
Singularities of logarithmic foliations

Fernando Cukierman 1, Marcio G. Soares 2 and Israel Vainsencher 3

abstract

A logarithmic 1-form on CPn can be written as

ω =

(
m∏

0

Fj

)
m∑

0

λi
dFi

Fi
= λ0 F̂0 dF0 + · · ·+ λm F̂m dFm

with F̂i = (
∏m

0 Fj) /Fi for some homogeneous polynomials Fi of degree di and constants
λi ∈ C? such that

∑
λidi = 0. For general Fi, λi, the singularities of ω consist of a

schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly,
finitely many isolated points. This is the case when all Fi’s are smooth and in general
position. In this situation, we give a formula which prescribes the number of isolated
singularities.

1. introduction

The search for numerical invariants attached to algebraic foliations goes back to
Poincaré [13]. He was interested in determining bounds for the degree of curves left
invariant by a polynomial vector field on C2.

Recent work treat the question by establishing relations for the number of sin-
gularities of the foliation and certain Chern numbers and then using positivity of
certain bundles. For a survey of recent results, see [4], [7], [10], [14].

A foliation of dimension r on a smooth variety X of dimension n is a coherent
subsheaf F of the tangent sheaf TX of generic rank r, locally split in codimension
≥ 2.

If r = n − 1 (codimension one foliations), the foliation corresponds to a global
section of Ω1

X ⊗ L for some line bundle L.
Suppose X = CPn, with homogeneous coordinates x0, . . . , xn. Recall Euler’s

sequence,
Ω1
CPn(1) → O⊕n+1 → O(1).

A global section ω of
Ω1
CPn(d) ⊂ O⊕n+1(d− 1)

can be written as
ω =

∑n
0 Fidxi

where Fi is a homogeneous polynomial of degree d− 1, subject to the condition
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∑
Fixi = 0

(contraction by the radial vector field on Cn+1).
The degree of a codimension one foliation F , degF , is the number of tangencies

of the leaves of F with a generic one-dimensional linear subspace of CPn. A simple
calculation shows that degF = d− 2 if the 1-form defining F has components Fi of
degree d− 1. The form ω is integrable if ω ∧ dω = 0.

Integrable 1–forms make up a Zariski closed subset of P (H0(Ω1(d)). We denote
by Fol(CPn; d) the space of codimension one integrable holomorphic foliations of
degree d− 2 of CPn.

Not much is known about the dimensions nor the number of irreducible compo-
nents of Fol(CPn; d) (but see [8] and [9]).

When ω can be written as

ω =
m∏
0

Fj

m∑
0

λi
dFi

Fi

= λ0F̂0dF0 + · · ·+ λmF̂mdFm

for some homogeneous polynomials Fi of degree di and λi ∈ C? such that
∑

λidi = 0,
we say ω is logarithmic of type d = d0, . . . , dm. Given positive integers d0, . . . , dm,
set d =

∑m
i=0 di and consider the hyperplane

CP(m− 1, d) = {(λ0, . . . , λm) ∈ CPm |Σ diλi = 0}.
Define a rational map Ψ by

CP(m− 1, d)×
m

Π
i=0

P (H0(CPn,O(di)))
Ψ−→ Fol(CPn; d)

((λ0, . . . , λm), (F0, . . . , Fm)) 7−→ (
m

Π
j=0

Fj)
m

Σ
i=0

λi
dFi

Fi

The closure of the image of Ψ is the set Logn(d) of logarithmic foliations of type d
(of degree d− 2) of CPn. Recall the following result.

Theorem. (Calvo-Andrade [5]) For fixed di and n ≥ 3, logarithmic foliations form
an irreducible component of the space of codimension one integrable holomorphic
foliations of CPn of degree d− 2 (with d =

∑
di).

The singular scheme of the foliation defined by ω ∈ H0(Ω1(d)) is the scheme of
zeros of ω. This is the closed subscheme with ideal sheaf given by the image of the
co-section ω∨ : (Ω1(d))∨ → O.

For ω general in H0(Ω1(d)), there are just finitely many singularities, to wit (cf.
Jouanolou, [12, p. 87, Th. 2.3], setting in his notation, m = d− 1, r = n) ,

∫

CPn

cn

(
Ω1(d)

)
=

n∑
0

(−1)i

(
n + 1

i

)
dn−i.

On the other hand of course, a general ω is not integrable.
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Theorem. (Jouanolou [12]) For integrable ω, the singular set must contain a codi-
mension 2 component.

It is easy to see that, for logarithmic (hence integrable) forms

ω = λ0 F̂0 dF0 + · · ·+ λm F̂m dFm

the singular set contains the union of all codimension 2 subsets

Fi = Fj = 0, i 6= j.

It is worth mentioning that Jouanolou describes examples of integrable 1-forms
with singular schemes containing positive dimensional components of “wrong” pos-
itive dimension. We found no hint as to the existence of isolated singularities for
general enough foliations.

Let Di be the divisor associated to Fi. We assume the following genericity condi-
tions to hold:

(1)

{
the Di’s, i = 0, . . . , m, are smooth and in general position.
λi 6= 0, i = 0, . . . ,m.

Remark that (1) defines a Zariski open subset of

CP(m− 1, d)×
m

Π
i=0

P
(
H0(CPn,O(di))

)

Before stating our main result recall that the complete symmetric function σ`, of
degree ` in the variables X1, . . . , Xk is defined by: σ0 = 1 and, for ` ≥ 1,

σ`(X1, . . . , Xk) =
∑

i1+···+ik=`

X i1
1 . . . X ik

k .

We then have

Theorem. Let F be a logarithmic foliation on CPn of type d = d0, . . . , dm, given by

ω = λ0 F̂0 dF0 + · · ·+ λm F̂m dFm

and satisfying (1). Then the singular scheme S(F) of F can be written as a disjoint
union

S(F) = Z ∪R

where
Z =

⋃
i<j

Di ∩Dj

and R is finite, consisting of

N(n, d) =
n∑

i=0

(−1)i

(
n + 1

i

)
σn−i(d)

points counted with natural multiplicities. Moreover,
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(1) N(n, d) = 0 if n ≥ m and di = 1 for all i.
(2) N(n, d) =

(
m

n+1

)
if n < m and di = 1 for all i.

(3) N(n, d) > 0 whenever di ≥ 2 for some i.

It will be shown below, see formula (8) in 4.3, that

N(n, d) = the coefficient of hn in
(1− h)n+1

Πm
0 (1− dih)

from which we deduce:

1.0.1. Example. If di = 1 for all i then
(1− h)n+1

Πm
0 (1− dih)

reduces to
(1− h)n

(1− h)m and we

have items (1) and (2) of theorem:

(1) n ≥ m. In this case
(1− h)n

(1− h)m is a polynomial of degree n−m < n and hence

the coefficient of hn vanishes, so that there are no isolated zeros.

(2) n < m. In this case
(1− h)n

(1− h)m reads
1

(1− h)m−n
and it’s easily seen that the

coefficient of hn is
(

m
n+1

)
.

2. Proof of the theorem

We will show that, if a point is non isolated in S(F), then it lies in Di ∩ Dj

for some i < j. Indeed, let C be an irreducible component of S(F) of dimension
1 ≤ dim C ≤ n− 2. By ampleness and general position, we may pick a point p ∈ C
lying in the intersection of precisely k of the divisors Di, 1 ≤ k ≤ min{n,m + 1}.
Let fi be a local equation for Di at p. Near p, the foliation F is given by the 1–form

$ = f̂

m∑
i=0

λi
dfi

fi

.

Renumbering the indices we may assume p ∈ D0 ∩ · · · ∩ Dk−1. The local defining
equations fi = 0 of the Di’s, for i = 0, . . . , k − 1, are part of a regular system of
parameters, i.e., df0, . . . , dfk−1 are linearly independent at p. Write g̃ = fk · · · fm.
Since p 6∈ Dj, k ≤ j ≤ m, we may assume g̃ vanishes nowhere around p and write
$ as

$ = f0 · · · fk−1 g̃

[
k−1∑
j=0

λj
dfj

fj

+
m∑

i=k

λi
dfi

fi

]
= f0 · · · fk−1 g̃

[
k−1∑
j=0

λj
dfj

fj

+ η

]
,

where η =
m∑

i=k

λi
dfi

fi

is a holomorphic closed form near p. Since η is closed, by the

formal Poincaré lemma it is exact near p, say η = dξ. Set ϑ = $/g̃. Then F is
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defined around p by

ϑ = f0 · · · fk−1

[
k−1∑
j=0

λj
dfj

fj

+ dξ

]
= f0 · · · fk−1

[
λ0

d(exp[ξ/λ0]f0)

exp[ξ/λ0]f0

+
k−1∑
j=1

λj
dfj

fj

]
.

Set z0 = exp[ξ/λ0]f0 and z1 = f1, . . . , zk−1 = fk−1. Since u = exp[ξ/λ0] is a unit, we
have that also z0, . . . , zk−1 are part of a regular system of parameters at p. Now ϑ
can be written as

ϑ =
z0

u
z1 · · · zk−1

[
λ0

dz0

z0

+
k−1∑
j=1

λj
dzj

zj

]
.

Thus F is defined around p by the 1–form

(2) ϑ̃ = z0 z1 · · · zk−1

[
λ0

dz0

z0

+
k−1∑
j=1

λj
dzj

zj

]
=

k−1∑
j=0

λj z0 · · · ẑj · · · zk−1 dzj.

If k = 1, (2) shows that the foliation is defined near p by dz0 and then is non-singular
at p. Hence we necessarily have k ≥ 2. Note that the ideal of the scheme of zeros

of ϑ̃ (as well as of ω) near p is generated by the k monomials z0 · · · ẑj · · · zk−1 with
0 ≤ j ≤ k−1. That is just the scheme union ∪i,j Di∩Dj, for 0 ≤ i < j ≤ k−1. Thus
C must be contained in Di ∩Dj, for some i < j, and therefore C is an irreducible
component of Di ∩Dj and dim C = n− 2. 2

The formula for the finite part is proved in the next section in a slightly more
general context.

2.1. Remark. The argument above shows that the codimension two part, Z =⋃
Dij, of the singular scheme of a general logarithmic foliation is equal to the singular

scheme of the normal crossing divisor
⋃

Di. This will enable us to use Aluffi’s
formula for the Segre class. We also note that, since Dij is smooth and connected,
the component C is actually equal to some Dij.

3. formulas

Let E → X be a holomorphic vector bundle of rank n over a complex projective
smooth variety of dimension n. Let s : X → E be a section. Assume
(1) the scheme of zeros W of s is a disjoint union

W = Z ∪R

with R finite;
(2) there are Cartier divisors D0, . . . , Dm, m ≥ 1, such that

Z =
⋃
i<j

Dij
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as schemes, where
Dij = Di ∩Dj;

(3) for all choices of indices

Ir = (0 ≤ i1 < · · · < ir ≤ m) ,

the intersection DIr =
⋂

i∈Ir
Di is transversal.

We are mainly interested in the case where X = CPn and the section s is a
logarithmic form as in the Theorem in p. 3.

We give an expression for the number of points in R, counted with natural mul-
tiplicities, in terms of the intersection numbers

DJ · cj(E)

with
J = (j0, . . . , jm), DJ = Dj0

0 · · ·Djm
m , |J |+ j = n.

When Z =
⋃

i<j Dij is a disjoint union, the formula is but a simple direct appli-
cation of usual excess intersection techniques as reviewed below.

Disjointness implies that Z is a local complete intersection with explicitly known
normal bundle.

The ideal of W is the image I(W ) of the co-section

s∨ : E∨ → O.

It can be written as
I(W ) = I(Z) · I(R).

Locally, it is of the form I = 〈z0, z1〉 · m, where z0, z1 are equations for the
pair of transversal divisors cutting Z, and m denotes an ideal of finite co-length
corresponding to the finite part R ⊂ W . (Note that m = 〈1〉 if R is disjoint from
the present coordinate chart.)

Let π : X ′ → X be the blowup along Z. Put E ′ = π−1(Z), the exceptional
divisor. The pullback π?s∨ of the co-section maps π?E∨ onto

O(−E ′) · I(R′).

(R′ = π−1R). We get an induced map of sheaves

(s′)∨ : π?E∨ ⊗O(E ′) −→→ I(R′) ⊆ O.

Dualizing, we find a section s′ of

(3) E ′ = E ⊗ O(−E ′)

whose scheme of zeros is precisely R′ ' R, the finite part.
Indeed, since R is disjoint from the blowup center, π : X ′ → X is an isomorphism

in a neighborhood of R′. Hence, the length of OX′/I(R′) is the same as for R. This
implies the formula for the degree of the zero cycle,

(4) deg [R] = deg [R′] =

∫

X′
cn(E ′).
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To compute it explicitly, recall that the exceptional divisor E ′ is the projective
bundle P

(NZ/X

)
of the normal bundle of Z in X. The restriction of NZ/X to each

Dij is the restriction of O(Di) ⊕ O(Dj). Let ι : E ′ ↪→ X ′ be the inclusion. We
recall from [11, B.6, p. 435] a couple of facts that follow from the construction of the
blowup as Proj(⊕Ik) of the Rees algebra of the ideal sheaf I = I(Z). The natural
relatively ample line bundle OX′(1) is presently the image of π?I → π?OX = OX′ ,
thus it is equal to the exceptional ideal sheaf OX′(−E ′). The exceptional divisor
E ′ ⊂ X ′ is identified to the projectivization of the normal cone, Proj(⊕Ik/Ik+1).
Accordingly, we have the identification ι?π?I = I/I2 → ι?OX′(1). The latter is but
the hyperplane bundle OE′(1) of the CP1–bundle E ′ = P

(NZ/X

) → Z. We may
compute the self-intersection (cf. [11, 2.6, p. 44]),

(E ′)2 = ι?(ι
?E ′) = ι?(ι

?c1(OX′(E ′)) ∩ [X ′])
= ι?(ι

?c1(OX′(−1)) ∩ [X ′])
= −ι?(ξ ∩ [E ′])

with

ξ = c1(OE′(1)).

Recall that the push-forward of powers of the hyperplane class ξ of the CP1–bundle
E ′ = P

(NZ/X

) → Z are expressed (cf. [11, p. 47]) by Segre classes:

π?(ξ
j+1) = sj(NZ/X) ∀ j ∈ Z.

Writing [Dij] for the cycle class of Di∩Dj in the Chow (or homology) group A?X,
we have, for r ≥ 0,

(E ′)r+1 = ι? (ι?(E ′)r) = ι?((−ξ)r ∩ [E ′]).

We may write

π? ((E ′)r+1) = π?ι?((−ξ)r ∩ [E ′])

= (−1)r
∑
i<j

sr−1 (O(Di)⊕O(Dj)) ∩ [Dij]

in the group AmX of cycles of dimension m = n− 2− k.
Put

skij = sk (O(Di)⊕O(Dj)) ∩ [Dij]

= (−1)kDi ·Dj ·
k∑

u=0

Du
i Dk−u

j .

Since sj = 0 for j < 0, we also have

π?((E
′)) = 0.
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It follows from (4) and (3) that

deg [R] =

∫

X

π?cn(E ′)

=

∫

X

n∑
r=0

cn−r(E) · π?((−E ′)r)

=

∫

X

cn(E) +
n−1∑
r=1

(−1)r+1cn−1−r(E) · π?((E
′)r+1)

=

∫

X

cn(E) −
n−1∑
r=1

∑
i<j

cn−1−r(E) · s(r−1)ij

=

∫

X

cn(E)−
n−1∑
r=1

(−1)r−1cn−1−r(E)
∑
i<j

r−1∑
u=0

Du+1
i Dr−u

j .

The idea now is to reduce the general case to the above situation. This will be
done by a sequence of blowups along smooth centers with known normal bundles.

We explain how the reduction works, say in the case when all 4-fold intersections
are empty, for the sake of simplicity. The general case is entirely similar. Thus
assume

∀ I4 = (0 ≤ i0 < i2 < i3 < i4 ≤ m) ,
we have

DI4 :=
⋂

i∈I4
Di = ∅.

(This is the case if, for instance, dim X = 3.) It follows that for all choices of triple
indices,

I3 = (i < j < k) 6= I ′3 = (i′ < j′ < k′),
we must have

DI3 ∩DI′3 = ∅.
Now the union T of all triple intersections DI3 is smooth.
Let π : X ′ → X be the blowup along T . The strict transform D′

ij is equal to
the blowup of Dij along the disjoint union of Cartier divisors Dijk, hence D′

ij ' Dij

holds. Moreover, since Dij ∩Djk is a union of connected components of the blowup
center, it follows that D′

ij ∩D′
jk = ∅. We also have that the D′

i meet transversally.

Look at the pullback π−1W of the zero scheme of the section s. We will take
coordinates on X in a neighborhood of a point 0 ∈ D123, say. Near 0, W is equal to
the union D12 ∪D13 ∪D23. Let zi = 0 be a local equation of Di. Then the ideal of
W near 0 is equal to the intersection

〈z1, z2〉 ∩ 〈z1, z3〉 ∩ 〈z2, z3〉 = 〈z1z2, z1z3, z2z3〉 .
The blowup center, T , is locally given by 〈z1, z2, z3〉. The restriction of X ′ over the
present affine neighborhood of the point 0 is covered by three affine open subsets,
one for each choice of zi as a generator of the exceptional ideal O(−E ′).
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Say we take z1 as a local generator. We may write zi = z1z
′
i, i = 1, 2. Here z′i is

a local equation of the strict transform of Di.
The pullback of W is given by the ideal

I(π−1W ) = z2
1 〈z′2, z′3, z′2z′3〉 = z2

1 〈z′2, z′3〉 .
This is twice the exceptional ideal, times the ideal of the strict transform of D23.
Note that the strict transforms of D13 and of D12 are empty in the present neigh-

borhood of X ′. Thus the D′
ij are presently disjoint.

The local expression shows that the image I(W )OX′ of the co-section
π?s∨ : E∨ → OX′

is of the form
I(W )OX′ = O(−2E ′) · I(Z ′) · I(R′),

where the finite piece R′ = π−1(R) ' R and Z ′ = ∪D′
ij is the disjoint union of

pairwise transversal intersections of Cartier divisors D′
i.

Hence, we may apply the previous case to the section s′ = s ⊗ O(−2E ′) of E ′ =
E ⊗ O(−2E ′). We find

(5)

deg [R] = deg [R′]

=
∫

X′ cn(E ′)−
n−1∑
r=0

(−1)r−1cn−1−r(E ′)
∑
i<j

r−1∑
u=0

(D′
i)

u+1 · (D′
j)

r−u.

Let E ′
i denote the sum of the (disjoint) exceptional divisors over all DI3 with i ∈ I3.

Using the formulas D′
i = π?Di − E ′

i and universal formulas for c(E ⊗ O(−2E ′))
and applying π?, the above expression can be written in terms of the intersection
numbers DJ · cj(E).

In general, let r be the smallest integer such that for all possible choices of indices

Ir+2 = (0 ≤ i0 < i1 < · · · < ir+1 ≤ m) ,

we have
DIr+2 :=

⋂
i∈Ir+2

Di = ∅.

If m ≥ 2, we have r ≤ min(n− 1,m− 1) because dim X = n and the divisors are in
general position. Of course if r ≥ m no Ir+2 exists! If m = 1, set r = 1.

We then have that the union

Zr+1 =
⋃
Ir+1

DIr+1

of all (r + 1)-fold intersections among Di’s is smooth. Let π1 : X1 → X be the
blowup along Zr+1. A local analysis as performed above shows that the strict trans-
forms D1

i are in general position and the intersections D1
Ir+1

are empty. Moreover,

there is a section s1 of E1 = E ⊗ O(−rE1) with zeroes scheme W 1 equal to the
disjoint union Z1 ∪ R1, with R1 = (π1)−1(R) ' R. Here Z1 is the scheme union
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of the pairwise intersections D1
ij. Continuing this way, we construct a sequence of

blowups,

Xr πr−→ · · · π2−→ X1 π1−→ X

such that ultimately the bundle

Er = E ⊗ O(−rE1 − (r − 1)E2 − · · · − Er)

is endowed with a section sr whose scheme of zeros is exactly

Rr = (πr)−1 · · · (π2)−1(π1)−1(R) ' R.

Thus, we get the formula

deg (R) =

∫

X

π1
? · · · πr

? (cn(Er)) .

The right hand side may clearly be written in terms of the intersection numbers
DJ · cj(E).

4. Examples

Set for short ci = ciE . Let

σi = σi(D) =
∑

i0+···+im=i

Di0
0 · · ·Dim

m

denote the sum of all monomials of degree i in the classes of the Di.

4.1. m = 1. We find

n = 3 : deg (R) = c3 −D0D1c1 + D2
0D1 + D0D

2
1.

n = 4 : deg (R) = c4 −D0D1c2 + (D2
0D1 + D0D

2
1) c1 − (D3

0D1 + D2
0D

2
1 + D0D

3
1) .

These first few cases suggest the formula for general n, still with m = 1,

deg (R) = cn −
n−2∑

1

(−1)n−iσn−i(D)ci − (−1)nσn(D).

which will be generalized in the sequel.
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4.2. Aluffi’s formula. This was explained to us by P. Aluffi. In fact, nearly closed
formula can be achieved using Fulton’s residual intersection formula (RIF) [11,
9.2.3, p. 163], instead of the above blowup sequence. It requires the knowledge of
the Segre class of the excess locus Z =

⋃
Dij. This is rendered feasible thanks

to Aluffi’s formula for the Segre class of the singular scheme of a normal crossing
divisor D =

∑
Di, (cf. [2], proof of Lemma II.2). The formula reads

s(Z, X) =

((
1− 1−D∏m

0 (1−Di)

)
∩ [X]

)
⊗X O(D).

The right hand side uses Aluffi’s · ⊗ L operation on the Chow group introduced in
[1]: if ai is a class of codimension i in the Chow group, and L is a line bundle, then

ai ⊗ L =
ai

c(L)i
.

We have

(6) s(Z,X) = [X]−
((

1−D∏m
0 (1−Di)

)
∩ [X]

)
⊗X O(D)

The operation ·⊗L behaves well with respect to Chern classes of ‘rank 0 bundles’(!).
That is: if E, F are bundles of the same rank, then

((c(E)/c(F )) ∩ a)⊗ L = (c(E ⊗ L)/c(F ⊗ L)) ∩ (a⊗ L).

We have to pretend that the fraction in (6) is the quotient of the Chern classes of
two bundles of the same rank, so regard the second piece as(

(1−D) · 1m

∏m
0 (1−Di)

∩ [X]

)
⊗X O(D)

that is, view the numerator as the Chern class of the bundle O(−D)⊕O⊕m. Ten-
soring by O(D), the numerator turns from

(1−D) · 1m, into (1−D + D)(1 + D)m = (1 + D)m;

the denominator goes from
∏

(1−Di) to
∏

(1+D−Di); and again nothing happens
to the term [X], because it is of codimension 0. Bottom line,

s(Z, X) = [X]− (1 + D)m

∏m
0 (1 + D −Di)

∩ [X].

We apply Fulton’s RIF, in his notation, to the regular embedding i : X → Y
with X as above, and i equal to the zero section of Y := E ; we take for f : V =
X → Y = E the given section s as in the beginning of §3. Now we have, in one
hand, X · V = cn(E) by [11, Ex. 3.3.2, p. 67 or 6.3.4, p. 105]. Presently, the residual
intersection class R is equal to the class of the finite part R since the latter is disjoint
from Z. Hence we may write

[R] = cn(E) ∩ [X]− [c(E) ∩ s(Z, V )]n,



12

where [·]n denotes the n−codimensional part of a cycle. We get,

[R] = [c(E) ∩ ([X]− s(Z, V ))]n

= c(E) ∩
[

(1 + D)m

∏m
0 (1 + D −Di)

]

n

.

Hence

(7) deg R =

∫

X

[
c(E)(1 + D)m

∏m
0 (1 + D −Di)

]
.

4.2.1. Remark. Let us recall a nice observation in [3] to the effect that, if F is a
virtual sheaf of rank n− 1 then cn(F ⊗ L) = cn(F ) for any line bundle L. We may
write

c(E)(1 + D)m

∏m
0 (1 + D −Di)

= c

(
E +O(D)⊕m −

m⊕
0

O(D −Di)

)

= c
((

E ⊗ O(−D) +O⊕m −
m⊕
0

O(−Di)

︸ ︷︷ ︸
rank = n− 1

)
⊗O(D)

)
.

Thus, in degree n we find
[

c(E)(1 + D)m

∏m
0 (1 + D −Di)

]

n

=

[
c(E ⊗ O(−D))∏m

0 (1−Di)

]

n

.

This can be expanded as

n∑
0

ci(E ⊗ O(−D))σn−i(D) =
n∑
0

i∑
0

(
n− j

i− j

)
cj(E)(−D)i−jσn−i(D).

4.2.2. Remark. The preprint by F. Catanese, S. Hoşten, A. Khetan and B. Sturmfels
[6] also contains a similar formula, deduced by different methods and in the context
of another subject, namely, algebraic statistics.

4.3. Foliations on CPn. For E = Ω1
CPn (d), the above reduces to

(8)

degR =
coefficient of hn in

[
(1− h)n+1

Πm
0 (1− dih)

]

=
n∑

i=0

(−1)i

(
n + 1

i

)
σn−i(d)

with σn−i the complete symmetric function of degree n− i in d0, . . . , dm.
One further application of Remark 4.2.1 yields the following positivity result.
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4.3.1. Proposition. Assume at least one di ≥ 2 (and of course all di ≥ 1). Then
we have degZ > 0.

Proof. We show that, under the change of variables di = ei + 1, the formula (8)
becomes

degR =
n∑
0

(
m− 1

i

)
σn−i(e).

The latter is obviously > 0 if some ei > 0. To show the last equality, we use 4.2.1
to write

cn

(
O(−h)⊕n+1 −

m⊕
0

O(−dih) +O⊕m−1

)

= cn

(
O⊕n+1 −

m⊕
0

O(h− dih) +O(h)⊕m−1

)

=

[
c

(
O(h)⊕m−1 −

m⊕
0

O(h− dih)

)]

n

=

[
(1 + h)m−1

∏m
0 (1− eih)

]

n

= σn(e) + (m− 1)σn−1(e) +
(

m−1
2

)
σn−2(e) + · · ·

2
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