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Abstract

We analyze the variant of the minority game with an additional interaction mecha-
nism introduced by I. Caridi and H. Ceva in [3], which considers a periodic square
lattice of agents where some of them may share information with their neighbors.
We show that low levels of interaction in this model induce the interacting agents to
play with their most similar strategies (those minimizing the Hamming distance be-
tween them), hence the resulting dynamics can be replicated by introducing groups
of similar one-strategy agents. We also study the reaction of non-interacting agents
to the global perturbations introduced by the interacting agents, showing the emer-
gence of cluster-detection patterns.
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1 Introduction

The standard minority game (MG) is a discrete adaptive model based on
the “El Farol” bar problem [1], which was introduced in [2] in order to study
strategical behaviors. In this model, N(odd) agents must independently choose
between two actions (usually denoted by 0 and 1), and the agents who make
the minority decision win. Each agent’s choice depends on a set of s strate-
gies. Each strategy predicts the next winning action (0 or 1) by processing the
outcomes from the last m time steps, which is the only available public infor-
mation. The value m is known as the agents’ memory. Since every strategy
contains the 2m possible historic states, the whole pool has 22

m

strategies; and
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at the beginning of the game each agent randomly draws her set of s of them
(maybe repeated by chance). At each step, the strategies that have correctly
predicted the outcome are rewarded one point, regardless of usage. Far away
from the possibility of knowing her maximization-of-payoff choice, each agent
is confined to play in the way her own best performing strategy (i.e., the one
from her set with the best score up to that moment) suggests.
The MG is associated with the analysis of simple financial markets due to the
similar kind of binary decisions that must be made (e.g., “buy” or “sell”) and
to the bounded rationality and incomplete information that the individuals
have. However, some other features may be taken into account in order to
deal with more complex instances. In particular, several models introduce lo-
cal information mechanisms, by which some agents get information from some
other agents (e.g., their next bet) in order to make better predictions of the
game’s future outcomes [3–8].
In this paper we focus on the dynamics of the interesting model introduced by
I. Caridi and H. Ceva in [3], which is based on the original MG but includes
local interaction as a mechanism for sharing information. In this model, the
N agents are distributed on a k × k square periodic lattice (where N = k2),
and at the beginning of the game a fraction p ∈ [0, 1] of them is designated
to be interacting agents (IAs). Therefore, every IA can have from zero to four
neighboring IAs in the grid which, in turn, may have further IAs as neigh-
bors. At each time step the agents follow the usual rules of the MG, but the
IAs are given one extra opportunity to change their bets, after knowing what
their neighboring IAs will do in the same step. At this stage, every IA queries
her neighboring IAs by looking at what their best strategy has advised them
to do and, after this survey, the IA will choose to be in the minority of the
group composed by her interacting neighbors plus herself. Hence, if more than
half of her neighbors (plus herself) choose one side, then the IA will chose
the other one, regardless of what her best strategy suggested. If half of the
neighbors (plus herself) choose each side, then the IA will just follow her best
strategy. Once all the agents have made their choice, they make their moves
simultaneously and the minority side is obtained as usual. Points are awarded
as in the standard MG, but whenever a player wins because she plays against
the prediction of her best strategy in order to avoid the majority of her local
neighborhood, then no points are added to her strategies.
I. Caridi and H. Ceva study in [3] the behaviour of the reduced variance σ2/N
of the time series of the number of agents belonging to the bet 1 for this model
in terms of the usual scale variable z = 2m/N for different values of p. As a
result they find, compared with the MG, on one hand, an improved resource
distribution for small values of p (σ2/N ∼= 0.03 against σ2/N ∼= 0.04 for the
MG [9]) and, on the other hand, a smaller value of z for which σ2/N attains its
minimum (z ∼= 0.3 against z ∼= 0.45 for the MG [9]). Moreover, by computing
the reduced variance of even and odd steps along the voting process they show
that, in the informationally efficient region (i.e., when small values of z are
considered), a period-two dynamics of the MG can be found; that is, dynam-
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ics in which during the odd appearance of a given history (binary string) the
resulting outcome is random, but in its even appearance the outcome is the
opposite to the previous one [3,9]. Finally, by measuring the entropy rate of
the outcome they observe that the voting evolution falls in cyclic motions for
p > p∗ with p∗ ∼ 0.5.
In this work we show that the local interaction mechanism introduced by
I. Caridi and H. Ceva encourages the formation of groups of agents with a con-
certed behavior derived from the sharing of information, which act as groups
of similar single-strategy agents. This fact leads to a better understanding
of the underlying dynamics, in particular providing a simple explanation for
the backward movement of the minimum value in the reduced variance plot
reported in [3].
This paper is organized as follows. On one hand, Section 2 studies the vot-
ing dynamics of IAs, showing how this behavior can be replicated by single-
strategy agents. On the other hand, Section 3 explores the reaction of non-
interacting agents to the global effects generated in the game by the IAs.
Section 4 closes the paper with some concluding remarks. For agents with
more than one strategy, we fix s = 2 throughout this paper.

2 Dynamics of interacting agents

We define the interaction graph to be the graph G = (V,E), where the vertex
set V corresponds to the set of IAs and two vertices are joined by an edge
in E if the associated IAs are the nearest neighbors in the square lattice. A
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Fig. 1. Number of groups of IAs as a function of their sizes. Points are averages over
10,000 outcomes of 11 × 11 periodic square lattices.

3



1 3 5 7 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

couples

sw
itc

h
in

g
 r

a
te

a) 1 3 5 7 9
0

0.01

0.02

0.03

0.04

0.05

couples

sw
itc

h
in

g
 r

a
te

b)

1 3 5 7 9
0.005

0.01

0.015

0.02

0.025

0.03

0.035

couples

sw
itc

h
in

g
 r

a
te

c)
1 3 5 7 9

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

couples
s
w

it
c
h

in
g

 r
a

te
d)

Fig. 2. Switching rate of independent agents (2) and of couples of IAs (◦) as a
function of couples of IAs. Points are averages over 100 outcomes of 11×11 periodic
square lattices after 50,000 time steps with a) m = 2, b) m = 5, c) m = 8 and d)
m = 11.

connected component of G is called a group of IAs, and the number of IAs in
the group is called the size of the group. Figure 1 shows the average number
of groups as a function of their sizes for several coefficients p of local infor-
mation, including p ∼ 0.11, the optimal coefficient according to [3]. There is
a relatively high number of groups of size 2, hence we now study the voting
dynamics in such two-agent groups.
In a group of two IAs there are two alternatives according to what the best

strategies of both agents say: either to play the same or to play differently. In
the first case, if the corresponding best strategies suggest the same side, then
the extra opportunity of these IAs will force them to swap their bets. Hence
they will play the same anyhow but the strategies will not get any virtual
points. The score of their strategies will not change and, therefore, both IAs
will repeat the same strategies in the next step. In the second case (i.e., if
the two IAs play differently), then they will not change their initial choices
in the interaction phase, hence one of them will win and the other will not.
The strategy used by the infortunate IA will sum no virtual points but the
non-used strategy could have rightly predicted the game’s outcome and it will
get one additional virtual point, so it may become the preferred strategy.
These dynamics clearly force the two IAs to play with their most similar
strategies: in case of coincidence these strategies do not get any points, hence
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m Similarity rate

2 0.742

3 0.677

4 0.627

5 0.591

6 0.565

7 0.544

m Similarity rate

8 0.532

9 0.523

10 0.516

11 0.512

12 0.508

13 0.504

Table 1
Similarity rates of two strategies as a function of m; i.e., the expected number of
coincident positions between the two most similar strategies of any two agents.
Values are obtained by averaging the fraction of coincidences over 10,000 couples of
pairs of strategies.

ensuring the repetition of both strategies in the next step. In other words, since
each player has two strategies, then two players have four possible combina-
tions of strategies, but the most used combination will be the one composed
by those strategies with the highest number of coincident predictions. This
behavior produces more coincidences between two neighboring IAs than the
expected coincidences for a couple of non-interacting agents. In particular, the
switching rate (i.e., the average number of steps in which a player switches to
another strategy divided by the total number of steps [2]) is expected to be
lower for IAs in two-agent groups than for standard players, regardless of their
final score. Our computational experience confirms this behavior, and these
results are presented in Figure 2.
The previous observations also imply that we can approximate a couple of

IAs by two agents with only one strategy each, such that these two strategies
coincide in a certain number of positions. If v, w ∈ {0, 1}2

m

are two strate-
gies, we denote by c(v, w) the number of coincident positions between them,
i.e., c(v, w) = 2m −dist(v, w), where dist(v, w) denotes the Hamming distance
between v and w. If wi

1
and wi

2
are the two strategies of agent i, we define

d(i, j) =
max{c(wi

1
, wj

1), c(w
i
1
, wj

2), c(w
i
2
, wj

1), c(w
i
2
, wj

2)}

2m
.

Finally, we define the similarity rate to be the expected value of d(i, j) for
randomly-chosen two-strategy agents i and j (see Table 1 for a computation
of these values). The similarity rate represents the expected number of coin-
cident positions between the two most similar strategies of any two agents.
We replace, therefore, each two-agent group by two single-strategy non-inter-
acting agents (called probabilistic agents), such that each position of these
two strategies coincides with probability equal to the corresponding similar-
ity rate. According to the previous discussion, this replacement is intended
to replicate the behavior of the group. A comparison of the efficiency of the
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Fig. 3. Reduced Variance (σ2/N) as a function of memory (m) comparing different
number of interacting couples with their equivalent probabilistic couples. Points are
averages over 100 outcomes of 11 × 11 periodic lattices after 50,000 time steps.

original mechanism by I. Caridi and H. Ceva with couples of IAs on one hand
and the model with couples of probabilistic agents on the other hand is pre-
sented in Figure 3. A close correlation between these two different models is
clearly observed, implying that the new probabilistic agents properly model
the behavior of couples of IAs in the original game. This shows that the in-
teraction procedure proposed in [3] can be simply understood as a mechanism
for the introduction of repetition patterns within the strategies of the agents
designated to be IAs.
The previous discussion applies to groups of IAs of size 2 but, in addition,

there may be groups of larger sizes. A properly defined similarity rate for such
groups is much smaller than the similarity rate for two-agent groups, due to
the increasing difficulty of synchronizing strategies in order to achieve coin-
cident bets. This fact, combined with the small expected number of groups
with more than two agents, implies that two-agent groups are responsible for
most of the effects introduced in the game by the local interaction mechanism.

3 The reaction of non-interacting agents

In this section we study the reaction of non-interacting agents to the pertur-
bations introduced in the game by the IAs. As the previous section shows,
the IAs in two-agent groups tend to play with their most similar strategies,
hence their best performing strategies will make coincident predictions with
a high probability. A similar situation may hold in groups of IAs with more
than two agents, but their effect is diminished by the small expected number
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Fig. 4. a) Histogram of the conditional probabilities Pc(1|um) (white bars) and
Pi(1|um) (black bars) with m = 5 for 117 individual 2-strategy agents plus two
couples of probabilistic agents (i.e., the agents from each couple have similar strate-
gies). There are 32 possible combinations of 0’s and 1’s. The numbers, when written
in binary form, yield the strings um. b) Histogram of the conditional probability
Pc(1|um) (white bars) and Pi(1|um) (black bars) with m = 6 for 117 individual
2-strategy agents plus two couples of probabilistic agents with one similar strategy.
There are 64 possible combinations of 0’s and 1’s. In both figures, bars are averages
over 100 outcomes of 11 × 11 periodic lattices after 50,000 time steps.

of such groups and the low similarity rates within them. We define a cluster

to be a subset of a group of IAs, whose agents coincide in their bets with a
higher probability than regular non-interacting agents. Note that, due to the
discussion in the previous section, any two-agent group is also a two-agent
cluster.
Since the agents in a cluster tend to make coincident predictions, then clus-

ters produce larger values of σ2/N easily detected by the other agents and,
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moreover, this detection is easier as the number of clusters increases. As the
IAs who used the extra opportunity do not sum points to their strategies
regardless of prediction, the probability for agents of a cluster of repeating
their bets for two subsequent occurrences of a given string is larger than the
standard value of (2m)−1/2 [9]. This allows other agents to recognize regular
clusters as weighted-like agents, hence learning to take clusters into account
for each decision. Since these deviations increase with the number of clusters,
individual players “see” the game earlier than in the MG, hence the value of
m attaining the minimum σ2/N is smaller for this model, as shown in Figure 3
and in [3].
The detection of the interacting agents by independent ones can be noticed by
studying the outcome of the game. To this end, we compute the conditional
probability of playing 1 for a given string um of length m when couples of prob-
abilistic agents take part in the game. Figure 4.a shows these values Pi(1|um)
and Pc(1|um) for m = 5 for individual players and two couples of probabilistic
agents with similar strategies (similarity rate 0.591), respectively. The his-
togram for Pi(1|um) is flat for this m (as seen in [9] for the standard MG)
showing that the clusters have not been detected yet. Figure 4.b shows the
values Pi(1|um) and Pc(1|um) for m = 6, and now individual players tend to
avoid the prediction made by the clusters.
In order to measure this tendency we compute the average distance between
Pc(1|um) and Pi(1|um) by

D =
1

2m

∑

um

|Pi(1|um) − Pc(1|um)|,

and Figure 5 shows these measurements as a function of m. As we can see,
for m ≤ 5 the plot of Pi(1|um) is flat (Pi(1|um) ∼ 0.5) and the expected
difference appears to be |Pi(1|um) − Pc(1|um)| ∼ |0.5 − Pc(1|um)| ∼ 0.188.
On the other hand, cluster detection appears for m ≥ 6, as shown by larger
average distances for growing values of m.

4 Concluding remarks

In this paper we studied the dynamics of a particular MG model with an ad-
ditional layer of interaction over a square grid. Regardless of the complexity
of the instance, local information managed by agents suggests that the re-
sulting dynamics of the game can be understood as an MG where groups of
similar one-strategy agents are allowed, the similarity rate being a measure
of the level of regular clusterization introduced by the proposed interaction.
As a consequence, agents learn sooner and the game moves the memory size
corresponding to the minimum waste of resources backwards as the number of
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Fig. 5. Absolute difference between conditional probabilities Pc(1|um) and Pi(1|um)
as a function of m for 117 individual 2-strategy agents plus two couples of proba-
bilistic agents with one similar strategy. The phase transition is observed for m = 6.
Points are averages over 100 outcomes of 11× 11 periodic lattices after 50,000 time
steps.

clusters increases, in correspondence with the results presented in [3]. Although
we have centered on a particular model, the described behavior dynamics and
the conclusions can be generalized to similar models with interaction promot-
ing concerted behavior among agents. We believe that this approach might
allow a simplified theoretical study of certain local interactions by using the
framework developed for the standard MG.
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