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Abstract

In this paper we obtain error estimates for moving least square approximations in the
one dimensional case. For the application of this method to the numerical solution of
differential equations it is fundamental to have error estimates for the approximations of
derivatives. We prove that, under appropriate hypothesis on the weight function and the
distribution of points, the method produces optimal order approximations of the function
and its first and second derivatives. As a consequence, we obtain optimal order error
estimates for Galerkin approximations of coercive problems. Finally, as an application of
the moving least square method we consider a convection-diffusion equation and propose
a way of introducing up-wind by means of a non-symmetric weight function. We present
several numerical results showing the good behavior of the method.

Key words. error estimates, moving least square, Galerkin approximations, convection-diffusion.

AMS Subject Classification. 65170, 651.10, 65D 10.

1 Introduction

The moving least square (MLS) as approximation method has been introduced by Shep-
ard [12] in the lowest order case and generalized to higher degree by Lancaster and Salkauskas
[6]. The object of those works was to provide an alternative to classic interpolation useful to
approximate a function from its values given at irregularly spaced points by using weighted
least square approximations. However, those papers do not attempt to present an approx-
imation theory. More recently, the moving least square method for the numerical solution
of differential equations has been considered in several papers, especially in the engineering
literature, ( [13], [1], [2]) giving rise to a particular class of the so called mesh-less methods
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which provide numerical approximations starting from a set of points instead of a mesh or
triangulation.

For this kind of application it is fundamental to analyze the order of approximation, not
only for the function itself, but also for its derivates.

We will show that, for the approximation in L of the function, optimal error estimates in
the one dimensional case follows from known results concerning the interpolation properties
of best approximations ([9],[8],[10]) under rather general hypothesis. Also, in a recent paper
Levin [7] analyzed the MLS method for a particular weight function obtaining error estimates
in the uniform norm for the approximation of a regular function in higher dimensions.

The main object of this work is to prove error estimates for the approximation of the
first and second order derivatives of a function by the moving least square method in the
one dimensional case. We use compact support weight functions as is usually done in the
application for numerical solution of differential equations. In order to obtain these estimates
we will need to impose more restrictive assumptions on the set of points and on the weight
function used.

Our results can be applied in two ways for the approximation to second order problems.
The MLS method can be used to construct finite dimensional approximation spaces to define
Galerkin approximations. In this case, our results for the first derivatives provide optimal
order error estimates by using standard arguments (i.e the Cea’ s Lemma ). On the other
hand, the error estimates for the second derivatives allows to control the consistency error of
finite difference or collocation methods obtained from an arbitrary set of points by the MLS
method.

One of the most interesting features of the MLS method is the possibility of constructing
approximation spaces which take into account special properties of the differential equation
considered. As an example of this fact we consider a convection-diffusion equation and show
how the MLS method, with a particular weight function, can be used to construct non
symmetric approximation functions introducing appropriate up-wind.

We present numerical computations showing the good behavior of this approach (although
we remark that we do not attempt here to provide a theoretical analysis for the convection
dominated problem, i.e, to obtain error estimates valid uniformly on the relation between
convection and diffusion. This is an interesting problem and will be the object of our future
research).

Some of the techniques introduced here for the error analysis can be extended to higher
dimensions although this is not trivial and will be presented elsewhere.

The paper is organized as follows. First, in Section 2 we present the moving least square
method. Section 3 deals with the error estimates for the function and its first and second
derivatives. Finally, in Section 4 we use the error estimates to prove the convergence of
Galerkin approximations based on MLS method for second order coercive problem and we
conclude with some numerical examples for a convection-diffusion equation.



2 The Moving Least Square Method

Given R > 0 let ®p > 0 be a function such that supp ®r C Br(0) = {z/|z| < R}.
and Xp = {21,22,...,2.f, n = n(R), a set of points in @ C R an open interval and let
uq, Uz, . ..U, be the values of the function u in those points, i.e, u; = u(z;), 1 < j < n.

Let {po,---,pm} be a basis of the Polynomial Space P,,. (we can choose, for example
po=1,p1=2a,...,pn =2a™) with m << n.
For each = € Q (fix) we consider P*(z,y) = > /Lo pe(y)ar(z) where {ag(2), -, a,(2)} are
chosen such that

To(@) =3 Bnle— ) — 3 pules)an)?
=1 k=0

is minimized.
In order to simplify notation we will drop the subscript R from the weight function ®p.

Then, we define the approximation of u as
w(z)= P (z,z)= Zpk(x)ak(w). (2.1)
k=0

In order to have this approximation well defined we need to guarantee that the minimization
problem has a solution.

We define .
< fo9>0= ) 0w — ;) f(x)g(x;).

=1
Then,

IF112 = D @ — 25)f(2;)?,
=1
is a discrete norm on the polynomial space P, if the weight function ® satisfies the following
property
Property P: For each z € Q, ®(z — z;) > 0 at least for m + 1 indices j.

Therefore (see for example [5])

Theorem 2.1 Assume that the weight function satisfies property P. Then, for any v € Q
there exists P*(z,-) € Py, which satisfies ||u — P*(z, )|l < ||lu — P||» for all P € P,,,.

Observe that the polynomial P*(x,y) can be obtained solving the normal equations for the
minimization problem. In fact, if we denote p(z) = (po(z) - pm(2))?,

Alw) = oy ®(w—wp)p(2r)p'(wx) and ¢j(w) = @(x—z;)p(x;) then, a(z) = (ap(2), - -+, am(2))’

is the solution of the following system

n

Alz)a(z) =) ej(x)u;.

J=1



So, an easy calculation shows that P*(z,z) may be written as
Pr(a,a) = Bile)u;., (2.2)
i=1

where 3;(z) = p'(2)A™(2)c;(z) are functions with the same support and regularity than @
([6], section 2). We also note that if u € Py, with k < m, then @ = u. In particular {3;}1<;<n
is a partition of unity, i.e, 3°7_ B;(z) = 1, Vo € Q. However, the 3; are not in general non
negative functions and this fact make the error analysis more complicated.

3 Error Estimates

The object of this section is to obtain error estimates in terms of the parameter R which
plays the role of the mesh size. The letter C' will stand for a constant, independent of R, not
necessarily the same in each occurrence. We will indicate in each case which parameters it
depends on.

The approximation order of 4 to the function u can be obtained from known results on
best least square approximations. Indeed, the following theorem is known (see Theorem 8 in

[9])

Theorem 3.1 Assume that ® satisfies property P. Let x € Q and uw € C™TY(Br(z) N Q). If
P*(x,y) is the polynomial in y that minimizes J (o), then u(y)— P*(x,y) has at least m + 1
zeros in Br(z) N Q.

Therefore, from standard interpolation error estimates we have the following

Corollary 3.1 If & satisfies property P and u € C™H1(Q

) then, there exists C', depending
only on m, such that for each x € Q and any y € Br(z)N Q

|u(y) = P*(2,9)] < Cllu || oo ) R™ (3.1)

in particular taking y = x, we have
[ — | ooy < Cllu™ || poo ) R™ (3.2)
For our subsequent error analysis we introduce the following properties about the weight

function and the distribution of points. All the constants appearing below are independent

of R.
1. Given z €  there exist at least m + 1 points 2; € Xr N Br(2).
2
2. Jeg > 0 such that ®(z) > ¢ Vz € Br(0).
2

3. @ € CY(Bg(0))Nn Wh*(R) and J¢; such that H(I)/HLOO(IR) < H.



4. de, such that ? < ¢, where ¢ = min|z; — 2| is the minimum over the m + 1 points in
condition 1).

5. deg such that for all z € Q, card{Xr N Bap(z)} < cp.
6. ® € C*(Br(0))N W2>(R) and 3 ¢q such that H(I)”HLoo(IR) < %

Our next goal is to estimate the error in the approximation of v’ by 4’. The following Lemma
gives the fundamental tool to obtain this estimate.

Lemma 3.1 Let & € Q such that %f—’yl exists and uw € C™TY(Q). If properties 1) to 5)
hold then, there exists C' = C(cq, ¢y, ¢p, c4, m) such that Vy € Br(x) N Q:

aP*(x,y)

m m+1
| 9 | < CR™[ul™ || oo (3.3)
Proof. Given z € Q, in view of property 1) there exist points x; ,2;,, -, 2., € Br(z).
2
For any A > 0 we define
S(z) = Z |P*(z + h,zp) — P*(z,2p)]? (3.4)
ke{ji}

Then, by property 2)

1
LS 0 (Pt hs) — PP
co ke{j:}

Ci S b(a — o) (PHa + b 2y) = P(a,a0))? (3.5)
0 k=1
= 1 Zn: Oz —ap)(P (x4 h,xp) — P (2, 20))(P(x + h,2p) — u(zy))

o k=1

S(x)

IN

IN

+ 1 Zn: Oz — ap)(P(z+ h,xp) — P (2, 20))(u(zy) — Pz, 1)) .

o k=1

Let @ be the polynomial of degree < m defined by Q(y) = P*(z+ h,y) — P*(z,y), then since
the minimum is attained at P* we have

n

< uly) = (2,0, Q) >e= 3 8~ w)Qe)(ules) ~ P(rn) =0, (36)
k=1
Then,
S() S 3B mQU(P (e b ().
k=1
(3.7)



Since @ is in C'1(Bg(0)) N Wh>°(R), for h small enough, 36 such that ®(z — zp) = B(x +
h — xp) — ®'(8;)h and so, replacing in (3.7) we obtain

S(2) € =30+ h— Q) (P (e + hrg) — u(y)
0 p=1
S W B)Q) (P et hoy) — u(ay)).

o k=1

Since < u(y)—P*(z+h,y),Q(y) >z+r= 0 and using that &’ has compact support together
with property 3) we have

S) < LY W) — Pt )
k=1
< LS ORI e+ o)~ u(es))
0k:1
< DY QP b — ()]
0 l’kEBQR(l’)

By Corollary 3.1 we know that [P*(z + h,2t) — u(2g)] < Cllul™ V|| 00 q)R™ ! then,

S(x) < Chllu™ oo R™ - Q)] (3.8)
l’kEBQR(l’)

Since @ is a polynomial of degree < m it can be written as

Qy)= Y Qer)li(y), (3.9)

ke{j:}

where [(y) are the Lagrange’s polynomial basis functions and therefore

Y. Q@< Yo Q@I > lh(ar)l)

xp€Bor(x) i€{ir} @ EByr(w)

From property 4) [li(y)] < (%)m"'1 < c(ep,m) Vi € {ji, 1 <k <m+ 1} and therefore, it
follows from property 5) and (3.8) that

(> 1QEwD?* < (m+1) > Q) = (m+1)S(2) (3.10)
ke{ji} ke{ji}
< ChlJu™ )| ooy R ey > 1Q(x))|
ke{ji}
Now, we obtain
> 1Q(zx)| < Chl[ul™ || Loc ) R™ . (3.11)
ke{ji}



Finally, using (3.11) and property 4) in (3.9) we get Vy € Br(z)N Q
Q) _ [Pz +hy) = Pr(z,y)]
o h

and so, if x is a point such that %(f’y)

< Ol ey B (3.12)

exists, the proof concludes by taking h — 0. O

The following Theorem states the order which @’ approximates u'.

Theorem 3.2 Ifu € C™(Q) and properties 1) to 5) hold then, there exists C = C(cg, ¢1, ¢p, c4e,m)
such that
L@y < Cllut™ | poe (o) R™ - (3.13)

o' = @

Proof. Observe that, since ® € C1(Bg(0)) N W1°°(RR) then, P*(z,y) is continuous every-
where and differentiable for every z up to a finite set (this can be seen using again the
argument given in [6], section 2). Therefore, P*(-,y) € W1>(Q). For any = € Q such that

78]3;(;’7’/) exists, we want to estimate |u'(2) — @/(z)| = |v/(z) — £ P*(2,2)|. We note that
d oP*(xz,y) O0P*(x,y)0dy
—p* = =, = 14

OP*(z,y) _ 8P*(1’,y)|

dx dy ’

So, we will estimate |u'(y) — Vy € Bpr(z) N Q. Since P*(z,y) is a

polynomial of degree < m that interpolates u at m + 1 points (Theorem 3.1) then, %(yx’y)
interpolates «’ in m points and therefore,
OP*(z,y m m
w(9) = ) < O e oy B Yy € Bl 00 (3.15)

From Lemma 3.1 we know that |%f—’yl| < CHu(m"'l)HLoo(Q)Rm which together with (3.15)
yields

_OP(x,y) 9P (z,y)

0P (z,y) N dP*(z,y)
ox dy

oy [+ ox

W' (y) | < [u/(y) | < Oflul™ | poo (o) R™

In particular taking y = » we conclude the proof. O

Our next goal is to find error estimates for the approximation of «” by 4”. The idea of
the proof is similar to that used for the first derivative. However, instead of using the orthog-
onality (3.6) we have to use a relation which is obtained in the next lemma by differentiating
it. From now on we will assume that ® € C'1(R) so, in particular P*(-,y) € C'*(£) using the
same argument mentioned above.

Lemma 3.2 For any Q(z,y) polynomial in y of degree < m and differentiable as a function
of © we have

; ; oP(w,x)) _ 0. (3.16)

(2 — 2)Q(w, 2) (P (2,25) = wj) + 3 x = 2;)Q(w, ) —

1 7=1

J



Proof. Since P*(z,y) is the minimum, for each z € ,

<u(y) = P(2,9),Q(z,y) >,=0 VY Q(z,) € Py (3.17)

then if we take derivative with respect to z we have

DW= Qe (P~ )+ Y 8w — o) TN ey —

bz — wﬂ@(w,xﬂ% =0

ECH
Il
—

-

_I_

o
Il
—

Since for each z, 8( Y is in P, and P~ satisfies (3.17) the second term is 0 and therefore
we have the result O

Proceeding as we have done for the error in the first derivative we will need to estimate

2 P*(x,y) 2 P*(zy)
D2 and dxdy

in the two following Lemmas.

the second derivatives for each z € ) where they exist. This is done

Lemma 3.3 Let 2 € Q such that Z2EY) epists  m > 1 and u € CmTL(Q). If properties 1)

2
to 6) hold then, there exists C' = C(co,cl,CQ,cp,c#, m) such that Vy € Br(z)NQ
0*P*(x,y) S
|T| < CR™ w1 (g (3.18)
Proof. Let z € Q and w;,,2j,, -+, 2;,,, be as in the proof of Lemma 3.1. Let A > 0 and

dP*(x + h, y) aP*(z,y)

Q) € P, be defined by Q(y) = o2 2 and
> Q). (3.19)
ke{si}
From property 2) we have
1 1 &
Sz) < — Z bz — 21)Q —Z (x — 21)Q(x1)?
0 keli} O k=1
B IP*(z + h,zy) IP*(z,zy)
= cO{kZl(I) r—ak)Q(x) e —];q)(x—xk)Q(xk) e }.
(3.20)

Now we consider the first term on the right hand side of (3.20). Using that for & small enough
®(z —ay) = ®(x+ h —ap) — h®'(0;) and Lemma 3.2 we have

>0~ aQUen) LRI S g g a2 10
=1 k=1
Y Qe )
k=1
= Z O (x+h—2,)Q(wp)(up — P*(x + h,ay))
k=1
- h) q”(%)@(%)% ;
k=1



and using Lemma 3.2 in the second term on the right hand side of (3.20) we have

S2) € {00 +h— 20)Qen) (s — P(x + hya))

o k=1
~ OP*(x + h,
- hzq)/(ek)Q(xk)%
k=1

n

+ Z (z —2p)Q(ap) (P (z,2p) — uk)}

Since ® is in C*(Bgr(0)) N W%>(R), for h small enough, I such that ®'(z + h — ) =
&' (v — x) + ®"(ng)h. Then, replacing in the first term we obtain

S(z) < C—{Z@ v — wp)Q(up) (P (2, k) — P*(2 + D, wp))
0 k=1

- h Z q”(@)@(@c)% +h Zn: v € Br(z)®"(ni)Q(zr)(up — P*(x,2p))}
k=1

k=1

IN

LU 10 = enliQUenl| P (. 20) — PG 4 b
0 k=1

£ @l I S @ i@l — PGl

From inequality (3.12), Lemma 3.1, Corollary 3.1 and properties 3) and 6) we have
c c
S(@) < Chllu™ Vel Y ZIQE@IIR™+ Y. |Qak) R,
R R
2xEB2p() 7k €B2R ()

and therefore,

S(x) < Chllu™ o @R™ 30 Q)
l’kEBQR(l’)

Using the same argument as in the proof of Lemma 3.1 we have that

|Q§Ly)| < CHU m-l—l HL Rm 1 (3‘21)

and then, if = is such that % exists, we can take h — 0 to conclude the proof. O

Lemma 3.4 Letx € @, m > 1 and u € C"™TY(Q). If properties 1) to 6) hold then, there
exists C' = C(CO,Cl,CQ,Cp,C#, m) such that Vy € Br(z)NQ

9*P*(x,y)

G < Ol g

Proof. Let x € Qandlet x;,---,2; ., be asin the proof of Lemma 3.1. Since P*(z,-) € Py,
then, P*(2,y) = Yperjy P (@, 2p)lk(y) where [p(y) (with k € {j;;1 < ¢ < m + 1} ) are



the Lagrange’s polynomial basis functions associated with the points z; ,---,2; ., . Since
property 6) holds P* is C'! in the first variable. Therefore, for any = we have
0*P*(z,y OP*(x,xy
336(33/ ) N Z éx )lz(y)
ke{ji}

By Lemma 3.1 we know that Vy € Br(z): |u| < ClJul™ V|| e (@yR™ . Then

D*P*(z,y (z, 2 m m

T o 5 (I ) < Ot B Y ) (3.22)

dxdy ,
ke{ii} ke{ji}

An easy calculation shows that from property 5) it follows that |/} (y)| < < £ and

using this estimate in (3.22) and property 5) again we obtain the result O

Theorem 3.3 Let m > 1, if u € C™Y(Q) and properties 1) to 6) hold then, there ewists
C = C(co, 1,2, Cp, c,m) such that

"

) < | oo ) R (3.23)

K

Proof. Since ® € C?(Bgr(0)) N W2>°(R) then, 82§;éz’y) exists everywhere and %
exists for every x up to a finite set and P*(-,y) € W°(Q). (this can be seen using again
the argument given in [6] mentioned above).

P*(z,y)

Given any x € Q, such that T exists, we want to estimate |u”(z) — @"(2)| = |u"(z) —
WP*(QC, z)|. We note that

d2 N L 0PPH () 0?P*(z,y) 82P*(96 )
So, Yy € Br(z)NQ
9*P*(z,y 0*P*(z,y) 0*P*(x,y 9*P*(z,y 9*P*(z,y 9*P*(z,y
i) PR ) PP ) PP ) PP, 0P ) 02 (y)
dy dxdy ox dy dxdy ox
(3.25)
Now observe that, w is a polynomial of degree < m — 2 which interpolates v” in m —1
points and therefore
0?P*(z, m .
) - T < Oy e Breine (320

Then, the proof concludes by taking y = # and using Lemma 3.3, Lemma 3.4 and (3.25).0

4 Numerical Examples

The object of this section is to present some examples on the numerical solution of differential
equations by the MLS method.

10



In order to show the different possibilities of this method we apply it to solve the
convection-diffusion equation

—u"+bu" = 0, in(0,1) (4.1)
w(0)=10, uw(l) = 1

with different values of the constant b > 0 and using Galerkin and Collocation methods.
One of the interesting features of the MLS methods is the possibility of choosing appropriate
weight function for the problem considered. For example, for the equation (4.1) one can
choose @ depending on b taking into account the non-symmetric character of the problem
and thus, introducing some kind of upwinding when b is large in order to avoid oscillations.

In the first two examples we use Galerkin approximations. In general, given the following
variational problem find u € V' C H'(Q) such that

a(u,v)= L(v), Yo eV

where « is a bilinear form, continuous and coercive on V' and L is a linear and continuous
operator, we can use the MLS method to define Galerkin approximation in the following way.

Let Vg = span{f,...,0,}, with 5;, 1 < j < n the basis functions defined in (2.2).
Observe that, since the basis 3; have the same regularity as @, if ® € C*(Bgr(0)) N W1>°(R)
then 8, € H'(Q) and therefore we can define the Galerkin approximation ur € Vg as

n
ur(z) =) Bi(x)u;,
i=1
where uq, ..., u, is the solution of the following system

a(Bi, Br)u; = L(Br), 1 <k <n
1

n
J=

From Céa’s Lemma ([3], [4]), Theorem 3.2 and Theorem 3.3 we have that :

v < O™ || poo () B (4.2)

= ugllv < 5 min ||u—olv < Fllu—1a

where 7 is the continuity constant and 6 is the coercivity constant of a(-,-)on V. In particular
we have that up converges to u when R — 0.

Now, we write the convection-diffusion equation (4.1) in the following equivalent form.
Let @(2) = u(z) — z then, we have

—a@" 4 bi = —b (4.3)
a(0)=a(1) = 0

The variational problem is to find @ € V = H}(0,1), such that:

a(i,v)= L(v), Yo eV

11



where

0

The bilinear form a(-.-) is coercive and continuous [11] therefore, the error estimate (4.2)
holds (with the constant C depending on b).

For R > 0 we take the following weight function

Z3\2
eé(f_)iegeé it -R<z<0
_ 242
d(z) = ev(lR_)ﬁ_ev H0<2<R (4.4)
0 otherwise,

where ¢ and 7y are constants to be chosen in each example. We consider the two cases b = 1
and b = 20. In order to compute the integrals involved in the Galerkin approximation we
proceed as follows: Since the basis functions are smooth except in a finite number of points,
we divide their supports in a finite number of intervals and compute each integral using the
mid point quadrature rule.

In the first case the convection and the diffusion are of the same order and so, no upwinding
is needed. We include this example to check the predicted convergence order. Therefore, we
take 6 = v = 1 to obtain a symmetric weight function (see Figure 1). We show in Figure 2
the approximate solution for equally spaced points with n = 5 and m = 1. The Figures 3
and 4 show the logarithm of the error in L* norm as a function of the logarithm of R for the
function and its first derivative respectively. It is observed that optimal order approximation
is obtained in L both for « and u’. In particular, the predicted order of convergence in H!
is obtained.

For the case b = 20 the problem becomes convection dominated and so we take a non-
symmetric weight function by choosing 6 = —30 and v = 1 (see Figure 5). We show the
results obtained by using standard linear finite elements, usual up-wind finite difference and
MLS for equaly spaced points. Figure 6, 7 and 8 show the results for n=5 and Figure 9,10
and 11 for n=10. As it is known, the first method produces oscillations. Instead the other
two methods do not present oscillations but MLS produces a better approximation. Indeed,
although we have not proved it, we expect that the MLS method allows to introduce up-wind
but preserving the second order convergence when R — 0.

Another way of applying the MLS to solve differential equations is by using collocation.
Observe that, if ® € C*(R) then the basis function 3; are in C?(Q). So, taking m = 2 it
follows from Theorem 3.2 and Theorem 3.3 that the collocation method is consistent. Again
we can introduce up-wind by means of a non-symmetric weight function. We modify the
function (4.4) in order to obtain a C'? function as follows (Figure 12)

eé(%)4—e‘5 2 \2\4
T(l—(ﬁ)) lf—R<Z<0
_ 244
)= LB ey 2y if0<< R
0 otherwise,

12



where 6 = —30 and v = 1. We show the approximate solution for equally spaced points with
n = 8 and n = 15 (Figure 13 and Figure 14). Again we observe that oscillations do not
appear.

0.8F i

0.7F / \ i

0.6F \ :
\

0.4F / \ :

0.2+ “w‘ \“ -

O 1 / 1 1 1 1 1 1 1
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
weight function

Figure 1: Symmetric weight function
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log(Error)

true solution B
— —— — approximation

-8.5

Figure 2: Exact solution vs. MLS approximation

1
0.5 0.6 0.7 0.8 0.9 1
MLS

-2.2 -2 -1.8 -1.6 -1.4 -1.2
log(R)

Figure 3: |lu — ug||pe(q) = O(R?)
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log(Error)

-4+

-1.8 -1.6 -1.4 -1.2

Figure 4: |lu" — ugl|1~q) = O(R)
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Figure 5: Nonsymmetric weight function
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Figure 9: Exact Solution vs. Finite Element approximation
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Figure 10: Exact solution vs. up-wind Finite Difference approximation
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Figure 11: Exact solution vs. MLS approximation
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Figure 12: Smooth weight function
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Figure 13: Exact solution vs. MLS approximation using Collocation
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Figure 14: Exact solution vs. MLS approximation using Collocation

References

[1] Belytschko T. Lu Y.Y., Gu L. A new implementation of the element free Galerkin
method, Comput. Methods Appl. Mech. Engrg., 113, 397-414 (1994).

[2] Belytschko T., Krysl P. Flement-free Galerkin method: Convergence of the continuous
and discontinuous shape functions , Comput. Methods Appl. Mech. Engrg., 148, 257-277
(1997).

[3] Brenner S. C. and Scott L. R. The Mathematical Theory of Finite Element Methods ,
Springer-Verlag, New York, 1994.

[4] Ciarlet P. G. The Finite Element Method for Flliptic Problems, North Holland, Ams-
terdam, 1978.

[5] Johnson L. W., Riess R. D. Numerical Analysis, Addison-Wesley, 1982.

[6] Lancaster, P. Salkauskas K. Surfaces Generated by Moving Least Squares Methods, Math-
ematics of Computation,37,141-158 1981.

[7] Levin, D.  The approzimation power of moving least-squares,  Mathematics of
Computation,67,1335-1754 1998.

[8] Marano M. Mejor Aprozimacion Local , Tesis de Doctorado en Matematicas - U. N. de
San Luis, 1986.

[9] Motzkin, T. S. and Walsh J. L. Polynomials of best approximation on a real finite point
set, Trans. Amer. Math. Soc.,91, 231-245 1959.

20



[10] Rice, J. R. Best approzimation and interpolating functions, Trans. Amer. Math. Soc.,101,
477-498 1961.

[11] Roos H. G., Stynes M. and Tobiska L. Numerical Methods for Singularity Perturbed
Differential Fquations, Springer, 1996.

[12] Shepard D. A two-dimensional interpolation function for irregularly spaced points, Proc.
A.C.M Natl. Conf. ,517-524 1968.

[13] Taylor R., Zienkiewicz O. C., Ofiate E., and Idelsohn S. Moving least square approxi-
mations for the solution of differential equations, , CIMNE, report’95.

21



