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It is known that, for uniform partitions of a domain whih is a union of retangles, the �niteelement approximation using mass-lumping leads to the standard �ve point �nite di�erenesheme. For eigenvalue problems these kinds of methods have been widely analyzed (see forexample [3, 4, 8, 9℄).When the polygonal domain is not onvex, the eigenfuntions are in general non-smooth, i.e.,they do not belong to H2 but only to H1+r, with r < 1 depending on the maximum reentrantorner. It is known that, in this ase, the order of onvergene of �nite element approximationsis lower than that of the smooth ase. For the �ve point �nite di�erene sheme Forsytheonjetured in [3℄, based on numerial evidene, that for the singular ase the approximateeigenvalue is larger than that of the ontinuous problem when the mesh-size is small enough.We will prove that in the singular ase, the eigenvalue omputed using mass-lumping islarger than the eigenvalue of the ontinuous problem for small enough mesh-size. In partiularthe onjeture made by Forsythe is true.On the other hand, we will prove that the eigenvalue omputed with mass-lumping is al-ways below the one obtained with exat integration independently of the smoothness of theeigenfuntion.So, we onlude that in the singular ase it is onvenient to use mass-lumping, at least forsmall enough mesh-size. We present several numerial experiments whih show that this is trueeven for oarse meshes whih would be a reasonable starting point for an adaptive proedure.Although when exat integration is used the approximate eigenvalue is always above theexat one, this is not true when mass-lumping is used. For example, in the one dimensionalase, when a uniform partition is used, the disrete eigenvalues an be omputed expliitly andthey are below the eigenvalues of the ontinuous problem (see [1℄). In fat, an easy alulationshows that this is also true in two dimensions when a uniform partition is used in a squaredomain.For some partiular onvex polygonal domain and smooth enough eigenfuntion, Forsytheproved in [3℄ that the disrete eigenvalue approximation obtained by �nite di�erenes is belowthe eigenvalue of the ontinuous problem when the mesh-size is small enough. We will presentseveral numerial examples whih suggest that this is also true for eigenvalues obtained withmass-lumping in general meshes.In view of the fat that the eigenvalue obtained with exat integration is an upper bound ofthe exat one it would be very interesting to prove that the mass-lumping proedure gives lowerbounds.2 The Eigenvalue ProblemLet 
 � IR2 be a bounded polygonal domain. Consider the eigenvalue problem:Lu(x) = �u(x) x 2 
; (2.1)u(x) = 0 x 2 �
; (2.2)where Lu(x) = � 2Xi;j=1 ��xj (aij(x) ��xiu) + b(x)u;2



with aij(x) = aji(x) and b(x) � 0 are given bounded, real funtions on 
. The operator L isassumed to be uniformly strongly ellipti in 
, i.e., there is a positive onstant  suh that2Xi;j=1aij(x)�i�j �  2Xi=1 �2iLet H = H1(
) and V = H10 (
) � H. We denote by ( ; ) and k � k0 the usual inner produtand norm in L2(
) respetively and by k � k1 the norm in H1(
). The weak formulation ofproblem (2.1) is given by:Find � 2 IR and u 2 H10 (
), u 6= 0 satisfyinga(u; v) = �(u; v) 8v 2 H10 (
) (2.3)kuk0 = 1where a(�; �) is a symmetri bilinear form that is ontinuous on H and oerive on V , i.e.,There exist onstants M and � > 0 suh thatja(u; v)j �Mkuk1kvk1 8u; v 2 Ha(v; v) � �kvk21 8v 2 VIt is well known that the solution of problem (2.3) is given by a sequene of pairs (�j ; uj),with positive eigenvalues �j diverging to +1. We assume the eigenvalues to be inreasinglyordered: 0 < �1 � � � � � �j � � � �. The assoiated eigenfuntions satisfy uj 2 H1+r(
), wherer = 1 if 
 is onvex and r < �! (with ! being the largest inner angle of 
) otherwise.In order to approximate the eigenvalue � and its assoiated eigenfuntion u we onsider fThga triangulation of 
 suh that any two triangles in Th share at most a vertex or an edge. Let hstand for the mesh-size; namely h = maxT2Th hT , with hT being the diameter of the triangle T .We suppose that the family of triangulations Th satis�es the usual shape regularity ondition,i.e., there exists a onstant � > 0 suh that hT�T � �, where �T is the diameter of the largest ballontained in T .We onsider the usual �nite element spae:Vh = fvh 2 H10 (
) : vhjT 2 P1 8T 2 Thg(P1 denotes the spae of linear polynomials).Then, the standard �nite element approximation problem is the following:Find �h 2 IR and uh 2 Vh, uh 6= 0 suh thata(uh; vh) = �h(uh; vh) 8vh 2 Vh (2.4)kuhk0 = 1Another possible disretization is obtained by using quadrature rule on the right-hand sideof (2.4). A usual approah, known as \mass-lumping", leads to the following approximationproblem: 3



Find �mlh 2 IR and umlh 2 Vh, umlh 6= 0 suh thata(umlh ; vh) = �mlh Z
 Ih(umlh vh) 8 vh 2 Vh; (2.5)kumlh k0 = 1where Ih denotes the pieewise linear interpolation on the verties of the triangulation Th.Remark 2.1 For simpliity, we assume that the left-hand sides of (2.4) and (2.5) an be exatlyintegrated. However, it is not diÆult to see that all our results hold in more general ases ifnumerial quadratures of appropriate degrees of preision aording to the results of [2℄ are used.The two problems above redue to generalized eigenvalue problems involving positive de�nitesymmetri matries. They attain a �nite number of eigenpairs (�j;h; uj;h) and (�mlj;h; uj;h), 1 �j � Nh = dimVh, respetively, with positive eigenvalues whih we assume inreasingly ordered:�1;h � � � � � �Nh;h and �ml1;h � � � � � �mlNh;h.Our �rst goal is to show that the eigenvalue obtained by mass-lumping is always below the oneobtained by the standard �nite element approximation, i.e., �mlh;j � �h;j, 1 � j � Nh = dimVh.We introdue the following notation: Let EI be the set of all interior edges of the mesh(i.e., edges of triangles not lying on �
). For eah interior edge ` 2 EI we denote by p1(`) andp2(`) the endpoints of the edge ` and T1;` and T2;` the two triangles sharing this edge and set
l = T1;` [ T2;`. Then we haveLemma 2.1 For any vh 2 Vh,Z
 �Ih(v2h)� v2h� = 112 X̀2EI ((vh(p1(`))� vh(p2(`)))2 j
`jin partiular Z
 Ih(v2h) � Z
 v2hProof. Sine vh is a pieewise linear funtion and vh j�
= 0 we observe thatZ
 v2h = X̀2EI v2h(m`) j
`j3where m` denote the midpoint of the edge `. From vh(m`) = vh(p1(`))+vh(p2(`))2 we have thatX̀2EI v2h(m`) j
`j3 = X̀2EI �vh(p1(`)) + vh(p2(`))2 �2 j
`j3 (2.6)= X̀2EI  vh(p1(`))2 + vh(p2(`))22 ! j
`j3 � X̀2EI �vh(p1(`))� vh(p2(`))2 �2 j
`j34



It is easy to see that Z
 Ih(v2h) = X̀2EI  vh(p1(`))2 + vh(p2(`))22 ! j
`j3and therefore the Lemma holds.As a onsequene of the previous Lemma we have thatCorollary 2.1 For any vh 2 Vh there exists a onstant C suh that0 � Z
 �Ih(v2h)� v2h� � Ch2krvhk20Proof. Using Lemma 2.1 and the fat that �vh�` = vh(p2(`))�vh(p1(`))j`j we have thatZ
 �Ih(v2h)� v2h� = 112 X̀2EI ((vh(p1(`))� vh(p2(`)))2 j
`j= 112 X̀2EI ��vh�` �2 j`j2j
`jThe proof onludes by observing that for any triangle T 2 Th, ��vh�` �2 � jrvhj2.Theorem 2.1 Let �h;j and �mlh;j, 1 � j � Nh be the eigenvalues of problems (2.4) and (2.5)respetively. Then �mlh;j � �h;j 1 � j � Nh (2.7)Proof. It is known that the eigenvalues an be haraterized using the minimum-maximumpriniple (see for example [1℄), i.e, for any j, 1 � j � Nh we have that�h;j = minVh;j maxvh2Vh;j a(vh; vh)R
 v2h (2.8)and �mlh;j = minVh;j maxvh2Vh;j a(vh; vh)R
 Ih(v2h) (2.9)where Vh;j denote any subspae of Vh of dimension j.In view of Lemma 2.1 we have thata(vh; vh)R
 Ih(v2h) � a(vh; vh)R
 v2h 8vh 2 Vh;j (2.10)So, for any Vh;j maxvh2Vh;j a(vh; vh)R
 Ih(v2h) � maxvh2Vh;j a(vh; vh)R
 v2hand onsequently �mlh;j � �h;j 1 � j � Nh:5



The next lemma gives an expression for the di�erene between �j and the mass-lumpingapproximation. Although, the result is a partiular ase of Lemma 5.1 of [2℄ we inlude it forthe sake of ompleteness.Lemma 2.2 Let (�mlh;j; umlj ) and (�j ; uj) be the solutions of problems (2.3) and (2.5) respetively.Then we have that�mlh;j � �j = a(umlh;j � uj ; umlh;j � uj)� �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2� (2.11)Proof.�mlh;j + �j = �mlh;jkumlh;jk20 + �jkujk20= �mlh;j Z
 Ih((umlh;j)2) + �jkujk20 + �mlh;j �kumlh;jk20 � Z
 Ih((umlh;j)2)�= a(umlh;j; umlh;j) + a(uj ; uj) + �mlh;j �kumlh;jk20 � Z
 Ih((umlh;j)2)�= a(umlh;j � uj ; umlh;j � uj) + 2a(umlh;j ; uj) + �mlh;j Z
 �(umlh;j)2 � Ih((umlh;j)2)�= a(umlh;j � uj ; umlh;j � uj) + 2�j � �jkumlh;j � ujk20 + �mlh;j Z
 �(umlh;j)2 � Ih((umlh;j)2)�So, (2.11) holds.It is known that, when 
 is not onvex, the eigenfuntions of problem (2.3) are singular inmany ases, i.e., they belong only to the spae H1+r(
), with r < �! (with ! being the largestinner angle of 
).Error estimates for eigenvalue problems onsidering numerial integration have been obtainedin [2℄. Although they do not state expliitly the results for non-smooth eigenfuntions it an beseen using their arguments that kumlh;j � ujk0 � Ch2r (2.12)kr(umlh;j � uj)k0 � Chrwith an appropriate hoie of sign for the normalize disrete eigenfuntion.Now, our goal is to show that in the singular ase the eigenvalue given by \mass- lumping"approximation (2.5) is better than the eigenvalue approximation given by the standard �niteelement (2.4) for h small enough.Corollary 2.2 Let �mlh;j and �j be the eigenvalues of problems (2.3) and (2.5) respetively. Ifthere exists a onstant  suh that kr(umlh;j � uj)k0 � hr, with r < 1 then for h small enough�j � �mlh;j (2.13)6



Proof. From Lemma (2.2) we know that�mlh;j � �j = a(umlh;j � uj ; umlh;j � uj)� �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2�Sine a is oerive, we have that�mlh;j � �j � �kumlh;j � ujk21 � �jkumlh;j � ujk20 � �mlh;j Z
 �Ih((umlh;j)2)� (umlh;j)2� (2.14)From our hypothesis, the �rst term on the right-hand side of (2.14) is greater than a onstanttimes h2r and, in view of (2.12) and Corollary 2.1, the seond and third terms are of higherorder (h4r and h2 respetively). Therefore, if h is small enough, the sign of �mlh;j � �j is given bythe �rst term on (2.14) so, we onlude the proof.3 Numerial ExamplesThe objet of this setion is to ompare the eigenvalue approximation obtained with and withoutmass-lumping in several examples.We onsider the following problem�4u = �u in 
 (3.1)u = 0 on �
with di�erent domains 
.First we onsider the ase of an L-domain. For this domain, it is known that the �rsteigenfuntion is singular.In Figure 1 we show the �rst mesh that we use. The subsequent meshes are obtained byuniform re�nement (eah triangle is divided into four ongruent triangles).
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Figure 1: Initial mesh for the L-domainIn the next table we present the numerial approximation of the orresponding eigenvalue.
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number of nodes �h;1 �mlh;121 13.199179221542 9.07179676972465 10.573955451157 9.641425460959225 9.916549032001 9.693162213551833 9.728372729312 9.6735064760373201 9.66981732232 9.65620182015Table 1The exat value has to be less than the last value of �h;1 so, we observe that the valuesobtained with mass-lumping are muh better than those obtained with exat integration evenfor very oarse meshes.In our next two examples we take 
 as non-onvex polygons whih are approximationsof di�erent levels to the fratal Koh domain. Also in these ases it is known that the �rsteigenfuntions are singular [5, 6℄. In Figure 2 and Figure 3 we show the �rst meshes for the twoexamples. As before the subsequent meshes are obtained by uniform re�nement.
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Figure 2: Initial mesh for level 1 approximation of the Koh domain
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Figure 3: Initial mesh for level 2 approximation of the Koh domain
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In Tables 2 and 3 we present the numerial approximation of the �rst eigenvalues for thedomains of Figures 2 and 3 respetively.number of nodes �h;1 �mlh;137 46.993282224519 40.401005031470121 42.121650466929 40.635844194708433 40.796435658176 40.438418441151Table 2number of nodes �h;1 �mlh;1329 40.94016461357 40.341178040881217 40.17948566684 40.03394074483Table 3Again, we observe that it is onvenient to use mass-lumping.We end the paper by giving some numerial examples for the ase of smooth eigenfuntions.In this ase, the eigenvalue omputed with mass-lumping may be below or above the exat one.In fat, for a uniform mesh in a square domain the eigenvalues of the disrete problem an beobtained expliitly and they are below the exat ones. On the other hand, if one take a mesh ofthe square with only one interior node lose to a orner (see Figure 4) the eigenvalue obtainedwith mass-lumping is larger than the exat one.However, the experiments that we show below, as well as other with several di�erent meshes,suggest that in the smooth ase the approximate eigenvalue is below the exat one if the meshis not too oarse.In all our examples the exat eigenvalues are known expliitly.In Figure 4 and 5 we present the �rst and last meshes for the �rst example in the squaredomain. In Figure 6 we present the �rst mesh for the seond example in the square domain. Inthis example the subsequent meshes are obtained by uniform re�nement.
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Figure 4
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Figure 5
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Figure 6
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The next tables show the approximation using mass-lumping for the two families of meshesin a square domain. We reall that the exat value is �1 = �2=2 = 4:93480220054468::::number of nodes �mlh;1(initial mesh in Figure 4 )5 15.7894736842118 3.12392260706714 3.09116819099126 3.90315229655455 4.646900604880116 4.742942128240259 4.888070813057Table 4number of nodes �mlh;1(initial mesh in Figure 6)37 4.442736170666121 4.810061215139433 4.903574330061Table 5In the following two examples the domain is an equilateral triangle. In Figures 7 and 8we present the �rst meshes, the subsequent meshes are obtained by uniform re�nement. InTables 6 and 7 we show the disrete eigenvalues obtained for this two ases. The exat value is�1 = 16�23 = 52:63789014:::: (see [7℄)
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Figure 8number of nodes �mlh;1(initial mesh in Figure 7)15 42.66666666666745 49.987109344163153 51.964905805628561 52.468994312245Table 6number of nodes �mlh;1(initial mesh in Figure 8 )28 46.83965938378191 51.318366941074325 52.331156996197Table 7Finally we take as 
 a irle of radius 1. Figure 9 and 10 show two di�erent initial meshesthat we have used. The orresponding results are given in Tables 8 and 9. For this ase theexat value is �1 = 5:78318596294679:::.
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Figure 10
number of nodes �mlh;1(initial mesh in Figure 9)25 4.8696186126281 5.52128687409289 5.715403301391089 5.76609636891Table 8
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number of nodes �mlh;1(initial mesh in Figure 10)41 5.469108031446145 5.698898965742545 5.761760229781Table 9Aknowledgments: We would like to thank Gabriel Aosta and Juan P. Pinaso for theirollaboration in the examples on the Koh domain.Referenes[1℄ Babuska I. and Osborn J. Eigenvalue Problems, Handbook of Numerial Analysis, vol. II,Finite Element Methods (Part.1), 1991.[2℄ Banerjee U. and Osborn J. Estimation of the e�et of numerial integration in �nite elementeigenvalue approximation, Numer. Math., 56, pp 735-762, (1990).[3℄ Forsythe G. E. Asymptoti lower bounds for the frequenies of ertain polygonal membranes,Pai� J. Math, 4, pp 467-480 (1954).[4℄ Forsythe G. E. Asymptoti lower bounds for the fundamental frequeny of onvex mem-branes, Pai� J. Math, 5, pp 691-702 (1955).[5℄ GriÆth, C. A.; Lapidus, M. L. Computer graphis and the eigenfuntions for the Kohsnowake drum. Andersson, S. I. et al. (editors), Progress in inverse spetral geometry.Birkhuser. Trends in Mathematis., pp. 95-113 (1997)[6℄ Lapidus, M. L.; Neuberger, J.W.; Renka, R. J.; GriÆth, C. A. Snowake harmonis andomputer graphis: Numerial omputation of spetra on fratal drums. Int. J. BifurationChaos Appl. Si. Engrg. 6, pp. 1185-1210 (1996)[7℄ Pinsky, M.A The eigenvalues of an equilateral triangle, SIAM J. Math. Anal., 11, pp819-827 (1980).[8℄ Weinberger, H. F. Upper and lower bounds for eigenvalues by �nite di�erene methods,Com. on Pure and Appl. Math., IX, pp 613-623 (1956) .[9℄ Weinberger, H. F. Variational Methods for Eigenvalue Approximation, SIAM, Philadelphia,1974.
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