ON HIGHER WEIERSTRASS POINTS

FERNANDO CUKIERMAN
LunGg-YING FoNnGg

This paper deals with flexes of the n-canonical linear series, or n-Weierstrass points, on
a compact Riemann surface.

Based on the theory of Limit Linear Series of Eisenbud and Harris we identify the limit of
the n-canonical linear series, and hence the limits of its flexes, as a smooth curve degenerates
to a stable curve of compact type. This allows us to prove some propositions that have known
analogues in the case of 1-Weierstrass points.

After some preliminaries in the first four sections, we consider in §5 the "Hurwitz prob-
lem”: which sequences occur as vanishing sequences of n-Weierstrass points? By a regener-
ation argument we prove (Theorem (5.3)) that every sequence of low enough weight occurs
in the right dimension. Also, we reprove Lax’s result [L] Theorem 3, to the effect that a
general curve of genus g > 3 has only ordinary n-Weierstrass points.

In §6 we prove that the hypersurfaces W' of n-Weierstrass points in the moduli spaces
of pointed curves are irreducible; see Theorem (6.1) for a more precise statement. We do
this by showing that the monodromy of W' — M, is transitive; the basic idea to generate
monodromy being as in [E-H,3], namely, to vary the limit n-canonical series of a fixed
curve.

In the last section we compute the linear equivalence class of the closure of W' in the
moduli space of stable pointed curves. This adds some more members to our collection of
effective divisor classes on moduli space (see Remark (7.8)).
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51 Flexes

Let X be a smooth irreducible complete algebraic curve over the complex numbers, and
L agjon X (thatis, L = (V, L) where £ is a line bundle on X of degree d and V is a linear
space of sections of £, of dimension r + 1).

For each point p € X we consider the vanishing sequence of L at p

a*(p) = (af(p) < -+~ < al(p))

defined as the sequence of orders of vanishing of elements of V at p, the ramification sequence

a’(p) = (ag(p) < -+ < af(p))

where ol (p) = a(p) — i, and the weight of L at p defined by

w’(p) = Z%L(p)-

The point p is said to be a flez for L if w(p) # 0 (equivalently, p is a flex for L iff there is
an element in V' vanishing to order at least r 4+ 1 at p).

The Plicker formula (see [ACGH)] Exercise C-13, page 39) says that the number of L-flexes

is finite and
d whp)=(r+1)(d+rg—r)
peEX

where ¢ is the genus of X.

In particular, if L is a complete non-special linear series then the weighted number of L-
flexes is g(r + 1)2.

We remark that if L is a complete linear series of degree d > 2g — 1 then, for any p € X,

al(p) =i, for0<i<d—2g
and the vanishing sequence of L at p is given by the ¢ integers adL_29+1(p), . ,adL_g(p).

62 n-Welerstrass points
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Let wx denote the canonical line bundle on the curve X.
In this paper we will study n- Weierstrass points which are, by definition, flexes of the
complete linear series associated to the line bundle w%". We will denote W"(X) the set of
n-Weierstrass points of X.
For n > 2, h%(X,w{") = (2n — 1)(g — 1) and then the weighted number of n-Weierstrass
points is, by the Pliicker formula, (2n — 1)%g(g — 1)%.

(2.1) Examples:

(i) If X has genus 3 then W!(X) Cc W?(X):
in case X is not hyperelliptic, let wg, w1, we be regular differentials vanishing at p € X to
orders 0, 1 and >3, respectively; then the monomials of degree 2 in these differentials give
a vanishing sequence >(0, 1, 2, 3, 4, 6).

(ii) Let X be the hyperelliptic curve obtained by normalization of the plane curve
y? = H29+2(:1; — 2;). The n-differentials

(z — ;) (dx/y)
x/y)

and y(x — x;) (dx/
are regular and form a basis of H° (X,w%?") giving the vanishing sequence at z;

IA
IA
3

(g_]')v
n(g—1)—(g+1)

?
?

n70
n70

IA
IA

a;i=1(0<1<a), agpri=a+2i (1 <1 <yg)

where we let o = 2n(g — 1) — 2g¢.
Then, every 1-Weierstrass point is a n-Weilerstrass point of weight (g";) for n > 2.

(2.2) If Lisag)onX and p € X, then it is traditional to introduce the set

G (p) = {ag(p) +1,...,a7(p) + 1}

of gaps of L at p, and N(p) = N — G%(p), the set of non-gaps.
When L is the complete canonical series, Serre duality implies that

(2.3) N“¥(p) = {~ord,(f). f € H(X —{p},Ox)}

which is a subsemigroup of N.
If L is a complete linear series then N“X (p) acts on N¥(p) in the sense that

(2.4) N“¥(p) + N"(p) C N"(p).
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(2.5)  To consider n-Weierstrass points on variable curves, let C; be the coarse moduli
space of genus ¢ pointed curves over the complex numbers [K]. The main objects of our
study will be the hypersurfaces

W, ={(X,p)/p is a n-Weierstrass point of X'} C C,

Using (2.3) one may parametrize W; by a Hurwitz scheme [F]; the irreducibility of the
divisor of Weierstrass points then follows from the classical theorem about irreducibility of
the Hurwitz scheme. To analize the irreducibility of W' for n > 1 we seem to need different

techniques. Eisenbud and Harris [E-H,3| gave an algebraic proof of the irreducibility of W;
(they proved the stronger statement that the monodromy of W; — M, is the full symmetric
group) and our treatment is based on their ideas.
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63 Limit linear series

(3.1)  The main technique for our study of Wj is the theory of limit linear series of
Eisenbud-Harris. In order to set up notation we recall some basic facts from this theory.
We refer to [E-H,1] for proofs and more details.

Consider the following situation: f : X — B is a flat, proper morphism, where X is
a smooth surface and B is the spectrum of a discrete valuation ring (with the complex
numbers as residue field). We assume that the generic fiber X} of f is smooth and the
special fiber X is reduced, connected, with nodes as only singularities and of compact type

(the dual graph of Xy is a tree). Also, let £ be a line bundle on X. We shall refer to such

a collection of data as a limit series situation (LSS).

Given a LSS we may, first of all, single out an irreducible component Y of Xy and twist
L by a divisor supported on Xy to obtain a (unique) line bundle £y such that

(3.2) deg(Lyl|z) =0

for every irreducible component Z of Xy different from Y. Next, we consider

(3.3) (feLy)(0) = H°(Xo, Ly |x,) = H°(Y, Ly |y)

where both maps are restriction; it follows from (3.2) that these maps are injective.

Also, since f,Ly 1is torsion-free and B is the spectrum of a DVR, it follows that f.Ly is
free and

If we let
(35) d = deg(£|xb) = deg(ﬁyhf)

and Vy denotes the image of the composite map (3.3), then Ly = (Vy,Ly|y)isagjon Y.
The collection

(36) L = {LY}Y irred comp of Xo
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is called the limit linear series associated to the LSS. The series Ly is called the Y-aspect
of L.

It is shown in [E-H,1] Proposition (2.2) that if Y and Z are two components of Xy inter-
secting at the point p then the vanishing sequences of Ly and Ly are related by

(3.7) a;” (p) + 4,2 (p) 2 d

If equality holds in (3.7) for all ¢ and all p, we say that L is refined. This turns out to
be equivalent to the condition that no flex for £|x, on X; specializes to a node of X (see

[E-H,1] Proposition (2.5)).

(3.8) Definitions:

(1) A limit linear series (of degree d and dimension r) on a curve Xy of compact type is
a collection L = {Ly} of ¢g}’s, one for each irreducible component Y of X, satisfying the
compatibility conditions (3.7).

(ii) A limit linear series is said to be smoothable if it arises from a LSS as described
above.

(iii) If Xy has arithmetic genus g, a limit canonical series on Xg is a limit ggg__lz on Xp.

We end this section with the trivial but useful remark that in a LSS the flexes in the
generic fiber specialize either to nodes or to flexes of the associated limit series.

64 Limit n-canonical series

Let Xy be a genus g curve of compact type. Fix n € N, n > 1, and let d = 2n(g — 1)
and r+1=(2n—1)(g —1).

(4.1) Definition: A limit n-canonical series on X is a limit ¢} on Xo,{(Vy, Ly )}, such
that there exists a limit canonical series {(Uy, Ky )} satisfying

(a) Ly = K" and

(b) u(UY™) C Vy where pu: HO(Y, Ky )®" — HO(Y, Ly ) is the multiplication map.

Remark: it is proved in [E-H,1] Theorem (4.1) that all limit canonical series on a fixed
curve have the same line bundles. By (a) the same is true for limit n-canonical series.

Xn

X|B the associated

(4.2) Proposition: In a limit series situation (as in §3) with £ = w
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limit series is a limit n-canonical series.

Proof:
The Proposition follows easily from considering, for each component Y of X, the com-
mutative diagram:

(FLy(0)"  ——  f(Ly)(0)

l l

HO(X07£Y|X0)®TL I HO(X07£§n|XO)

l l

HO(Y,Lyly)®" ——— HOY. LY |y)
Q.E.D.

Our next goal is to determine all limit n-canonical series on some curves of compact
type. We consider now the case of curves with two components, and we treat in Proposition
(4.6) general curves in each stratum of the boundary of M.

(4.3) Proposition: Let X =YU,Z be the union of two smooth curves Y and Z meeting
at a point p. Let L = {(Vy,Ly),(Vz,Lz)} be a limit n-canonical series on X, with n > 2.
Then

(i) Ly = w2™(2ngz p) (and Lz = w2 (2ngy p)).
(i) If g7 > 2 and p ¢ W"(Z) (notation as in §2) then
Vy = H°(Y,wy"((2n = 1)gz p)) C H°(Y, Ly)
(iii) If g = 1 then
Vy = HO(Y,wy"((2n = 2)p)) + Cp" C H(Y, Ly)
where n € H(wy (2p)) — HO(wy).

(iv) If p ¢ W™(Z) and p € W"(Y') is ordinary (i.e. weight one) then Vy is determined

as in (ii) or (iii) and the possible Vs are parametrized by P?.
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Proof:
(i) follows from the fact [E-H,1] Theorem (4.1) that the line bundle of the Y-aspect of
any limit canonical series on X is wy (297 p).

(ii) Let a¥ (p) denote the vanishing sequence at p of the Y-aspect of L. Since p ¢ W"(Z)
and gz > 2 it follows that p is not a flex for £z, and then

af(p) ShZ,Lz)—1=d~gz

and combining with the compatibility condition ad (p) + aZ(p) > d, we obtain

al (p) > gz

which implies that
Vy CHY(Y. Ly (—gz p)) = H'(Y,wy"((2n — 1)gz p))
and since both spaces have the same dimension, the desired equality holds.

(iii) Since Vz; C H°(Oz(d p)) and Oz(d p) has vanishing sequence (0,1,2,...,d — 2,d)
at p, we have aZ | (p) < d — 2, and then, by the compatibility conditions,

ay (p) > 2

that is, Vy has at least a cusp at p.

On the other hand, from [E-H,1] Theorem (4.1) (see also the proof of (4.3) in [E-
H,2]), the Y-aspect of any limit canonical series on X is H°(wy (2p)); then, by Definition
(4.1), Vy contains the image of H°(wy (2p)) under the multiplication map. Choose n €
H°(wy (2p)) — H°(wy) and we obtain that V3 contains n". Then,

Vy D H(Y,wy"((2n - 2)p)) + Cn"
and since both spaces have the same dimension, equality holds.
(iv) For gz > 2, combining (ii) with the fact that p € W™ (Y) is ordinary, we obtain

aY(p) = (gzng—l_]-v-"ng—l_r_179Z‘|’r‘|’]—)
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and the compatibility conditions then imply that
Zin)y > agv — 1 Z(p) > ' > 1
ag (p) 2 gy =1, a7 (p) 2 gv +i, (121).
If gz =1 it follows from (iii) that
Y —
a’ (p)=1(0,2,3,...,r,r+2)

and then
a’(p) > (9—2,9,9+1,....,d—2,d)

In both cases, if we let K = w3"((2n — 1)gy + 1)p, then
Vz((—gy +1)p) C H°(Z.K)

is an arbitrary codimension one linear space with a cusp at p. Then, the possible Vz’s are
in bijective correspondence with the points of the tangent line T to Z at p in the embedding
Z — PH°(Z,K)* by the very ample line bundle K. Q.E.D.

Remark: Using Noether’s theorem (i.e. the map H?(C,wc)®" — HO(C,wg™) is surjec-
tive for non-hyperelliptic curves), it is not hard to see that in (iii) Vy can be described as
the image of HO(Y,wy (2p))®" in HO(Y,wy " (2np)).

(4.4) Corollary: Let X =YU,Z be the union of two smooth curves Y and Z meeting
at a point p. Assume that p ¢ W™ (Y) U W™(Z). Then, in every limit series situation with
X as central fiber the n-Weierstrass points of the generic fiber specialize to the flexes of the
unique limit n-canonical series on X . In particular, (2n —1)*(g— 1)%2gy n-Weierstrass points
specialize to points in Y, the other (2n — 1)?(g — 1)?¢z specialize to points in Z, and none
of them specializes to p.

When p € W"(Y) has weight one and p ¢ W7"(Z) every point in Z is a limit of n-
Weierstrass points of smooth curves. In each LSS either p is a limit of n-Weierstrass points
or (2n —1)*(g — 1)*gz + 1 n-Weierstrass points specialize to Z — {p} and
(2n — 1)*(g — 1)*gy — 1 n-Weierstrass points specialize to Y — {p}.

Proof:
The assertion in the case p ¢ W™ (Y )UW™(Z) follows from the description of the unique
n-canonical series on X given in Proposition (4.3), together with the Pliicker formula and
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the fact that the n-canonical series is refined (it is refined because the vanishing sequence
at p of the Y-aspect is gz + (0,1,...,7), when gz > 1, and similarly for the Z-aspect. If
gz = 1 or gy = 1, use Proposition (4.3)(iii). See also (6.7).) The other case follows from
(4.3) combined with (4.5) below. Q.E.D.

(4.5) Proposition: The limit n-canonical series in Propositon (4.3) (iv) occur as limits
of n-canonical series of smooth curves.

Proof:

The strategy is to follow [E-H,1] Proposition (3.3) to try to produce a variety K"(5)
parametrizing limit n-canonical series for a family of curves = : X — B, and then deduce
the proposition by a dimension count.

We first consider the case when both gy and gz are greater than 1. Remember that
p g W*(Z) and p € W™(Y) has weight 1. Let 7 : X — B be the Kuranishi family of the
curve X =Y U, Z. d will be 2n(g — 1) and r = (2n — 1)(g — 1) — 1. Let w := wy/p be
the relative dualizing sheaf of the family. After twisting by suitable divisors in &', we will
get two different line bundles Qy and Q7 on X such that they restrict to wy (2¢zp) and
wz(2gyp) on Y and Z respectively.

Take D to be a relative ample divisor of #= with high intersection number with both
Y and Z. Put deg D = e. Then F*(an(l})) and m(Q?"(D)) are two vector bundles on
B of rank r + 1 + e. Let GGy and Gz be the Grassmannian bundle of r + 1 dimensional
subspaces in 7, (Qy"(D)) and 7, (23" (D)) respectively. Denote by Fy, Fy the projective
frame bundles associated to Gy and GGz. Now we take the fibre product of Fy, Fz and Gy,
Gz over B to get F' and GG. Thus, a point in F' consists of

a point ¢ € B, line bundles Q%"(D)‘X and Q?"(D)‘X
two 7 + 1 dimensional subspaces Vy, Vz of H°(X,, Q{"(D)) and H°(X,,Q"(D))

two bases for Vy, V7 up to projective equivalence.

Here projective equivalence means that (sg,s1,---) ~ (Aoso, A151,- -+ ) with Ao, A1,--- allin
C*.
We then have dim G = dim B + Z(r + 1)e = dimB 4 2(r + 1)e, and dim F = dim G +
Y.Z

2r(r+1). To define the variety of limit n-canonical series I@"(B) in F we need the following
two sets of equations :
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(1) Vanishing on the multi-section D, and

(2) compatibility conditions.

From the proof of Proposition (4.3), we see that a point satisfying these conditions
corresponds to a limit n-canonical series. For each section, (1) contributes e equations, so
(1) accounts for (r + 1)e equations in total. Each of the compatibility conditions gives an
equation on each section of the projective space bundle of fibre dimension r + €, so (2)
accounts for (r+ 1)(r + e) equations in total. Thus each component of I@"(B) has dimension

> dim F — number of equations defining K"(B)
=dimB+2(r+1l)e+2r(r+1)—(r4+Lle—(r+1)(r+e)
=dim B+ r(r +1).

We now let K(B) be the image of K*(B) in G. As in [E-H,1], we can see that on some open
set F' of F, the fiber dimension of F' — G is no greater than r(r + 1), therefore we see that
each component of K"(B) has dimension > dim B. To conclude smoothing, let us denote by
A’ the locus in B of singular curves with attachment point being a n-Weierstrass point on
one of the components; notice that the codimension of A’ in B is 2. If there were a limit
n-canonical series as in proposition (4.3) (iv) that is not smoothable, then we would have a
component of K"(B) lying entirely over A’, but the fibre dimension of that component over
A’is 1 by (4.3) (iv). This implies that the dimension of that particular component is at
most dim B8 —2+1 = dim B — 1 which contradicts the above inequality and hence establishes
the smoothing.

The remaining case is when gz = 1 and gy > 1. The construction in the previous case
does not take into account condition (b) of definition (4.1) which plays an essential role in
fixing the Y-aspect of the n-canonical series. While it is easy to write an equation for this
condition, this procedure spoils the dimension count. We make the following detour : in
addition to the relative ample divisor D, we take another section s : B — A which intersects
Z. We then define the variety K"(B,s) that parametrizes r-dimensional subspaces of the
limit n-canonical series vanishing on s. More precisely, fix a point ¢ (other than p) on Z,
and let 7 : X — B be the versal deformation family for the curve X with the point q. There
is a canonical section s : B — & that intersects X at ¢q. As before, we take a relative ample
divisor D having high intersection number with Y and Z. We then follow the proof in the
previous case to construct ' — G over B, the only difference is : instead of considering
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(r + 1)-dimensional subspaces, we consider r-dimensional ones. Thus we have, in this case,

dimG =dim B + Zr(e +1)
Y.Z
=dim B+ 2r(e + 1) and

dim F = dim G + 2(r — 1)r.
To define K™(B, s) in F, we need the following sets of equations :

(1) Vanishing on D and s , and
(2) Compatibility conditions.

The first condition contributes e+1 equations for each section, so we get r(e+1) equations
in total. The second condition accounts for r(r 4+ €) equations. Thus each component of

Km™(B,s) has dimension

> dim F' — number of equations defining K" (5, s)
=dimB+2r(e+1)+2r(r —1) —r(e+ 1) —r(r +¢)
=dimB + r(r —1).

Take K"(B, s) to be the image of K™(B,s). As in the first case, we can then conclude that
each component of K"(5, s) has dimension > dim 5.

Now smoothing follows from a similar dimension count. Let us consider the fiber di-
mension of K™(B,s) over the point (X, ¢) in B. Points in the fiber parametrize limit linear
subseries of the limit n-canonical series that vanish at ¢. For the Y-aspect, this is equiv-
alent to saying that the subseries has a base point at p. From the description of the as-
pect given in Proposition (4.3) (iii), we see that there is only one such subseries, namely
‘w?"((?n — 2)p)‘ +2p. On the elliptic tail Z, the aspects are to be chosen from the subseries
Vyz 4 of sections of |Oz(((2n — 1)gy + 1)p)| + (gy — 1)p vanishing at ¢. Notice that sections
in Vz , have vanishing order < 2ngy at p, so each member of the 1-parameter family in (4.3)
(iv), when restricted to Vy 4, gives rise to a Z-aspect for a point in K™(B,s) over (X, q).
Conversely the Z-aspect of each point in the fiber arises in this fashion. Thus the fibre of
K™ (B, s) over the point (X, ¢) in B has dimension 1. Reasoning as before, there is no compo-
nent of K"(B,s) lying entirely over the locus of singular curves in B. Given any member of
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the 1-parameter family in (4.4) (iv), with Z-aspect W there exists a 1-parameter family of
smooth curves 7’ : X' — B’ degenerating to X, together with a section s’ that intersects Z
at g, such that the subseries of the n-canonical series vanishing at s degenerates to WzNVz,
on Z. To see that the complete series degenerates to the aspects we have chosen, remember
that from the description of the limit canonical series on the family n’, there is a section ¢
of the relative dualizing sheaf which after suitable twisting gives a section on the Y -aspect
(Z-aspect, resp.) that vanishes to order 0 (2¢gy, resp.) at p. Adding t" (after twisting) to
the Wz N Vz , recovers Wz. Q.E.D.

Next we analize limit n-canonical series on general curves of compact type.
(4.6) Proposition: Consider a stable curve of compact type X, general among curves

with the same configuration. For each n > 1, X has a unique limit n-canonical series whose
Y-aspect can be described as follows:

Ly =w"(2n ) gipi)
1

wy" (Z(Qn —Dgipi + Y 2(n — 1)1%) ‘ B> cou

gi>1 g:=1 gi=1

Vy =

where the first summand is understood to be the complete linear series with base points
Z!]i>1 gipi + Eg,:l 2p; added, and 7; is any section in the Y-aspect of the limit canonical
series with vanishing order 0 at p;. In particular, for each ¢; > 1 the Y-aspect has a base
point of order ¢; at p; and no base point at p; for those ¢; = 1.

Proof:

Notice that the case when X has only two components is proved in (4.3). (Indeed, we
see that "general” in that case means p ¢ W™(Y) U W"(Z)). Take a genus g curve of
compact type X. Look at one of the components Y. There are two possibilities : (i) all
curves attached to Y are smooth, and (ii) one of the curves attached to Y is reducible.
Incidentally, case(i) will suffice for later applications, we include case(ii) for completeness.

Let us take case (i) first. Denote the smooth curves attached to Y by Z; for i =1,...,s.
To avoid triviality we may assume that none of them are rational. Put genus of Z; to be g;.
We can also assume that g; = 1for¢ < tand g; > 1for: > ¢. Since X is general, p; ¢ W"(Z;)
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and for 7 > ¢ this implies that p; is not a flex for L;. Then aY'(p;) < h°(Z;, L) —1=d — g;
and by the compatibility conditions we obtain

(4.7) a(‘)/y (pi) = gi, (t<i<s)
For : <, a,‘,/il(pi) < d —2 and then
(4.8) o (pi)>2, (1<i<t)

Again because X is general, it is in particular aresidually generic (see [E-H,2]) which means
that it has a unique limit canonical series with Y-aspect

V=3 Hwr(gi+Up) C Holwy(2) " gipi))

We know from Definition (4.1) that V' D pu(U®™) where
pr H(wy (237, gipi))®" = H°(Ly) is the multiplication map. In particular,

(4.9) eV, (1<i<t)
with n? as above. Combining (4.7), (4.8) and (4.9) we deduce that

wy" (Z(Qn —D)gipi + Y _ 2(n— 1)pi> B> c

gi>1 g:=1 gi=1

V3 C

and since both sides have the same dimension, the desired equality holds. (In this case, one
can easily deduce from the compatibility condition that the Z;-aspects have to be the ones
stated.)

The proof of case (ii) is also combinatorial in nature. It will be sufficent to prove that
(4.7) or (4.8) holds at the attachment points. Suppose that among the curves Zy,...,Z;
attached to Y, Z; is reducible with genus ¢g;. The idea here is that because Z; is general,
the compatibility conditions will force the same inequality (4.7) or (4.8) upon p;. We can
see this by working ”"backwards”, starting from components of Z; furthest away from p;.
More precisely, one can look at the dual graph of X (which is a tree) and find the node ny
representing Y. Among those nodes with distance 1 from ny, there is one that represents
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the component of Z; meeting ¥ at p;. Call it ny. The components of Z; will correspond to
the branch of nodes connected to ny without going through ny. Now, locate a leaf furthest
from n; on this branch. There is a unique node ng attached to this leaf. Moreover, by our
choice of the leaf, every edge in the graph coming out of ng is attached to a leaf, with one
exception (this is the edge that joins ng to ny). Let us denote the component in X that
corresponds to ng by Cy, and let its genus be gg. Translating the incidence property of the
node into attaching property of Cy, we see that Cy is connected to Y through some point ¢
(possibly by some reducible curves), and that there are smooth curves Cy,...,Cy, (m > 1)
(with genus ¢f,--- ,g,) attached to Cy at general points ri,...,r,. We will assume g, =1
fori <k and g, > 1for k < i < m. The idea is that the vanishing sequence of the Cy-aspect
at ¢ imposes the same compatibility inequality on the adjacent aspect as if Co U ---U Cy,
were a smooth curve of genus ¢’ =¢g{ +---g/,.

Because Cq,--- ,C,, are smooth and the attachment points on them are general, one
can argue as in case (i) that the Cp-aspect has to satisfy (4.7) or (4.8) at r1, - ,rp. In
other words, we have

(410) Vg, C

(2ngq—|-z n—lglrl—l—z n—1)r )@Zc ()"

k+1 k+1

Here g is the genus of the (reducible) curve attached to Cy at ¢, i.e. ¢ = g — ¢'. Denote the
series on the right of (4.10) by Vj, and the first summand by Wy. We claim that because ¢
is a general point, Vg is not ramified at ¢. To see this, take W] to be the series

w%: (Z(Qn — Dgiri + Z 2(n — 1)ri> ‘ )

1 k+1

Since the sections (1)) have vanishing order > 2g at ¢, we may remove 2gq from them to form
7;. Since ¢ is general, we can assume ¢ is a non-flex for the series WJj @ >/, C- (7;)". We
claim that in this case ¢ is not a flex for V. Indeed, adding 2ngq to sections in W @EZ:_I C
(7:)" gives sections in Vy with vanishing order from 2ng up to (2n —1)(¢’ — 1) — 1 + 2ng.
From Riemann-Roch, the dimension of Wy is exactly 2ng higher than that of W{. So there
are sections in Wy with vanishing order 0,1,...,2ng — 1 at ¢. Thus ¢ is not a flex for Vj.
The dimension of V is (2n—1)(¢'—1)— 1 —|—2ng So the vanishing sequence at ¢ is exactly
the same as that of ‘w— (2ngq) ‘ for a smooth genus ¢’ curve C at a general . From the
combinatorial point of view, in order to get the compatibility inequality (of the same type as
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(4.7) or (4.8)) at g for the component adjacent to Co, we may as well replace C1U---UC,, by
C at a non-flex g. Now we can repeat this argument and work our way up the branch until
we arrive at the node ny. The conclusion is therefore: if Z; is general, then the compatibility
conditions on all components of Z; will join force to give a compatiblity condition at p; as
if p; were a general point on a smooth Z; of genus ¢g1. So we will have (4.7) or (4.8) for the
Y-aspect at p;. Do the same for the other curves Z,,--- | Z,,. This brings us back to the

situation as in case (i), and so we conclude that the Y-aspect is again the stated one. Q.E.D.
65 Existence of n-Welerstrass points

We start this section analyzing n-Weierstrass points on a general curve. To this end, let
us consider the stable curve C' consisting of a rational curve Y with elliptic tails Ey,..., E,
attached at the points pi,...,py, (¢ > 3). For general attachment points the E;-aspect of
the n-canonical series (n > 1) is given in (4.6) to be |O((2n — 1)(g — 1)p;)| + (g — 1)p;. The
flexes of this series, other than p;, are torsion points of order (2n — 1)(¢g — 1) with respect
to p;. They are all ordinary flexes (i.e. have weight 1) and there are (2n — 1)*(g — 1)* — 1
of them. Thus the elliptic tails contribute (2n — 1)%(g — 1)%¢g — ¢ ordinary n-Weierstrass
points to C. Pliicker’s formula gives the total weight as (2n — 1)%*(¢g — 1)?g. So there are
n-Weierstrass points on Y with total weight ¢g. (Contrast the case of 1-Weierstrass points,
where there is no flex on Y. Also, when g = 2 one can check, see (6.8), that there are no
flexes on the rational curve.)

Consider the case ¢ = 3. Since the description of the limit n-canonical series is invariant
under the automorphisms of YV fixing the three attachment points, the flexes on Y should
also be in some orbit of this action. But there is no single point on Y which is fixed under
this action, therefore there cannot be n-Weierstrass points of weight higher than 1 on Y. In
fact taking the attachment points to be 0,1, 0o , the three flexes are —1, 2, % This has been
worked out by Lax and Widland explicitly in the case when n equals 2. From this we may
conclude that for a general curve of genus 3 all n-Weierstrass points are ordinary.

For g > 4, while it seems likely that for general choice of attachment points on Y, the
n-Weierstrass points on Y will be ordinary, it is not clear how to show this directly. So,
we follow the idea of Eisenbud and Harris of further degenerating the curve, by letting the
attachment points come together. In fact we will look at a curve C obtained in the following
fashion : take rational curves C1,...,Cy_s and ellipitic curves E ..., E,, attach C; to C;_;
to form a chain of rational curves, then attach two elliptic curves to distinct points on each
of €1 and C,_», to all other C;’s we attach one elliptic tail; this is our C'. The aspects
on the elliptic tails remain the same, so we still have g n-Weierstrass points on the chain
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of rational curves. For i # 1 or g — 2, the C;-aspect has dimension (2n — 1)(g — 1) and
degree 2n(g — 1) and from Pliicker’s formula the total weight on C; is (2n — 1)(¢ — 1)g.
Now let p; be the attachment point for the elliptic tail on C;, ps and ps be the attachment
points for reducible curves of genus g2 and g3 respectively; then we have g2 > 1, g3 > 1
and g2 + g3 = g — 1. From the description of the Cj;-aspect it is not hard to check that
at p; the ramification sequence is (0,1,1,---,1) with total weight (2n —1)(¢ — 1) — 1. As
for p; (j = 2,3) the ramification sequence there is (g;,¢;, -+ ,g;). Thus the total weight
contribution from these attachment points is (2n — 1)(¢ — 1)g — 1. Consequently, there is
exactly one ordinary n-Weierstrass points on C;. Finally, using the description of the Cy
and Cy_, aspects, we see that the weighted number of n-Weierstrass points on each of C4
and Cy_y is two. Now we only need to show that on € and Cy_s, there are only ordinary
n-Weierstrass points to complete the proof of the following proposition.

(5.1) Proposition (Lax): If ¢ > 3 then a general smooth curve of genus ¢ has only
ordinary n-Welerstrass points.

Proof :
The case when n = 1 or ¢ = 3 has been discussed.

Denote Cy by D. We can take the attachment points pq, p2, ps to be 0,00,1 (E; and E; are
attached to p; and ps.) Let dz be a non-zero section in |wp(2ps)|. Using the description
for the limit canonical series, we will regard dz as a section of the D-aspect of the canonical
series. In particular dz is a section that does not vanish at oo, while ZI—QdZ does not vanish
at 0. The D-aspect of the n-canonical series has a base point of order g — 2 at p3. Since we
are not interested in ramification at ps, we will remove (g — 2)ps from the series, and thus
look at the D-aspect as the subseries of

wp™((2n = 1)(g = 2)ps + 2np1 + 2nps)|

spanned by (dz)", Z%n(dz)" and the sections with vanishing order 2 or higher at p; and ps.
In terms of coordinates, sections in Vp can be expressed in the form

p(z) n
(5.2) m(dz) .

with p(z) being a polynomial such that p(0) # 0 and p(1) # 0, and degree of p(z) is < k+1,
E<2nand ! <(2n —1)(¢g —2). Now, if there is a weight 2 n-Weierstrass point on D, then
it should be left invariant by the automorphism on D that fixes 1 and interchanges 0 and
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o0. The only such point is —1. It suffices to show that the series is not ramified at —1.
As usual, r will be (2n — 1)(g — 1) — 1. At a weight 2 flex the vanishing sequence is either

(0,1,...,r=1,r+2) or (0,1,...,7r =2,r,r+1).

Let us dispose of the first possibility. In terms of (5.2), a section s with ord_;(s) = r + 2
will have p(z) divisible by (2 +1)""2. Note that r +2 = (2n—1)(g —2) + 2n and deg(p(z)) <
E+1<2n+ (2n—1)(g — 2). Therefore we must have k = 2n and [ = (2n — 1)(¢ — 2). So

up to scalar

_I_
)

(z+ D™
5= m(dz) )
One checks at once that s — (dz)™ has a zero of order 1 at co and hence cannot be in Vp.
This shows that s cannot be in Vp.

To get rid of the second possibility, we show that there is no section s in Vp with
ord_1(s) = r + 1. In terms of (5.2) p(z) must be divisible by (z + 1)7*—1—1‘ Since r +1 <
deg(p(z)) < k+1<r+2,deg(p(z)) must be r+ 1 or r + 2. If deg(p(z)) = r + 1, then k 41
cannot be r + 2, for that leads to s having vanishing order 1 at co. But if K +1 =r + 1,
then s — (dz)™ will again have vanishing order 1 at oo. Thus deg(p(z)) # r 4+ 1. Hence p(z)
can only be (z 4+ 1)r+1(2 + a) for some a € C. This forces k =2n and | = (2n — 1)(g — 2).
The only choice of a that makes s — (dz)™ vanish to order > 1 at coisa = —r —[ — 1. One
checks that s + (—1)l(r + 14+ Z)Z%n(dz)" has vanishing order 1 at 0 and hence cannot be in
Vb.

This shows that n-Weierstrass points on €'} and Cj;_, are ordinary. A smooth curve
near C' will have only ordinary n-Weierstrass points. Q.E.D.

Now we consider the problem of describing the possible vanishing sequences of n-
Weierstrass points. We refer to [H-O] for results about the possible weights, and also
see (2.4) for some possible restrictions on the vanishing sequences.

We shall show that every vanishing sequence of low weight actually occurs, and it does so
in the expected dimension. A n-Weierstrass point p will be said to be dimensionally proper
if the locus of n-Weierstrass points near p in the versal deformation family has codimension
equal to the weight at p. For example, it follows from (2.1) (ii) that a 1-Weierstrasss point
of a hyperelliptic curve is not dimensionally proper as n-Weierstrass point.

(5.3) Theorem: Let §=(0o,...,0;) wherer = (2n—1)(¢g —1) —1 with 0 < 8; < (i1

for all 1.
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(i) Forn >3, g>2 if w(B) =>_,08 < g—1, then there exists a dimensionally
proper n-Weierstrass point on some smooth curve of genus g having 3 as its ramification
sequence.

(i) Forn =2, ¢9>3,if w(f) < g — 1, then the same conclusion holds.

Proof:

(i)  The proof is almost exactly the same as in [E-H,2]. We proceed by induction on
g. For g = 2, w(B) = 0 or 1. The first case is trivial. According to Lax ([L] Theorem 4),
for generic genus 2 curves, all n-Weierstrass points (other than those that are 1-Weierstrass
points) are ordinary, i.e. have weight 1. It is clear that these points are dimensionally
proper. (This is where the proof breaks down for n = 2, because all 2-Weierstrass points
are 1-Weierstrass points when g = 2.).

Now assume g > 3. We are going to look at a two-component curve with an elliptic
tail, we will construct a dimensionally proper n-Weierstrass point on it with the desired
ramification sequence and then smooth the series.

Since w(f) < g—1thefirst (2n—1)(g—1)—(¢—1) = (2n—2)(g — 1) terms of 3 are 0,
that is,

(5.4) Bo=P1 =" =Ban-2)(g-1)-1 = 0.

If all the 3;’s are 0, then the result is clear. Otherwiselet 7 = smallest index such that 3; > 0.
Thus by (5.4) 7 > (2n — 2)(g — 1). Define another sequence (g, a1,...,0@2p—1)(g—2)—1) as
follows :

ar =0 for k=0,1,...,7—2n
(5.5) Qj_zpt1 =5 — 1
ar = Brton—1 fork=j—-2n+2,....,2n—-1)(¢g —2) — 1.

We have 0 < a; < ayyq for all ¢ and w(a) < g — 2. By induction hypothesis, there exists
a smooth curve C' of genus ¢ — 1 and p € C' with p a dimensionally proper n-Weierstrass
point on C' having «a as its ramification sequence.

Pick an elliptic curve E and attach E to C at p. As in Proposition (5.1) of [E-H,2], we
shall show that for a finite number of ¢ € E there are finitely many series with the desired
ramification sequences at p and ¢, and no such series for generic q. The underlying bundle
of the E-aspect for the n-canonical series is Og(2n(g — 1)p). The vanishing sequence at p
for the C-aspect is :

(5.6)  (0,2,3,....2n —1,a0 +2n,01 +2n+1,..., 0@n_1)(g—2)—1 + (2n = 1)(g — 1)).
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The compatibility condition forces the vanishing sequence at p for the E-aspect to be

(57) (d_ﬁ;_lvd_ﬁ;—l _17"'7d_ﬁ;‘—|—1 _17d_ﬁ;‘7d_ﬁ;‘—1 _17"'7d_ﬁ{ _17d_ﬁ(/))7

where d = 2n(g — 1), and ] = 3; + . Thus we are in a situation to apply the criterion of
Propostion (5.2) of [E-H,2] with D = d - p. According to the proposition, there exists a
series with (5.7) and [ as vanishing sequence at p and ¢ if

(5.8) (a) ap—i+b;=d = a,—ip+big~D
(b) Gr—ip‘|‘(bi‘|‘1)(]ND — bi—l—l =b; + 1.

where a; and b; are the i-th term in (5.7) and 3 respectively. (a) can be satisfied only if
q—pis of order 3; 4 j. Let us choose ¢ so that ¢ — p is exactly of order 3; + j, then (b) can
be satisified if there does not exist 3; + 1 + 1 that kills p — ¢ for any ¢ # j.

Now ; < g—2, because weight of 3 < g—land §; > 0. Andi+1 <r+1=(2n—1)(g—1),
therefore

Biti+1<@n-1)(g—-1)+(9-2)=2n(g—1) -1
But #; > 1 and from (5.4) 7 > (2n —2)(g — 1), So

2(j+8i) 22+2(2n—2)(g — 1)
(5.9) =2n(g—1)—1+(2n—4)(g—1)+3
>2n(g—1)— 1.

Thus no 3; +¢+ 1 can kill p— ¢. This proves the existence (and the dimensional properness)
of the aspect. As in the second part of the proof of Proposition (4.5), we can construct
the variety K™(B,s), with dimension greater than or equal to that of B. Making use of the
assumption that there exist dimensionally proper n-Weierstrass points of lower weight on
genus g — 1 curves, we may pick C' and p so that the stratum consisting of reducible curves
with weight w n-Weierstrass point as attachment point has codimension w + 1 in 5. From
the same line of argument as in (4.4), we can see that the fiber dimension over each stratum
is w, thus there is no component of K"(5, s) lying over the locus of singular curves, and thus
we conclude smoothing for any of the limit n-canonical series on €' U E. The proposition

now follows from Corollary (3.7) of [E-H,1] as in [E-H,2].

(ii) Instead of starting with g = 2, we start with ¢ = 3. We have shown that general
genus 3 curves have only ordinary 2-Weierstrass points, so the proposition is true for g = 3.
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The rest of the proof follows as in the previous case. Q.E.D.

(5.10)  Remark: If we try to improve the bound from g — 1 to g, we need to have
appropriate n-Weilerstrass points on low genus curves to start the induction. But for ¢ = 3,
there is no 2-Weierstrass point with vanishing sequence equal to (0, 1,2,3,5,6): On a genus 3
non-hyperelliptic curve there can only be three kinds of vanishing sequence for the canonical
series, namely (0,1, 2), (0,1,3) and (0,1,4). They all produce a section of the 2-canonical se-
ries with vanishing order 4. For hyperelliptic curves, the additional possibilities are (0,2, 3)
and (0,2,4), which still produce sections of vanishing order 4 for the 2-canonical series.
Then, it seems that some restrictions have to come into play if one tries to extend the
bound to the case when the weight equals ¢ — 1.

§6 Irreducibility of W/

(6.1) Theorem:
(i) Wy is irreducible for g > 4, n > 1 and for g = 3, n # 2.
(ii) W3 = W4 + S where S is an irreducible divisor.

Proof:
We shall assume n > 1 since the result is known for n = 1 (see [F]).

(1) Let X =Y U, Z be the union of two smooth curves Y and Z meeting at a point p, with
gy = g—1, gz =t where 1 <1 < [g/2]. Suppose that p ¢ W"(Z) and p € W"(Y') is ordinary
(such a (Y,p) existsif g —7>3,n>2o0r g—1i=2,n >3, see §5). We are in the situation
of Proposition (4.3) (iv) and we can describe the limits of n-Weierstrass points as smooth
curves degenerate to X: in each LSS with central fiber X there are (¢—1)(2n—1)*(¢g—1)*—1
n-Weierstrass points of the generic fiber that specialize to the flexes of wy™((2n — 1)i p)
away from p, and there are i(2n — 1)?(g — 1)* + 1 n-Weierstrass points that specialize to
the flexes away from p of the linear series V, on Z. The series V, is defined as follows: we
consider the embedding

Z < PHY(Z,K)*

where K = w}"((2n — 1)gy + 1)p, and let T denote the tangent line to Z at p. For each
point ¢ € T', V, denotes the linear series on Z cut by hyperplanes containing g. We remark
that for ¢ # p the corresponding limit n-canonical series is refined, whereas V), is not refined
and p should be counted as one of the limits of n-Weierstrass points, with multiplicity one.

For each r € Z let H, denote the osculating hyperplane to Z at r. It is easy to check
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that, away from the finitely many flexes for K, a point r is a flex for V, if and only if H,
contains ¢ (and r turns out to be an ordinary flex for V;). Also, since V, has only finitely
many flexes, there are only finitely many r’s such that H, contains T. Then we have a well
defined rational map

f:Z2—-T
sending r to H, N T. For general g € T,

fHq) = flexes of V.

Since Z is an irreducible variety, the monodromy associated to the finite map f acts tran-
sitively on the flexes of V;, and we conclude, as in [E-H,3] Proposition (2.3), that

6.2) by varying the Z-aspect we obtain monodromy that acts transitively on the limits o
Y ying 14 Y Y
n-Wezerstrass points on Z.

Let ./\;12 denote the open subvariety of M, parametrizing automorphism-free stable
curves having a family of limit n-canonical series of dimension at most one, and let = : ég —

./\;12 denote the universal family. Also, let p : Mg — ./\;12 be the family of limit n-canonical

series on the fibers of = (see (4.5)); a typical point of Mg is (X,L) where L is a limit
n-canonical series on X. p is birational with fibers of dimension at most one. Let

ﬁ':ég—h/\;lg

be the pull-back of =.
Assume g > 5; if A; = {(Y U, Z),97 = 1} (with 1 < ¢ < ¢/2) is one of the boundary
components of ./\;12 then

,O_l(Ai) = Al UA; UB;
where
A; = closure {(Y U, Z,L),p ¢ W"(YYUW"™(Z)}
A; =closure {(Y U, Z,L),pe W"(Y), p¢ W"(Z)}
B; =closure {(Y U, Z,L),p ¢ W™(Y), pe W"(Z)}.

The divisor #7!(A;) breaks into two components A; = {(Y U, Z,L.q), ¢ € Z} and A =
{YU, Z,L,q), ¢ € Y}, with similar definitions for B;, B/, A’ A.
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Let W;‘ denote the closure in C~g of the divisor of n-Weierstrass points of smooth curves. It
suffices to show that W;‘ is irreducible, and we shall do this by showing that the monodromy
of W;‘ — Mg (see [H]) is transitive. By (6.2), the monodromy of

ALNWE = A,

is transitive and hence there is an irreducible divisor V C W;‘ of relative degree at least

i(2n — 1)2(9 — 1)2 + 1 such that ANV = AN Wn . and it follows that

g
(6.3) ANy =Alnwy.

For ¢g > 7,n > 2 or ¢ = 5,n > 3 we can repeat the argument with A; replaced by B;
to conclude that there exists an irreducible divisor 4 C W of relative degree at least

(¢ —)(2n —1)%(g — 1)? + 1 such that
(6.4) AlnU=A7nwy.

If U # V then we get the contradiction deg U +deg V > deg W;‘ Then U =V and it follows
from (6.3) and (6.4) that deg V = deg W?, which implies that V = W;‘ and hence W;‘ is

irreducible. ’

For ¢ = 6, W_l(Ag) C Cg is irreducible and As = Bj (using notation similar to the
one introduced above). We deduce the existence of V as before, and since monodromy
interchanges the components of a curve in Az, we conclude that W is irreducible for n > 2.

For g = 4, the same argument works for n > 3, using A,.

For the remaining cases ¢ = 5,(n = 2),g = 4,(n = 2) and ¢ = 3,(n > 3) we modify

the previous proof as follows (in fact, the argument below covers all cases, but we think the
reasoning is more clear by allowing this repetition).
Let X =Y U, Z with Y smooth of genus ¢ — 1 and Z smooth of genus 1, and suppose that
p € W™(Y) is ordinary (see §5). Let f : X — B be the Kuranishi family of X, A C B the
divisor of singular curves and f~'(A) = A’ + A’ where A’ > Z. Also, let p : B — B be
the family of n-canonical series on the fibers of f (Proposition (4.5)). Exactly as above, we
deduce the existence of an irreducible divisor V C W"(f) C X of relative degree at least
(9 —1)(2n — 1)2 + 1 such that

(6.5) A'NY =AW f).
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Let V be the Zariski closure in C; of the image of V.
We claim that V = W;‘, and hence W/ is irreducible. To see this, let Xo be P! with ¢
elliptic tails Fy,..., E, joined at py,...,p, € P! respectively. By Proposition (4.6) and §5,
in a limit series situation with central fiber Xy the n-Weierstrass points specialize on E; to
the (2n — 1)(g — 1)-torsion points away from p;, and on P! to g points qi,...,q, different
from the p;’s. By (6.5) the pull-back of V to the Kuranishi family of X, contains the torsion
points of some F; and, by monodromy, it contains the torsion points of all F;’s. Hence,
deg V > deg W; — g and W;‘ —V is an effective divisor of relative degree at most g. But
there is no rationally defined effective divisor of degree at most g on curves of genus ¢ (see

[Ci]) and hence V = W, as claimed.

g’

(ii) Follows from the case d = 4 of Proposition (6.6) below. Q.E.D.

If X C P?is a smooth plane curve of degree d and n € N, we shall denote F"(X) the set
of flexes for Ox(n). We have F}(X) C F*(X) and S(X) = F*(X) — F!(X) is classically
known as the set of sextatic points of X. We want to show that the sextatic points of smooth
plane curves form an irreducible family.

Let Sy denote the vector space of homogeneous polynomials of degree d in three variables,
Baq C P(S4) the open set parametrizing smooth plane curves, and

Xe={(X,p) € By xP? pe X} 1, p2

|

Ba

the universal family of smooth plane curves of degree d. If L, = n*Opz(n) then we define
the divisors F"* C Xy as the degeneracy loci of the maps of vector bundles of same rank
*7.(Lyn) — PP(L,), where P? means principal parts of order p = h%(X, Ox(n)).

(6.6) Proposition: F' C F?and §:=F* — F! is irreducible.

Proof:
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Consider

T ={(X,C.p) € By x P(Sy) x P2, (X,C), > 6} —— P(S,) x P?

X

where (X, (), is the intersection multiplicity of X and C at p. First of all, we have F?* =
a(Z). If C is a smooth conic and p € C then 37'(C,p) is open in a linear system of
dimension d(d + 3)/2 — 6; then, Z' = 3~1{(C,p), p € C, C smooth conic} is an irreducible
component of 7 and § = a(Z’) is irreducible.

If C = 2L is a double line and p € C then 371 (C,p) has dimension d(d + 3)/2 — 3 and
F' = a(B7Y(2L,p), L line, p € L}) is another component of F2.

We claim that there are no other components of F2, and to see this we analize the
other strata of the space of pointed conics. Suppose that C = L U L’ where L and L' are
distinet lines and p € L—L'. Then (X, C), > 6 is equivalent to (X, L), > 6; this imposes six
conditions on X and since our stratum is five dimensional it does not contribute a component
of F? (notice that since F? is determinantal all its components are hypersurfaces). If
C =LUL" with L # L' and p € LN L' then (X,C), > 6 if and only if (X,L), = k,
(X,L"), > 6 —k, for some k > 1. For each value of k we have at least five conditions on X
and (C,p) moves in a four dimensional family, so again we have no new component of F2.

Q.E.D.

(6.7) Remark: Let X be a smooth hyperelliptic curve of genus g, realized as a double
cover 7 : X — P!, with branch points p1,...,p2s42 € P! and involution o. From Example
(2.1)(ii), X has N = (2n — 1)?g(g — 1)* — g(g + 1)* n-Weierstrass points that are not
1-Weierstrass points. The set W*(X) — W!(X) is clearly o-invariant and we obtain a
PSL(2,C)-equivariant rational map

h: P9t? _ pN/2

sending p1 + -+ - + pag+2 to #(W™(X) — W(X)), where we let P™ = Sym™(P') = P™.

Consider the case ¢ = 2 and let’s analyze the limit of the n-Weierstrass points as a smooth
curve degenerates to X = E U, E' where E and E' are elliptic curves joined at the point p.
By Proposition (4.3) (iii), X has a unique limit n-canonical series with E-aspect

Ve = HO(E,OE((Qn —2)p)) +Cp" C HO(E,(’)E(an))
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and similarly for E’. The vanishing sequence of Vg at pis (0,2,3,...,2n —2,2n) and hence
this limit series is refined. The weight at p is 2n — 1 and by the Plicker formula on E,
there are (2n — 1)? flexes of Vg away from p. In a degeneration, half of the total number
2(2n —1)? of n-Weierstrass points go to E, the other half goes to E’, and none of them goes
to p.

Embed E — P?"~! by the linear system |2np| and let T be the tangent line to E at p. The
hyperplane n™ = 0 does not contain p and cuts T at a point p’ (notice that n is defined
up to an additive constant, but if we make a different choice the point p’ is the same); we
remark that the point p’ is canonical, it depends only on E and p € E. The linear system
Vg is then the linear system cut by hyperplanes through p’ and the (2n — 1)? points we are
investigating are the points r € F such that the osculating hyperplane H, contains p’.

If ¢ € E is one of the three 2-torsion points with respect to p, let f be a rational function
such that (f) = 2¢ — 2p. We may take f as our choice for n and we see that ¢ is a flex for
Vi with weight three (this corresponds to the fact that ¢ is a limit of 1-Weierstrass points).
Notice that this also gives another description of the point p’: the osculating hyperplanes
at the 2-torsion points all cut T at the same point p’.

The other (2n — 1)? — 9 flexes of Vi are points canonically associated to the pointed elliptic
curve (E,p), and our lack of control over these points is the reason why we didn’t consider
the case ¢ = 2 in Theorem (6.1).

(6.8) Remark: In the proof of Theorem (6.1) we considered a curve X consisting of
Y = P! with g elliptic tails Eq, ..., E, attached at points p1,...,p, in general position. The
Y-aspect of the unique limit n-canonical series on X (Proposition (4.6)) has flexes away
from the p;’s with total weight ¢g. This defines a PSL(2, C)-equivariant rational map

Gp : P9 — PY

with notation as in (6.7). Unfortunately, our understanding of these maps is far from being
complete. This seems to be an obstruction for determining, among other things, the mon-
odromy group of W' — M. The maps ¢,, are more explicitely described in [Li].

§7 Class of W;‘

Let M, denote the moduli space of genus g curves over the complex numbers, C, the
moduli space of pointed curves, M the moduli space of stable curves, C;, the moduli space
of pointed stable curves, = : C; - M, and 7 : C; — M, the natural morphisms (see [K]).
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Let
W, ={(X,p)/p is a n-Weierstrass point of X'} C C,

be the divisor of n-Weierstrass points and W;‘ C C, its closure. We shall determine the class

[W;‘] € Pic(Cy) @ Q as a linear combination of the standard basis {w, A, 9,31, ...,85-1}.

(7.1) Theorem: For g > 2 and n > 2, the following relation holds in Pic(C,) @ Q

W] = (2n — 1)? <g>w — (602 —6n + 1)\ + (g) So — 6g—1 — (20— 1)° S (g N ’) 5.

=1

Proof:

Consider a family f : X — B of stable curves of genus g, where B, X and the general
fiber of f are smooth; let A} C B be the divisor parametrizing singular fibers with a singular
point of type ¢ for 1 = 0,1,...,[g/2], let f*(A}) = A; UA,_;, where a point in A; belongs
to a piece of genus ¢ of the fiber through it, and let S denote the locus of singular points of
fibers of f. We have a natural map of rank r + 1 locally free sheaves on X — §

7 f (W) = PP
where w = wx)p is the relative dualizing sheaf, P71 are principal parts of order » + 1 and,

as before, r +1 = (2n — 1)(g — 1). If W(f) denotes the divisor of n-Weierstrass points on
the smooth fibers of f then we have the equality of divisors on X

g—1

(7.2) (det 7) = W;‘(f) + ZordAi(det T) A
=0

and the equality in linear equivalence

(7.3) [det 7] = 1 P"THw®™) — 1 F* fu (™)

To compute the Chern classes in (7.3) consider the exact sequences of sheaves on X — 5

0— F®Sym* ' (w) = P*(F) - P*Y(F) = 0
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where F' is a locally free sheaf on X — 5. It follows that

Clpm(F) =

NE

1 (F) + (k- Der(w) = mey(F) + (";) e1(w)

k=1

and then,

(7.4) el PO = (20 — 1)? <g>cl(w).

On the other hand, it follows from the theorem of Grothendieck-Riemann-Roch (see [M1]
Theorem (5.10)) that

(7.5) cLf* fe(w®™) = (6n? — 6n + 1)er(Af) — (g) df

where Ay :=det f*f,(w) and ¢ is the class of A = 2?2—01 A;.

To determine orda,(det 7) is a local question and we can assume that B C C is a disk
and the central fiber Xg is a general curve of arithmetic genus g with one node. First, we
claim that

(7.6) orda,(det 7) = 0.

To see this, we observe that since the formation of 7 commutes with base change (see [G]),
if det 7 = 0 on the irreducible Xy then there would be a nonzero section of W%?B|Xo = w}@ég
vanishing on Xy, which is absurd.

Next, we claim that

(7.7) orda,(det 7) = (g) + (2n — 1)2 (g ; Z), 1<i<g-—2

= (") 41, i=g-1

=) tL  i=y
To see this, let Xo = Y U, Z where ¥ and Z are general curves of genus 7 and ¢ — ¢
respectively. Denote ag,ay,...,as the vanishing sequence of w%??B|Z = w™"(np) at p, and

let {no,...,ns} be sections realizing this vanishing sequence. By Corollary (4.4) there are
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no n-Weilerstrass points specializing to p and then n; extends to a section of w;@é?B vanishing

to order a; along Y. Then det 7 vanishes along Y to order at least Ej:o aj, and by the

argument of [Cu] Proposition (2.0.8), this is the exact order of vanishing. Now, for g—¢ > 1
we have a; =3, 7=0,...,sandwheng—i=1,a; =73, 7=0,...,s =1, as =s+ 1.

A little arithmetic proves (7.7), and combining (7.2)-(7.7) we obtain (7.1). Q.E.D.

(7.8) Remark: Applying Hurwitz formula to 7 : W;‘ — M, one may compute the class of
the closure of the divisor of curves with special n-Weierstrass points, modulo the coefficient
of Ag. Also, combining (6.1) with Proposition (5.1) of [Cu] one obtains formulas for the
classes of the effective divisors F*(W; N W;n)

[[ACGH]]

[[Ci]]
[Cu]]
[[E-H,1]]

[[E-H,2]]
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