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Abstract. In this paper we introduce and analyze an a posteriori error estimator for the linear
finite element approximations of the Steklov eigenvalue problem. We define an error estimator of
the residual type which can be computed locally from the approximate eigenpair and we prove
that, up to higher order terms, the estimator is equivalent to the energy norm of the error.
Finally, we prove that the volumetric part of the residual term is dominated by a constant times
the edge residuals, again up to higher order terms.

1. Introduction

The aim of this paper is to propose and analyze an a posteriori error estimator, of the residual
type, for the linear finite element approximations of the Steklov eigenvalue problem.

In recent years, numerical approximation of spectral problems arising in fluid mechanics have
received increasing attention (see [8, 9, 12, 14, 17] and their references). Some of these spectral
problems lead to a Steklov eigenvalue problem similar to the one considered here, for instance,
in the study of surface waves [7], in the analysis of stability of mechanical oscillators immersed
in a viscous fluid ([12] and the references therein) and in the study of the vibration modes of
a structure in contact with an incompressible fluid (see, for example, [9]). In [4] optimal error
estimates for the piecewise linear finite element approximation of the Steklov eigenvalue problem
have been obtained.

In the numerical approximation of partial differential equations, the adaptive procedures
based on a posteriori error estimators have gained an enormous importance. Several approaches
have been considered to construct estimators based on the residual equations (see [3, 20] and
their references). In particular, for second order elliptic eigenvalue problems, some results based
on a general analysis for non-linear equations can be obtained (see [20, 21]) assuming that the
numerical solution is close enough to the exact one. Using different approaches, similar results
to those given in [21], have been obtained in [13, 16] for standard eigenvalue problem. However,
in view of the boundary conditions in the Steklov eigenvalue problem, the standard arguments
must be improved to obtain the equivalence between the estimator and the error. In this work
we introduce an a posteriori error estimator for the Steklov eigenvalue problem and we prove
that the estimator is equivalent to the error up to higher order terms. The constants involved
in the higher order terms depend on the eigenvalue being approximated and the smallest angle
in the triangulation.

Finally, we show that the volumetric part of the residual term is dominated by a constant
times the edge residuals, up to a multiplicative constant depending only on the minimum angle,
and so we obtain a simpler error estimator which turns out to be equivalent to the error up
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to higher order terms. So, we extend to the Steklov eigenvalue problem a result that is well
known for source problems (see, for instance, [5, 10, 18, 19]), and proved for standard eigenvalue
problem in [13].

The rest of the paper is organized as follows. In Section 2 we introduce the model problem
and we recall some known a priori error estimates for the linear finite element approximation.
In Section 3 we introduce the error estimator and prove its equivalence with the error. Finally,
in Section 4 we prove that the edge residuals dominate the volumetric part of the estimator and
in view of this result, we propose a simpler error estimator which is also equivalent to the error.

2. The Steklov Eigenvalue Problem and Finite Element Approximation

Let Ω ⊂ IR2 be a bounded polygonal domain. We consider the following Steklov eigenvalue
problem [[4], [6]]:

{ −4u + u = 0 in Ω
∂u
∂n = λu on Γ = ∂Ω

(2.1)

The variational problem associated with (2.1) is given by:

Find λ and u ∈ V = H1(Ω), u 6= 0 satisfying
{

a(u, v) = λ
∫
Γ uv ∀ v ∈ V

‖u‖L2(Γ) = 1 (2.2)

where a(u, v) =
∫
Ω∇u · ∇v +

∫
Ω uv, which is continuous and coercive on V .

From the classical theory of abstract elliptic eigenvalue problems (see, for example, [1, 2, 4, 22])
we may infer that the problem (2.2) has a sequence of pairs (λj , uj), with positive eigenvalues
λj diverging to +∞. We assume the eigenvalues to be increasingly ordered: 0 < λ1 ≤ λ2 ≤
· · · ≤ λj ≤ · · · . The associated eigenfunctions uj belong to the Sobolev space H1+r(Ω), where
r = 1 if Ω is convex and r < π

ω (with ω being the largest inner angle of Ω) otherwise (see, for
instance, [15]).

The approximation of the eigenvalue λ and its associated eigenfunction u is obtained as
follows:

Let {Th} be a family of triangulations of Ω such that any two triangles in Th share at most a
vertex or an edge. Let h stand for the mesh-size; namely h = maxT∈Th

hT , with hT being the
diameter of the triangle T . We assume that the family of triangulations {Th} satisfies a minimal
angle condition, i.e., there exists a constant σ > 0 such that hT

ρT
≤ σ, where ρT is the diameter

of the largest circle contained in T .

Let Vh = {v ∈ V : v|T ∈ P1 ∀T ∈ Th} where P1 denotes the space of linear polynomials.
Then, the standard finite element approximation problem is the following:

Find λh and uh ∈ Vh, uh 6= 0 such that

{
a(uh, v) = λh

∫
Γ uhv ∀v ∈ Vh

‖uh‖L2(Γ) = 1 (2.3)

Let N be the set of vertices of the triangulation Th, we split N as N = NΩ ∪NΓ where NΩ is
the set of interior vertices and NΓ is the set of vertices which lie in Γ. Let βj , 1 ≤ j ≤ N be the
Lagrange basis of degree one, i.e., βj ∈ P1 such that βj(Pi) = δi,j where Pi denotes the node i.
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The problem (2.3) reduces to a generalized eigenvalue problem given by: Find uh =
∑N

j=1 zjβj

such that
Az = λhBz

with

Ai,j =
∫

Ω
∇βi∇βj +

∫

Ω
βiβj 1 ≤ i, j,≤ N

and

Bi,j =
∫

Γ
βiβj 1 ≤ i, j,≤ N

The matrix A is positive definite and symmetric, and the matrix B is non-negative definite,
symmetric, and it has rank NΓ. So, this generalized eigenvalue problem attains a finite number
of eigenpairs (λj,h, uj,h), 1 ≤ j ≤ NΓ, with positive eigenvalues which we assume increasingly
ordered: 0 < λ1,h ≤ · · · ≤ λNΓ,h.

In [4], the following a priori error estimates have been obtained: For any j, 1 ≤ j ≤ N ,

‖uj − uh,j‖H1(Ω) ≤ Chr, (2.4)

‖uj − uh,j‖L2(Γ) ≤ Ch3r/2, (2.5)

|λj − λh,j | ≤ Ch2r, (2.6)

where C denotes a generic positive constant which depends only on the smallest angle in the
triangulation.

In order to simplify notation from now on we will drop the subindex j in λj , λh,j , uj , uh,j .

3. Error Estimator

In this section we introduce the error estimator and prove its equivalence, up to higher order
terms, with the energy norm of the error .

First we introduce some notation that we will need in the definition and analysis of the error
estimator:

For any T ∈ Th we denote by ET the set of edges of T ,

E =
⋃

T∈Th

ET

and we decompose E = EΩ ∪ EΓ where EΓ := {` ∈ E : ` ⊂ Γ} and EΩ = E \ EΓ.

For each ` ∈ EΩ we choose an arbitrary unit normal vector n` and denote the two triangles
sharing this edge Tin and Tout, where n` points outwards Tin. For vh ∈ Vh we set

[[
∂vh

∂n`

]]

`

= ∇ (
vh|Tout

) · n` −∇
(
vh|Tin

) · n`,

which corresponds to the jump of the normal derivatives of vh across the edge `. Notice that
these values are independent of the choice of n`.

Let (λ, u) be an eigenpair and its corresponding finite element approximation (λh, uh). From
(2.2) and (2.3) we know that for any v ∈ Vh the error e = u− uh satisfies

∫

Ω
∇e · ∇v +

∫

Ω
ev =

∫

Γ
λuv −

∫

Γ
λhuhv (3.7)
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On the other hand, for any v ∈ V using (2.2), integrating by parts and using that 4uh = 0 on
T , we have∫

Ω
∇e · ∇v +

∫

Ω
ev = a(u, v)− a(uh, v) =

∫

Γ
λuv −

∑

T

{∫

∂T

∂uh

∂n
v +

∫

T
uhv

}

and so
∫

Ω
∇e · ∇v +

∫

Ω
ev =

∑

T



−

∫

T
uhv +

∑

`∈ET ∩EΓ

∫

`
(λhuh − ∂uh

∂n
)v +

1
2

∑

`∈ET ∩EΩ

∫

`

[[
∂uh

∂n`

]]

`

v





+
∫

Γ
λuv −

∫

Γ
λhuhv (3.8)

For each ` ∈ E we define J` by

J` =





1
2

[[
∂vh
∂n`

]]
`

` ∈ EΩ

λhuh − ∂uh
∂n`

` ∈ EΓ

Now, the local error indicator ηT is defined as follows

ηT =


h2

T ‖uh‖2
L2(T ) +

∑

`∈ET

|`|‖J`‖2
L2(`)




1/2

(3.9)

where |`| denotes the length of the edge `. Then, the global error estimator is given by

ηΩ =


 ∑

T∈Th

η2
T




1/2

.

From now on we denote by C a generic positive constant, not necessarily the same at each
occurrence, which depends only on the smallest angle in the triangulation.

In order to obtain the relation between the error and the estimator we will use the following
well-known error estimates for the interpolation operator of Clement Ih : V → Vh

‖v − Ihv‖L2(T ) ≤ ChT ‖v‖H1(T̃ ) (3.10)

‖v − Ihv‖L2(`) ≤ C|`| 12 ‖v‖H1(˜̀) (3.11)

where T̃ is the union of all the elements sharing a vertex with T and ˜̀ is the union of all the
elements sharing a vertex with ` (see [11], [20]).

The following theorem provides the upper bound on the error.

Theorem 3.1. There exists a constant C such that

‖e‖H1(Ω) ≤ C

{
ηΩ +

(
λ + λh

2

)
‖e‖L2(Γ)

}

Proof. We denote by eI the Clement interpolant of e. By using (3.7) and (3.8) we obtain∫

Ω
|∇e|2 + |e|2 =

∫

Ω
∇e · (∇e−∇eI) +

∫

Ω
e(e− eI) +

∫

Γ
λueI −

∫

Γ
λhuheI

=
∑

T



−

∫

T
uh(e− eI) +

∑

`∈ET

∫

`
J`(e− eI)



 +

∫

Γ
(λu− λhuh)e
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Then by using Cauchy-Schwartz, (3.10), (3.11) and that the triangulation satisfies the mini-
mum angle condition we obtain

‖e‖2
H1(Ω) ≤

∑

T

‖uh‖L2(T )‖e− eI‖L2(T ) +
∑

T

∑

`∈ET

‖J`‖L2(`)‖e− eI‖L2(`) +
∫

Γ
(λu− λhuh)e

≤ C
∑

T

hT ‖uh‖L2(T )‖e‖H1(T̃ ) +
∑

T

∑

`∈ET

|`| 12 ‖J`‖L2(`)‖e‖H1(˜̀) +
∫

Γ
(λu− λhuh)e

≤ C





∑

T


‖uh‖2

L2(T )h
2
T +

∑

`∈ET

|`|‖J`‖2
L2(`)








1
2

‖e‖H1(Ω) +
∫

Γ
(λu− λhuh)e (3.12)

Since ‖u‖L2(Γ) = 1 and ‖uh‖L2(Γ) = 1 we have that
∫

Γ
(λu− λhuh)e = λ + λh − (λ + λh)

∫

Γ
uuh =

λ + λh

2
‖e‖2

L2(Γ)

and by using it in (3.12) and the trace theorem we have

‖e‖H1(Ω) ≤ C





∑

T

h2
T ‖uh‖2

L2(T ) +
∑

`∈ET

|`|‖J`‖2
L2(`)





1
2

+ C

(
λ + λh

2

)
‖e‖L2(Γ)

and the proof concludes. ¤
Then, from (2.5) the global estimator provides an upper bound of the H1 error up to a higher

order term.

In order to guarantee that our estimator is efficient for practical adaptive refinement our next
goal is to prove that the local estimator ηT is bounded by the H1 error and higher order terms.

For T ∈ Th, let bT be the standard cubic bubble given by:

bT =
{

δ1,T δ2,T δ3,T in T
0 in Ω \ T

where δ1,T , δ2,T and δ3,T denote the barycentric coordinates of T ∈ Th.

For ` ∈ ET ∩ EΩ, we denote by T1 and T2 the two triangles sharing ` and we enumerate
the vertices of T1 and T2 such that the vertices of ` are numbered first. Then we consider the
edge-bubble function b`

b` =
{

δ1,Tiδ2,Ti in Ti

0 in Ω \ T1 ∪ T2

First, we obtain the upper estimate for the first term of ηT .

Lemma 3.1. There exists a constant C such that

hT ‖uh‖L2(T ) ≤ C(‖∇e‖L2(T ) + hT ‖e‖L2(T ))

Proof. Let vT ∈ P4(T ) ∩H1
0 (T ) be such that

∫

T
vT w = −h2

T

∫

T
uhw ∀w ∈ P1(T )

Such vT exists and is unique. In fact, let vT =
∑3

i=1 αiϕi with {ϕi = δi,T bT }1≤i≤3 a basis of
P4(T ) ∩ H1

0 (T ); using that
∫
T δn1

1,T δn2
2,T δn3

3,T dx = n1!n2!n3!2!
(n1+n2+n3+2)! |T | we can compute α1, α2, α3 by

solving a non singular system.
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An easy calculation shows that

|αi| ≤ C

|T | max
1≤i≤3

∣∣∣∣
∫

T
h2

T uhδi,T

∣∣∣∣
and thus,

‖vT ‖L2(T ) ≤ C|T |1/2 max
1≤i≤3

|αi| ≤ Ch2
T ‖uh‖L2(T )

Then, there exists a positive constant C, depending only on the regularity condition, such that

‖vT ‖L2(T ) + hT ‖∇vT ‖L2(T ) ≤ C‖vT ‖L2(T ) ≤ Ch2
T ‖uh‖L2(T ) (3.13)

Since h2
T ‖uh‖2

L2(T ) = − ∫
T vT uh, using the residual equation (3.8) we obtain

h2
T ‖uh‖2

L2(T ) =
∫

T
∇e · ∇vT +

∫

T
evT

Therefore, using Cauchy-Schwartz and (3.13) we get

h2
T ‖uh‖2

L2(T ) ≤ C(‖∇e‖L2(T ) + hT ‖e‖L2(T ))hT ‖uh‖L2(T )

and the proof concludes from this estimate.¤
For the second term of ηT we have:

Lemma 3.2. a) For ` ∈ ET ∩ EΓ, there exists a constant C such that

|`|1/2 ‖J`‖L2(`) ≤ C(1 + hT )‖e‖2
H1(T ) + |`|1/2‖λu− λhuh‖L2(`)

b) For ` ∈ ET ∩ EΩ, let T1, T2 ∈ Th be the two triangles sharing `. Then, there exists a constant
C such that

|`|1/2 ‖J`‖L2(`) ≤ C‖e‖H1(T 1
` ∪T 2

` )

Proof. a) For ` ∈ ET ∩ EΓ, let v` ∈ P3(T ) be the function such that v`|`′ = 0 for `′ ∈ ET `′ 6= `
and 




∫
` v`w = |`| ∫` J`w ∀w ∈ P1(T )

‖v`‖L2(`) ≤ C|`| ‖J`‖L2(`)

Such v` exists and is unique. In fact, let v` =
∑2

i=1 βiψi where ψi = δi,T b`, and δ1,T , δ2,T

are the barycentric coordinates associated to the vertices of `. Then, using that
∫
` δn1

1,T δn2
2,T =

n1!n2!
(n1+n2+1)! |`| we can obtain β1 and β2 by solving a non singular system.

It is easy to see that

|βi| ≤ C

|`| max
∣∣∣∣
∫

`
|`|J`δi,T

∣∣∣∣
and therefore,

‖v`‖L2(`) ≤ C|`|1/2 max |βi| ≤ C|`|‖J`‖L2(`)

and
‖v`‖L2(T ) ≤ ChT max

1≤i≤2
|βi| ≤ C|`|‖J`‖L2(`) max

1≤i≤2
‖δi,T ‖L2(`) ≤ C|`|3/2‖J`‖L2(`)

Then, ‖v`‖L2(T ) + hT ‖∇v`‖L2(T ) ≤ C|`|3/2‖J`‖L2(`).

Since |`| ∫` J2
` =

∫
` v`J`, using the residual equation (3.8) we get

|`|‖J`‖2
L2(`) =

∫

T
∇e · ∇v` +

∫

T
ev` −

∫

`
(λu− λhuh)v` +

∫

T
uhv`
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Thus,

|`|‖J`‖2
L2(`) ≤ C

(
‖∇e‖L2(T ) + hT ‖e‖L2(T ) + |`|1/2‖λu− λhuh‖L2(`) + hT ‖uh‖L2(T )

)
|`|‖J`‖L2(`)

This estimate and the previous lemma allows us to conclude the proof of a).

b) For ` ∈ ET ∩ EΩ, let T1, T2 ∈ Th be the two triangles sharing `. Let v` ∈ H1
0 (T1 ∪ T2) be a

edge-bubble function such that v`|Tj
∈ P2 , j = 1, 2, and





∫
` v`w = |`| ∫` J`w ∀w ∈ P0(T )

‖v`‖L2(`) ≤ C|`| ‖J`‖L2(`)

It is easy to see that ‖v`‖L2(T ) + hT ‖∇v`‖L2(T ) ≤ C|`|3/2‖J`‖L2(`). Since |`| ∫` J2
` =

∫
` v`J`, from

the residual equation we get

|`|‖J`‖2
L2(`) =

∫

T1∪T2

∇e · ∇v` +
∫

T1∪T2

ev` +
∫

T1∪T2

uhv`

Using Cauchy-Schwartz we obtain

|`|‖J`‖2
L2(`) ≤ C

(‖∇e‖L2(T1∪T2) + hT ‖e‖L2(T1∪T2) + hT ‖uh‖L2(T1∪T2)

) |`|‖J`‖L2(`)

From this estimate and the previous lemma we conclude the proof.¤
Now, we are in condition to prove the efficiency of our estimator.

Theorem 3.2. There exists a constant C such that

a) For T ∈ Th, if ∂T ∩ Γ = ∅ then

ηT ≤ C‖e‖H1(T ∗)

where T ∗ denote the union of T and the triangles sharing an edge with T .

b)For T ∈ Th, if ∂T ∩ Γ 6= ∅ then

ηT ≤ C{‖e‖H1(T ) +
∑

`∈ET ∩EΓ
|`| ‖λu− λhuh‖L2(`)}

Proof. It follows immediately from Lemmas 3.1 and 3.2. ¤.

Remark 3.1. The term |`|‖λu− λhuh‖2
L2(`) is a higher order term. In fact, for any v ∈ V we

have ∫

Γ
(λu− λhuh)v =

∫

Γ
λ(u− uh)v +

∫

Γ
(λ− λh)uhv

≤ (
λ‖u− uh‖L2(Γ) + (λ− λh)‖uh‖L2(Γ)

) ‖v‖L2(Γ)

So, taking v = λu− λhuh and using the apriori estimates (2.5) and (2.6) we obtain

‖λu− λhuh‖L2(Γ) ≤ C{h 3
2
r + h2r}.

4. Edge Residual Error Estimator

In this section, we prove that the edge residuals dominate the other part of the estimator
defined in the previous section and then, we propose a simpler error estimator which is also
equivalent to the error up to higher order terms.

For any P ∈ NΩ we define ΩP =
⋃{T ∈ Th : P ∈ T}.
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Lemma 4.1. For any P ∈ NΩ we have that

∑

T⊂ΩP

h2
T ‖uh‖2

L2(T ) ≤ C


 ∑

`⊂ΩP

|`|‖J`‖2
L2(`) + |ΩP |2‖∇uh‖2

L2(ΩP )




Proof. Let Π0(uh) be the L2(ΩP ) projection of uh onto the constants, i.e,∫

ΩP

uhv =
∫

ΩP

Π0(uh)v ∀v constant in ΩP

Then,
∑

T⊂ΩP

h2
T ‖uh‖2

L2(T ) ≤ |ΩP |
∫

ΩP

|uh|2 = |ΩP |‖uh −Π0(uh)‖2
L2(ΩP ) + |ΩP |‖Π0(uh)‖2

L2(ΩP )

Let φP be the corresponding Lagrange basis function with supp φP = ΩP

‖Π0(uh)‖2
L2(ΩP ) = |Π0(uh)|2|ΩP | = 9

|ΩP |
(∫

ΩP

φP Π0(uh)
)2

≤ 18
|ΩP |

(∫

ΩP

φP (Π0(uh)− uh)
)2

+
18
|ΩP |

(∫

ΩP

φP uh

)2

(4.14)

Since P ∈ NΩ by using (2.3) we have

−
∫

ΩP

φP uh =
∫

ΩP

∇uh · ∇φP =
1
2

∑

`∈EΩ ∩ΩP

|`|
[[

∂uh

∂n`

]]

`

=
1
2

∑

`∈EΩ ∩ΩP

∫

`

[[
∂uh

∂n`

]]

`

and so,

|ΩP |‖Π0(uh)‖2
L2(ΩP ) ≤ C{ |ΩP |‖Π0(uh)− uh‖2

L2(ΩP ) +
1
2

∑

`∈EΩ ∩ΩP

|`|‖
[[

∂uh

∂n`

]]

`

‖2
L2(`)}

≤ C{ |ΩP |‖Π0(uh)− uh‖2
L2(ΩP ) +

1
2

∑

`⊂ΩP

|`|‖J`‖2
L2(`)}

therefore
∑

T⊂ΩP

h2
T ‖uh‖2

L2(T ) ≤ C{ |ΩP |‖Π0(uh)− uh‖2
L2(ΩP ) +

1
2

∑

`⊂ΩP

|`|‖J`‖2
L2(`)}

The proof concludes by using the standard estimate for the L2 projection. ¤
Now, we introduce a simplified indicator by omitting the volumetric part in the residual error

estimator given in (3.9)

η̃T =


 ∑

`∈ET

|`|‖J`‖2
L2(`)




1/2

(4.15)

and the corresponding global error estimator

η̃Ω =
{∑

η̃2
T

}1/2

In the following Theorem we prove that this estimator is globally reliable and locally efficient
up to higher order terms.
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Theorem 4.1. There exists a constant C such that

‖e‖H1(Ω) ≤ C

{
η̃Ω +

(
λ + λh

2

)
‖e‖L2(Γ) + h2

}

and

η̃T ≤ C

{ ‖e‖H1(T ∗) if ∂T ∩ Γ = ∅
‖e‖H1(T ) +

∑
`∈ET ∩EΓ |`| ‖λu− λhuh‖L2(`) if ∂T ∩ Γ 6= ∅

Proof. It follows immediately from Theorem 3.1, Theorem 3.2 and Lemma 4.1.

Remark 4.1. We have considered the case in which Ω is a polygonal domain only for simplicity,
there is no difficulty extending all of the above to the 3d case with Ω a polyhedral domain. In
such a case we have to replace, in the definition of the error indicator (3.9), the length of the
edge by the diameter of the face and by following our ideas the equivalence between the error
estimator and the energy norm can be obtained, up to higher order terms.

Acknowledgments: We thank Prof. Rodolfo Rodriguez for his useful suggestions.
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