
A Posteriori Error Estimates of stabilized Low-Order
Mixed Finite Elements for the Stokes Eigenvalue

Problem
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Abstract

In this paper we obtain a priori and a posteriori error estimates for stabilized low-
order mixed finite element methods for the Stokes eigenvalue problem. We prove
the convergence of the method and a priori error estimates for the eigenfunctions
and the eigenvalues. We define an error estimator of the residual type which
can be computed locally from the approximate eigenpair and we prove that, up
to higher order terms, the estimator is equivalent to the energy norm of the
error. We also present some numerical tests which show the performance of the
adaptive scheme.
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1. Introduction

Adaptive procedures based on a posteriori error estimators have gained
an enormous importance in the numerical approximation of partial differen-
tial equations. Several approaches, most of them focused on source problems,
have been considered to construct estimators based on the residual equations
(see [1, 31] and their references). Moreover, for the standard Laplace eigen-
value problem a simple and clear analysis has been obtained in [12, 25], and
there are some similar results for other eigenvalue problems (see, for example,
[3, 19, 20, 21] and the references therein). However, there are few results con-
cerning a posteriori error estimates for the Stokes eigenvalue problem. In [26]
the authors present an a posteriori error analysis for the Stokes eigenvalue prob-
lem assuming that the schemes used in its finite element discretization are stable
(as, for example, the mini elements).
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(Verónica Moreno)

Preprint submitted to Elsevier April 8, 2014



Despite the fact that the lower-order mixed finite elements for the Stokes
equations violate the inf-sup condition, it is well known that low-order velocity-
pressure pairs have a relevant interest due to its simple and attractive compu-
tational aspects (see [30] and the references therein). There are many stabilized
finite element methods to counteract the lack of stability (see, for example,
[2, 6, 7, 17, 18, 22, 23]). In particular, Bochev, Dohrmann and Gunzburger
proposed in [7] a new family of stabilized methods, for the source Stokes prob-
lem, and proved that this simple and useful approach is unconditionally stable.
Based on this work, in [32] the authors introduce an a posteriori error indicator,
for the source Stokes problem, and it yields global upper and lower bounds on
the error of stabilized finite element methods.

In this work we prove the convergence of stabilized low-order mixed finite
elements for the Stokes eigenvalue problem and we obtain optimal a priori error
estimates for the eigenfunctions and the eigenvalues by using the spectral theory
given in [5]. We define an a posteriori error estimator of the residual type
which can be computed locally from the approximate eigenpair. We show its
global reliability and local efficiency by proving that the estimator is equivalent
to the energy norm of the error up to higher order terms. We also present
some numerical tests which allow us to show the good performance of the error
indicator and the adaptive algorithm.

The rest of the paper is organized as follows. In Section 2 we introduce
the Stokes eigenvalue problem. In Section 3 we present the stabilized low-order
mixed finite element method and obtain L2 a priori error estimates. In Section 4
we prove the convergence for the eigenfunctions and the eigenvalues. In Section 5
we introduce the a posteriori error estimator and prove its equivalence with the
energy norm of the error. In Section 6 we report some numerical examples which
allow us to assess the performance of the adaptive scheme.

2. Statement of the problem

Let Ω ⊂ R2 be an open, bounded and polygonal domain with boundary
Γ := ∂Ω. For µ ≥ 0 we consider the Stokes eigenvalue problem: Find (u, p, λ),
with u = (u1, u2) 6= 0 and λ ∈ R, such that

−µ∆u +∇p = λu in Ω ,

∇ · u = 0 in Ω ,

u = 0 on Γ,

(1)

which models the slow motion of an incompressible viscous fluid occupying Ω,
where u is the fluid velocity and p is the pressure.

We will denote by boldface the spaces consisting of vector value functions.
Let V := H1

0(Ω) and S := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q = 0}. The norms and

seminorms in Hm(D), with m an integer, are denoted by ‖ · ‖m,D and | · |m,D
respectively and (·, ·)D denotes the inner product in L2(D) or L2(D) for any
subdomain D ⊂ Ω. The domain subscript is dropped for the case D = Ω.
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Problem (1) can be written, after normalization for u, in a variational form
as follows:

Find (u, p, λ) ∈ (V, S,R), with ‖u‖0 = 1, such that

Q(u, p,v, q) = λ(u,v) ∀(v, q) ∈ (V, S) (2)

where

Q(u, p,v, q) = µ

∫
Ω

∇u : ∇v −
∫

Ω

p∇ · v −
∫

Ω

q∇ · u

with (·, ·) the inner product in L2(Ω).
Now, it is clear that the symmetric bilinear form Q is continuous, i.e., for

every (u, q), (v, s) ∈ (V, S)

Q(u, q,v, s) ≤ C(‖u‖1 + ‖q‖0)(‖v‖1 + ‖s‖0)

moreover it is known ([14, 16]) that Q(u, q,v, s) satisfies the following inf-sup
condition with a positive constant β:

sup
(v,s)∈(V,S)

Q(u, q,v, s)

‖v‖1 + ‖s‖0
≥ β(‖u‖1 + ‖q‖0) ∀(u, q) ∈ (V, S) (3)

and so the bilinear form Q is stable.
Now, from the spectral theory (see [5]) we know that the eigenvalue problem

(2) has a positive eigenvalue sequence λj which we assume to be increasingly
ordered:

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · lim
j→+∞

λj = +∞,

and the associated eigenfunctions

(u1, p1), (u2, p2), · · · , (uk, pk), · · ·

with (ui,uj) = δij . For simplicity, we only consider simple eigenvalues in this
paper.

3. Stabilized Mixed Finite Element Approximations

Let Th be a family of triangulations of Ω such that any two triangles in
Th share at most a vertex or an edge. Let h stand for the mesh-size; namely
h = maxT∈Th hT , with hT being the diameter of the triangle T . We assume that
the family of triangulations {Th} satisfies a minimum angle condition, i.e., that
there exists a constant τ > 0 such that hT /rT ≤ τ , where rT is the diameter of
the largest circle contained in T .

Let
P1(Ω) = {u ∈ C(Ω)| u|T ∈ P1(T ) ∀ T ∈ Th}.

We consider the pair

Vh = P1 ∩H1
0(Ω) and Sh = P1 ∩ L2

0(Ω) (4)
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As it is well known (see, for example, [8]) this finite element pair does not
satisfy the discrete inf-sup condition. In this paper we consider the stabilized
mixed methods for (Vh, Sh) (which is the lowest equal order C0 pair) intro-
duced by Bochev, Dohrmann and Gunzburger [7] for the Stokes source prob-
lem. Therefore, the discretization of our eigenvalue problem (2) is given by:
Find (uh, ph, λh) ∈ (Vh, Sh,R), with ‖uh‖0 = 1, such that

Q̃(uh, ph,vh, qh) = λh(uh,vh) ∀(vh, qh) ∈ (Vh, Sh) (5)

with

Q̃(uh, ph,vh, qh) = µ

∫
Ω

∇uh : ∇vh −
∫

Ω

ph∇ · vh

−
∫

Ω

qh∇ · uh −G(ph, qh)

and

G(ph, qh) =

∫
Ω

(I −Π)(ph)(I −Π)(qh)

where Π : L2(Ω)→ P0(Ω) with

P0(Ω) = {u ∈ L2(Ω)| u|T ∈ P0(T ) ∀ T ∈ Th}.

is given by

Πq|T =
1

|T |

∫
T

q

The problem (5) is reduced to a generalized eigenvalue problem which attains
a finite number of eigenpairs (λh,j , (uh,j , ph,j)), 1 ≤ j ≤ N , with positive eigen-
values. We assume the eigenvalues to be increasingly ordered:

0 < λh,1 ≤ · · · ≤ λh,N ,

and (uh,i,uh,j) = δi,j , 1 ≤ i, j ≤ N .

In order to simplify notation from now on we will drop the subindex j in
λj , λh,j ,uj ,uh,j , pj and ph,j .

Our first goal is to prove that the solutions of the discrete eigenvalue prob-
lem (5) converge to those of the spectral problem (2). To do this, we will apply
the classical spectral approximation theory from [5]. To that purpose, we first
present some error estimates for the following Stokes source problem: Given
f ∈ L2(Ω), find (u, p) ∈ (V, S) such that

Q(u, p,v, q) = (f ,v) ∀(v, q) ∈ (V, S) (6)

We recall that, since the inf-sup condition holds, the problem (6) has unique so-
lution. Moreover, it is well known that the solution (u, p) belongs to (H1+r(Ω)∩
V, Hr(Ω) ∩ S), where r = 1 if Ω is convex and r < π

ω (with ω being the largest
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inner angle of Ω) otherwise (see for example [15]). In the case Ω be a convex
polygon we also have the following a priori estimates [13, 24, 29]

‖u‖2 + ‖∇p‖0 ≤ C‖f‖0 (7)

The stabilized mixed finite element for the Stokes Problem (6) is given by:
Find (uh, ph) ∈ (Vh, Sh) such that

Q̃(uh, ph,vh, qh) = (f ,vh) ∀(vh, qh) ∈ (Vh, Sh) (8)

The following theorems of [7], give the a priori error estimates in the energy
norm and convergence results.

Theorem 3.1. Let (Vh, Sh) be the pair (4). Then, there exists a positive
constant C whose value is independent of h such that

sup
(vh,qh)∈(Vh,Sh)

Q̃(uh, ph,vh, qh)

‖vh‖1 + ‖qh‖0
≥ C(‖uh‖1+‖ph‖0) ∀(uh, ph) ∈ (Vh, Sh) (9)

Theorem 3.2. Let (Vh, Sh) be the pair (4), let (u, p) be the solution of the
Stokes Problem (6), and let (uh, ph) be the solution of the stabilized problem
(8). Then,

‖u−uh‖1 + ‖p− ph‖0 ≤ C{ inf
v∈Vh

‖u−v‖1 + inf
q∈Qh

‖p− q‖0 + ‖(I −Π)p‖0} (10)

Corollary 3.1. Assume that (u, p) ∈ (H1
0(Ω)∩H1+r(Ω), L2

0(Ω)∩Hr(Ω)) solves
the Stokes Problem (6), where r = 1 if Ω is convex and r < π

ω otherwise, and
that (uh, ph) is the solution of the stabilized mixed problem (8). Then,

‖u− uh‖1 + ‖p− ph‖0 ≤ Chr(‖u‖1+r + ‖p‖r)

Proof. The result is a consequence of Theorem 3.2, the estimates (4.1) and (5.1)
of [7] and standard error estimates for interpolation (see for example [10]).

Next, we obtain L2 error estimates for the velocity which are fundamental
for our spectral analysis.

Theorem 3.3. Assume that Ω is convex. Let (u, p) ∈ (H1
0(Ω)∩H2(Ω), L2

0(Ω)∩
H1(Ω)) be the solution of the Stokes Problem (6) and (uh, ph) the solution of
the stabilized mixed problem (8). Then,

‖u− uh‖0 ≤ Ch2(‖u‖2 + ‖p‖1)

Proof. From (6) and (8) we know that for any (vh, qh) ∈ (Vh, Sh) the errors
e = u− uh and ε = p− ph satisfy the following error equation:

µ

∫
Ω

∇e : ∇vh −
∫

Ω

ε∇ · vh −
∫

Ω

qh∇ · e = −G(ph, qh) (11)
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Next, we consider the following auxiliary problem: Find (Φ, α) ∈ (V, S)
such that 

−µ∆Φ +∇α = e in Ω ,

∇ ·Φ = 0 in Ω ,

Φ = 0 on Γ := ∂Ω ,

(12)

and by using (12) and integration by parts we obtain∫
Ω

e2 =

∫
Ω

e · (−µ∆Φ +∇α)

= −µ
∫

Ω

e ·∆Φ +

∫
Ω

e · ∇α

= µ

∫
Ω

∇e : ∇Φ−
∫

Ω

∇ · eα

A well known approximation result (see, for example, [14, page 217]) is that
for every u ∈ H2(Ω), there exists a function I1u ∈ P1(Ω) such that

‖u− I1u‖0 + h‖u− I1u‖1 ≤ Ch2‖u‖2 (13)

On the other hand, the space P0(Ω) = {u ∈ L2(Ω)| u|T ∈ P0(T ) ∀ T ∈ Th}
has the following approximation property ([14, page 102]): for every q ∈ H1(Ω),
there exists I0q ∈ P0(Ω) such that

‖q − I0q‖0 ≤ Ch‖∇q‖0 (14)

We denote for Φ = (φ1, φ2), I1Φ = (I1φ1, I1φ2). Then,∫
Ω

e2 = µ

∫
Ω

∇e : ∇(Φ− I1Φ) + µ

∫
Ω

∇e : ∇I1Φ

−
∫

Ω

∇ · e(α− I0α)−
∫

Ω

∇ · e I0α

hence, by using the error equation (11), the fact that∇·Φ = 0, Hölder inequality,
(13) and (14) we get

∫
Ω

e2 = µ

∫
Ω

∇e : ∇(Φ− I1Φ)−
∫

Ω

∇ · e(α− I0α)

+

∫
Ω

ε∇ · I1Φ−G(ph, I0α)

= µ

∫
Ω

∇e : ∇(Φ− I1Φ)−
∫

Ω

∇ · e(α− I0α)

+

∫
Ω

ε∇ · (Φ− I1Φ)−G(ph, I0α)

≤ Ch‖∇e‖0‖Φ‖2 + Ch‖∇ · e‖0‖α‖1 + Ch‖ε‖0‖Φ‖2
+ ‖(I −Π)ph‖0‖(I −Π)I0α‖0
≤ Ch(‖Φ‖2 + ‖∇α‖0)(‖e‖1 + ‖ε‖0) + ‖(I −Π)ph‖0‖(I −Π)I0α‖0
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From the a priori estimates (7) we can assume that

‖Φ‖2 + ‖∇α‖0 ≤ C‖e‖0 (15)

and therefore, from Corollary 3.1 ,we get∫
Ω

e2 ≤ Ch2‖e‖0(‖u‖2 + ‖p‖1) + ‖(I −Π)ph‖0‖(I −Π)I0α‖0.

As was shown in [7], for every p ∈ H1(Ω), the operator Π satisfies:

‖(I −Π)p‖0 ≤ Ch‖∇p‖0
‖Πp‖0 ≤ C‖p‖0.

Then,

‖(I −Π)ph‖0 ≤ ‖(I −Π)(p− ph)‖0 + ‖(I −Π)p‖0
≤ C(‖p− ph‖0 + h‖p‖1) ≤ Ch(‖u‖2 + ‖p‖1),

and

‖(I −Π)I0α‖0 ≤ ‖(I −Π)α‖0 + ‖(I −Π)(α− I0α)‖0 ≤ C(h‖α‖1 + ‖α− I0α‖0)

≤ Ch‖∇α‖0 ≤ Ch‖e‖0.

So, ∫
Ω

e2 ≤ Ch2‖e‖0(‖u‖2 + ‖p‖1) (16)

and the result follows.

Remark 3.1. We can use the same arguments given in the last proof, in the
case in which Ω is not convex. Let ω the largest inner angle of Ω and r < π

ω < 1.
And now, let (Φ, α) ∈ (H1+r(Ω) ∩V, Hr(Ω) ∩ S) be the solution of the Stokes
Problem (12), if we assume, in addition, that there exists a positive constant C
such that the following a priori estimates holds:

‖Φ‖1+r + ‖α‖r ≤ C‖e‖0 (17)

then
‖u− uh‖0 ≤ Ch2r(‖u‖1+r + ‖p‖r) (18)

4. Spectral approximation

In this section, by using the classical spectral approximation theory given
in [5] (see also [9, 27]), we obtain the convergence of the eigenfunctions and
eigenvalues with optimal order. Let W = (V, S) with ‖(u, p)‖W = ‖u‖1 +‖p‖0.
As we mentioned in the previous section, if f ∈ L2(Ω) there exists an unique
(u, p) ∈W such that

Q(u, p,v, q) = (f ,v) ∀(v, q) ∈W. (19)
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Then, for any F = (f , σ) ∈W we can define the operator T : W→W as

TF = (u, p)

and, for any f ∈ L2(Ω) we can also define R : L2(Ω)→ L2(Ω) as

Rf = u

where (u, p) denote de corresponding solution of (19).
On the other hand, we also know that there exists an unique (uh, ph) ∈

(Vh, Sh) ⊆W such that

Q̃(uh, ph,vh, qh) = (f ,vh) ∀(vh, qh) ∈ (Vh, Sh). (20)

Then, for any F = (f , σ) ∈W we can define the operator Th : W→W as

ThF = (uh, ph)

and, for any f ∈ L2(Ω) we can also define Rh : L2(Ω)→ L2(Ω) as

Rhf = uh

where (uh, ph) denotes the corresponding solution of (20).
Let λ 6= 0, we observe that f is an eigenfunction of R of eigenvalue λ if

and only if (f , p, 1/λ) is a solution of (2) for some p ∈ S, and F = (f , p) is an
eigenfunction of T of eigenvalue λ if and only if (f , p, 1/λ) is a solution of (2). In
the same way, let λh 6= 0, then fh is an eigenfunction of Rh of eigenvalue λh if
and only if (fh, ph, 1/λh) is a solution of (5) for some ph ∈ Sh, and F = (fh, ph)
is an eigenfunction of Th of eigenvalue λh if and only if (fh, ph, 1/λh) is a solution
of (5).

In order to use the spectral approximation theory, stated in [5], we are going
to prove that the operators T , R, Th, Rh are bounded and compact; Th converge
to T and Rh converge to R as h goes to zero.

In what follows, we assume Ω is convex.
We observe that R and T are bounded operators; in fact, by (7) and using

Poincaré inequality we have

‖u‖0 ≤ C‖f‖0
‖(u, p)‖W = ‖u‖1 + ‖p‖0 ≤ C‖f‖0 ≤ C‖F‖W

It is also clear that Rh and Th are bounded operators, i.e., using Corollary
3.1, Theorem 3.3 and the fact that R and T are bounded, we have that

‖uh‖0 ≤ ‖uh − u‖0 + ‖u‖0 ≤ C‖f‖0
‖uh‖1 + ‖ph‖0 ≤ ‖uh − u‖1 + ‖ph − p‖0 + ‖u‖1 + ‖p‖0 ≤ C‖f‖0 ≤ C‖F‖W.

From the error estimates for the Stokes source problem given by Corollary
3.1 and Theorem 3.3, and (7), we obtain that, for all f ∈ L2(Ω) and F ∈W,

‖Rf −Rhf‖0 = ‖u− uh‖0 ≤ Ch2‖f‖0
‖TF− ThF‖W = ‖u− uh‖1 + ‖p− ph‖0 ≤ Ch‖f‖0 ≤ Ch‖F‖W
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then Rh → R and Th → T in norm when h goes to 0.
We observe that T and R are compact operators since, for any Hilbert space

X , the space of compact operators in X is close in B(X ), where B(X ) = {L :
X → X , L linear and continuous}.

Now, we are in condition to present the following Theorem.

Theorem 4.1. Assume that Ω is convex. Given an eigenpair (u, p, λ) ∈ (V, S,R)
solution of (2), with ‖u‖0 = 1. Then, there exists a discrete eigenpair (uh, ph, λh) ∈
(Vh, Sh,R) solution of (5), with ‖uh‖0 = 1, such that

|λ− λh| ≤ Ch2

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch
‖u− uh‖0 ≤ Ch2

Proof. Let (u, p, λ) , ‖u‖0 = 1, λ 6= 0 be the solution of (2), by Remark 7.3
and 7.4 from [5] we have, for small h, that there exists (uh, ph, λh), ‖uh‖0 = 1,
λh 6= 0 such that

|λ− λh| ≤ C‖R−Rh‖ ≤ Ch2

‖u− uh‖1 + ‖p− ph‖0 ≤ C‖T − Th‖ ≤ Ch
‖u− uh‖0 ≤ C‖R−Rh‖ ≤ Ch2

Remark 4.1. We can use the same arguments given in the last proof, in the
case in which Ω is not convex. Let ω the largest inner angle of Ω and r < π

ω < 1.
If we assume, in addition, that the solution (u, p) of (19) satisfies the following
a priori estimate

‖u‖1+r + ‖p‖r ≤ C‖f‖0
for any f ∈ L2(Ω) then, the estimate (18) holds and we obtained

|λ− λh| ≤ Ch2r

‖u− uh‖1 + ‖p− ph‖0 ≤ Chr

‖u− uh‖0 ≤ Ch2r

The next lemma gives an expression for the difference between the eigenvalue
λ and its approximation λh and it gives, in particular, a relationship between
the eigenvalues error and the error for eigenfunctions in norm.

Lemma 4.1. Given (u, p, λ) ∈ (V, S,R) solution of (2), with ‖u‖0 = 1 and
(uh, ph, λh) ∈ (Vh, Sh,R) solution of (5), with ‖uh‖0 = 1. Let e = u− uh and
ε = p− ph. Then,

λh − λ = Q(e, ε, e, ε)− λ‖u− uh‖20 −G(ph, ph)
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Proof. From (2) and (5) we have

Q(u, p,u, p) = λ‖u‖20
Q̃(uh, ph,uh, ph) = λh‖uh‖20

Then

λ+ λh = λ‖u‖20 + λh‖uh‖20 = Q(u, p,u, p) + Q̃(uh, ph,uh, ph)

= Q(u, p,u, p) +Q(uh, ph,uh, ph)−G(ph, ph).

If we observe that

Q(e, ε, e, e) = Q(u, p,u, p) +Q(uh, ph,uh, ph)− 2Q(u, p,uh, ph)

and using (2) we get

λ+ λh = Q(e, ε, e, e) + 2Q(u, p,uh, ph)−G(ph, ph)

= Q(e, ε, e, e) + 2λ

∫
Ω

u · uh −G(ph, ph)

= Q(e, ε, e, e)− λ(‖u− uh‖20 − ‖u‖20 − ‖uh‖20)−G(ph, ph)

= Q(e, ε, e, e)− λ‖u− uh‖20 + 2λ−G(ph, ph)

and the result holds.

5. A posteriori error analysis

In this section we introduce an error indicator and show its equivalence, up
to higher order terms, with the error norm. First, we introduce some notations
that we will use in the definition and the analysis of the error estimator. For
any T ∈ Th we denote by E(T ) and N (T ) the set of its edges and vertices
respectively, and let

Eh :=
⋃
T∈Th

E(T ), N h :=
⋃
T∈Th

N (T ).

Given an ` ∈ Eh we denote by N (`) the set of its vertices. For T ∈ Th and
` ∈ Eh we define

ωT :=
⋃

N (T )∩N (T ′) 6=∅

T ′, ω` :=
⋃

N (`)∩N (T ′)6=∅

T ′.

Remark 5.1. The minimal angle condition implies that the ratio hT /|`|, for
any T ∈ Th and ` ∈ E(T ), the ratio hT /hT ′ , for any T, T ′ ∈ Th with N (T ) ∩
N (T ′) 6= ∅ are bounded from below and from above by constants which only
depend on τ .
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Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1, we define e = u−uh and
ε = p− ph. From (2) and (5) we know that for any (v, q) ∈ (V, S) the errors e
and ε satisfy

Q(e, ε,vh, qh) = (λu− λhuh,vh)−G(ph, qh) ∀(vh, qh) ∈ (Vh, Sh) (21)

On the other hand, if (v, q) ∈ (V, S), using the definition of Q, integration by
parts and that 4uh = 0 holds in any T ∈ Th, we obtain

Q(e, ε,v, q) = λ(u,v)−Q(uh, ph,v, q)

= λ(u,v)− µ
∫

Ω

∇uh : ∇v +

∫
Ω

∇ · uhq +

∫
Ω

∇ · vph

=

∫
Ω

λu · v +
∑
T∈Th

{
µ

∫
T

4uh · v − µ
∫
∂T

∂uh
∂n
· v

+

∫
T

∇ · uhq −
∫
T

∇ph · v +

∫
∂T

phn · v
}

=

∫
Ω

λu · v +
∑
T∈Th

{
− µ

∫
∂T

∂uh
∂n
· v +

∫
T

∇ · uhq

−
∫
T

∇ph · v +

∫
∂T

phn · v
}

since ph is continuous ∑
T∈Th

∫
∂T

phn · v = 0

then

Q(e, ε,v, q) =

∫
Ω

(λu− λhuh) · v +
∑
T∈Th

{∫
T

(λhuh −∇ph) · v

+

∫
T

∇ · uhq − µ
∫
∂T

∂uh
∂n
· v
}
.

(22)

We denote by EhΩ the set of all interior edges. For each ` ∈ EhΩ we choose a
unit normal vector n` and denote the two triangles sharing this edge Tin and
Tout, with n` pointing outwards Tin. For uh ∈ Vh we set[

∂uh
∂n

]
`

:= ∇(uh|Tout) · n` −∇(uh|Tin) · n`

Then, for any (v, q) ∈ (V, S) the error equation can be written as:

Q(e, ε,v, q) =

∫
Ω

(λu− λhuh) · v +
∑
T∈Th

{∫
T

(λhuh −∇ph) · v

+

∫
T

∇ · uhq − µ
1

2

∑
`∈E(T )∩EhΩ

∫
`

[
∂uh
∂n

]
`

· v
}
.

(23)
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Now, the local error indicator is defined as follows

η2
T = h2

T ‖λhuh −∇ph‖20,T + ‖∇ · uh‖20,T +
1

4
µ2

∑
`∈E(T )∩EhΩ

|`|‖
[
∂uh
∂n

]
`

‖20,` (24)

and the global error indicator is given by

η =

(∑
T∈Th

η2
T

) 1
2

(25)

We denote by Ih : H1
0(Ω) → P1(Ω) ∩ H1

0(Ω) the Clément interpolation
operator (see [11]) that satisfies, for T ∈ Th and ` ∈ Eh,

‖u− Ihu‖0,T ≤ ChT ‖u‖1,ωT

‖u− Ihu‖0,` ≤ C|`|1/2‖u‖1,ω`
.

(26)

Then, given (v, q) ∈ (V, S) using the error equation (21) we have that

Q(e, ε, Ihv, 0) =

∫
Ω

(λu− λhuh) · Ihv

and by using the error equation (23) we get

Q(e, ε,v, q) = Q(e, ε, Ihv, 0) +Q(e, ε,v − Ihv, q)

=

∫
Ω

(λu− λhuh) · Ihv +

∫
Ω

(λu− λhuh) · (v − Ihv)

+
∑
T∈Th

{∫
T

(λhuh −∇ph) · (v − Ihv)

+

∫
T

∇ · uhq − µ
1

2

∑
`∈E(T )∩EhΩ

∫
`

[
∂uh
∂n

]
`

· (v − Ihv)
}

=

∫
Ω

(λu− λhuh) · v +
∑
T∈Th

{∫
T

(λhuh −∇ph) · (v − Ihv)

+

∫
T

∇ · uhq − µ
1

2

∑
`∈E(T )∩EhΩ

∫
`

[
∂uh
∂n

]
`

· (v − Ihv)
}

12



Hence, using Hölder inequality and (26)

Q(e, ε,v, q) ≤ ‖λu− λhuh‖0,Ω‖v‖0,Ω

+ C
∑
T∈Th

{
hT ‖λhuh −∇ph‖0,T ‖∇v‖0,ωT

+ ‖∇ · uh‖0,T ‖q‖0,T + µ
1

2

∑
`∈∂T∩EhΩ

|`|1/2‖
[
∂uh
∂n

]
`

‖0,`‖∇v‖0,ω`

}
≤ C

{
‖λu− λhuh‖0,Ω

+
∑
T∈Th

{
hT ‖λhuh −∇ph‖0,T + ‖∇ · uh‖0,T

+ µ
1

2

∑
`∈E(T )∩EhΩ

|`|1/2‖
[
∂uh
∂n

]
`

‖0,`
}}

(‖v‖1,Ω + ‖q‖0,Ω)

Then, we obtain ∀(v, q) ∈ (V, S)

Q(e, ε,v, q)

‖v‖1,Ω + ‖q‖0,Ω
≤ C

{
‖λu− λhuh‖0,Ω +

∑
T∈Th

{
‖λhuh −∇ph‖0,ThT

+ ‖∇ · uh‖0,T + µ
1

2

∑
`∈E(T )∩EhΩ

|`|1/2‖
[
∂uh
∂n

]
`

‖0,`
}}

and therefore, by using the inf-sup condition (3), we conclude that

‖e‖1 + ‖ε‖0 ≤ C
{
‖λu− λhuh‖0,Ω +

∑
T∈Th

{
hT ‖λhuh −∇ph‖0,T

+ ‖∇ · uh‖0,T + µ
1

2

∑
`∈E(T )∩EhΩ

|`|1/2‖
[
∂uh
∂n

]
`

‖0,`
}}

and so the following estimate holds:

Theorem 5.1. Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1. Let e =
u − uh, ε = p − ph and η as in (25). There exists a positive constant C such
that

‖e‖1 + ‖ε‖0 ≤ C (η + ‖λu− λhuh‖0,Ω)

We observe that, in view of Theorem 4.1 and Remark 4.1, the term ‖λu −
λhuh‖0,Ω is a higher order term and so, the previous Theorem proves the relia-
bility of the error estimator.

Remark 5.2. From Lemma 4.1

|λh − λ| ≤ |Q(e, ε, e, ε)|+ |λ|‖u− uh‖20 +G(ph, ph)
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using the fact that Q is continuous

|λh − λ| ≤ C(‖e‖1 + ‖ε‖0)2 + |λ|‖u− uh‖20 +G(ph, ph)

and using Theorem 5.1 then

|λh − λ| ≤ C(η + ‖λu− λhuh‖0,Ω)2 + |λ|‖u− uh‖20 +G(ph, ph)

≤ C(η2 +G(ph, ph) + ‖λu− λhuh‖20,Ω + |λ|‖u− uh‖20)

observe that ‖λu− λhuh‖20,Ω + |λ|‖u− uh‖20 is a high order term.

In order to guarantee that the error indicator is efficient to guide an adaptive
refinement scheme, our next goal is to prove that ηT is bounded by the H1 norm
of the error on a neighborhood of T , up to higher order terms.

For T ∈ Th, let bT be the standard cubic bubble given by

bT :=

{
λT1 λ

T
2 λ

T
3 , in T,

0, in Ω \ T,

where λT1 , λT2 and λT3 denote the barycentric coordinates of T .
For ` ∈ EΩ, we denote by T1 and T2 the two triangles sharing ` and we

enumerate the vertices of T1 and T2 so that the vertices of ` are numbered first.
Then we consider the piecewise quadratic edge bubble function b` defined by

b` :=

{
λTi

1 λ
Ti
2 , in Ti, i = 1, 2,

0, in Ω \ T1 ∪ T2.

From the inequalities (3.3) and (3.4) of [12] one can see that there exists a
constant C, which only depends on the regularity of the element T , such that
for every π ∈ P1(T )

‖bTπ‖0,T ≤ ‖π‖0,T ≤ C‖b1/2T π‖0,T

|bTπ|1,T ≤ C
1

hT
‖π‖0,T

(27)

The following lemma provides an upper estimate for the first term in the
definition of ηT (cf. (24)).

Lemma 5.1. Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1. Let e = u−uh
and ε = p− ph. Then, there exists a positive constant C such that

hT ‖λhuh −∇ph‖0,T ≤ C
{
‖e‖1,T + ‖ε‖0,T + hT ‖λu− λhuh‖0,T

}
Proof. We define

vT = h2
T bT (λhuh − αuh −∇ph)

14



Then, using the inverse estimates (27) and the error equation (22) we get

h2
T ‖λhuh −∇ph‖20,T ≤ C

∫
T

(λhuh −∇ph) · vT

= C
{
Q(e, ε,vT , 0)−

∫
T

(λu− λhuh) · vT
}

≤ C
{

(‖e‖1,T + ‖ε‖0,T )‖vT ‖1,T + ‖λu− λhuh‖0,T ‖vT ‖0,T
}

≤ C
{
‖e‖1,T + ‖ε‖0,T )hT ‖λhuh −∇ph‖0,T

+ ‖λu− λhuh‖0,Th2
T ‖λhuh −∇ph‖0,T

}
and so

hT ‖λhuh −∇ph‖0,T ≤ C
{
‖e‖1,T + ‖ε‖0,T + hT ‖λu− λhuh‖0,T

}

Next, we prove an upper estimate for the second term in the definition of
ηT .

Lemma 5.2. Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1. Let e = u−uh
and ε = p− ph. Then, there exists a positive constant C such that

‖∇ · uh‖0,T ≤ C (‖e‖1,T + ‖ε‖0,T )

Proof. We define
qT = bT (∇ · uh)

then using the inverse estimate (27) and the error equation in (23) we obtain

‖∇ · uh‖20,T ≤ C
∫
T

(∇ · uh)qT

= CQ(e, ε, 0, qT )

≤ C(‖e‖1,T + ‖ε‖0,T )‖qT ‖0,T
≤ C(‖e‖1,T + ‖ε‖0,T )‖∇ · uh‖0,T

from which we conclude the proof.

Finally, we estimate the last term of ηT .

Lemma 5.3. Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1. Let e = u−uh
and ε = p − ph. Then, there exists a positive constant C such that, if ` ∈ EhΩ,
then

µ|`|1/2‖
[
∂uh
∂n

]
`

‖0,` ≤ C
{
‖e‖1,ω`

+ ‖ε‖0,ω`
+ |`|‖λu− λhuh‖0,ω`

}
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Proof. Let

J` =

[
∂uh
∂n

]
`

and v` = b`J`

As in (29) and (30) of [4], we have that

‖v`‖20,ω`
≤ C|`|‖b1/2` J`‖0,`

|v`|21,ω`
≤ C 1

|`|
‖b1/2` J`‖0,`

(28)

by Lemma (2.4) of [28]

‖J`‖0,` ≤ C‖b1/2` J`‖0,` (29)

Now, integrating by parts, using that 4uh = 0 in any T ∈ Th, the continuity of
Q, the inverse estimates (28) and (29), and Lemma (5.1), we can infer that

µ‖b1/2` J`‖20,` = µ

∫
`

[
∂uh
∂n

]
`

· v` = −µ
∫
ω`

∇uh : ∇v`

= Q(e, ε,v`, 0)−
∫
ω`

(λu− λhuh) · v`

−
∫
ω`

(λhuh −∇ph) · v`

≤ C (‖e‖1,ω`
+ ‖ε‖0,ω`

) ‖v`‖1,ω`
+ ‖λu− λhuh‖0,ω`

‖v`‖0,ω`

+ ‖λhuh −∇ph‖0,ω`
‖v`‖0,ω`

≤ C
{

(‖e‖1,ω`
+ ‖ε‖0,ω`

)|`|−1/2

+ ‖λu− λhuh‖0,ω`
|`|1/2

}
‖b1/2` J`‖0,`

Then, from this estimates and (29) we obtain

µ|`|1/2‖
[
∂uh
∂n

]
`

‖0,l ≤ C
{
‖e‖1,ω`

+ ‖ε‖0,ω`
+ |`|‖λu− λhuh‖0,ω`

}

Now we may conclude the efficiency of the error indicator up to higher order
terms .

Theorem 5.2. Let (u, p, λ) and (uh, ph, λh) be as in Theorem 4.1. Let e =
u− uh, ε = p− ph and ηT as in (24). Then, there exists a positive constant C
such that for all T ∈ Th

ηT ≤ C
{
‖e‖1,ωT

+ ‖ε‖0,ωT
+ hT ‖λu− λhuh‖0,ωT

}
Proof. It is an immediate consequence of Lemmas 5.1, 5.2 and 5.3 .
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6. Numerical examples

In this section we present some numerical tests which allow us to assess the
performance of the adaptive refinement strategy based on the error indicator
defined in (24). Since the exact solution is unknown, we present some indices
us in [26].

We consider the problem (1) in three different domains: the Square domain
Ω = (0, 1)× (0, 1), the L-shaped domain Ω = (−1, 1)× (−1, 1) \ [−1, 0]× [−1, 0]
and a Koch domain Ω (see Figure ??). In adaptive refinement we use, in all
the examples, the maximum strategy to mark the triangles to be refined, i.e.,
all the triangles T with ηT ≥ θηM are marked to be refined, where

ηM := max{ηK | K ∈ Th}

and θ ∈ (0, 1) is a parameter. We take, in all tests, θ = 0.7.
In all the numerical examples we only present the approximation of the first

eigenvalue, in the case of the square domain just for simplicity and in the other
cases because it is well known that when the domain is not convex the first
eigenfunction is always singular.

We denote by N the number of degrees of freedom.

6.1. Test 1: square domain

In this case we take µ = 1, and we consider the reference value λ = 52.3447
as in [23]. The initial mesh is shown in Figure 1 and Figure 2 shows different
meshes obtained with the adaptive algorithm.

Figure 1: Initial mesh in the square domain

In order to show the stability and efficiency of the method for the considered
problem, we also present in Figure 3 the velocity streamlines and the pressure
level lines, obtained with the most refined mesh. We can observe that the
density of the refinement agrees with the solution behavior.

Tables 1 and 2 shows the result for the first eigenvalue using adaptive and
uniform refinement respectively. We observe similar accuracy with adaptive
refinement and uniform refinement.

Figures 4 and 5 shows plots of log(η) and log|λ − λh,1| versus log(N1/2),
where a linear dependence can be clearly seen for sufficiently large values of N .
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Figure 2: Meshes after 6, 11 and 16 refinements for µ = 1 in the square domain

6.2. Test 2: L-shaped domain

In this second test we consider an L-shaped domain and so, as it is well
known, we are now dealing with a singular solution. The initial mesh is shown
in Figure 6.

Fist, we take µ = 1 and the corresponding reference value λ = 32.2 which
has been obtained by extrapolation.

The behavior of the adaptive algorithm can be appreciated from Figure 7
where we observe the more dominant refinement closer to the singularity.

Tables 3 and 4 shows the result for the first eigenvalue using adaptive and
uniform refinement respectively. We observe that the same error estimator η
and relative error |λ−λh,1|/λ adaptive refinement require fewer number of nodes
that uniform refinement.

Figure 8 shows the error indicator for the smallest eigenvalue for adaptive
and uniform mesh refinements for µ = 1 in the L-shaped domain.

Figures 9 and 10 shows plots of log(η) and log|λ − λh,1| versus log(N1/2),
we also observe a linear dependence.

Now, in order to show the behavior of our adaptive algorithm for small values
of µ, we consider the problem (1) with µ = 0.1 and the corresponding reference
value λ = 3.2 which has been obtained by extrapolation. Figure 11 shows
different meshes obtained with the adaptive algorithm where we observe again
the typical adaptive behavior, more density refinement closer to the singularity.

Tables 5 and 6 presents the indices of the numerical solutions for adaptive

18



Figure 3: velocity streamlines and pressure contours

Figure 4: Error curve for η in the square domain for µ = 1 with adaptive refinement

and uniform refinement. In this case also to obtain the same error indicator
η and relative error |λ − λh,1|/λ the adaptive refinement require fewer meshes
than uniform refinement.

Figures 12 and 13 show plots of log(η) and log|λ − λh,1| versus log(N1/2)
where a linear dependence can be clearly seen for sufficiently large values of N .
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Figure 11: Meshes after 6, 8 and 10 refinements for µ = 0.1 in the L-shaped domain
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number of nodes η λh,1 |λ− λh,1|/λ
21 0.8306 10.4243 2.2576
37 1.2518 6.8408 1.1377
54 1.4436 4.8451 0.5140
61 1.0599 4.5338 0.4168
75 0.8229 4.1831 0.3072
95 0.6493 3.7900 0.1844
143 0.4012 3.5707 0.1158
167 0.3549 3.4864 0.0895
204 0.2813 3.4440 0.0762
236 0.2518 3.4166 0.0676
293 0.1852 3.3731 0.0540
360 0.1533 3.3372 0.0428
441 0.1197 3.3135 0.0354
540 0.1047 3.2950 0.0297
629 0.0781 3.2833 0.0260
735 0.0690 3.2703 0.0219
970 0.0487 3.2566 0.0176

Table 5: Indices for the first eigenvalue for µ = 0.1 in the L-shaped domain with adaptive
refinement

number of nodes η λh,1 |λ− λh,1|/λ
21 0.8306 10.4243 2.2576
65 1.2969 4.5833 0.4323
225 0.4715 3.5809 0.1190
833 0.1490 3.3265 0.0395

Table 6: Indices for the first eigenvalue for µ = 0.1 in the L-shaped domain with uniform
refinement
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Figure 12: Error curve for η in the L domain for µ = 0.1 with adaptive refinement

Figure 13: Error curve for λh,1 in the L domain for µ = 0.1 with adaptive refinement
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