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60. Introduction

Let X C P" be a projective variety of dimension n and degree d, over the complex numbers.
For each finite linear projection 7 : X — P™ let M(7) be the monodromy group of 7, a
subgroup of the symmetric group Sy, defined up to conjugacy. Also, we denote by M(X)
the finite collection of all M(7) for varying . This is a discrete invariant associated to X.

The first two sections of this article contain preliminaries about the definition of M (X).
Some basic questions are posed in (2.8). The only new result is the calculation in (2.9) of
M(X) when X is a general plane curve.

In §3 we sketch Lazarsfeld’s application to monodromy groups of linear series of the case in

which X 1s a Grassmannian in its Plicker imbedding. This case was the main motivation
for our work.

Typeset by AsS-TEX
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Section four is a report on an article by Zariski. In that article Zariski classifies the projec-
tions of a rational normal curve such that the monodromy group is a Frobenius group. The
main result is stated in (4.22).

We thank R. Steinberg, R. Lazarsfeld and A. Nobile for useful conversations. Also, we are
grateful to the referee for several comments and corrections.
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§1. Coverings

Let X be a connected and locally path connected topological space and f : ¥V — X
a covering (i.e. locally trivial with discrete fibers). Fix a point 9 € X and let F =
f~'(x0). By lifting paths, the group = = m; (X, 7¢) acts on F, giving rise to the monodromy
(covariant) functor
o {Coverings of X} — {left © — sets}

The basic theorem of covering space theory (see [S] for example) may be formulated as
saying that

(1.1) ( is an equivalence of categories.

We consider the diagram
(1.2) 7= S(F) « Aut(Y|X)

where S(F') = Aut(F) is the symmetric group of the set F', the left map is monodromy and
the right map is restriction. We denote M = M(Y'|X) = image(r — S(F')) the monodromy
group of the covering and D = D(Y|X) = image(Aut(Y|X) — S(F)) the group of deck

transformations.

(1.3) Proposition: dm = md for all d € D and m € M.
In other words, M C ZD and D C ZM, where Z denotes centralizer of a subgroup of the
symmetric group.

Proof: It is straightforward: Suppose d = o|p € D for ¢ € Aut(Y|X) and m € M is
induced by v € 7. If yo € F is a point in the fiber, let T be a lift of v such that I'(0) = yo.
Then dm(yo) = o(I'(1)). On the other hand, since I'' = o oI is a lift of v with initial point
o(yo), we have md(yo) = I''(1) = o(I'(1)), as wanted.

(1.4) Proposition: D = ZM.

Proof: If o € S(F) satisfies om = mo for all m € M then o is a m-map and then, by
(1.1), it belongs to D.

(1.5) Remark: The equality M = ZD does not hold in general. It holds if and only if the
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monodromy group M satisfies M = ZZ M. Two cases where this happens are:
(i) M = S(F) (here ZM = {1}), and
(i) if H is any group, consider the left and right regular representations of H

HLsH) L H

defined by L(h)k = hk and R(h)k = kh™!. Tt is easy to check that ZL(H) = R(H),
ZR(H)= L(H) and hence ZZL(H) = L(H).

We may combine (i) and (ii) as follows:

Let n € Nand H a group. Let M be the semi-direct product S,, x H", where S,, acts on H"
by permuting the factors (M is called the wreath product S, ! H). We consider the action
of M on the disjoint union {1,...,n} x H of n copies of H such that S,, permutes the copies
and H acts regularly on the right on each copy, that is,

(o, h1,... hp).(J,h) = (a(j),h.hj_l)

for o € Sy, h,h; € H and 1 < j < n. It is easily seen that the centralizer of M is the left
regular action of H defined by k.(j,h) = (j,k.h), (h,k € H), and the double centralizer of
M coincides with M.

Conversely, (after conversation with R. Steinberg)

(1.6) Proposition: A transitive permutation group which equals its double centralizer is
isomorphic to a wreath product as in (1.5).

Proof: First we make some general remarks.

(1.7) If F is a finite set and M C S(F) is a transitive permutation group, let M’ denote the
stabilizer of some f € F. If M/M' = {m.M'|m € M} denotes the set of right cosets then
M acts on M/M' by n.(m.M') = nm.M" and the map M/M’' — F sending m — m(f) is
an isomorphism of left M-sets.

If M is an abstract group and M’ C M a subgroup, the action of M on M/M' gives a
homomorphism

p:M — S(M/M')

with kernel M" = ({mM'm~1, m € M}. The normalizer NM' of M’ in M acts on M /M’

by right multiplication, giving a homomorphism

p't NM' — S(M/M')
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It is easy to check that ker(p’) = M’ and image(p’) = Zp(M).
Let us remark that (1.2) may be redrawn as

(1.8) M/M" < S(M/M') <> NM' /M’

where the left arrow is left multiplication, and corresponds to monodromy, and the right
arrow is right multiplication, and corresponds to deck transformations.

The action of NM'/M' on M/M’', given by mM'.n = mM'n™" = mn='M' (m € M,n €
NM'), preserves the partition of M /M’ into right cosets M/M" = ||, c s n a0 m-NM'[M'.
Also, the action on each coset corresponds to the right regular action of the group NM'/M’.
By (1.5), the centralizer of NM'/M' (that is, the double centralizer of M /M") is the wreath
product S(M/NM') 1 (NM'/M"). In particular, if M C S(F) is a permutation group
(M'" ={1}) such that M = ZZM then M is a wreath product, as claimed.

(1.9) If X is path connected and f : ¥ — X is a covering with fiber F' = f~'(x¢), then
f corresponds to a homomorphism 7 — S(F'), which we may consider as consisting of two
data: a homomorphism m : 7 — M of the fundamental group = = 71 (X, 2¢) into the group
M, and a permutation representation M — S(F'). The associated Galois cover f:Y 5 X
is, by definition, the covering corresponding to

2 M L S(M)

(we only change the permutation representation, the new one being the left regular repre-
sentation of the abstract monodromy group M). The Galois group G(Y|X) is defined to
be the group of deck transformations D(f/|X) of the associated Galois covering. Notice
that G(Y|X) is abstractly isomorphic to the monodromy group M (Y |X), but their natural
actions are by right and left translations, respectively (see (1.8)).

A connected covering is said to be Galois when it 1s isomorphic to its associated Galois
cover; or, equivalently, when D is transitive, or also, when card(D) = card(M) (notice
that since D acts with trivial stabilizers and M is transitive, the inequalities card(D) <
card(F') < card(M) hold true).

As an example, any connected covering with abelian monodromy group is Galois; this
follows from the fact that a transitive abelian group is regular, i.e. it is acting on itself by
translations, see [W].

If f corresponds to the subgroup M’ C M asin (1.7) then the M-map M — M/M' gives
a factorization of f asV = Y 25 X. Given a group homomorphism 71 (X, 29) — M it
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induces a Galois cover Y — X: intermediate covers Y — Y — X correspond to subgroups

of M.

§2. Projections

(2.1) If f: X — Y is a finite map of smooth complex algebraic varieties, we define the
monodromy of f as the monodromy of the covering f~1(U) — U, where U C Y is the
complement of the branch locus, with its complex topology.

(2.2) Let X C P be a projective variety of dimension n and degree d. Assume X is not
contained in a hyperplane. For each linear subspace L™ "~! C P” disjoint from X we
consider the projection py, : P" — L — P" with center L, and its restriction to X

fL:X—>[EDn

We denote My (X) = My C S, the monodromy group of fr. Notice that My, is defined only
up to conjugacy; it depends on the choice of a fiber F of f7, and a bijection ' — {1,...,d}.

(2.3) Proposition: If X is smooth and connected, for general L the monodromy group
M (X) is the whole symmetric group S.

Proof: By intersecting X with a general linear space, it is enough to consider the case
where X is a curve. In fact, if f; : X — P" is a projection as above, consider a general
one dimensional linear subspace P! & P C P" and let X' = f;'(P) = L' N X, where
L' = p;'(P). By Bertini’s Theorem (see [Ha]) X' is a smooth linear section of X of
dimension one. We have a cartesian (pull-back) diagram

X — X
fL’l lfL
Pl —  P»

Since it i1s clear that the monodromy group M contains the monodromy group My, it
would be enough to see that My is the whole symmetric group Sy, as claimed.

Suppose then that X C P" is a curve.
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(2.4) For further use, we now recall the fact that for a finite map of curves, the monodromy
group is generated by the local monodromies.

More precisely, let f : X — Y be a finite map of degree d between smooth connected
complete algebraic curves over the complex numbers. Suppose y1,...,y, € Y are the
branch points of f. We have an equality of divisors on X

fyi) = Z CijTij

1<5<d;

where f~'(y;) = {xi,..., 74, } and e;; € N is the ramification index of f at x,;; they satisfy
El<j<d,» eij=dfor ] <i<w. Let Y =Y —{y1,...,yw}. Let us fix a point y € Y’ and
choose v; € m1 (Y, y) such that the index of rotation of 4; around y; is zero (resp. non-zero)
for j # 1 (resp. j =1). Then 41,...,vw generate the kernel of 71 (Y',y) — 71 (Y, y).

Let us now assume Y = P!, Then the v; generate m1(Y",y). Also, m1 (Y, y) is the free group
generated by the ~; with the relation [[; v = 1 (but we will not need this last fact).

Denote o; € S(F) the monodromy action of ~v; on F = f~1(y). We call o; the local
monodromy around y;. Since the 7; generate m (Y’ y), the o; generate the monodromy

group of f.

Also, we claim that o; is a product of disjoint cycles of orders e;;, for 1 < 7 < d;. To see this
it is convenient to choose the ~; in the following explicit way: let U; — D; be a holomorphic
coordinate chart around y;, where D; C C is an open disk in the complex plane. Let s; be
a small closed simple loop around y;, image of a circle in D;, and let ¢; be a path joining y
to a point of s;; then take ~; = ti_lsiti. The covering

flus = £71 U = {wi}) = Ui = {wi}

is a disjoint union of coverings isomorphic to f;; : D; — Dy, fi;(2) = 2. The claim easily
follows from this. For example, if f has simple ramification (i.e. d; =1 for all ¢, and e;; = 2)
then the monodromy group is generated by transpositions. We refer to [F| for more details.
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Now let us continue with the proof of (2.3). A general projection to P? sends X birationally
onto a nodal curve X', and projecting X’ from a point which is not on a bitangent line or
a flex line we obtain a linear projection X — P! with only simple ramification, and hence
the monodromy group is generated by transpositions. The proof is completed by

(2.5) Lemma: If M C S;is a transitive subgroup generated by transpositions then M = Sg.

Proof: Let T denote the set of transpositions which belong to M, so that T' generates M.
Since T # (), by renumbering we may assume (12) € T. If T.{1,2} = {1,2} then M would
not be transitive (unless d = 2), so there exists 7 = (ab) € T with a = 1 or 2 and b > 2; by
renumbering we may assume (13) € 7. Then, M contains S{1,2,3} = group generated by
(12) and (13). If d > 3, since M is transitive T.{1,2,3} # {1,2,3}, T contains, say, (14); it
follows that M D S{1,2,3,4}. Continuing in this way we obtain the result.

(2.6) Example: If X — P! is finite of degree d > 2 with simple branching then Aut(X|P1) =
{1}. In fact, by (2.5) the monodromy group is the full symmetric group and its centralizer
is then trivial (see (1.4)).

(2.7) Definition: with notation as in (2.2), we let
M(X)={Mr(X):L e Grass(r —n—1,P"), LNX =0}

(2.8) We remark that M(X) is a collection of conjugacy classes of subgroups of a symmetric
group; hence, it is a combinatorial invariant associated to the projective variety X. If H is
a component of a Hilbert scheme, we define M(H) as M(X) for X a general point of H.
One may ask various questions about this invariant: is it trivial 7 (i.e. are there H’s for

which M(H) # {S4}), does it distinguish irreducible components of a Hilbert scheme ? (for
example for curves in 3-space).

The following proposition answers such questions in a very modest case.
(2.9) Proposition: If X C P?is a general plane curve of degree d then M(X) = {S4}.
Proof: Let X be a plane curve of degree d without special bitangents or flex tangents (X

is smooth, all bitangents are simply tangent at two points, all flex tangents have contact
three at the flex, and no three bitangents or flex lines are concurrent). The general X
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satisfies these conditions. If p € P? — X we claim that the monodromy M, of the projec-
tion f, : X — P! is the full symmetric group. To see this, let’s first observe that if f, is
branched at the points ¢1,..., ¢, € P! then M, is generated by w permutations, but since
the product of these w permutations is 1, M, is actually generated by any w — 1 of them.
We now distinguish a few cases:

(a) p belongs to at most one bitangent or flex line (or none).

(b) p is the intersection of two bitangents.

(c) p is the intersection of a bitangent and a flex line.

(d) p is the intersection of two flex lines.

In case (a) M, is generated by transpositions, thus by (2.5) it is the full symmetric group.
In cases (b) and (c) M, is generated by (12)(34) and transpositions, and in case (d) by a
3-cycle and transpositions. The proof is finished by using the next two Lemmas.

(2.10) Lemma: If M C Sy is a transitive group generated by (12)(34) (d > 4) and trans-
positions then M = S,.

Proof: Let (12)(34) = o and suppose d > 5 first. Since M is transitive, there is a
transposition 7 € M that does not preserve the set {1,2,3,4}, and by renumbering we may
assume 7 = (15). Then, (o7)%¢c = (12) € M and M is generated by transpositions. By
(2.5), M =Sq.

In case d = 4, since (o) is not transitive there must be some transposition 7 € M. If, for
example, (13) € M (other cases are similar) then (13)c = (1234) € M and then M =S,
since 1t contains a 4-cycle and a transposition.

(2.11) Lemma: If M C Sy is a transitive group generated by a 3-cycle and transpositions
then M = Sy, unless d = 3 and M is generated by the 3-cycle.

Proof: 1If d = 3 and M contains a transposition then clearly M = S3, and if M does
not contain any transpositions we are in the exceptional case. Considering d > 4, we may
assume by renumbering that o = (123) € M. There exists a transposition 7 € M that
does not preserve {1,2,3}, and we may assume 7 = (14). Then, oro™! = (24) € M and
o(24)07! = (34) € M. Hence, M D S{1,2,3,4} and thus o is a product of transpositions
in M; then M is generated by transpositions and, by (2.5), is the full symmetric group.

(2.12) Remark: The exceptional case in (2.11) corresponds to a cubic with three concurrent
flex lines; this curve is a triple cyclic cover of P! and hence has an automorphism of order
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three with fixed points, its j-invariant is then zero. Then, this case does not occur for a
general cubic.

§3. Monodromy of linear series with p =0

(3.1) Let X be a smooth projective variety of dimension n, and E a vector bundle on X of
rank r. For each linear subspace V C H°(X, E) of dimension r, consider the homomorphism

ev : V0Ox - F

restriction of the canonical homomorphism H° (X,E)®Ox - EtoV®Ox. If Vis such
that det(ev) € H°(X, A" E) is non-zero then we denote by Dy the divisor of zeros of det(ey ),
that is, Dy 1s the first degeneracy locus of ey . Assuming that for general V' it is true that
det(ey) # 0, we have a rational map

§: Grass(r, H*(X,E)) — PH°(X,\"E)
(3.2) We remark that ¢ factorizes as
Crass(r, H(X,E)) —%— PA" H*(X,E) —— PHX,\"E)

where o 1s the Plucker imbedding, sending V into A"V, and v is the canonical linear map.
Therefore, when ~ is surjective, § may be thought as a linear projection of a Grassmanian
in its Pliicker imbedding. Let us also notice that for § to be finite one needs the numerical

condition R°(X,A"E) — 1 = r(R°(X, E) — r).

(3.3) Now let f: X — B be a family of smooth complete algebraic curves of genus ¢g. Fix
r,d € Nandlet oy : W7 (f) — B denote the family of linear series of dimension r and degree
d on the fibers of f. Suppose p=9¢g — (r+1)(¢ —d+r) =0 and oy is finite. Eisenbud and
Harris considered in [EH] the question of what is the monodromy group of o4 when f is a
family of curves of genus ¢ with general moduli.

(3.4) To prove, for instance, that such a monodromy group is the full symmetric group, it
is enough to do it on a particular family f : X — B as above. Lazarsfeld proposed in [L]
to consider a complete linear system |C| of curves on a general K3 surface X. He showed
that the problem reduces to determining the monodromy of a certain finite projection of
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a Grassmannian as in (3.2), with E a rank two bundle on X such that A2E = Ox(C).
The idea is that ¢ : Grass(2, H°(X, E)) — |C] is isomorphic to the family of linear series in
the members of |C'|. We refer to [L] for details. This construction motivated our work on
monodromy of projections, but to our knowledge the case of Grassmanianns remains open.
Specifically we ask, as a particular case of (2.8):
(3.5) If G C PV is a Grassmannian in its Pliicker embedding, what are the monodromy

groups of the finite linear projections of G 7

64. Zariski’s article
In this section we give a report on [Z]. That article partially answers the questions posed
in (2.8), in the particular case where X C P? is a rational normal curve of degree d. By
composing with the Veronese embeding, the question becomes:
(4.1) which groups occur as monodromy groups of degree d maps

f:Pl P!
We refer to [GT] for current work on this and related questions.

Let f: X — Y be a degree d map of Riemann surfaces, branched at y1,...,y, € Y, so that
y) = E]‘ dijxi; with E]‘ d;; = d. We have the Riemann-Hurwitz formula

(4.2) 29(X) =2 =d(29(Y) =2) + Y (dij — 1)
‘7j
If f is Galois then d;; = d; (all j) and (4.2) reads

(43) 2(X) ~2 = d(26(¥) ~2) + 43 1~ +

If f is not necessarily Galois let’s compute, for later use, the genus g(X) where f: X - Y
is the associated Galois cover. The local monodromy o; € Sy of f at y; is a product of
disjoint d;;-cycles (see (2.4)) and hence its order is the least common multiple d; of the d;;’s
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(j = 1,2,...). The monodromy group M of f is generated by o1,...,0, and the local
monodromy of f at y; is L(o;) where L : M — S(M) is the left regular representation (1.9).
Being a regular element of order d;, L(o;) is a product of |M|/d; disjoint &;-cycles. Applying
(4.3) we obtain

(44 29(X) ~ 2= [MI(29(Y) = 2) + [ Y (1~ )

Notice that g(X) is not determined by the branching data d;; only, it also dependes on |M|,
see (4.7).

Coming back to (4.1), we now review the well-known Galois case, due to Klein. If f : P! — P!
is Galois of degree d, it follows from (4.3) that

2 1 w
4. 2— — = 1—=> —
5 R

and hence w < 3.

If w = 2, it follows from (4.5) that d; = dy = d; thus 0y = o, * are both d-cycles and M is
cyclic of order d.

If w = 3, choose notation so that 2 < d; < dy < d3 < d. If dy > 3 then (4.5) is violated,
hence d; = 2 (d is then even) and (4.5) becomes

1 1 1 2
(4.6) d2+d3_2+d
If do = 2 then d3 = d/2; M is generated by oy, 03,03, the first two are products of d/2
disjoint 2-cycles, and o3 is the product of 2 disjoint d/2-cycles, satisfying oy0203 = 1; it
follows that oy0309 = 03_1 and thus M is dihedral.
If dy = 3 then (4.6) implies (6 — ds)d = 12d3, so d3 < 5.
If ds = 3 then d = 12 and M 1s the tetrahedral group.
If d3 = 4 then d = 24 and M is the octahedral group.

If ds = 5 then d = 60 and M 1s the icosahedral group.

(4.7) Remark: In general, the local monodromies do not determine the monodromy group.
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For example, if @ = (1234) € Sy, the data

(a) @, 2%, 271 2, 2% 27! and

(b) @, y, &~ " a,y, 2", with y = (12)(34)

both determine coverings of P! with the same local monodromies, but the monodromy
groups are cyclic and S, respectively.

The previous analysis shows that for the Galois coverings the local monodromies do deter-
mine the monodromy group.

Zariski considers coverings f : P! — P! such that the monodromy group is a Frobenius
group. He determines which such groups occur and, more importantly, how they occur.
The result is stated in (4.22).

We recall some definitions and facts from group theory before carrying out Zariski’s analysis.
See for example [A], [Hall] for more details.

(4.8) Definitions: A permutation o € Sy has class s if it permutes exactly s letters (i.e. it
leaves fixed exactly d — s letters); o is semi-regular if all the (non-trivial) cycles in its cycle
decomposition have the same length, and o is regular if it is semi-regular of class d.

A subgroup M C S, has class s if all its elements (except the identity) have class at least s
and if it contains elements of class s. For example, a regular permutation group (that is, a
group acting on itself by translations) consists of regular elements and has class d; it is easy
to see that, conversely, a transitive group of class d is regular.

A group is a Frobenius group if it is isomorphic to a transitive subgroup M C Sy of class

d—1.

As an example, it is a theorem of Galois that a transitive subgroup M C Sy, with d prime,
has class d — 1 if and only if it is solvable. In this case, M is realized as a subgroup of the
affine group of a one dimensional vector space over the field with d elements (see [R] and
the introduction to [Z]).

(4.9) Zariski’s motivation for considering coverings with Frobenius monodromy group is the
following: if K' C L is the field extension obtained by adjoining a root of p € KJt] (char
K = 0) then the extension is Galois when all other roots belong to L, that is, all roots are
rational functions of any one of them, and the extension is Frobenius when all the roots are
rational functions of any two of them. Then, Frobenius is the "next” case after Galois. In
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the context of coverings, let f : X — Y be a covering with monodromy group M C Sg.
Then f is Galois when the stabilizers M; of a letter i are trivial, and f is Frobenius when
the stabilizers M; ; of two letters are trivial, that is, when M has class d — 1.

(4.10) Let M C Sq be a transitive group of class d — 1, and define
Mi={meM:m@)=1:i} (1=1,...,d)

H ={m & M : m has class d} U{1}

The following is a well known theorem in group theory ([A], [Hall])
(4.11) Theorem (Frobenius): H is a subgroup of M (clearly normal).

(4.12) Since M is transitive, |M| = de where e = |M;| for any ¢, and since the class of M is
d—1, M; " M; = {1} for i # j, and thus M is a disjoint union M = Hﬂﬂle M; —{1};
then de = |H| + d(e — 1) and it follows that |H| = d. Combining this with the fact that
every element of H is fixed-point-free, we conclude that H is transitive and hence regular.
Also, M; acts on {1,2,...,d} — {i} without fixed points; this implies that ¢ is a divisor of
d—1. Also, we claim that M; is semi-regular: if s € M; contained in its decomposition into
disjoint cycles an a-cycle and a b-cycle with @ < b then s* € M; — {1} would have more
than one fixed point.

(4.13) Lemma: If M C S, is a transitive subgroup of order de with e > 1, then M is of
class d — 1 if and only if

(a) M contains a normal subgroup H of order d

(b) hm #mhforhe H—-{1},me M —H

(c) e divides d — 1

Proof: If M is Frobenius, (a) and (¢) follow from (4.11) and (4.12), and (b) is clear since
a permutation of class d cannot commute with one of class d — 1.

Conversely, if M; denotes the stabilizer of 7,(¢) implies that e = |M;] is coprime with d = |H|
and hence M; N H = {1}. Hence, H is of class d and, as in (4.12), it is regular. Suppose
that there existed m € M fixing two letters, say ¢ and j. Since H is regular there exists a
unique h € H such that k(i) = j. The element mhm ™1 belongs to H (H is normal) maps i
to j, and hence equals h, which contradicts (b).
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(4.14) Let X be a Riemann surface of genus p and f : X — P! a map of degree d with
monodromy group M C Sq. Assume that M is of class d — 1; we will use the notation
introduced in (4.10). If X — P! is the associated Galois map then the presence of the

normal subgroup H provides the diagram
X —4 ., X/H

(4.15) l l
X=X/M, —2 5 P'=X/M

where d and e indicate degrees and all maps, except f, are Galois.

Denote the local monodromies of f by 01,...,00 € H and 71,...,73 € M — H where o;
has order s; and hence is a product of d/s; disjoint s;-cycles, and 7; has order ¢; and is a
product of (d — 1)/t; disjoint t;-cycles. By Riemann-Hurwitz,

d (d—1)
4.1 —(s; —1 ti—1)=2d+2p—2
(4.10) S e SR - =2
Combining (4.4) and (4.16) we obtain

(4.17) 29(X) — 2 = %

where r =Y ¢ d(1 —1/s;), and it follows that

(4.18) If p = 0 then g(X) =0 or 1.
(4.19) Lemma: With the notation above, we have Zg(X) —2= Zg(X/H) — 24 2ep.

Proof: the Galois covering f~corresponds to a homomorphism of the fundamental group

71 — M and g : X/H — X /M corresponds to the composition =y — M — M/H.

Under this map o; goes to zero and 7; goes to an element of the same order t; (because

M N H =A{1}). By Riemann-Hurwitz,

. 1

2(X/H)—2=-2 1——
g(X/H) c+ey :

J J
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and the result follows by combining with (4.16) and (4.17).

(4.20) Corollary: If p = 0 and g(X) = 1 then H is a group of translations of the elliptic
curve X.

Proof: otherwise H would contain elements with a fixed point and g(X/H) would be
zero, contradicting (4.19).

Let f : P! — P! be a map of degree d with monodromy M of class d — 1.
According to (4.18) we consider 2 cases: g(X) =0 or 1.

Suppose g(X) = 0. Then f:P* — P! is one of the Klein types.
(i) M cyclic is excluded by (4.13)(b).
(ii) since the icosahedral group is simple, it is excluded by (4.13)(a).

(i) if M = S, is octahedral, its only normal subroups are the Klein 4-group and the
alternating group, both of which violate (4.13)(c).

(iv) if M is tetrahedral (= alternating in 4 letters) then (4.13) is satisfied for H cyclic of
order 4, and if M; is the group of symmetries of the tetrahedron fixing one vertex then

P'/M; — PY/M
is Frobenius of degree 4. It is easy to check that the branching occurs at three points, with
local monodromies

3-cycle + 1l-cycle, 3-cycle 4+ 1-cycle, 2-cycle + 2-cycle.

(v) if M = Dy is dihedral then (4.13) is satisfied (only) with H cyclic of order d. By
(4.13)(¢), dis odd. If 7 € M — H is any element of order two then

f:PY(r) = PY/M

is Frobenius of order d. If p = {p1, ..., pa} are the vertices of a regular d-gon on the ecuator
of the Riemann sphere, ¢ = {q1,...,qq} are the midpoints of the sides of the d-gon, and
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P = {N,S} are the two poles, then it is easy to check that f is branched at the three orbits
p, ¢ and P with respective local monodromies

l-cycle 4+ (d — 1)/2 2-cycles, 1-cycle + (d — 1)/2 2-cycles and d-cycle.

Now suppose X = E is a curve of genus one. The group of linear equivalence classes of
divisors on E of degree zero acts on E, denote by T' C Aut E the corresponding group of
translations; T is a normal abelian subgroup and it is well known (see [Ha] for example)
that (Aut E)/T is cyclic of order 2, 4 or 6. We need to characterize finite subgroups
M C Aut E with a normal subgroup H satisfying (4.13). From (4.20), we know that H has
to be a subgroup of T'. Since T is abelian, (4.13)(b) implies that M N'T = H, and then
M/H — Aut E/T. It follows that M/H is cyclic of order 2,3,4 or 6, and if € M generates
M modulo H then M is the semi-direct product M = (p).H. The translations of E are
characterized as those automorphisms without fixed points. Let’s choose a fixed point 0 of
as an origin for a group structure on F; then p is a group automorphism and H corresponds
to a subgroup K C E = S! x S!. The condition that H is normal in M translates into the
fact that K should be u-stable and, by (4.13)(c), |I| — 1 should be divisible by the order of
(. We obtain a Frobenius map

f:E/(n)=P' - E/M =P!
of degree d = |K| and monodromy M. Now we distinguish several cases:

(a) E is any elliptic curve; p(z) = —uz.
Here K C FE is any subgroup with d = |K| odd. To work out the branching pattern of f
consider, more generally, the situation

(4.21) X isa curve, M = HG C Aut X, HNG ={1}, H C M is normal, X 2 X/G J,
X/M are the natural maps and f = fg. Fora € X let y = f(x), then g, f*(y) = g.9* f*(y) =
deg g.f*(y) and hence

Frly)=(degg)™ Y glma)= > glma)=> g(ha)

meM GmeG\M heH
since the natural map H — G\ M is bijective.

In the present case, let {0 = py, p2, p3, psa} be the 2-torsion points. Then, ¢ is branched at
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p; and unbranched at h.p; for h € H — {1}. It follows that f*(f(pl)) = > hen 9(h.pi) =
g(pi) +23°, g(h.p;) where the sum is over representatives of {h,h~'} for h € H — {1}, and
then f is branched over four points with local monodromies

(d —1)/2 2-cyles + one 1-cycle

(b) E=CJZ +iZ (i* = —1); u(z) =i.z, z € C.
Now K C FE is an i-stable subgroup of order d with d — 1 divisible by 4. The only
points in E with non-trivial stabilizer under (1) are the 2-torsion points, giving three orbits
{0},{1/2,¢/2},{1/2 4+ ¢/2} and then, by (4.21), f is branched over three points with local
monodromies
(d —1)/4 4-cycles + one 1-cycle, (d — 1)/4 4-cycles 4+ one 1-cycle, (d — 1)/2 2-cycles + one
1-cycle.

(¢) E=C/Z+pZ (p* —p+1=0); u(z) = p.z, =€ C (p° =1).
K C E is a p-stable subgroup of order d congruent to 1 modulo 6. The special orbits of (u)
are {0},{1/2,p/2,1/2+ p/2} and {1/3 + p/3,2/3 + 2p/3}. It follows from (4.21) that f is
branched over 3 points, with local monodromies
(d —1)/6 6-cycles 4+ one 1-cycle, (d —1)/3 3-cycles 4+ one 1-cycle, (d — 1)/2 2-cycles + one
1-cycle.

(d) E=C/Z+pZ (p* —p+1=0); u(z) = p*z, z € C (p° =1).
K C E is a p-stable subgroup of order d congruent to 1 modulo 3. The fixed points of 1 are
0,1/34+ p/3 and 2/3+ 2p/3, and hence f is branched over 3 points, with local monodromy
(d —1)/3 3-cycles 4+ one 1-cycle.

Summarizing, we proved the following

(4.22) Theorem: Let f : P! — P! be a map of degree d such that the monodromy group

is a Frobenius group. Then there exists a curve X and subgroups M; € M C Aut(X) such
that

f:P =X/M, - P'=X/M
The possible (X, M, M,) are the following:

a) X = P!, M = alternating group in four letters, acting as direct symmetries of a regular
tetrahedron, M; = symmetries fixing one vertex. Here d = 4.
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b) X = P!, M = Dy dihedral group, acting as symmetries of a regular d-gon, M, = (1) C Dy
subgroup generated by an element 7 € Dy of order two.

In the next cases X = E is an elliptic curve, with 0 € E neutral element for the group
structure. We consider E C Aut(E) as the subgroup of translations. Also, u € Aut(E,0)
denotes a group automorphism, X' C E a subgroup and My = (u) C M = (p).K C Aut(E).

¢) Here E is any elliptic curve, u(x) = —z and K C E any subgroup with cardinality d odd.

d) E is the special elliptic curve C/Z +iZ (i* = —1) with p(z) =i.z, z € C. The subgroup
K C FE is any i-stable subgroup of order d, with d — 1 divisible by 4.

e) E=CJ/Z +pZ (p* —p+1=0); u(z) = p.z, 2 € C. Here K C FE is any p-stable subgroup
of order d, with d — 1 divisible by 6.

fYE=C/Z+pZ (p*—p+1=0); u(z) = p*.z, z € C. Here K C E is any p-stable subgroup
of order d, with d — 1 divisible by 3.
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