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1. Introduction

The purpose of this talk is to discuss the unirationality problem of the
Prym moduli space

Rg

for very low values of g. Rg is the moduli space of connected étale double
coverings

π : C̃ → C,

where C is a compact, connected Riemann surface of genus g. Let me recall
that the datum of π is equivalent to the datum of a non trivial element of
order two

η ∈ Pic0(C).
I will always denote the induced fixed-point-free involution on C̃ as

i : C̃ → C̃.

Therefore Rg is also the moduli space of pairs (C, η). More in general one
can pose the question of what is the Kodaira dimension of Rg and, for low
values if g, whether Rg has one of the following properties:
Kodaira dimension −∞, uniruledness, rational connectedness, unirational-
ity, rationality.
A completely analogous problem can be posed for

Mg

and the most interesting case to be considered afterMg is perhaps the case
of Rg. Both cases are still open and very much interesting for low values of
g.
In the case ofMg there is a classical result of Eisenbud-Harris-Mumford:

Theorem 1.1. Mg is of general type for g ≥ 24.

Recently this result has been ameliored by Farkas:

Theorem 1.2. Mg is of general type also for g = 22, 23.
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Moreover there has been a lot of work, due to Farkas and Farkas-Popa, on
the slope conjecture of Morrison-Harris, which has been disproved for infin-
itely many values of g.
A corollary to the slope conjecture was kod(Mg) = −∞ for g ≤ 22.
For very low values of g there are classical and recent result proving that:
-Mg is unirational for g ≤ 10
-Mg is unirational for g = 11, 12, 13, 14 (Chamg-Ran, Sernesi, Chang-Ran,
Verra)
-M15 is rationally connected (Bruno-Verra)
-M16 is uniruled (Chang-Ran kod(M16) = −∞ + recent birational geome-
try).
The case of Rg has a similar more recent story: of course, due to the previ-
ous results on Mg, it follows that Rg is of general type for g ≥ 22. Indeed
the natural forgetful map:

f : Rg →Mg

sending the moduli point of (C, η) to the moduli point of C, is finite (of
degree 22g − 1. In particular one has kod(Rg) ≥ kod(Mg).
A very recent result of Farkas and Ludwig tells in addition that

Theorem 1.3. Rg is of general type for g > 13, with the possible exception
of g = 15.

Moreover, with the same methods, one has

Theorem 1.4. (1) R15 has Kodaira dimension ≥ 1.
(2) R7 has Kodaira dimension −∞.

In this talk I want to produce a somehow general geometric description of
some universal Prym Brill-Noether locus

R2
g,

which dominates Rg. Using some more geometry produced from this de-
scription I can show the following

Theorem 1.5. R2
g, and hence Rg, is unirational for g ≤ 7.

A further remark to be possibly eploited in the future is the following:

Theorem 1.6. R2
8, and hence R8, is uniruled.

To conclude this introduction let me recall that the unirational of Rg was
known, by various independent methods, for g ≤ 6:
- g ≤ 4 the rationality is known (Dolgachev, Catanese g ≤ 3), (Catanese
g = 4).
- g = 5 (Clemens, Izadi-Lo Giudice-Sankaran, Verra).
- g = 6 (Donagi, Verra).
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2. Basic reminds on Pryms

Before of continuing let me recall some well known facts on the Prym
variety associated to an étale docuble cover

π : C̃ → C

defined by η. The Norm map

Nm : Picd(C̃)→ Picd(C)

is just the map sending OC̃(
∑

xi) to OC(
∑

xi). Nm is surjective and each
of its fibres cosists of two disjoint copies of the same abelian variety

Prym(C, η)

of dimension g − 1. This is known as the Prym variety of π or of (C, η).
The theory of Brill-Noether is available for curves C̃, even if they are not
general in moduli. Putting

d = 2g − 2

we have
Nm−1(ωC) = P+ ∪ P−

where
P+ = {L̃ / Nm(L̃) ∼= ωC , h0(L̃) is even}

and
P− = {L̃ ∈ Pic2g−2(C̃) / Nm(L̃) ∼= ωC , h0(L̃) is odd}.

Moreover let

P r = {L̃ ∈ P+ ∪ P− / h0(L̃) = 0 mod r + 1 and h0(L̃) ≥ r + 1}.

P r has a natural structure of scheme and it is known as the r-th Prym
Brill-Noether locus. One has

P 0 = P+ , P 1 = twice a principal polarization on P+ }.

Let L̃ ∈ P r then L̃⊗ i∗L̃ ∼= ωC̃ . The Petri map

µ : H0(L̃)⊗H0(i∗L̃)→ H0(ωC̃)

can be composed with the natural projection h → h − i∗h onto the −1
eigenspace of i∗. This composition is by definition the Prym-Petri map

µ− : H0(L̃)⊗H0(i∗L̃)→ H0(ωC̃)− = π∗H0(ωC).

The main property is that

TP+∪P−,L̃ = (Im µ−)⊥.

Moreover

Theorem 2.1. For a general π : C̃ → C the Prym-Petri map is always
injective.
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In particular it follows that

codim P r =
(

r + 1
2

)
and also that P r is smooth for a general C and connected if its dimension
is non zero. The general L̃ ∈ P r satisfies h0(L̃) = r + 1.

Definition 2.1. The universal r-th Prym-Brill-Noether locus is the moduli
space of triples

(C, η, L̃)

suh that (C, η) defines a point of Rg and L̃ ∈ P r. it will be denoted as

Rr
g.

Note that P 2 is always a codimension three subscheme of P−: I am specially
interested to this Prym-Brill Noether locus. I want to show that

Theorem 2.2. The universal Prym Brill-Noether locus Rr
g is unirational

for r = 2 and g ≤ 7.

3. Hypersurfaces with a quasi-étale double covering

Definition 3.1. A quasi-etale double covering s : D̃ → D is a double
covering of an integral variety D which is étale in codimension one.

We will be specially interested to the following case:

D is a hypersurface through a canonical curve C of genus g not intersecting
the branch locus of s.

Actually there is no problem in replacing the canonical model of C by an-
other projective model: this is also useful. Nevertheless I prefer to fix the
ideas only to the case of a canonical (hence non hyperelliptic) curve. Another
severe restriction is that I will only consider the case

deg D = 3.

However this is enough for my purposes. Actually I can simply start from a
cubic

D = {det(A) = 0} ⊂ Pg−1,

where A = (aij) is a symmetric 3 × 3 matrix of linear forms. Of course we
have the conic bundle fibration

Γ ⊂ Pg−1 ×P2∗ (dual for simplicity of further notations)
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of equation (z0, z1, z2)At(z0, z1, z2) = 0. This is uniquely defined up to
projective equivalence. We have a commutative diagram

D D −−−−→ Pg−1x λ/D

y λ

y
D̃ −−−−→ D5+ −−−−→ P5+y s

x x
P2 ×P2 P2 ×P2 −−−−→ P8

where D̃ is the fibre product of s and λ/D.

Proposition 3.1. Let D ⊂ Pg−1 be defined by the determinant of a sym-
metric 3× 3 matrix of linear forms A = (aij) as above. Assume that :
(1) Sing D = {x ∈ D / rk A(x) ≤ 1},
(2) The linear space Sing3(D) has codimension ≥ 4 in Pg−1.
Then there exist exactly one quasi-etale double covering of D and such a
covering is reconstructed from D as in the previous diagram.

For g = 3 the étale double covering is not unique: they are prametrized by
non trivial order two elements of Pic0(D). The same for cones over plane
cubics: assumption (2) excludes this case.

So far we start with a canonical curve

C ⊂ Pg−1

and I am looking for cubic hypersurfaces as above containing C.
Let η be a non trivial two torsion element of Pic0(C) and let π : C̃ → C the
induced étale double covering. Consider a general L̃ ∈ P 2. Then h0(L̃) = 3
and the Petri map

µ : H0(L̃)⊗H0(i∗L̃)→ H0(ωC̃)

defines an embedding (provided C and L̃ are sufficiently general)

C̃ ⊂ P2 ×P2 ⊂ P8.

The latter inclusion is the Segre embedding. The former one is defined by
the product map f × f · i, where f : C̃ → P2 = PH0(L̃)∗ is the morphism
associated to L̃. We can arrange things so that

i = ι/C̃,

where ι is the projectivized involution a ⊗ b → b ⊗ a. For its projectivized
eigenspaces we have

P2− = PV − and P5+ = PV+,

where V −, V + are the subspaces in H0(ωC̃) of antisymmetric and symmetric
tensors.
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Let s : P8 → P− be the linear projection of center P2−, then s factors
through ι. Moreover

D+ = s(P2 ×P2)
is a cubic with equation det(aij), a symmetric determinant of order three of
linear forms. The map

s : P2 ×P2 → D+

is a quasi étale double covering: its branch locus is the Veronese surface
SingD+.
D+ contains s(C̃) which is a copy of C. More precisely s : C̃ → s(C̃) is the
map π.

Remark 3.1. Both the curves C̃ and s(C̃) are embedded by a linear sub-
system of the canonical system, respectively by

Im(µ) ⊂ H0(ωC̃) and Im(µ+) ⊂ H0(ωC).

Here H0(ωC) is identified via π∗ to H0(ωC̃)+ and µ+ = µ/V +. Note that
P5+ = PV +∗.

Dualizing µ and µ+ we obtain two linear projections

λ̃ : P2g−2 → P8 and λ : Pg−1 → P5+.

Let k̃ : C̃ → P2g−2 and k : C → Pg−1 be the canonical embeddings of C̃
and C. It is easy to deduce that the following diagram commutes

C̃
k̃−−−−→ P2g−2 −−−−→ Pg−1 κ←−−−− C

λ̃

y λ

y
P8 −−−−→ P5+x x

C̃ −−−−→ P2 ×P2 s−−−−→ D+ ←−−−− s(C̃)
Note that the linear projection has an image which is the linear span

Λ =< s(C̃ > .

For a general π : C̃ → C we expect that µ+ has maximal rank and we
assume this property. In particular Λ = P5+ for g ≥ 6. The conclusion is
as follows:
the pull-back of D+ by λ is a cubic hypersurface

D ⊂ Pg−1

containing the canonical model of C. D is a cone over λ ·D+ of equation
det(aij) = 0. D is endowed with a unique quasi-étale double covering, under
the assumptions of the previous proposition,

s̃ : D̃ → D,

where D̃ is a cone over s−1(Λ) ·P2 ×P2.
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Assume now that a canonical curve C of genus g is in D − Sing(D). Then
(1) From the quasi étale double cover σ we can reconstruct a curve C̃ ⊂ D̃.
Projecting from C in D+ from the vertex of C and taking its pull-back by
s, we obtain a curve

C̃ ⊂ P2 ×P2

and an étale double covering π : C̃ → C.
(2) In addition we have a pair of line bundles L̃ = OC̃(1,0 and i∗L̃ = OC̃(0, 1).

Notice also that OC̃(1, 1) ∼= ωC̃ so that Nm(L̃) = ωC and degL̃ = 2g − 2.
In particular h0(L̃) ≥ 3. If the equality holds then

L̃ ∈ P 2,

where P 2 is the Prym Brill-Noether locus of order 2 associated to π.
Roughly speaking the basic conclusion is the following

Theorem 3.2. Let C ⊂ Pg−1 be a canonical curve. Fix a non trivial order
two element η and consider the corresponding Prym Brill-Noether locus P 2.
Then

P 2/ < i∗ >∼= Dη

where Dη is an irreducible component of the family of symmetric determi-
nantal cubic hypersurfaces containing C.

The birational map is of course the map D → (L̃, i∗L̃). Let us see two
examples: we recall that P 2 has cohomology class Ξ3/3 in P−, where Ξ is a
principal polarization.

Example 3.1. g = 4 (Catanese). Ξ3/3 is the class of two points. Hence
there is exactly one pair L̃, i∗L̃ for each η. The linear space Λ is the canonical
space of C. The construction yelds a 4-nodal Cayley cubic surface

D = Λ ∩D+.

The linear system | OD(2) | dominates R4, the rationality of R4 can be
shown: see Catanese.
g = 5 Fixing η the family Dη is a curve: its elements are cubic threefolds
singular along a rational normal quartic curve. This curves turns out to be
a copy of C!

4. Application to genus 7

The most new application is in genus 7: we start with the moduli space

R2
7

of pairs (π : C̃ → C, L̃) such that π is a connected étale double covering of
a smooth, irreducible curve of genus 7. L̃ si a line bundle of degree 12 on C̃
such that dim | L̃ | is even and at least 2. We will always assume that the
previous triple is sufficiently general. Then, applying our basic construction,
the multiplication

µ : H0(L̃)⊗H0(i∗L̃)→ H0(ωC̃)
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induces an embedding
C̃ ⊂ P2 ×P2 ⊂ P8

where the latter inclusion is the Segre embedding and i = ι/C̃. µ is the
Petri map:

Proposition 4.1. In genus g ≥ 6, µ is injective for a general triple as
above.

Let s : P8 → P5 be the projection of center P−. Then D = s(P2 × P2) is
the standard symmetric cubic determinant of P5. Note that s(C̃) ⊂ D is the
canonical model of C projected from one point. For simplicity of notations
we put

s(C̃) := C.

Proposition 4.2. If C is general then:
(1) C is contained in a smooth complete intersection X of 3 quadrics: X =
Q1 ∩Q2 ∩Q3.
(2) X is not contained in D.

So far we have constructed a complete intersection

D ∩Q1 ∩Q2 ∩Q3 = C ∪ C.

Proposition 4.3. For a general triple as above C is a smooth, irreducible
curve.

Now we want to analyse in detail the properties of X and C.

Theorem 4.4. X contains two disjoint, smooth conics B1 and B2, moreover

C ∈| H + B1 + B2 | , C ∈| 2H −B1 −B2 | .

Proof. Note that C is not linearly normal by definition and that h1(IC(1)) =
1. Then

0→ IS(1)→ IC(1)→ OS(H − C)→ 0
yelds, via the associated long exact sequence, h1(OS(H − C)) = 1. Since
(H − C)2 = −4, Riemann-Roch implies that h0(C −H)) = 1. It is easy to
conclude, excluding degBi odd. �

Theorem 4.5. The curve C has degree 12, genus 7 and the following special
properties:
(1) Bi is a 6-secant conic to C,
(2) the image of C via the projection of center < Bi > is a plane sextic with
3 nodes.
(3) C is not quadratically normal: h0(IC(2)) = 4.

Proof. Note that C
2 = 12 and HC = 12. To see that Bi is 6-secant to C

just observe that BiC = 6. Projecting the plane < Bi > the image of C is
a plane sextic. Finally h0(IC(2)) = 4 because X is a complete intersection
and C ∼ 2H −B1 −B2. �
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Let
B

be one of the two conics: B1 or B2. Since h0(IC(2)) = 4 there exists exactly
one net of quadrics

N ⊂| IC(2) |
whose base locus is

Π ∪ Y

where Π is the plane spanned by B. This follows because a quadric through
C also contains the 6-secant conic B. Hence the Kernel of the restriction
H0(IC(2))→ H0(OΠ(2)) is 3-dimensional.

Proposition 4.6. Y is a smooth, rational surface of degree seven. It is not
contained in D and

D · Y = C + F

where F is a smooth, irreducible curve of genus 4 and degree 9.

Theorem 4.7. (1) The scheme F · Π is an effective divisor f of degree 3
on F .
(2) < f > is a line and OF (1) ∼= ωF (f).

Proof. Recall that EY := Y · < B > is a plane cubic. Of course it contains
f and b = C · Π. On the other the cubic ED := D· < B > also contains f
and b. Since b is in a conic it follows that f is in a line. Projecting from it
we obtain the canonical model of F , hence OF (1) ∼= ωF (f). �

The embedding in D endows F with an étale double covering

πF : F̃ → F,

where
F̃ = s−1(F ) ⊂ P2 ×P2 ⊂ P8

F̃ is a curve of genus 7 and degree 18. In the P2 of hyperplane sections P of D
such that s∗P = P1+P2, we can consider the irreducible curve parametrizing
those P which contain < f >. This family defines a decomposition

f̃ = f1 + f2, with fi = Pi · F̃
So we can define

M̃i := OF̃ (Pi − fi) (i = 1, 2)
and, by the theorem,

Nm(M̃) ∼= ωF .

So far we have reconstructed from the point (π : C̃ → C, L̃) of R2
7 the fol-

lowing data:

- an étale double covering: πF : F̃ → F of a genus 4 curve F ,
- an effective divisor f̃ of degree 3 on F̃ ,
- a line bundle M̃ such that Nm M̃ ∼= ωF ,
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- a plane Π containing the trisecant line < f > in the projective model de-
fined by ωF (f),

Theorem 4.8. The previous data are sufficient to reconstruct the curve C.

After we have C the curve C, as well as π and L̃, i∗L̃, are obtained from the
complete interswection

D ∩Q1 ∩Q2 ∩Q3 = C + C

where Q1, Q2, Q3 define a net of quadrics through C that is a plane in the
web | IC(2) |= 3.

Theorem 4.9. Let R be the moduli space of data:
(1) πF : F̃ → F , an étale double cover
(2) M̃ ∈ Pic6(F̃ ) such that NmM̃congωF and h0(M̃) = 1,
(3) f̃ , an effective divisor of degree three,
(4) a plane Π through the line < f > in the embedding of F by ωF (f) where
πF∗f̃ = f ,
(5) a net of quadrics through C, the curve constructed as above from data
(1) - (4).
Then R dominates the moduli space R2

7.

Let us count parameters: 9 for étale double coverings πF , 3 for the line
bundles considered (if they have exactly one global section), 3 for the divisors
f and f̃ , 3 for a plane through the line < f >, 3 for a net of quadrics in the
web of quadrics containing C. The total is

21 = dim R2
7!!

5. The unirationality of R

We start with the easy rationality result for R4: let

S ⊂ P3

be a symmetric cubic determinant of maximal rank, that is Cayley 4-nodal
cubic surface. Then

| OS(2) |
naturally dominates R4 via our usual construction. Let

S̃ ⊂ P2 ×P2 ⊂ P8

be the pull-back of S by s. Then

S̃ = Λ ·P2 ×P2,

where Λ is a general space of dimension 6 passing through P2−.
S̃ is a sextic Del Pezzo surface endowed with an involution with 4 fixed
points: ι/S̃. On S̃ we consider the linear system of curves

| OS̃(2) |+= π∗ | OS(2) |:=| F̃ | .
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These curves are just the pull-back by s of quadratic sections of S. The line
bundles we want on a curve F̃ of this linear system are of the type

M̃ = OF̃ (x1 + · · ·+ x6)

where
s(x1) + · · ·+ s(x6) = S ∩A

where A is a conic in P3. In other words we are lookng to 0-dimensional
subschemes z of S̃ having length 6 and such that

s∗z = S ∩Q ∩ P

where Q is a quadric and P is a plane. In particular z is contained in a
curve

Ẽ = s∗E ∈| OS(1) | .
As a divisor on Ẽ, z defines a line bundle of degree 6 OẼ(z) such that

NmOẼ(z)⊗ s∗OE(−1) ∼= OE .

Since the Kernel of
NmPic0(Ẽ)→ Pic0(E)

is Z2, there is a unique such a line bundle OẼ(z) different from s∗OE(1).
The conclusion is the following

Proposition 5.1. For each smooth Ẽ ∈| OS̃(1) |+ there exists exactly one
linear system

| z |
if divisors of degree 6 such that s∗z is contained in a conic section of E =
s(Ẽ) and z is not in | s∗OE(1) |.

Corollary 5.2. Let Z be the family of 0-dimensional schemes z as above
then ‡ is a P5-bundle over P3.

Let
S̃[3]

be the Hilbert scheme of 3 points in S̃, for each pair

(z, t) ∈ Z × S[3]

we consider
| Iz+t(2) |+⊂| F̃ |=| OS̃(2) |+ .

This is a pencil: actually it is the pull-back of a pencil of quadrics passing
through the conic cz defined by the push-down s∗z and through s∗t.

Proposition 5.3. The incidence correspondence parametrizing triples

(z, t, F̃ ′) ∈ Z × S̃[3]× | F̃ | / z + t ⊂ F̃ ′}

is a P1-bundle on Z × S[3].
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We denote such a rational 15-dimensional variety as

F.

Since a general π : F̃ → F is represented by an embedding

F̃ ∈ S̃

as a quadratic secion which is a +1 eigenvector of ι/S̃, it is clear that P
dominates the family of triples

(π : F̃ → F, M̃, f̃)

such that NmM̃ ∼= ωF , h0(M̃) = 1, f̃ ∈ F̃ [3]. On F we construct a P3-
bundle as follows: let

V
be the vector bundle on F with fibre

H0(ωF (s∗t)∗

at (z, t, F̃ ). We can consider the universal family

U ⊂ F× S

and its natural embedding
U ⊂ V.

For each (z, t, F̃ ) the divisor t spans a line in the embedding F ⊂ PV(z,t,F̃ ).
The P3-bundle we consider is the family of planes

Π ⊃< t > .

We denote such a projective bundle as

P.

It parametrizes 4-tuples
(z, t, F̃ ,Π)

as above. We know that P is also the parameter space for a family of curves

C ⊂ P5

of degree 12 birational to plane sextics with three nodes. For each (z, t, F̃ ,Π)
we have indeed a cubic

D ⊂ PH0(ωF (s∗t))∗

defined by the pair of line bundles

OF̃ (z + t) , OF̃ (ι∗z + ι∗t).

Moreover there is a unique net of quadrics N passing through F and such
that the base locus is

Π ∪ Y.

Finally
D · Y = C + F,
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where C is the required curve. Let

C ⊂ PV
be the corresponding universal family of curves. These curves are not
quadratically normal and h0(IC(2)) = 4. Let

C
be the projective bundle with fibre | IC(2) | at C. Then C maps onto the
moduli space

R2
7.

Indeed a point of C uniquely defines, in particular, the symmetric determi-
nantal cubic D and a net of quadrics through C generated say by Q1, Q2, Q3.
Then

D ∩Q1 ∩Q2 ∩Q3 = C + C

and C is a curve of genus 7 and degree 12 which is the linear projection from
one point of the canonical space. D, using also z, defines π : C̃ → C and L̃.
The map is dominant because we started with this construction. Conclusion

Theorem 5.4. R2
7 is unirational.
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