CURVES OF GENUS TEN ON K3 SURFACES

FERNANDO CUKIERMAN AND DOUGLAS ULMER

Introduction. Let C denote a smooth complete algebraic curve and L a line bundle on C. There is a natural map, called the Wahl or Gaussian map,

$$\Phi_L: \wedge^2 H^0(C, L) \to H^0(C, \Omega^1_C \otimes L^{\otimes 2})$$

which sends $s \wedge t$ to s dt - t ds. J. Wahl made the striking observation that if C is embeddable in a K3 surface then Φ_L is not onto for $L = \Omega^1_C$ ([W], Thm. 5.9); this raises the natural problem of studying the stratification of the moduli space of curves \mathcal{M}_g by the rank of the Wahl map $\Phi(C) = \Phi_{\Omega^1_C}$. Roughly speaking, our main theorem says that the closure of the locus of curves of genus 10 which lie on a K3 is equal to the locus where $\Phi(C)$ fails to be surjective.

In order to state the theorem precisely and explain what is special about the case of genus 10, we need to introduce some spaces. Let \mathcal{F}_g be the moduli space of K3 surfaces with a polarization of genus g, \mathcal{P}_g the union, over all $S \in \mathcal{F}_g$ of the linear series $|\mathcal{O}_S(1)|$. Let \mathcal{K} be the closure of the image of the natural rational map $\mu : \mathcal{P}_g \to \mathcal{M}_g$. As the dimension of \mathcal{P}_g is 29 and the dimension of \mathcal{M}_g is 3g-3, one might naively expect μ to be dominant for $g \leq 10$ and finite onto its image for $g \geq 11$. These expectations hold for $g \leq 9$ ([M], Thm. 6.1) and for odd $g \geq 11$ and even $g \geq 20$ ([M-M], Thm. 1), but for g = 10, Mukai showed that μ is not dominant ([M], Thm. 0.7). This exceptional behavior is due to the fact that the general K3 surface of genus 10 is a codimension 3 plane section of a certain 5-fold, so that when a curve lies on a general K3, it in fact lies on a 3-dimensional family of them. One of our first tasks is to show that \mathcal{K} , the closure of the image of μ , is a divisor when g = 10.

Over the open subset \mathcal{M}_{10}^o of \mathcal{M}_{10} of curves without automorphisms we have the relative Wahl map; let \mathcal{W}^o denote its degeneracy locus and \mathcal{W} the closure of \mathcal{W}^o in \mathcal{M}_{10} . It is a

The authors' research was partially supported by NSF grants DMS 8802020 and DMS 8905251 respectively.

theorem of Ciliberto-Harris-Miranda [C-H-M] that W is a divisor (i.e. the Wahl map does not degenerate everywhere), and by Wahl's theorem $K \leq W$. Our result can then be stated as follows.

Theorem. We have an equality of divisors

$$\mathcal{W}=4\mathcal{K}$$
.

Moreover, for the general curve C of genus 10 which can be embedded in a K3 surface, the codimension of the image of the Wahl map $\Phi(C)$ is 4.

It is worth remarking that a priori not every curve of genus 10 on a K3 appears in K: the variety \mathcal{P} consists of pairs (S, C) where $\mathcal{O}_S(C)$ is indivisible in Pic(S). But by Wahl's theorem, every curve on a K3 has a degenerate Wahl map, so by the theorem defines a point of K. It would be interesting to see explicitly a family of curves polarizing K3s of genus 10 degenerating, for instance, to a plane sextic (which polarizes a K3 of genus 2).

We also note that Voisin proved ([V] Prop. 3.3) that the corank of $\Phi(C)$ is at most 3 for a genus 10 curve satisfying certain hypothesis (3.1) i), ii) and iii) (loc. cit.). These hypotheses hold for a general curve, and i) and iii) hold for a general curve on a K3. It follows that ii) does not hold for any curve of genus 10 on a K3, answering negatively [V] (4.13)a) for q = 10.

To prove the theorem we first study the cohomology of a certain 5-fold X, which is a homogeneous space for the exceptional Lie group G_2 , using a theorem of Bott as in [M]. This allows us to show, in §2, that \mathcal{K} is a divisor and that for every C which is a smooth codimension 4 plane section of X, the corank of $\Phi(C)$ is 4. This establishes the inequality of divisors $\mathcal{W} \geq 4\mathcal{K}$. In §3, we compute the classes of the divisors \mathcal{W} and \mathcal{K} and find that \mathcal{W} is linearly equivalent to $4\mathcal{K}$. The desired equality of divisors then follows.

It is a pleasure to thank J. Harris, who suggested the problem, as well as R. Lazarsfeld and S. Mukai for their valuable help.

§1. The cohomology of the 5-fold X. One of the main tools in our analysis will be the cohomology groups of a certain homogeneous variety X used by Mukai [M] to study the moduli space of K3 surfaces of genus 10. To recall the definition, let \mathbf{g} be the complex semisimple Lie algebra attached to the exceptional root system G_2 , let G be the corresponding simply connected Lie group, and let $\rho: G \to \operatorname{Aut}(\mathbf{g})$ be the adjoint representation. If $v \in \mathbf{g}$ is a highest weight vector for ρ , then $X = \rho(G)v$ is the orbit of v. Equivalently, if $P \subseteq G$ is the maximal parabolic subgroup of G associated to the longer of the two roots in a system of simple roots for \mathbf{g} , then $X \cong G/P$. The homogeneous variety X has dimension

5 and is naturally embedded in $\mathbf{P}(\mathbf{g})$ as a subvariety of degree 18; its canonical bundle is isomorphic to $\mathcal{O}(-3)$ ([M], p. 363). Mukai shows that the general K3 surface of genus 10 is a codimension 3 plane section of X and any abstract isomorphism between two such K3s is realized by the action of G on the Grassmannian of codimension 3 planes in $\mathbf{P}(\mathbf{g})$ ([M], Thm. 0.2).

Recall that homogeneous vector bundles on X are in one to one correspondence with finite dimensional linear representations of P. For example, if $\{\alpha_1, \alpha_2\}$ is a basis for the root system G_2 with α_1 the shorter root, so that P is the subgroup corresponding to the subalgebra whose roots are all of the negative roots together with α_1 , then the tangent bundle to X = G/P corresponds to the (reducible) representation of P with highest weight $w_1 = 3\alpha_1 + 2\alpha_2$. It has an irreducible rank 4 subbundle corresponding to the representation of P with highest weight $\alpha_2 + 3\alpha_1$ and the quotient is isomorphic to $\mathcal{O}_X(1)$, corresponding to the irreducible representation of P with highest weight w_1 . Similarly N_X , the normal bundle of X in $P(\mathbf{g})$, has a composition series with quotients of rank 1, 3 and 4 corresponding to irreducible representations with highest weights 0, $4\alpha_1 + 2\alpha_2$, and $6\alpha_1 + 3\alpha_2$ respectively.

Now a theorem of Bott ([B]; see also [M], 1.6) asserts that when E is an irreducible homogeneous vector bundle on a compact homogeneous variety X = G/P, at most one of the cohomology groups $H^i(X, E)$ is non-zero, and when non-zero, the group is an irreducible G-module. Moreover, he gives a recipe for calculating the index of the non-vanishing cohomology group. Application of this result to the X considered above, which we leave as a pleasant exercise for the reader (compare [M], §1), yields the following result.

Lemma 1.1.

- (1) We have $h^0(X, T_X(-1)) = 0$ and $H^0(X, T_X) \cong \mathbf{g}$ as a G-module. Moreover, $h^i(X, T_X(-i)) = h^i(X, T_X(-i-1)) = 0$ for i = 1, 2, 3, 4.
- (2) We have $H^0(X, N_X(-1)) \cong \mathbf{g}$ as a G-module and $h^i(X, N_X(-i-1)) = 0$ for i = 1, ..., 4. Also, $h^i(X, N_X(-i-2)) = 0$ for i = 0, ..., 4.

Now suppose that S is a smooth codimension 3 plane section of X and that C is a smooth hyperplane section of S; then S is a K3 surface and C is a canonically embedded curve of genus 10. Using Koszul resolutions of \mathcal{O}_S and \mathcal{O}_C as \mathcal{O}_X -modules, one easily checks the following assertions.

Lemma 1.2.

- (1) $h^0(S, N_S(-1)) = 14$.
- (2) $h^0(C, T_X(-1)|_C) = 0$ and $h^0(C, T_X|_C) = 14$.
- (3) $h^0(C, N_C(-2)) = 0$ and $h^0(C, N_C(-1)) = 14$.

(Here N_C and N_S are the normal bundles to C and S in the projective spaces they span in $\mathbf{P}(\mathbf{g})$; the last part also uses the standard isomorphism $N_X|_C \cong N_C$.)

§2. The corank of the Wahl map. We retain the notations of the introduction.

Proposition 2.1. Suppose S is a general K3 surface of genus 10. Then $h^1(S, T_S(-1)) = 3$ and $h^2(S, T_S(-1)) = 1$.

PROOF: Consider the exact sequence

$$0 \to T_S(-1) \to T_P(-1)|_S \to N_S(-1) \to 0$$

where $S \subseteq \mathbf{P} = \mathbf{P}^{10}$ is the given embedding. The long exact sequence of cohomology yields

$$0 \to H^0(S, T_{\mathbf{P}}(-1)|_S) \to H^0(S, N_S(-1)) \to H^1(S, T_S(-1)) \to H^1(S, T_{\mathbf{P}}(-1)|_S).$$

But the Euler sequence for $T_{\mathbf{P}}|_S$ implies that $h^0(T_{\mathbf{P}}(-1)|_S) = 11$ and $h^1(T_{\mathbf{P}}(-1)|_S) = 0$. Indeed, we have

$$0 \to H^{0}(S, \mathcal{O}_{S})^{11} \to H^{0}(S, T_{\mathbf{P}}(-1)|_{S}) \to H^{1}(S, \mathcal{O}_{S}(-1)) \to H^{1}(S, \mathcal{O}_{S})^{11} \to H^{1}(S, T_{\mathbf{P}}(-1)|_{S}) \to H^{2}(S, \mathcal{O}_{S}(-1)) \to H^{2}(S, \mathcal{O}_{S})^{11}$$

with $H^1(S, \mathcal{O}_S) = 0$ (S is a K3) and $H^1(S, \mathcal{O}_S(-1)) = 0$ ([K], Thm. 2.5); moreover, the map $H^2(S, \mathcal{O}_S(-1)) \to H^2(S, \mathcal{O}_S)^{11}$ is injective by duality and the projective normality of S ([Ma], Prop. 2). By Lemma 1.2, $h^0(S, N_S(-1)) = 14$, so $h^1(S, T_S(-1)) = 3$. As $h^0(S, T_S(-1)) = 0$, Riemann-Roch implies $h^2(S, T_S(-1)) = 1$.

Proposition 2.2. The locus $K \subseteq M_{10}$ is a divisor.

PROOF: First we need some deformation theory. Generally, given a smooth complete curve C in a smooth complete surface S, we have the tangent sheaf T_S of S, the tangent sheaf T_C of C and the restriction $T_S|_C = T_S \otimes \mathcal{O}_C$. Extending the latter two sheaves by 0 on S, we can define a coherent sheaf F on S as the fiber product

$$F \longrightarrow T_C$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_S \longrightarrow T_S|_C.$$

The sheaf F is locally free of rank 2 and sits in exact sequences

$$(2.3) 0 \to T_S(-C) \to F \to T_C \to 0$$

and

$$(2.4) 0 \to F \to T_S \to N_{C|S} \to 0.$$

It is easy to check that the space of first order deformations of the pair $C \subseteq S$ is isomorphic to $H^1(S,F)$.

Returning to the case where S is a general K3 of genus 10 and C is a smooth plane section of C, the long exact cohomology sequence of (2.3) gives

$$0 \to H^1(S, T_S(-C)) \to H^1(S, F) \to H^1(C, T_C) \to H^2(S, T_S(-C)) \to H^2(S, F) \to 0$$

and by Proposition 2.1, $h^2(S, T_S(-C)) = 1$. But $H^1(S, F) \to H^1(C, T_C)$ cannot be surjective as the locus of curves on K3s has codimension at least one in \mathcal{M}_{10} . Thus $h^2(S, F) = 0$, $h^1(S, F) = 29$ and the codimension of the image of $H^1(S, F) \to H^1(C, T_C)$ is exactly 1. But this last map is the differential of the map μ of the Introduction, so the image of μ actually fills out a divisor.

REMARK 2.5. Let $\mu: \mathcal{P} \to \mathcal{M}_{10}$ be the rational moduli map as in the Introduction. If \mathcal{K} is the closure of the image of μ and N is the normal bundle of \mathcal{K} in \mathcal{M}_{10} then it follows from the long exact cohomology sequence of (2.4) and the analysis above that the fiber at $(C, S) \in \mathcal{P}$ (for C a curve in the K3 surface S) of the bundle $\mu^*(N)$ is the one dimensional vector space $H^2(S, T_S(-C))$.

Proposition 2.6. If C is a smooth codimension 4 plane section of X, then Corank $\Phi(C) = 4$. For every C in K, Corank $\Phi(C) \geq 4$.

PROOF: By [B-E-L] (2.11), Corank $\Phi(C) = h^0(C, N_C(-1)) - g$ where N_C is the normal bundle to C in its canonical embedding. But by Lemma 1.2, $h^0(C, N_C(-1)) = 14$ for a smooth codimension 4 plane section of X. The second assertion follows by semi-continuity.

REMARKS 2.7. a) If C is any smooth codimension 4 plane section of X then the Clifford index of C is at least 3: if $\text{Cliff}(C) \leq 2$, C is either hyperelliptic, trigonal, or a degeneration of a smooth plane sextic and in all these cases, the corank of $\Phi(C)$ is strictly greater than 4.

b) It is possible to give (at least) two other proofs of the inequality Corank $\Phi(C) \geq 4$: if C

has Cliff(C) ≥ 3 , it follows from results in [B-E-L] that $h^0(N_C(-2)) = 0$ where N_C is the normal bundle to C in its canonical embedding. On the other hand, a smooth codimension 4 plane section C of X is clearly 4-extendable, so applying a theorem of Zak (described in [B-E-L]) and [B-E-L], 2.11, we find Corank $\Phi(C) \geq 4$.

c) For a third proof, let C be a smooth codimension 4 plane section of X and consider the commutative diagram

Here the horizontal maps are the Wahl maps for $\mathcal{O}(1)$ and the other maps are the natural restrictions. Now b is clearly surjective, so the image of $d = \Phi(C)$ is contained in the image of f. We claim that f has corank 4: the exact sequence of cohomology of $0 \to N_{C|X}^*(2) \to \Omega_X^1(2)|_C \to \Omega_C^1(2) \to 0$ gives

$$H^0(C, \Omega^1_X(2)|_C) \to H^0(C, \Omega^1_C(2)) \to H^1(C, N^*_{C|X}(2)) \to H^1(C, \Omega^1_X(2)|_C)$$

and the claim follows by observing that $h^1(N_{C|X}^*(2)) = h^1(\mathcal{O}_C(-1)^{\oplus 4}(2)) = 4$ and that $H^1(\Omega_X^1(2)|_C) = H^0(T_X(-1)|_C)^* = 0$ (Lemma 1.2).

Corollary 2.8. We have an inequality of divisors $W \geq 4K$.

PROOF: Let $\mathcal{M} = \mathcal{M}_{10}^o$ denote the moduli space of smooth automorphism-free genus 10 curves over the complex numbers, $\pi : \mathcal{C} \to \mathcal{M}$ the universal curve, $\omega = \Omega^1_{\mathcal{C}|\mathcal{M}}$ the sheaf of relative differentials and $\lambda = \det(\pi_*(\omega)) \in \operatorname{Pic}(\mathcal{M})$. We have the relative Wahl map

$$\Phi: \wedge^2 \pi_*(\omega) \to \pi_*(\omega^{\otimes 3})$$

which is a map of bundles of rank 45; let W denote its degeneracy locus. By [C-H-M] the support of W is a proper subvariety of M and hence W is a divisor.

By proposition 2.6, the universal Wahl map Φ has corank at least 4 at each point of \mathcal{K} . It follows that $\det(\Phi)$ vanishes to order at least 4 along \mathcal{K} . Indeed, take a small arc $\{C_t\}$ crossing \mathcal{K} transversally at a general point $C_0 \in \mathcal{K}$ and apply the following observation: if $\{M_t\}$ is a one parameter family of square matrices then $\operatorname{ord}_{t=0}\det(M_t) \geq \dim \ker(M_0)$; this is easily seen by diagonalizing the matrix $\{M_t\}$ over the discrete valuation ring of convergent power series in t.

§3. The classes of W and K. We continue to use the notations of the Introduction and §2. For divisors D and E, linear equivalence will be denoted $D \sim E$. If L is a line bundle, we write $D \sim L$ to mean that the line bundles $\mathcal{O}(D)$ and L are isomorphic. We will show that $W \sim 28\lambda$ and that $K \sim 7\lambda$. The divisor W - 4K is then linearly equivalent to zero and by Corollary 2.8 it is effective. But in the variety $\mathcal{M} = \mathcal{M}_{10}^o$ the only effective divisor D linearly equivalent to zero is D = 0: since \mathcal{M} has a projective compactification with boundary of codimension 2, if D were not zero, there would exist a complete curve $T \subset \mathcal{M}$ not contained in D and intersecting D; since $D \sim 0$ we have $D.T = \deg(\mathcal{O}(D)|_T) = 0$, a contradiction. It follows that W = 4K.

Proposition 3.1. $W \sim 28\lambda$.

PROOF: Since W is the divisor of zeros of the section $\det(\Phi)$, W belongs to the class $c_1(\pi_*(\omega^{\otimes 3})) - c_1(\bigwedge^2 \pi_*(\omega))$. From [Mu], 5.10, $c_1(\pi_*(\omega^{\otimes 3})) \sim 37\lambda$. By the splitting principle if E is a bundle of rank r then $c_1(\bigwedge^2 E) = (r-1)c_1(E)$, so $c_1(\bigwedge^2 \pi_*(\omega)) \sim 9\lambda$ and the result follows.

Computing the class of K will require some more preparation. We start with some enumerative formulas. If $f: X \to B$ is a flat family of curves, where X and B are smooth complete and $\dim(B) = 1$, it follows from the Leray spectral sequence that $\chi(X, \mathcal{O}_X) = \chi(B, \mathcal{O}_B) - \chi(B, R^1 f_* \mathcal{O}_X)$. Applying Riemann-Roch and duality to $E = R^1 f_* \mathcal{O}_X$, we obtain $\chi(E) = \deg(E) + \operatorname{rk}(E)\chi(\mathcal{O}_B)$ and $R^1 f_* \mathcal{O}_X = (f_* \omega_{X|B})^*$ so

$$\deg(\lambda_{X|B}) = \chi(X, \mathcal{O}_X) - \chi(B, \mathcal{O}_B)\chi(C, \mathcal{O}_C)$$

where we write $\lambda_{X|B}$ for $\det(f_*\omega_{X|B})$ and where C is a general fiber of f.

For example, if $C \subset S$ is a smooth curve on a smooth surface which moves in a pencil, consider $f: \tilde{S} \to \mathbf{P}^1$ where \tilde{S} is the blow-up of S at the base locus of the pencil. Then $\deg(\lambda_f) = \chi(\tilde{S}, \mathcal{O}_{\tilde{S}}) - 1 + g_C = \chi(S, \mathcal{O}_S) - 1 + g_C$ since χ is a birational invariant. In particular, if S is a K3 surface,

If C is a very ample smooth curve on a smooth complete surface S, let $\mathcal{D} \subset |C|$ denote the discriminant hypersurface, consisting of singular members of the complete linear system |C|. If we consider a general (Lefschetz) pencil in |C| and apply the Leray spectral sequence to the constant sheaf C this time, we may count the number of singular fibers and obtain (see [G-H], pp. 508-510 for details) $\deg(\mathcal{D}) = 4(g_C - 1) + C^2 + \chi_{top}(S)$. In particular, if S is a K3 surface,

(3.3)
$$\deg(\mathcal{D}) = 6(g_C + 3).$$

Lemma 3.4. If S is a general K3 surface of genus 10, then

- a) only finitely many smooth curves C in the linear series $|\mathcal{O}_S(1)|$ have automorphisms.
- b) the linear series $|\mathcal{O}_S(1)|$ contains at most a 2 dimensional family of curves with a single node and with automorphisms.
- c) S carries a Lefschetz pencil consisting entirely of curves without automorphisms.

PROOF: a) Consider a 19 dimensional family \mathcal{F} of K3 surfaces of genus 10 in \mathbf{P}^{10} which dominates \mathcal{F}_{10} (see, e.g., [M] for a construction) and let \mathcal{P} be the canonical \mathbf{P}^{10} bundle over \mathcal{F} (whose fiber at S is $|\mathcal{O}_S(1)|$). Let k be the dimension, for a general S in \mathcal{F} , of the subset of $|\mathcal{O}_S(1)|$ representing smooth curves with nontrivial automorphisms. We want to show that $k \leq 0$. By the definition of k there exists a subvariety $\mathcal{A} \subset \mathcal{P}$ of dimension 19 + k consisting of smooth curves with automorphisms, such that \mathcal{A} dominates \mathcal{F} . Let $\mu: \mathcal{A} \to \mathcal{M}_{10}$ be the moduli map.

As S is general, its Picard group is isomorphic to \mathbb{Z} , generated by $\mathcal{O}_S(C)$. It then follows immediately from the main theorem of [G-L] that S contains no n-gonal curves for $n \leq 5$. But the largest component of curves with automorphisms in \mathcal{M}_{10} which are not of this type has dimension 16 and consists of curves with an involution such that the quotient has genus 3. Thus the fibers of μ are at least k+3-dimensional.

On the other hand the dimension of the fibers of μ is constant in a linear series $|\mathcal{O}_S(1)|$ and generically this dimension is 3 (as follows from the proof of Proposition 2.2). Thus $k \leq 0$ as was to be shown.

- b) The argument in this case is similar, except that we work in $\Delta_0 \subseteq \mathcal{M}_{10}$, the boundary component of \mathcal{M}_{10} representing curves of arithmetic genus 10 with one node. Here the locus of curves with non-trivial automorphisms has dimension 17, consisting of hyperelliptic curves of (geometric) genus 9 with two points conjugate under the involution identified. We find $k \leq 2$. (Perhaps a more refined analysis would improve this estimate.)
- c) This is an immediate consequence of a) and b).

Proposition 3.5. $K \sim 7\lambda$

PROOF: Fix a general $S \in \mathcal{F}_{10}$, and let $C \subset S$ be a smooth genus 10 curve. Consider a general Lefschetz pencil $\ell \subset |C|$. By Lemma 3.4 $\mu(\ell) \subset \overline{\mathcal{M}}$, where $\overline{\mathcal{M}}$ is the moduli space of stable genus 10 curves without automorphisms. The Picard group of the smooth variety $\overline{\mathcal{M}}$ is freely generated by λ and the classes of the divisors $\Delta_0, \Delta_2, \Delta_3, \Delta_4, \Delta_5$ where for i > 0, Δ_i consists of stable curves with a node that separates the curve into components of genus i and 10 - i, and Δ_0 is the divisor of stable curves with a singular irreducible component (as follows from [A-C] §4 and [C] §1.3).

Denote $\bar{\mathcal{K}}$ the closure of \mathcal{K} in $\bar{\mathcal{M}}$. Then we have a relation

(3.6)
$$\bar{\mathcal{K}} \sim a.\lambda - b_0.\Delta_0 - b_2.\Delta_2 - b_3.\Delta_3 - b_4.\Delta_4 - b_5.\Delta_5$$

with $a, b_i \in \mathbf{Z}$. Now we pull-back (3.6) to ℓ in order to determine a. Since the surface S is general, its Picard group is generated by the class of C and then there are no reducible curves in |C|. This implies that $\Delta_i.\ell=0$ for i>0 (notice that since ℓ is general its singular members have only nodes as singularities). From (3.3), $\Delta_0.\ell=78$ (notice that \tilde{S} , the blowup of S along the base locus of the pencil ℓ , is smooth and hence $\mu(\ell)$ is transverse to Δ_0) and from (3.2) we obtain $\lambda.\ell=11$.

To find $K.\ell = \deg \mu^*(N_{K|M})|_{\ell}$, we need to compute the degree of the line bundle over ℓ with fiber $H^2(S, T_S(-C))$ for $C \in \ell$ (Remark 2.5). More precisely, suppose ℓ is spanned by $C_0 = \{s_0 = 0\}$ and $C_1 = \{s_1 = 0\}$ for $s_0, s_1 \in H^0(S, L)$ (we write $L = \mathcal{O}_S(C)$). We have a diagram

$$\tilde{S} \subset S \times \mathbf{P}^1 \xrightarrow{g} S$$

$$\downarrow f$$

$$\mathbf{P}^1$$

and $\tilde{S} = \{(x,t_0,t_1)|t_0.s_0(x)+t_1.s_1(x)=0\} \subset S \times \mathbf{P}^1$ is the zero set of a section of $f^*\mathcal{O}_{\mathbf{P}^1}(1) \otimes g^*L$. Then

$$\bar{\mathcal{K}} \cdot \ell = \deg R^2 f_* (T_{S \times \mathbf{P}^1 | \mathbf{P}^1} (-\hat{S}))$$

$$= \deg R^2 f_* (g^* T_S \otimes g^* (L^*) \otimes f^* \mathcal{O}_{\mathbf{P}^1} (-1))$$

$$= \deg R^2 f_* (g^* (T_S \otimes L^*)) \otimes \mathcal{O}_{\mathbf{P}^1} (-1)$$

which equals (by base change and cohomology) deg $H^2(S, T_S \otimes L^*) \otimes \mathcal{O}_{\mathbf{P}^1}(-1) = -1$. Combining these results we obtain the relation

$$(3.7) -1 = 11a - 78b_0.$$

The integral solutions to this equation are a = 7 + 78k, $b_0 = 1 + 11k$ for $k \in \mathbb{Z}$. We know (2.8) that $W \geq 4K$ and (3.1) that $W \sim 28\lambda$. Hence $0 \leq a \leq 7$ and so k = 0, a = 7, as desired.

As explained at the beginning of this section, the linear equivalence $W \sim 4K$ together with the inequality $W \geq 4K$ implies W = 4K; this completes the proof of the main theorem.

REMARK 3.8. Note that our computation of the class of K in $Pic(\mathcal{M})$ uses the inequality $a \leq 7$ (coming from Corollary 2.8 and Proposition 3.1) and the equality 3.7, together with the fact that the coefficients a and b_0 in 3.7 are *integral*. This integrality is why we work in the smooth variety \mathcal{M}_{10}^o . A more traditional approach, which we were unable to carry out, would proceed by writing down several pencils of genus 10 curves, computing their intersections with \bar{K} , λ , and the Δ_i , and then solving the resulting system of linear equations over \mathbf{Q} .

REFERENCES

[[A-C]] E. Arbarello and M. Cornalba, *The Picard groups of the moduli spaces of curves*, Topology **26** (1987), 153-171.

[[B-M]] A. Beauville and J. Y. Merindol, Sections hyperplanes des surfaces K3, Duke Math. J. 55 (1987), 873-878.

[[B]] R. Bott, Homogeneous vector bundles, Annals of Math. 66 (1957), 203-248.

[[B-E-L]] A. Bertram, L. Ein and R. Lazarsfeld, Surjectivity of Gaussian maps for line bundles of large degree on curves, Preprint (1990).

[[C-H-M]] C. Ciliberto, J. Harris and R. Miranda, On the surjectivity of the Wahl map, Duke Math. J. 57 (1988), 829-858.

[[C]] F. Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), 317-346.

[[G-L]] M. Green and R. Lazarsfeld, Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357-370.

[[G-H]] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, Wiley-Interscience, New York, 1978.

[[K]] K. Kodaira, On compact complex analytic surfaces I, Annals of Math. (2) 71 (1960), 111-152.

[[Ma]] A. Mayer, Families of K-3 surfaces, Nagoya Math. J. 48 (1972), 1-17.

[[M-M]] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, Algebraic Geometry. Proceedings of the Japanese-French Conference held at Tokyo and Kyoto (1983), 334-353.

[[M]] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 , Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata (1987), 357-377.

[[Mu]] D. Mumford, Stability of projective varieties, L'Enseignement Math. 24 (1977), 39-110.

[[V]] C. Voisin, Sur l'application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Preprint (1990).

[[W]] J. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), 843-871.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE KS 66045 USA

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA CA 91125 USA