ)

But, since the Lagrange basis satisfies property 5) we have

oP; al;, N
150 ( L2 (Breny) < lleBramne) D ||$(y)||L2(BR(77j)nQ) < Olollp(Bamnay R~
i=1

Then, if v € H*(Bg(n;) N Q) using the Sobolev imbedding theorem we have that

_ N o N
[ollzBamne) < elR™Z ollez(mrim o) TR = D0 iasri,na)+ R 7 1D 0lr2(s ()00 Hal=1 5122
Then, using (3.1) the second term on right hand side of (3.6) satisfies

OPy C
IIE(U = T W)|z2(Brnynn) < llu =T ullL2(Brmne) < CR™ |ulgnss(Br,ne)

For the first term on right hand side of (3.6) we have that [4]

ou Ty
dyr Oy

lz2(Br(nne) < CR” [ulgm+i(Brin;na)

So, the theorem is proved. O
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4. Bounds for the Lagrange basis. In this section we will consider the case
N = 2 and we will show different cases in which the Lagrange basis for m = 1,2
satisfy properties 4) and 5).

For our subsequent analysis we introduce the following definition.

DEFINITION 4.1. For any x € , let T be a triangle of vertices a',a®, a® € B%(x)
and p the diameter of the largest ball contained in T'. We say that T satisfies the
reqularity condition with constant o > 0, independent of R and p, if% <c

First, we consider the case m = 1. An easy calculation shows that the following
results holds ([4],[5])

LEMMA 4.2, Let m = 1. Given x € Q , if there are a', a?, a® in B%(x) such that

the triangle T of vertices a', a’, a® verifies the reqularity condition then, there exists a

constant C' = C(0) such that the Lagrange basis l; associated with these points satisfy,
Yy € Bap(z) N and i =1,2,3

(4.1) lli(y)] < C
iy, ¢ .
(4.2) |8yj|§R 1<j<2

Now, we consider the case m = 2. We will obtain bounds for the Lagrange basis
and its first derivatives for some distribution of points rather general as in Figure 1.

Figure 1

In order to present the ideas we will consider first two particular cases of the
situation of Figure 1.

LEMMA 4.3. Let m = 2. Given x € Q we suppose that there are points a/,1 <
j<6m B%(x) such that we have some of the following situations

i) al,1 < j <6 are distributed as in Figure 2 and the triangles of vertices {a', a?, a®},
{a?,a®, a*} and {a*, a® a®} satisfy the regularity condition
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i) al, 1< j <6 are distributed as in Figure 3 and the triangles of vertices {a', a?, a®},
{a?,a3, a*}, {a*, a® a®} and {a',a?, a®} satisfy the regularity condition

then, there exists a constant C' = C(c) such that Vy € Bag(x) N Q the Lagrange
basis l;, 1 < i <6 satisfy

li(y)] <

ol;
<
; (W <

1<j<2

A A

Proof. Let z € Q , we consider a triangle T of vertices a',a®,a® in B%(x) Let
L;; be non-trivial linear functions that define the lines such that a,d € Li;.

First we will consider the case i). Let a’,a*, a® points on the lines Lis, Las, Lis
respectively as in Figure 2.

Figure 2

We will show that the Lagrange basis {; € Ps is bounded (the same argument
can be used to obtain the bounds for the other Lagrange basis).

Since {1 € P, vanishes in a®, a*, a® € Las it follows that, {; = 0 in L35 so we can
write [4] {1 = L3sq1 where ¢; € Py. But [} vanishes in a?,a® then ¢; = 0 in Lsg and
consequently /y = ¢L35L2s and using that ll(al) = 1 we determine the constant c.
Therefore, an easy calculation show that Vy € Bagp(x) N Q we have

R4
I <
lh(y)] < c(area of Tis5)(area of Tiag)

aly R3
—_— <ec
7, (y)] <

1<5<2
(area of Ti35) (area of Tias) ==

where Tj;;, is the triangle of vertices {ai,aj,ak}. Let pi;1 be the diameter of the
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largest ball contained in T;;;. We note that pi3s > paza. So, since Tha, satisfies the
regularity condition we obtain the bounds.

Now we consider the case ii). Note that we can build {; € P such that lj(ai) = b;;
fori,j =1,2,4,5,6 by the same argument used above for the case i). So, we have that
li = c1lssLas , Io = calssLis , la = calizlse , I5 = csLislas and lg = csLi3Lss
where the constants ¢; are determined using that [;(a/) = 1. So, if the triangles of
vertices {al,a? a®}, {at,a? a®}, {a* a® a®} and {a?, a3 a*}, satisfy the regularity
condition then, an easy calculation shows that |{;] < C and |%| < %, k=1,2 and
j=1,2,456.

This argument fails when we need to build the basis I3 because there 1s not a line
which include 3 points different to a®. However, we can obtain b3 € P; independent of
{l1,15,14,15,16} such that b3(e¢®) = 1 and b3|L15 = 0 and therefore and easy calculation
shows that {l1,ls, b3, 14,15, ls} satisly the bounds.

Figure 3

Then the Lagrange basis I3 is l3(y) = bs(y) — Z]’:l,~~,6,j¢3 bg(aj)lj (y) and conse-
quently I3 satisfies the bounds 0.

Finally, we will obtain the bounds for the Lagrange basis for a most general case
given in Figure 1.

LEMMA 4.4. Let 2 € Q , m = 2 we suppose that there are points a/,;1 < j < 6
n B%(x) as in Figure 1 such that the triangles of vertices {at,a?,a’}, {a* a®, a%},
{at,a?,a®} {a?,a3 a*} and {a® a3 a®} satisfy the regularity condition then, there
exists a constant C' = C(o) such that Vy € Bap(2)NKQ the Lagrange basisl;, 1 <i <6
satisfy

(4.3) |
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Proof. By the same argument used in the Lemma given above we have that the
Lagrange basis I; € P2, 4 < j < 6 can be constructed as 4 = caLi3Lls6, I5 = c5L13Las,
and ls = cgL13Las, where ¢; can be obtained using that {;(a’) =1 ,4 < j < 6. Also,
we can obtain by, b2 € Py such that by = ¢y L3s and by = caL15 where ¢; are obtained
using that bj(a’) = 1,1 < j < 2 Then {by,bs,ls,15,ls} are independent and satisfy
(4.3) if the triangle of vertices {a',a? a®}, {a% &%, a®}, {a', a? a®} and {a?, a®, a*}
satisfy the regularity condition.

Therefore we need to construct bz independent of the others, i.e, we will show that
there exists b3 € Py with b3(a3) = 1 such that the following matrix be nonsingular.

1 0 bs(al) 0 0 0

bl(az) 1 bg(az) 0 0 0
0 by(a® 1 0 0 0
bl(a4) b2(6l4) b3(6l4) 1 0 0
0 0 b(a®) 0 1 0
bl(a6) b2(6l6) b3(6l6) 0 0 1

It is enough to obtain b3 € Ps such that the submatrix
1 0 bg(al)
bl(az) 1 bg(az)
0 bz(ClS) 1

be nonsingular. To obtain b3 we will work in the following reference triangle T (Figure

4)

a® = (0,1)
0 g4
dZ
o

Alz(o’o) d5:(1,0)
o
d6

Figure 4

In this case the basis by and by defined above are El(i,y) =1—-2—y and

bo(Z,9) = ay_g’ where a> = (0,a3) (we observe that since the triangle of vertices
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{a',a? a®} and {a?, a3, a’} satisfy the regularity condition then a? is different from
0 and 1). Then we take bs € P such that 133|L15 =0, 133(&3) = 1 independent of the
others.

An easy calculation shows that we can choose Eg(i‘, y) = ¢°. Let T be the triangle
of vertices {a',a® a} and let F' be the invertible affine mapping such that F(T) =T
then, (x,y) = F(&,9) and b3 = byo F~1 ie, bs(x,y) = Bg(i‘, ).

Since the triangle of vertices {a',a?, a®} satisfies the regularity condition then,
the triangle of vertices {a',a® a®} also satisfies it. Then, the basis b3 is bounded
independently of R.

Finally, we can obtain the Lagrange basis [1,[l5,l3 as a linear combination of
b1,b9,b3,14,ls with coefficients bounded by a constant which depends on o. So, we
conclude the proof 0.

REMARK 4.1. The hypothesis of having three aligned points could be seen as
a strong restriction. However, since the Lagrange basts depend continuously on the
wnterpolation points it follows that the bounds obtained hold when the points have a
distribution close enough to that in Figure 1.
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