A POSTERIORI ERROR ESTIMATES FOR THE STEKLOV EIGENVALUE
PROBLEM

MARIA G. ARMENTANO AND CLAUDIO PADRA

ABSTRACT. In this paper we introduce and analyze an a posteriori error estimator for the linear
finite element approximations of the Steklov eigenvalue problem. We define an error estimator of
the residual type which can be computed locally from the approximate eigenpair and we prove
that, up to higher order terms, the estimator is equivalent to the energy norm of the error.
Finally, we prove that the volumetric part of the residual term is dominated by a constant times
the edge residuals, again up to higher order terms.

1. INTRODUCTION

The aim of this paper is to propose and analyze an a posteriori error estimator, of the residual
type, for the linear finite element approximations of the Steklov eigenvalue problem.

In recent years, numerical approximation of spectral problems arising in fluid mechanics have
received increasing attention (see [8, 9, 12, 14, 17] and their references). Some of these spectral
problems lead to a Steklov eigenvalue problem similar to the one considered here, for instance,
in the study of surface waves [7], in the analysis of stability of mechanical oscillators immersed
in a viscous fluid ([12] and the references therein) and in the study of the vibration modes of
a structure in contact with an incompressible fluid (see, for example, [9]). In [4] optimal error
estimates for the piecewise linear finite element approximation of the Steklov eigenvalue problem
have been obtained.

In the numerical approximation of partial differential equations, the adaptive procedures
based on a posteriori error estimators have gained an enormous importance. Several approaches
have been considered to construct estimators based on the residual equations (see [3, 20] and
their references). In particular, for second order elliptic eigenvalue problems, some results based
on a general analysis for non-linear equations can be obtained (see [20, 21]) assuming that the
numerical solution is close enough to the exact one. Using different approaches, similar results
to those given in [21], have been obtained in [13, 16] for standard eigenvalue problem. However,
in view of the boundary conditions in the Steklov eigenvalue problem, the standard arguments
must be improved to obtain the equivalence between the estimator and the error. In this work
we introduce an a posteriori error estimator for the Steklov eigenvalue problem and we prove
that the estimator is equivalent to the error up to higher order terms. The constants involved
in the higher order terms depend on the eigenvalue being approximated and the smallest angle
in the triangulation.

Finally, we show that the volumetric part of the residual term is dominated by a constant
times the edge residuals, up to a multiplicative constant depending only on the minimum angle,
and so we obtain a simpler error estimator which turns out to be equivalent to the error up
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to higher order terms. So, we extend to the Steklov eigenvalue problem a result that is well
known for source problems (see, for instance, [5, 10, 18, 19]), and proved for standard eigenvalue
problem in [13].

The rest of the paper is organized as follows. In Section 2 we introduce the model problem
and we recall some known a priori error estimates for the linear finite element approximation.
In Section 3 we introduce the error estimator and prove its equivalence with the error. Finally,
in Section 4 we prove that the edge residuals dominate the volumetric part of the estimator and
in view of this result, we propose a simpler error estimator which is also equivalent to the error.

2. THE STEKLOV EIGENVALUE PROBLEM AND FINITE ELEMENT APPROXIMATION

Let © C R? be a bounded polygonal domain. We consider the following Steklov eigenvalue
problem [[4], [6]]:

—Au+u = 0 in
{ g—g = A onl =00 (2.1)
The variational problem associated with (2.1) is given by:
Find A and u € V = HY(Q), u # 0 satisfying
{ a(u,v) = XJpuv  YveV (2.2)
lullp2ry = 1 '

where a(u,v) = [, Vu- Vv + [, uv, which is continuous and coercive on V.

From the classical theory of abstract elliptic eigenvalue problems (see, for example, [1, 2, 4, 22])
we may infer that the problem (2.2) has a sequence of pairs (\;, u;), with positive eigenvalues
Aj diverging to +oo. We assume the eigenvalues to be increasingly ordered: 0 < A\ < Ay <
-+ < A\; < ---. The associated eigenfunctions u; belong to the Sobolev space H"({2), where
r = 1if Qis convex and r < T (with w being the largest inner angle of €2) otherwise (see, for
instance, [15]).

The approximation of the eigenvalue A and its associated eigenfunction w is obtained as
follows:

Let {73} be a family of triangulations of 2 such that any two triangles in 7}, share at most a
vertex or an edge. Let h stand for the mesh-size; namely h = maxycy, hr, with hr being the
diameter of the triangle 7. We assume that the family of triangulations {7}, } satisfies a minimal
angle condition, i.e., there exists a constant ¢ > 0 such that Z—; < g, where pr is the diameter
of the largest circle contained in 7.

Let Vj, ={v eV : vl € Py VT € Tp} where P; denotes the space of linear polynomials.
Then, the standard finite element approximation problem is the following:

Find A\, and up € Vi, up # 0 such that

{ a(up,v) i b Jp upv Yo €V, (2.3)
lunllpzay = 1

Let N be the set of vertices of the triangulation 7y, we split V" as N = No UNr where N is

the set of interior vertices and Nt is the set of vertices which lie in I'. Let 3;, 1 < j <N be the
Lagrange basis of degree one, i.e., 3; € P; such that 3;(FP;) = 0; ; where P; denotes the node 1.
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The problem (2.3) reduces to a generalized eigenvalue problem given by: Find u; = Z;\Ll 2i P
such that

Az = \pBz
with
A= [ Vovs+ [ Bs 1<igEN
Q Q
and

B;; = / BiB; 1<i,5, <N
r

The matrix A is positive definite and symmetric, and the matrix B is non-negative definite,
symmetric, and it has rank Npr. So, this generalized eigenvalue problem attains a finite number
of eigenpairs (A\jn,ujp), 1 < j < N, with positive eigenvalues which we assume increasingly
ordered: 0 < Ay < -+ < Apohe

In [4], the following a priori error estimates have been obtained: For any j, 1 < j < N/,

Juj — uh,j”Hl(Q) < Ch', (2.4)
Juj — uh,j”m(r) < Chgr/27 (2.5)
D=yl < R (2.6)

where C' denotes a generic positive constant which depends only on the smallest angle in the
triangulation.

In order to simplify notation from now on we will drop the subindex j in A\j, A j, uj, up ;.

3. ERROR ESTIMATOR

In this section we introduce the error estimator and prove its equivalence, up to higher order
terms, with the energy norm of the error .

First we introduce some notation that we will need in the definition and analysis of the error
estimator:

For any T € 75, we denote by Er the set of edges of T,

E=J é&r

TeT),
and we decompose £ = Eq U Ep where Ep:={f €& : ¢4 CT} and Eg =&\ &Ep.

For each ¢ € £ we choose an arbitrary unit normal vector n, and denote the two triangles
sharing this edge T;, and Ty, where ny points outwards Tj,. For v, € V}, we set

ov
15 =% (ol e = (ond, )

which corresponds to the jump of the normal derivatives of v across the edge ¢. Notice that
these values are independent of the choice of ny.

Let (A, u) be an eigenpair and its corresponding finite element approximation (Ap,up). From
(2.2) and (2.3) we know that for any v € V}, the error e = u — wuy, satisfies

/V6~VU+/ ev:/Auv—/)\huhv (3.7)
Q Q r r
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On the other hand, for any v € V' using (2.2), integrating by parts and using that Au;, = 0 on
T, we have

Guh
Ver+/ev—auv—au, /)\uv— { v—l—/uv}
i [ o= afu.0) ~ afu, S et fw
and so

_ Oy 1 Dun
/Qve.vij/Qev = Z /uhv+ Z /Ahuh v+2 Z /E[[anﬂﬂzv

leErNéEr leErnNéq

/ v — / At (3.8)

For each ¢ € £ we define J; by

110
s[5, tegn
Jo =
Apup, — g%’;‘ ¢eér
Now, the local error indicator nr is defined as follows
1/2
nr = | W llunll 2 () + pRGIPAF (3.9)

Le€r

where |¢| denotes the length of the edge ¢. Then, the global error estimator is given by

1/2
o= > nt

TeT,

From now on we denote by C a generic positive constant, not necessarily the same at each
occurrence, which depends only on the smallest angle in the triangulation.

In order to obtain the relation between the error and the estimator we will use the following
well-known error estimates for the interpolation operator of Clement I, : V — V},

lo = Iwollzey < Chrllollg (3.10)

1
lo—Tiwlee < Cle ol (3.11)

where T is the union of all the elements sharing a vertex with T" and { is the union of all the
elements sharing a vertex with ¢ (see [11], [20]).
The following theorem provides the upper bound on the error.

Theorem 3.1. There exists a constant C such that

A+ A
el =€ {m+ (252) lella }

Proof. We denote by e! the Clement interpolant of e. By using (3.7) and (3.8) we obtain

/\Ve\2+|e]2—/Ve'(Ve—VeIH—/e(e—el)—l—/)\uel—/)\huheI
Q Q Q r r

:ZT: —/uhe—e +Z/Jge—e —i—/F()\u—/\huh)e

leér
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Then by using Cauchy-Schwartz, (3.10), (3.11) and that the triangulation satisfies the mini-
mum angle condition we obtain

||€”%{1 < Z lunll 2erlle — €'l L2er) + Z Z el L2 lle — €' [l 2 + /()\U — Anup)e

T (e&r
< O3 hrlunllom el + 32 3 1 1Tl ell o + [ (vu = dan)e
T T (e&r

1
2

<O | NunlZeeryhd + D 1l el 2 lell ) + /(M — Anup)e  (3.12)

T teér r
Since |lul|z2ry = 1 and [Jup|[z2ry = 1 we have that

)\+)\h

/()\u —Apup)e =X+ Ap — (A + Ap) / UUp = ”€HL2(F)
r r

and by using it in (3.12) and the trace theorem we have

1
2

A+ A
el < €SBl + 3 A1l +0< ) h)nenm)
LeEp

and the proof concludes. [

Then, from (2.5) the global estimator provides an upper bound of the H' error up to a higher
order term.

In order to guarantee that our estimator is efficient for practical adaptive refinement our next
goal is to prove that the local estimator 77 is bounded by the H'! error and higher order terms.

For T € Ty, let by be the standard cubic bubble given by:

b — 01,702,703 T inT
= 0 in Q\ 7T

where 617,02 7 and 037 denote the barycentric coordinates of T € 7.

For ¢ € & N Eq, we denote by 171 and 15 the two triangles sharing ¢ and we enumerate
the vertices of T7 and T5 such that the vertices of ¢ are numbered first. Then we consider the
edge-bubble function by

b, — 01,1,02,T; in T;
‘- 0 in Q\ T UT,

First, we obtain the upper estimate for the first term of nr.

Lemma 3.1. There exists a constant C such that

hrllunllL2ry < C(IVellzery + hrllel Lzer))

Proof. Let vr € P4(T) N H(T) be such that

/UTw = —hQT/ upw Yw € Pi(T)
T T

Such vr exists and is unique. In fact, let vp = Z?Zl a;p; with {¢; = 0; 7br}i<i<3 a basis of
Pa(T) N HY(T); using that [, 5?}53}533de = %|T| we can compute o, s, a3 by
solving a non singular system.
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/ h%uh(;i’]‘
T

ozl 2y < C|T|? max |ci] < ChZlunllp2(r)

An easy calculation shows that

| ’ g a
il =712

and thus,

Then, there exists a positive constant C, depending only on the regularity condition, such that
lorllz2(ry + hellVurll zzery) < Cllvrlipery < ChE unllr2(r) (3.13)

Since h?pHuhH%Z(T) = — [;vrup, using the residual equation (3.8) we obtain

h%”uhH%z(T):AVe-VvT+/Tev

Therefore, using Cauchy-Schwartz and (3.13) we get
WplunlZ2 ey < CUIVell 2y + brllell 2y hrllunll 2y
and the proof concludes from thls estimate.[]
For the second term of nr we have:
Lemma 3.2. a) For { € Er N &p, there exists a constant C such that
2 (1 Tell 2y < C(L 4 hr)llelFn ey + 112 1N = Anunll 2

b) Forl € Er N Eq, let Th, Ty € Ty, be the two triangles sharing £. Then, there exists a constant
C such that

21Tl 2oy < Clell o)

Proof. a) For £ € Ep N &r, let vy € P3(T) be the function such that vy|p = 0 for ¢/ € Ep £/ £ ¢
and

Jyvew = 14| [, Jow Vw € Pi(T)
[vell 20y < CLEL I Tell £2e)

Such vy exists and is unique. In fact, let v, = Zi:l Bii where ¢; = d; by, and 017,021
are the barycentric coordinates associated to the vertices of £. Then, using that fz 01057 =

"1!”2!1 7|¢| we can obtain 31 and (2 by solving a non singular system.

(n14+n2+1)
/ e
¢

It is easy to see that
C
|6i] < — max
4]
lvell 2oy < ClM? max |B;] < Clel[|Jell L2 o)

and therefore,

and

lvellzzery < Chr max (B < Clell|Jell 2oy ma 119 ) < CLP2 | Tl 20

Then, [[vg]| 27 + hTHvW”L2(T) < CWWHJeHm(e)-

Since |¢| [, J7 = [, veJy, using the residual equation (3.8) we get

|€HJZ||%2(@)=/V6-VUZ+/evg—/()\u—)\huh)vg—f—/uhvg
T T J4 T
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Thus,
el 2 < © (HVeHLz 7y + hrllell ey + 102 M — Myl 2 + hTHuhHL2(T)) 1 Tell 2o

This estimate and the previous lemma allows us to conclude the proof of a).

b) For ¢ € Ep N Eq, let T1, Ty € Tj, be the two triangles sharing ¢. Let v, € H& (Th UT3) be a
edge-bubble function such that w\Tj €Py,j=1,2 and

féww = |/ fg Jow Yw € Po(T)

[vell 20y < CLEL I Tell £2e)

It is easy to see that ||vel 2y + hrl| Vel 2y < CIUP2 | el 2 Since [€] [, J? = [, veJy, from
the residual equation we get

‘E‘HJZH%2(Z) = / Ve - Vg +/ evy +/ UpVg
TUTs TiUTy T UTy

Using Cauchy-Schwartz we obtain
‘£|||J€HL2 < C(IVellL2(ryumy) + hrllell L2erumy) + brllunll L2eryom) ) el 2

From this estimate and the previous lemma we conclude the proof.[]

Now, we are in condition to prove the efficiency of our estimator.

Theorem 3.2. There exists a constant C' such that
a) For T € Ty, if 9T NT =10 then

nr < Cllell gz
where T* denote the union of T and the triangles sharing an edge with T .
b)For T € Ty, if 0T NT # 0 then

ne < Clllellmey + Y. WM = Mnunllr2}
LeErNEr

Proof. 1t follows immediately from Lemmas 3.1 and 3.2. OJ.

Remark 3.1. The term |¢|||A\u — )\h’LLhH%Q(Z) is a higher order term. In fact, for any v € V we

have
/F(AU — Apup)v = /F>\(u —up)v + /F()\ — A\p)upv

(Mlw = unll 20y + = M) sl L2ey) 0]l p2r

So, taking v = Au — Apuyp, and using the apriori estimates (2.5) and (2.6) we obtain

IN

A = Anunl 2 ry < C{h3" + K%'},

4. EDGE RESIDUAL ERROR ESTIMATOR

In this section, we prove that the edge residuals dominate the other part of the estimator
defined in the previous section and then, we propose a simpler error estimator which is also
equivalent to the error up to higher order terms.

For any P € N we define Qp = J{T' € 7;,: P € T}.
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Lemma 4.1. For any P € Nq we have that

> Bllunlizey < C | Y2 1z + 120 P VURl 720,
TCQp (cQp

Proof. Let IIy(uy,) be the L?(Qp) projection of uy, onto the constants, i.e,
/ UpY = / IIy(up)v Yo constant in - Qp
Qp Qp
Then,

> hgllunlliagr < !QP/ [un|* = [2p[[un — To(un)l|72(0,) + 122/ To(un) 172,
TCQp

Let ¢p be the corresponding Lagrange basis function with supp ¢p = Qp

9 2
Mo () By = \Ho<uh>|2|ﬂp|=|gp|(/g <z>pno<uh>)

< ‘;23 < o op(Ilo(up) — Uh))2 + Ifllil (/ﬂp <Z>Puh,)2 (4.14)

Since P € Ng by using (2.3) we have

B 1 Ouy, 1 %
QP¢P“h_/QPWh Vor=5 2 V'[[angﬂ > /Ha’”ﬂ@

eEGNQp eEQNQp
and so,
Qp||TT 2 < Cf|Qp[||T 2 L a“h 2
[2p[lMo(un) T2,y = CLILPIMo(un) = unlle,) + 5 >l HLQ(Z)}
leEqNQp
1
< C{|92p|[[Mo(un) _uh||%2(QP)+§ pRGIPATS:
LCQp
therefore

1
> Bllunlizery < CLIQP|To(un) — UhH%z<QP)+§ pORLIPAS:
TCQp (cQp

The proof concludes by using the standard estimate for the L? projection. O

Now, we introduce a simplified indicator by omitting the volumetric part in the residual error
estimator given in (3.9)

1/2

ir = | ST 1l 2 0 (4.15)
LeEr
and the corresponding global error estimator

o= {>m}"

In the following Theorem we prove that this estimator is globally reliable and locally efficient
up to higher order terms.
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Theorem 4.1. There exists a constant C such that

and

~ A+ A
el < € {in+ (252 lella + 1}

ﬁT<C{ HeHHl(T*) if 0T NI =10
<O lellny + Seeesne, 11X - Mnlliog i 7T £0

Proof. 1t follows immediately from Theorem 3.1, Theorem 3.2 and Lemma 4.1.

Remark 4.1. We have considered the case in which §2 is a polygonal domain only for simplicity,
there is no difficulty extending all of the above to the 3d case with 0 a polyhedral domain. In
such a case we have to replace, in the definition of the error indicator (3.9), the length of the
edge by the diameter of the face and by following our ideas the equivalence between the error
estimator and the energy norm can be obtained, up to higher order terms.
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