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Abstract. In this paper we analyze the approximation by standard piecewise linear finite
elements of a non homogeneous Neumann problem in a cuspidal domain.

Since the domain is not Lipschitz, many of the results on Sobolev spaces which are funda-
mental in the usual error analysis do not apply. Therefore, we need to work with weighted
Sobolev spaces and to develop some new theorems on traces and extensions.

We show that, in the domain considered here, suboptimal order can be obtained with quasi-
uniform meshes even when the exact solution is in H2, and we prove that the optimal order
with respect to the number of nodes can be recovered by using appropriate graded meshes.

1. introduction

The finite element method has been widely analyzed in its different forms for all kind of
partial differential equations. However, as far as we know, all analyses are restricted to the case
of polygonal or smooth domains and no results have been obtained for the case in which the
domain is non Lipschitz, with the exception of the well known fracture problems.

The goal of this paper is to start the analysis of finite element approximations in non-Lipschitz
domains. As a first step in this direction we consider a model problem in a plane domain with
an external cusp.

Several difficulties arise in this problem because many of the results on Sobolev spaces, which
are fundamental in the analysis of partial differential equations in variational form, do not
apply. For example, the standard trace theorems do not hold in this case and this fact makes
the analysis of non homogeneous Neumann problems harder.

Given α > 1, let Ω ⊂ R2 be the domain defined by

Ω = {(x, y) : 0 < x < 1, 0 < y < xα},

and Γ = Γ1 ∪ Γ2 ∪ Γ3 its boundary, with

Γ1 = {0 ≤ x ≤ 1, y = 0}, Γ2 = {x = 1, 0 ≤ y ≤ 1} and Γ3 = {0 ≤ x ≤ 1, y = xα}

(see Figure 1).
Some of our arguments require that α < 3 and so our main result will be valid under this

restriction.
Our model problem is
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Figure 1. Cuspidal domain
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−∆u = f , in Ω
∂u

∂ν
= g , on Γ3

∂u

∂ν
= 0 , on Γ1

u = 0 , on Γ2

(1.1)

where ν denotes the outside normal.
A natural way to approximate the solution of problem (1.1) is to replace Ω by a polygonal

domain and to use the standard linear finite element method. It is known that, under appropriate
conditions on the data, the solution of this problem is in H2(Ω) (see [1]). Therefore, based on
the experience and theory for smooth domains, one would expect that the optimal order of
convergence could be obtained by using quasi-uniform meshes. However, numerical examples
show that this is not the case (see Section 2). The reason for this behavior seems to be the fact
that the solution can not be extended to an H2 function on the polygonal domain approximating
the original domain. Indeed, it is known that the standard extension theorems in Sobolev spaces
do not apply for our domain (see for example [12]).

We will show that the optimal order with respect to the number of nodes in the H1 norm
can be recovered by using appropriate graded meshes. To obtain this result, we will first prove
an extension theorem for the domain Ω which shows that the solution of problem (1.1) can be
extended to a function in a weighted H2 space, the weight being a power of the distance to the
cuspidal point.

The rest of the paper is organized as follows. In Section 2 we introduce the finite element
approximation of our problem and show that the use of quasi-uniform meshes can give bad
results. Section 3 deals with some extension and trace theorems in weighted Sobolev spaces that
we need for our error analysis. Finally, in Section 4 we prove that optimal order approximations
are obtained by using appropriate graded meshes.

2. Finite element approximations

In this section we introduce the finite element approximation of our model problem and show
that, if the meshes are quasi-uniform, the approximation may be of suboptimal order even when
the exact solution is in H2(Ω).

Introducing the space
V = {v ∈ H1(Ω) : v|Γ2 = 0},

the weak form of Problem (1.1) is to find u ∈ V such that
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∫

Ω
∇u · ∇v =

∫

Ω
fv +

∫

Γ3

gv ∀v ∈ V. (2.1)

The following existence and regularity results have been proved in [1]: Define z(t) := g(t, tα).
If f ∈ L2(Ω) and z t−

α
2 ∈ L2(0, 1) this problem has a unique solution. If in addition we assume

that z′ t1−
α
2 ∈ L2(0, 1), the solution is in H2(Ω) and there exists a constant C such that

‖u‖H2(Ω) ≤ C
{
‖f‖L2(Ω) + ‖z t−

α
2 ‖L2(0,1) + ‖z′ t1−α

2 ‖L2(0,1)

}
. (2.2)

To approximate the solution of (1.1) we replace Ω by a polygonal domain Ωh and use the
standard linear finite element method. We will construct Ωh in such a way that Ω ⊂ Ωh and the
nodes on Γh, the boundary of Ωh, are also on Γ.

Let {Th} be a family of triangulations of Ωh satisfying the maximum angle condition. Asso-
ciated with {Th} we have the finite element space

Vh = {v ∈ H1(Ωh) : v|Γ2 = 0 and v|T ∈ P1 ∀T ∈ Th}
where P1 denotes the space of linear polynomials.

Denote with Γ3,h the part of Γh approximating Γ3 and with Ih the piecewise linear interpo-
lation at the endpoints of the segments which lie on Γ3,h.

Then, our discrete problem is to find uh ∈ Vh such that

∫

Ωh

∇uh · ∇v =
∫

Ω
fv +

∫

Γ3,h

Ih(gv) ∀v ∈ Vh. (2.3)

Observe that the discrete problem corresponds to a boundary problem on Ωh if we consider
f as being extended by zero outside Ω.

One could think that, when the solution is in H2(Ω), the numerical approximation obtained
with quasi-uniform meshes would be of optimal order. However, the following example shows
that this is not the case.

Example 2.1. Consider

f(x, y) = s(s− 1)(1 + y2/2)xs−2 + xs − 1

and

z(t) = g(t, tα) =
−sαtα+s−2(1 + t2α/2) + (1− ts)tα√

1 + α2t2(α−1)
.

Then, the solution of (1.1) is

u(x, y) = (1− xs)(1 + y2/2)

and an easy calculation shows that u ∈ H2(Ω) whenever s > 3−α
2 .

We take α = 2, and different values of s, with 1
2 < s < 1, and solve Problem (2.3) by using

quasi-uniform meshes. Table 1 shows the order of the error in H1 norm in terms of number of
nodes and in terms of mesh size.

The reason for this behavior seems to be the fact that the solution can not be extended to an
H2 function on Ωh. Indeed, it is well known that the standard extension theorems in Sobolev
spaces do not apply for our domain (see for example [12]).
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value of s order in number of nodes order in h
0.55 0.324 0.626
0.6 0.335 0.647
0.65 0.347 0.671
0.7 0.362 0.698
0.75 0.380 0.733
0.8 0.404 0.781
0.85 0.440 0.849
0.9 0.491 0.948
0.95 0.545 1.053

Table 1. H1 order using quasi-uniform meshes for α = 2

3. Extension and Trace Theorems

The standard results on extensions and restrictions in Sobolev spaces do not apply for domains
with external cusps. In this section we prove some weaker results using weighted norms.

First, we develop an extension theorem in a weighted Sobolev space for H2(Ω) functions with
vanishing normal derivative on Γ1. In particular, our theorem applies to solutions of (1.1) which,
in view of (2.2), are in H2(Ω) under appropriate assumptions on the data.

Second, we prove a trace theorem for functions in H1(Ω) which will be useful to estimate the
error due to the approximation of the non homogeneous Neumann type boundary condition.

Given a domain D ⊂ R2 we introduce the weighted Sobolev space

H2
α(D) =

{
v : r

α−1
2 Dγv ∈ L2(D) ∀ γ , |γ| ≤ 2

}

where r =
√

x2 + y2, and its natural norm

‖v‖2
H2

α(D) =
∑

|γ|≤2

‖r α−1
2 Dγv‖2

L2(D).

Our argument proceeds in two steps. First, we extend the given function to the Lipschitz
domain

D := {(x, y) ∈ R2 : −x < y < xα , 0 < x < 1}.
(see Figure 2) in such a way that the extension belongs to H2

α(D). Then, we apply known
theorems for weighted Sobolev spaces on Lipschitz domains to obtain an extension which belongs
to H2

α(R2).
We call W the subspace of H2(Ω) defined by

W = {u ∈ H2(Ω) :
∂u

∂ν
= 0 on Γ1}

Lemma 3.1. Given u ∈ W there exists a function ũ ∈ H2
α(D) such that ũ|Ω = u and

‖ũ‖H2
α(D) ≤ C‖u‖H2(Ω).

Proof. We extend u by a reflection in the following way. Given (x, y) ∈ D with y ≤ 0, let
η = −xα−1y. Observe that (x, η) ∈ Ω and therefore we can define

{
ũ(x, y) = u(x, y), for (x, y) ∈ Ω

ũ(x, y) = u(x, η), for (x, y) ∈ D \ Ω
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Figure 2

To simplify notation define TL := D \ Ω.
We claim that ũ ∈ H2

α(TL). Observe first that for (x, y) ∈ TL we have x ∼ r and therefore we
can replace the weight rα−1 by xα−1 in our estimates.

By a change of variables we obtain

∫

TL

ũ2(x, y)xα−1dxdy =
∫

Ω
u2(x, η)dxdη = ‖u‖2

L2(Ω).

Now, for (x, y) ∈ TL we have

∂ũ

∂x
(x, y) =

∂u

∂x
(x, η)− ∂u

∂η
(x, η)(α− 1)xα−2y

and
∂ũ

∂y
(x, y) = −∂u

∂η
(x, η)xα−1.

Then, recalling that η = −xα−1y, we obtain
∫

TL

(
∂ũ

∂x

)2

xα−1dxdy ≤ C

{∫

Ω

(
∂u

∂x

)2

dxdη +
∫

Ω

(
∂u

∂η

)2 (η

x

)2
dxdη

}

but, since (x, η) ∈ Ω, we have η
x ≤ xα−1 ≤ 1 and then

∫

TL

(
∂ũ

∂x

)2

xα−1dxdy ≤ C‖∇u‖2
L2(Ω).

Analogously we get
∫

TL

(
∂ũ

∂y

)2

xα−1dxdy ≤ C‖∇u‖2
L2(Ω).

Bounds for the second derivatives of ũ follow similarly. For instance, we have

∂2ũ

∂x2
(x, y) =

∂2u

∂x2
(x, η)− 2(α− 1)

∂2u

∂η∂x
(x, η)xα−2y

− ∂2u

∂η2
(x, η)(α− 1)2x2(α−2)y2 − ∂u

∂η
(x, η)(α− 2)(α− 1)xα−3y

hence,
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∫

TL

(
∂2ũ

∂x2

)2

xα−1dxdy ≤ C

{∫

Ω

(
∂2u

∂x2

)2

dxdη +
∫

Ω

(
∂2u

∂η∂x

)2 (η

x

)2
dxdη

+
∫

Ω

(
∂2u

∂η2

)2 (η

x

)4
dxdη +

∫

Ω

(
∂u

∂η

)2 ( η

x2

)2
dxdη

}
.

Now, the first three terms on the right hand side can be bounded using again that η
x ≤ 1. For

the last term we have

∫

Ω

(
∂u

∂η

)2 ( η

x2

)2
dxdy ≤

∫ 1

0

∫ xα

0

(
∂u

∂η

)2 1
η2

dηdx ≤ C

∫ 1

0

∫ xα

0

(
∂2u

∂η2

)2

dηdx

where the last inequality follows from the Hardy inequality [10] and the fact that ∂u
∂η (x, 0) = 0.

Hence,

∫

TL

(
∂2ũ

∂x2

)2

xα−1dxdy ≤ C|u|2H2(Ω).

In a similar way we can show that
∫

TL

(
∂2ũ

∂y∂x

)2

xα−1dxdy ≤ C|u|2H2(Ω)

and ∫

TL

(
∂2ũ

∂y2

)2

xα−1dxdy ≤ C|u|2H2(Ω).

where | · |H2(Ω) denotes the H2-seminorm in Ω.
Therefore, we have proved that ũ ∈ H2

α(TL) and that

‖ũ‖H2
α(TL) ≤ C‖u‖H2(Ω).

On the other hand, using that ∂u
∂ν = 0 on Γ1, it is easy to see that ũ ∈ H2

α(D), thus concluding
the proof. ¤

Now, using known extension theorems for weighted Sobolev spaces on Lipschitz domains due
to Chua [6], we can extend functions in W to H2

α(R2).

Theorem 3.1. If α < 3 and u ∈ W , there exists a function ũ ∈ H2
α(R2) such that ũ|Ω = u, and

‖ũ‖H2
α(R2) ≤ C‖u‖H2(Ω).

Proof. In view of Lemma 3.1 we only have to show that for v ∈ H2
α(D) there exists an extension

ṽ ∈ H2
α(R2) such that

‖ṽ‖H2
α(R2) ≤ C‖v‖H2

α(D).

But this follows immediately from the results in [6] because, for 1 < α < 3, our weight belongs
to the class considered in that paper (the Muckenhoupt class A2) [7, page 145]. ¤

In the rest of this section we prove a trace theorem for functions in H1(Ω). In [1] it was
proved that

‖u‖L2(Γ) ≤ C(‖ux−
α
2 ‖L2(Ω) + ‖∇ux

α
2 ‖L2(Ω)). (3.1)

Our trace theorem is a consequence of this result and the known imbedding theorem

H1(Ω) ⊂ Lr(Ω) for 2 ≤ r ≤ 2(α + 1)
α− 1

(3.2)
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which is a particular case of the results given in [2].

Theorem 3.2. Let u ∈ H1(Ω),
(1) If α < 2 then u ∈ L2(Γ) and ‖u‖L2(Γ) ≤ C‖u‖H1(Ω)

(2) If α ≥ 2 then xβu ∈ L2(Γ) and ‖xβu‖L2(Γ) ≤ C‖u‖H1(Ω) , ∀β > α/2− 1.

Proof. Part (1) was proved in [1]. Therefore, we will only prove here (2).
Using (3.1) for the function xβu we have

‖xβu‖L2(Γ) ≤ C(‖xβux−
α
2 ‖L2(Ω) + ‖∇(xβu)x

α
2 ‖L2(Ω)).

It is easy to see that the second term on the right hand side is bounded by ‖u‖H1(Ω) because
α ≥ 2 and β > α/2− 1. Then, it is enough to show that

‖xβux−
α
2 ‖L2(Ω) ≤ ‖u‖H1(Ω). (3.3)

Using the Hölder inequality we have
∫

Ω
u2x2β−α ≤

(∫

Ω
u2q

) 1
q
(∫

Ω
x

(2β−α) q
q−1

) q−1
q

.

Choosing q = r/2 with r = 2(α + 1)/(α− 1) and using the imbedding theorem (3.2) we obtain

‖xβux−
α
2 ‖L2(Ω) ≤

(∫

Ω
x

(2β−α) q
q−1

) q−1
2q ‖u‖H1(Ω).

But ∫

Ω
x

(2β−α) q
q−1 =

∫

Ω
x(2β−α)α+1

2 < ∞

because β > α/2− 1 and therefore (3.3) holds. ¤

4. Optimal approximations using graded meshes

In this section we obtain error estimates in H1 of quasi-optimal order (i.e., optimal up to a
logarithmic factor) with respect to the number of nodes by using appropriate graded meshes.

Finite element methods using graded meshes of the type considered here have been analyzed
for problems with corner type singularities in [3, 4, 9]. In [4, 9] the error estimates were obtained
under the classic regularity condition on the meshes (the minimum angle condition). This
hypothesis has been relaxed in [3], where the author obtained error estimates under the maximum
angle condition. This generalization is very important for our problem because we can not avoid
small angles in those elements which are near the cusp.

Consider 1 < α < 3 and define γ = (α − 1)/2. Let Ωh be an approximating polygon and Th

a triangulation of it, where h > 0 is a parameter that goes to 0. For each T ∈ Th we denote by
hT its diameter and by βT its maximum angle. We assume that there exist positive constants σ
and β < π, independent of h, such that

(1) βT < β, ∀T ∈ Th (the maximal angle condition).
(2) hT ∼ σ h

1
1−γ , if (0, 0) ∈ T .

(3) hT ≤ σ h infT xγ , if (0, 0) /∈ T .

Since we know that the solution of our problem has an extension ũ ∈ H2
α(Ωh), we are interested

in interpolation error estimates for functions in this space. We call Πv ∈ Vh the piecewise linear
Lagrange interpolation of v.
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Theorem 4.1. If v ∈ H2
α(Ωh) and the family of triangulations satisfies conditions (1), (2) and

(3), there exists a constant C depending only on β, σ and α such that

‖v −Πv‖H1(Ωh) ≤ Ch‖v‖H2
α(Ωh).

Proof. It follows as in [9, page 392] but using the error estimates obtained by Apel under the
maximum angle condition (see Theorem 2.4 in [3, page 63]). ¤

Now we introduce some notation which will be used in the rest of this section. We denote by
Γj

3,h, 1 ≤ j ≤ n the edges on the boundary of Ωh, by (xj−1, x
α
j−1) and (xj , x

α
j ) their endpoints

with x0 = 0 and xn = 1, and by Γj
3 the part on Γ3 with the same endpoints. Let Ωj

h be the
region bounded by Γj

3 and Γj
3,h.

In addition to the assumptions (1), (2) and (3) we will need for our error analysis the following
hypothesis on the meshes:

(H) For 1 ≤ j ≤ n the region Ωj
h is contained in only one triangle.

We denote by Tj the triangle containing Ωj
h and by hj its diameter (see Figure 3).

It can be seen from our hypotheses that there exists a constant C, independent of h, such
that, for 2 ≤ j ≤ n,

xj ≤ Cxj−1. (4.1)

In fact, from (H) we have xj − xj−1 ≤ C|Γj
3,h| for some constant C depending only on α. Then,

xj − xj−1 ≤ Chj , and therefore from assumption (3) we have

xj ≤ xj−1

(
1 + Chxγ−1

j−1

)

and, since j ≥ 2, xj−1 ≥ x1 ∼ h1/(1−γ) by assumption (2), we obtain (4.1).
We will show below that meshes satisfying all our assumptions can indeed be constructed.

 Ω
h
 j

 Γ
3,h
 j                  

 Γ
3
 j

(x
j−1

,x
j−1
α )

                          

(x
j
,x

j
α)

                  

T
j
 

Figure 3

The next lemma deals with the error arising from the approximation of the domain by polyg-
onal domains. We will work with an extension ũ of the solution u of (1.1). Since u ∈ W we
know from Theorem 3.1 that there exists ũ ∈ H2

α(R2) such that ũ|Ω = u and

‖ũ‖H2
α(R2) ≤ C‖u‖H2(Ω). (4.2)
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We will make use of the well known imbedding H1(D) ⊂ Lp(D) for planar Lipschitz domains
and 1 ≤ p < ∞, and of the explicit dependence on p of the constant in the continuity of this
inclusion (see for example [8]), namely,

‖v‖Lp(D) ≤ C
√

p ‖v‖H1(D). (4.3)

Lemma 4.1. If 1 < α < 3, then there exists a constant C, which depends only on α, β and σ,
such that

‖∇ũ‖L2(Ωh\Ω) ≤ Ch
√

log(1/h) ‖u‖H2(Ω).

Proof. Clearly, for every h, the polygonal domain Ωh is contained in the triangle

TU = {0 ≤ x ≤ 1, 0 ≤ y ≤ x}
(see Figure 2). Writing ∫

TU

|v|p =
∫

TU

|v|pxp(α−1
2

)x−p(α−1
2

)

and applying the Hölder inequality with 2/p and its dual exponent we obtain

‖v‖Lp(TU ) ≤ C‖vx
α−1

2 ‖L2(TU )

for any function v and 1 ≤ p < 4
α+1 . Therefore, using (4.2) we conclude that ũ ∈ W 2,p(TU ) and

that
‖ũ‖W 2,p(TU ) ≤ C‖u‖H2(Ω). (4.4)

As a consequence, we obtain that, for β > α−1
2 , ∇ũ xβ ∈ H1(TU ) and

‖∇ũ xβ‖H1(TU ) ≤ C‖u‖H2(Ω). (4.5)

Indeed, since ũ ∈ H2
α(R2), we already know that ∇ũ xβ ∈ L2(TU ) and so, we only have to see

that the first derivatives of ∇ũ xβ belong to L2(TU ). But, taking the derivative of ∇ũ xβ and
using again that ũ ∈ H2

α(R2), we see that it only remains to prove that ∇ũ xβ−1 ∈ L2(TU ).
Now, from (4.4) and a well known Sobolev imbedding theorem we obtain that ∇ũ ∈ Lp∗(TU )

for 1 ≤ p < 4
α+1 and p∗ = 2p

2−p , moreover,

‖∇ũ‖Lp∗ (TU ) ≤ C‖u‖H2(Ω).

Therefore, applying the Hölder inequality with p∗/2 and its dual exponent q we have∫

TU

|∇ũ|2x2(β−1) ≤ ‖∇ũ‖2
Lp∗ (TU )

‖x2(β−1)‖Lq(TU )

but, since β > α−1
2 , it is possible to choose p < 4

α+1 such that ‖x2(β−1)‖Lq(TU ) is finite, thus
concluding the proof of (4.5).

Now, let β > α−1
2 and 2 ≤ p < ∞ to be chosen below. Applying the Hölder inequality for p/2

and its dual exponent q we have
∫

Ωh\Ω
|∇ũ|2 ≤

(∫

Ωh\Ω
|∇ũ|p xβp

) 2
p
(∫

Ωh\Ω
x−2βq

) 1
q
, (4.6)

and therefore, from the Sobolev imbedding (4.3) and (4.5) we obtain
∫

Ωh\Ω
|∇ũ|2 ≤ C

q − 1
‖u‖2

H2(Ω)

(∫

Ωh\Ω
x−2βq

) 1
q (4.7)

for q → 1. Then, we have to estimate
∫

Ωh\Ω
x−2βq =

N∑

j=1

∫

Ωj
h

x−2βq. (4.8)
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Since γ = α−1
2 and 1 < α < 3 we can choose β and q > 1 such that

γ < β < min{2γ, 1} and βq < min{2γ, 1}.
Let us estimate each term in the right hand side of (4.8). Since Ω1

h ⊂ T1 we have∫

Ω1
h

x−2βq ≤
∫

T1

x−2βq.

Hence, using now that h1 ≤ σ h
1

1−γ , we obtain∫

T1

x−2βq ≤ Ch
2(γ+1−βq)
1 ≤ Ch

2 γ+1−βq
1−γ

and therefore ∫

T1

x−2βq ≤ Ch2

because qβ < 2γ.
On the other hand, we have

∑

j>1

∫

Ωj
h

x−2βq ≤
∑

j>1

x−2βq
j−1 |Ωj

h|,

but, by using the well known error formula for the trapezoidal rule we obtain

|Ωj
h| ≤ Ch3

jx
α−2
j−1 = Ch3

jx
2γ−1
j−1

where in the case α > 2 we have used (4.1). Therefore, since hj ≤ σh xγ
j−1, we have

∑

j>1

∫

Ωj
h

x−2βq ≤ C
∑

j>1

x−2βq+2γ−1
j−1 h3

j ≤ Ch2
∑

j>1

x−2βq+4γ−1
j−1 hj

≤ Ch2

∫ 1

0
x−2βq+4γ−1

where we have used again (4.1). But the last integral is finite because βq < 2γ. Moreover, it is
bounded by a constant which remains bounded when q → 1.

Therefore, summing up the estimates obtained and replacing in (4.7) we have

‖∇ũ‖L2(Ωh\Ω) ≤
C√
q − 1

‖u‖H2(Ω)h
1
q

with a constant C which does not blow up when q → 1.
The proof concludes with a standard extrapolation argument taking q = 2 log(1/h)

2 log(1/h)−1 . ¤

Now, we want to estimate the error arising in the numerical integration of the boundary term.
With this goal we introduce an extension g̃ of the function g to Γ3,h. Calling φ(t) = (t, tα) we
define g̃ on each Γj

3,h as follows,

g̃(ψj(t)) := g(φ(t)) = z(t), xj−1 ≤ t ≤ xj

where
ψj(t) = (t, tα + δj(t))

with

δj(t) =
xα

j − xα
j−1

xj − xj−1
(t− xj−1) + xα

j−1 − tα.

The following lemma gives some estimates for the functions δj and their derivatives that will
be useful in our error analysis.
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Lemma 4.2. There exists a constant C, which depends only on α, such that
i) |δ1(t)| ≤ 2hα

1 and |δ′1(t)| ≤ Chα−1
1 .

ii) |δj(t)| ≤ Ch2
jx

α−2
j and |δ′j(t)| ≤ Chjx

α−2
j , 2 ≤ j ≤ n.

Proof. The estimates in i) follow immediately from δ1(t) = xα−1
1 t− tα, 0 ≤ t ≤ x1 and x1 ≤ h1.

Consider now 2 ≤ j ≤ n. Since δj(xj−1) = δj(xj) = 0, δ′j vanishes at some point in the interval
(xj−1, xj) and therefore

|δ′j(t)| ≤ C(xj − xj−1)xα−2
j

where we have used (4.1) to bound δ′′ in the case α < 2. So, the second part of ii) follows from
xj − xj−1 ≤ hj . Finally, the bound for δj follows immediately from the bound for its derivative
using again that δj(xj−1) = 0 and xj − xj−1 ≤ hj . ¤

Observe that if we apply a standard trace result in the polygonal domain Ωh, the constant
depends on h. However, since Γ3,h approximates Γ3, a trace theorem with a constant independent
of h can be derived from Theorem 3.2. This is the object of the next lemma.

Lemma 4.3. There exists a constant C independent of h such that, for all v ∈ Vh,

‖xrv‖L2(Γ3,h) ≤ C ‖v‖H1(Ωh)

for r > α/2− 1 if α ≥ 2 and r = 0 if α < 2.

Proof. Since hj ≤ Cxj , it follows from ii) of Lemma 4.2 that

|δj(t)| ≤ Cxα−1
j hj .

Then, since v is linear in each triangle
∫

Γj
3,h

v2x2r =
∫ xj

xj−1

∣∣∣∣v(φ(t)) + δj(t)
∂v

∂y
(φ(t))

∣∣∣∣
2

t2r|ψ′j(t)|

≤ C

∫ xj

xj−1

|v(φ(t))|2t2r|ψ′j(t)|+ C

∫ xj

xj−1

∣∣∣∣
∂v

∂y
|
Γj

3

∣∣∣∣
2

|δj(t)|2t2r|ψ′j(t)|.

Since ψj(t) =
(
t,

xα
j −xα

j−1

xj−xj−1
(t− xj−1) + xα

j−1

)
, it follows that |ψ′j(t)| ∼ |φ′(t)| ∼ C, thus

∫

Γj
3,h

v2x2r ≤ C‖xrv‖2
0,Γj

3

+ Ch3
jx

2α−2+2r
j

∣∣∣∣
∂v

∂y
|
Γj

3

∣∣∣∣
2

. (4.9)

If j = 1 we have
∣∣∣∂v
∂y |Γ1

3

∣∣∣
2
∼

∥∥∥∂v
∂y

∥∥∥
2

L2(T1)
h−1−α

1 and using that h1 ∼ x1 we obtain

‖xrv‖2
L2(Γ1

3,h) ≤ C‖xrv‖2
L2(Γ1

3) + Chα+2r
1

∥∥∥∥
∂v

∂y

∥∥∥∥
2

L2(T1)

while if j > 1 we have
∣∣∣∂v
∂y |Γj

3

∣∣∣
2
∼

∥∥∥∂v
∂y

∥∥∥
2

0,Tj

h−2
j x1−α

j and then

‖xrv‖2
L2(Γj

3,h)
≤ C‖xrv‖2

L2(Γj
3)

+ Chjx
α−1+2r
j

∥∥∥∥
∂v

∂y

∥∥∥∥
2

L2(Tj)

.

Therefore, for every j we have

‖xrv‖2
L2(Γj

3,h)
≤ C

(
‖xrv‖2

L2(Γj
3)

+
∥∥∥∥

∂v

∂y

∥∥∥∥
2

L2(Tj)

)
, j = 1 . . . , n,
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and the lemma follows by summing up the previous inequalities for j = 1, . . . , n and using
Theorem 3.2. ¤
Lemma 4.4. There exists a constant C independent of h such that, for all v ∈ Vh

i) If α < 2 and z′ ∈ L2(0, 1)∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh).

ii) If 2 ≤ α < 3 , β > α/2− 1 and z′t−β ∈ L2(0, 1)∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ ≤ Ch‖z′ t−β‖L2(0,1)‖v‖H1(Ωh).

Proof. First, we observe that since g and g̃ agree at the nodes on Γ3 ∩ Γ3,h we have
∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

g̃v +
∫

Γ3,h

(g̃v − Ih(g̃v))

∣∣∣∣∣

≤
n∑

j=1

∣∣∣∣∣
∫

Γj
3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ +
n∑

j=1

∫

Γj
3,h

|g̃v − Ih(g̃v)|

=: I + II. (4.10)

For any v ∈ Vh, we have

I =
n∑

j=1

∣∣∣∣∣
∫

Γj
3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ ≤
n∑

j=1

∫ xj

xj−1

|z(t)| ∣∣v(φ(t))|φ′(t)| − v(ψj(t))|ψ′j(t)|
∣∣

≤
n∑

j=1

∫ xj

xj−1

|z(t)| |v(φ(t))− v(ψj(t))| |φ′(t)|

+
n∑

j=1

∫ xj

xj−1

|z(t)||v(ψj(t))|
∣∣|φ′(t)| − |ψ′j(t)|

∣∣

≤
n∑

j=1

∫ xj

xj−1

|z(t)|
∣∣∣∣
∂v

∂y
|
Γj

3

∣∣∣∣ |δj(t)| |φ′(t)|+ C

∫ xj

xj−1

|z(t)||v(ψj(t))|
∣∣δ′j(t)

∣∣

=:
n∑

j=1

Aj + Bj

and

II =
n∑

j=1

∫

Γj
3,h

|g̃v − Ih(g̃v)| ≤
n∑

j=1

∫ xj

xj−1

|z(t)v(ψj(t))− Ih(z(v ◦ ψj))(t)| |ψ′j(t)|.

Let
wj(t) = (z(t)− z̄j)v(ψj(t)), t ∈ Ij , j = 1, . . . , n

where z̄j , j = 1, . . . , n are constants to be chosen below. It follows that

II ≤ C
n∑

j=1

∫ xj

xj−1

|wj(t)− Ihwj(t)| ≤ C
n∑

j=1

hj

∫ xj

xj−1

|w′j(t)|,

where we have used a standard L1 interpolation error estimate. Since, for t ∈ Ij ,
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|w′j(t)| ≤ |z′(t)||v(ψj(t))|+ |z(t)− z̄j |
∣∣∣∣
∂v

∂x
(ψj(t)) +

∂v

∂y
(ψj(t))

xα
j − xα

j−1

xj − xj−1

∣∣∣∣
≤ |z′(t)||v(ψj(t))|+ C|z(t)− z̄j ||∇v(ψj(t))|

thus,

II ≤ C

n∑

j=1

hj

(∫ xj

xj−1

|z′(t)||v(ψj(t))|+
∫ xj

xj−1

|z(t)− z̄j ||∇v(ψj(t))|
)

.

Clearly, since hj ≤ h for any j = 1, · · · , n it follows that

II ≤ Ch
n∑

j=1

(∫ xj

xj−1

|z′(t)||v(ψj(t))|+
∫ xj

xj−1

|z(t)− z̄j ||∇v(ψj(t))|
)

=: Ch
n∑

j=1

Cj + Dj .

Now, we consider the case α < 2 and we prove the result given in i).
For j = 1, using i) of Lemma 4.2 and that

|∇v(φ(t))| ∼ ‖∇v‖L2(T1)h
−α+1

2
1 , t ∈ I1, v ∈ Vh (4.11)

we obtain, for β = max{0, 3
2 − α}

A1 ≤ Ch
α+ 1

2
+β

1 ‖zt−β‖L2(I1)|∇v|T1 | ≤ Ch
α
2
+β

1 ‖zt−β‖L2(I1)‖∇v‖L2(T1)

≤ Ch(α
2
+β) 2

3−α ‖zt−β‖L2(I1)‖∇v‖L2(T1).

Hence, since α < 2 then
(

α
2 + β

)
2

3−α ≥ 1 and therefore,

A1 ≤ Ch‖zt−β‖L2(I1)‖∇v‖L2(T1). (4.12)

Similary, for β = max{0, 5
2 − 3

2α} we have

B1 ≤ Chα+β−1
1 ‖zt−β‖L2(I1)‖v‖L2(Γ1

3,h) ≤ h(α+β−1) 2
3−α ‖zt−β‖L2(I1)‖v‖L2(Γ1

3,h)

≤ Ch‖zt−β‖L2(I1)‖v‖L2(Γ1
3,h).

For j > 1, using ii) of Lemma 4.2 and that

|∇v(φ(t))| ∼ h−1
j x

1−α
2

j ‖∇v‖L2(Tj), t ∈ Ij (4.13)

since hj ≤ Chx
α−1

2
j , we have, for β = max{0, 3

2 − α},

Aj ≤ Ch2
jx

α+β− 3
2

j ‖zt−β‖L2(Ij)|∇v|Tj | = Chjx
β+α

2
−1

j ‖zt−β‖L2(Ij)‖∇v‖L2(Tj)

≤ Chx
β+α− 3

2
j ‖zt−β‖L2(Ij)‖∇v‖L2(Tj)

≤ Ch‖zt−β‖L2(Ij)‖∇v‖L2(Tj). (4.14)

Similarly, for j > 1 and β = max{0, 5
2 − 3

2α}, applying the Cauchy-Schwartz inequality we
have that
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Bj ≤ Chjx
α−2+β
j ‖zt−β‖L2(Ij)‖v‖L2(Γj

3,h)
≤ Chx

3
2
α− 5

2
+β

j ‖zt−β‖L2(Ij)‖v‖L2(Γj
3,h)

≤ Ch‖zt−β‖L2(Ij)‖v‖L2(Γj
3,h)

. (4.15)

So, since 3
2 − α < 5

2 − 3
2α, if we take β = max{0, 5

2 − 3
2α}, we obtain for any j

∣∣∣∣∣
∫

Γj
3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ ≤ Ch‖zt−β‖L2(Ij)

(
‖∇v‖L2(Tj) + ‖v‖

L2(Γj
3,h)

)
(4.16)

and adding for j = 1, . . . , n, we have

I ≤ Ch‖zt−β‖L2(0,1)

(
‖∇v‖L2(Ωh) + ‖v‖L2(Γ3,h)

)
.

Now, since z(0) = 0 and β < 1, by using the Hardy inequality

‖zt−β‖L2(0,1) ≤ C‖z′‖L2(0,1) (4.17)

and Lemma 4.3 for the case α < 2, we conclude that

I ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh). (4.18)

On the other hand, we have that for all j ≥ 1

Cj =
∫ xj

xj−1

|z′(t)||v(ψj(t))| ≤
∥∥z′

∥∥
L2(Ij)

‖v‖
L2(Γj

3,h)
. (4.19)

Taking z̄j = 1
xj−xj−1

∫ xj

xj−1
z, it follows from the Poincaré inequality that

‖z − z̄j‖L2(Ij) ≤ Chj‖z′‖L2(Ij).

Then, using (4.11) for j = 1 and (4.13) for j > 1 we obtain

D1 ≤ Ch
1−α

2
1 ‖z′‖L2(I1)‖∇v‖L2(T1) ≤ Ch

2−α
3−α ‖z′‖L2(I1)‖∇v‖L2(T1)

Dj ≤ Ch
1
2
j x

1−α
2

j ‖z′‖L2(Ij)‖∇v‖L2(Tj) ≤ Ch
1
2 ‖z′‖L2(Ij)‖∇v‖L2(Tj), j > 1

and therefore

Dj ≤ C‖z′‖L2(Ij)‖∇v‖L2(Tj), ∀j ≥ 1. (4.20)

So, adding inequalities (4.19) and (4.20) for j = 1, · · · , n we have that

II ≤ Ch
(
‖z′‖L2(0,1) ‖v‖L2(Γ3,h) + ‖z′‖L2(0,1)‖∇v‖L2(Ωh)

)

and using Lemma 4.3 again we conclude that

II ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh). (4.21)

From this inequality, (4.18) and (4.10) the proof of i) concludes.

Now, consider the case α ≥ 2. By the same arguments used in the previous case we have

A1 ≤ Ch
α+ 1

2
1 ‖z‖L2(I1)|∇v|T1 | ≤ Ch

α
2
1 ‖z‖L2(I1)‖∇v‖L2(T1)

≤ Ch
α

3−α ‖z‖L2(I1)‖∇v‖L2(T1)

but α
3−α ≥ 1 so,

A1 ≤ Ch‖z‖L2(I1)‖∇v‖L2(T1). (4.22)



FINITE ELEMENT APPROXIMATIONS IN A NON-LIPSCHITZ DOMAIN 15

For j > 1,

Aj ≤ Ch2
jx

α− 3
2

j ‖z‖L2(Ij)|∇v|Tj | ≤ Chjx
α
2
−1

j ‖z‖L2(Ij)‖∇v‖L2(Tj)

≤ Chx
α− 3

2
j ‖z‖L2(Ij)‖∇v‖L2(Tj) ≤ Ch‖z‖L2(Ij)‖∇v‖L2(Tj). (4.23)

Similarly, for any β ≥ 0 we have

B1 ≤ Chα−1
1 ‖zt−β‖L2(I1)‖vxβ‖L2(Γ1

3,h) ≤ h(α−1) 2
3−α ‖zt−β‖L2(I1)‖vxβ‖L2(Γ1

3,h)

≤ Ch‖zt−β‖L2(I1)‖vxβ‖L2(Γ1
3,h) (4.24)

and

Bj ≤ Chjx
α−2
j ‖zt−β‖L2(Ij)‖vxβ‖

L2(Γj
3,h)

≤ Chx
3
2
α− 5

2
j ‖zt−β‖L2(Ij)‖vxβ‖

L2(Γj
3,h)

≤ Ch‖zt−β‖L2(Ij)‖vxβ‖
L2(Γj

3,h)
. (4.25)

and so, adding inequalities (4.22), (4.23), (4.24) and (4.25) for j = 1, · · · , n we conclude that
for any β ≥ 0,

I ≤ Ch
(
‖z‖L2(0,1)‖∇v‖L2(Ωh) + ‖zt−β‖L2(0,1)‖vxβ‖L2(Γ3,h)

)
.

Taking α
2 − 1 < β < 1, using the Hardy inequality (4.17) and our trace result for the case

2 ≤ α < 3, we obtain

I ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh). (4.26)
On the other hand, for any j and α

2 − 1 < β < 1 it follows that

Cj ≤ ‖z′t−β‖L2(Ij)‖vxβ‖
L2(Γj

3,h)

and by using (4.11) for j = 1 and (4.13) for j > 1 we get

Dj ≤ C‖z′‖L2(Ij)‖∇v‖L2(Tj), j ≥ 1.

Therefore, we conclude that for α
2 − 1 < β < 1,

II ≤ Ch
(
‖z′t−β‖L2(0,1)‖vxβ‖L2(Γ3,h) + ‖z′‖L2(0,1)‖∇v‖L2(Ωh)

)
.

Hence, using Lemma 4.3 again we obtain

II ≤ Ch‖z′t−β‖L2(0,1)‖v‖H1(Ωh) (4.27)

and thus, using (4.26) and (4.27) in (4.10) we conclude the proof of ii). ¤
We can now prove our main theorem which gives quasi-optimal error estimates in H1 for the

piecewise linear approximation on appropriate graded meshes.

Theorem 4.2. Let u be the solution of (2.1) and uh ∈ Vh be its finite element approximation
using the mesh Th. Assume α < 3, f ∈ L2(Ω), z t−

α
2 ∈ L2(0, 1) and z′t−r ∈ L2(0, 1), with r = 0

when α < 2 and r > α/2− 1 when α ≥ 2.
If the family of meshes satisfies (1), (2), (3) and (H), then there exists a constant C depending

only on α, β and σ such that

‖u− uh‖H1(Ω) ≤ Ch
√

log(1/h)
{
‖f‖L2(Ω) + ‖z t−

α
2 ‖L2(0,1) + ‖z′ t−r‖L2(0,1)

}
.
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Proof. In view of (2.2) and since r > α/2− 1, it is enough to prove

‖u− uh‖H1(Ω) ≤ Ch
√

log(1/h)
{‖u‖H2(Ω) + ‖z′ t−r‖L2(0,1)

}
.

Since Ω ⊂ Ωh, we have
‖u− uh‖H1(Ω) ≤ ‖ũ− uh‖H1(Ωh),

and therefore it is enough to prove that

‖ũ− uh‖H1(Ωh) ≤ Ch
√

log(1/h)
{‖u‖H2(Ω) + ‖z′ t−r‖L2(0,1)

}
. (4.28)

Using the Poincaré inequality we have,

‖ũ−uh‖2
H1(Ωh) ≤ C|ũ−uh|2H1(Ωh) = C

[∫

Ωh

∇(ũ− uh) · ∇(ũ−Πũ) +
∫

Ωh

∇(ũ− uh) · ∇(Πũ− uh)
]

,

(4.29)
but we know from (4.2) and Theorem 4.1 that

|ũ−Πũ|H1(Ωh) ≤ Ch‖ũ‖H2
α(Ωh) ≤ Ch‖u‖H2(Ω). (4.30)

Thus, for the first term in (4.29), using the Young inequality, we have
∫

Ωh

∇(ũ− uh) · ∇(ũ−Πũ) ≤ ε|ũ− uh|2H1(Ωh) + Cεh
2‖u‖2

H2(Ω) (4.31)

with ε to be chosen below.
Then, we only have to estimate the second term of (4.29). To simplify notation we introduce

wh := Πũ− uh. From (2.1) and (2.3) we have
∫

Ωh

∇(ũ− uh) · ∇wh =
∫

Ω
∇(ũ− uh) · ∇wh +

∫

Ωh\Ω
∇(ũ− uh) · ∇wh

=
∫

Ω
∇u · ∇wh +

∫

Ωh\Ω
∇ũ · ∇wh −

∫

Ωh

∇uh · ∇wh

=
∫

Ωh\Ω
∇ũ · ∇wh +

∫

Γ3

gwh −
∫

Γ3,h

Ih(gwh).

Then, from Lemmas 4.1 and 4.4, using (4.2) and again the Young inequality we obtain

∫

Ωh

∇(ũ− uh) · ∇wh ≤ Cεh
2 log 1/h

{
‖u‖2

H2(Ω) + ‖z′ t−r‖2
L2(0,1)

}
+ ε|wh|2H1(Ωh). (4.32)

Hence, from (4.30)

|wh|2H1(Ωh) ≤ 2(|Πũ− ũ|2H1(Ωh) + |ũ− uh|2H1(Ωh)) ≤ Ch2‖u‖2
H2(Ω) + 2|ũ− uh|2H1(Ωh) (4.33)

Therefore, from (4.31),(4.32) and (4.33) we get

|ũ− uh|2H1(Ωh) ≤ Cεh
2‖u‖2

H2(Ω) + Cεh
2 log 1/h

{
‖u‖2

H2(Ω) + ‖z′ t−r‖2
L2(0,1)

}
+ Cε|ũ− uh|2H1(Ωh)

and so the result follows by choosing an appropriate small ε and using the estimates given in
(2.2). ¤

Now we show that meshes satisfying the hypotheses (1)-(3) and (H) can be constructed. To
define the mesh Th, with h = 1/n we use the following method given in [9, page 393], [11].
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value of s order in number of nodes order in h
0.55 0.588 1.054
0.6 0.585 1.049
0.65 0.584 1.047
0.7 0.584 1.046
0.75 0.584 1.047
0.8 0.585 1.048
0.85 0.586 1.049
0.9 0.586 1.051
0.95 0.587 1.052

Table 2. H1 order using graded meshes for α = 2

(1) Introduce the partition of the interval (0, 1) given by

xj =
(

j

n

) 2
3−α

0 ≤ j ≤ n.

(2) Take the points (xj , 0) in Γ1, (xj , x
α
j ) in Γ3, and for j > 1, divide each of the vertical

lines {(xj , y) : 0 ≤ y ≤ xα
j } uniformly into subintervals such that each of them has length

∼ xj − xj−1.

Figure 4 shows an example of one of these meshes.

Figure 4. Graded mesh with α = 2 and n = 3

If N is the number of nodes in the partition Th, it can be proved that h2 ∼ 1/N [9, page
393],[11]. Therefore, using these meshes we have the following error estimate in terms of the
number of nodes,

‖u− uh‖H1(Ω) ≤ C

√
log N

N

{
‖f‖L2(Ω) + ‖z t−

α
2 ‖L2(0,1) + ‖z′ t−r‖L2(0,1)

}
.

Observe that this estimate is quasi-optimal. Indeed, up to the logarithmic factor, the order
with respect to the number of nodes is the same as that obtained for a smooth problem using
quasi-uniform meshes.

Table 2 shows the numerical results obtained with these graded meshes for the example (2.1).
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