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Introduction

The study of commuting pairs of ordinary differential operators dates
back to the begging of the twentieth century, with the pioneering works of
Schur and Burchnall and Chaundy. Let

D2 = ∂2 + V (x), D3 = a3(x)∂3 + a2(x)∂2 + a1(x)∂ + a0(x)

and now impose the relation [D2, D3] = 0.

Then we can assume a3(x) = 1 up to scaling, and we also get a2(x) = A2

and arbitrary constant. Furthermore

a1 =
3
2
V +A1, a0 = A2V +

3
4
V ′ +A0.
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Finally from the zero order term of [D2, D3] we get, after two trivial
integrations,

V ′2 + 2V 3 + 4A1V
2 − 2A−1V +A−2 = 0.

Therefore V = V (x) is an elliptic function, that is a doubly periodic
meromorphic function or a degeneration of one, such as a trigonometric or
a rational function.

A degeneration yields the simplest example V = − 2
x2 and

D2 = ∂2 − 2
x2
, D3 = ∂3 − 3

x2
∂ +

3
x3
,

and D2
3 = D3

2.
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If we keep one of the periods finite we may choose V = − 2
sin2(x)

, then

D2 = ∂2 − 2
sin2x

, D3 = ∂3 +
(

1− 3
sin2 x

)
∂ +

3 cosx
sin3 x

,

and D2
3 = D2(D2 + I)2.

The punch line is that only very special choice of V (x) allows for the
existence of a differential operator of order three that would commute with
one of order two.

Burchnall and Chaundy pointed out that any commuting pair (Q,P ) of
ordinary differential operators

Q = ∂m + u2(x)∂m−2 + · · ·+ um(x), P = ∂n + v2(x)∂n−2 + · · ·+ un(x)

satisfy a polynomial relation F (Q,P ) = 0.
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Therefore the eigenvalues of the joint eigenvalue problem

Qψ = zψ, Pψ = wψ

satisfy the algebraic relation F (z, w) = 0, the spectral curve.

These commuting pairs are classified by a set of algebro-geometric data.
This set consist of the spectral curve Γ with a mark point γ∞, a holomorphic
vector bundle E on Γ and some additional data related to the local structure
of Γ and E in a neighborhood of γ∞.

I. M. Krichever 1970, D. Munford 1978, K. Takasaki 2005.
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Matrix Orthogonal Polynomials

Let W = W (x) be a weight matrix of size N on the real line. By
this we mean a complex N × N -matrix valued integrable function on the
interval (a, b) such that W (x) is positive definitive almost everywhere and
with finite moments Mn for all n,

Mn =
∫ b

a

xnW (x) dx

Let A be the algebra of all N × N matrices over C, and let A[x] be the
algebra of all polynomials in the undetermined x with coefficients in A.

Stieljes 1894, M. G. Krein 1949.
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We introduce the following Hermitian sesquilinear form in A[x]:

(P,Q) =
∫ b

a

P (x)W (x)Q(x)∗ dx.

(aP + bQ,R) = a(P,R) + b(Q,R),

(TP,Q) = T (P,Q),

(P,Q)∗ = (Q,P ),

(P, P ) ≥ 0; if (P, P ) = 0 then P = 0.

In other words we have that A[x] is a left inner product A-module.
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Principle of measurable choice (E. A. Azoff)

Let X and Y be complete separable metric spaces and E, a closed
σ-compact subset of X × Y . Then π1(E) is a Borel set in X and there
exists a Borel function φ : π1(E) → Y whose graph is contained in E.

Let H(N) and U(N) denote respectively, the space of all Hermitian
N ×N matrices and the unitary group.

Corollary. There is a Borel function ψ : H(N) → U(N) associating with
each Hermitian matrix H, a unitary matrix ψ(H) such that ψ(H)∗Hψ(H)
is real diagonal.

Proposition. Let P =
∑

0≤j≤n x
jPj be an A-polynomial of degree n.

Then ker (P, P ) =
⋂

0≤j≤n ker(P
∗
j ). In particular (P, P ) is nonsingular if

Pj is nonsingular for some 0 ≤ j ≤ n. Moreover (P, P ) = 0 implies P = 0.
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Proposition Let Vn = {F ∈ A[x] : degF ≤ n} for all n ≥ 0, V−1 = 0 and
V ⊥n−1 = {H ∈ Vn : (H,F ) = 0 for all F ∈ Vn−1}. Then V ⊥n−1 is a left
free A-module of dimension one and

(i) Vn = Vn−1 ⊕ V ⊥n−1 for all n ≥ 0.

(ii) There is a unique monic polynomial Pn in V ⊥n−1 and it is of degree n
for all n ≥ 0.

Corollary {Pn}n≥0 is the unique sequence of monic orthogonal polynomials
in A[x]. Any sequence {Qn}n≥0 of orthogonal polynomials in A[x] is of the
form Qn = AnPn where An ∈ GLN(C). Moreover the sequence {Pn}n≥0

satisfies a three term recursion relation of the form

xPn(x) = AnPn−1(x) +BnPn(x) + Pn+1(x)
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Matrix Differential Operators

A differential operator D could be made to act either on the left or
on the right on A[x]. If one wants to have matrix weights W that are
not direct sums of scalar one and that have matrix polynomials as their
eigenfunctions, one should settle for right-hand-side differential operators.
We agree now to say that D given by

D =
s∑

i=0

∂iFi(x), ∂ =
d

dx
,

acts on P (x) by means of

PD =
s∑

i=0

∂i(P )(x)Fi(x).
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Proposition. Let W = W (x) be a weight matrix of size N and let {Pn}n≥0

be the sequence of monic orthogonal polynomials in A[x]. If

D =
s∑

i=0

∂iFi(x), ∂ =
d

dx
,

is a linear right-hand side ordinary differential operator of order s such that

PnD = ΛnPn for all n ≥ 0

with Λn ∈ A, then Fi = Fi(x) ∈ A[x] and degFi ≤ i. Moreover D is
determined by the sequence {Λn}n≥0.
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If

Fi(x) =
i∑

j=0

xjF i
j(D),

then

Λn =
s∑

i=0

[n]iF i
i (D) for all n ≥ 0,

where
[ν]i = ν(ν − 1) · · · (ν − i+ 1), [ν]0 = 1.

Let

D = {D =
s∑

i=0

∂iFi(x) : Fi ∈ A[x],degFi ≤ i}.
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We are ready to introduce the main character of our tale.

Given a sequence of orthogonal polynomials {Qn}n≥0 we are interested in
the following algebra

D(W ) = {D : QnD = Γn(D)Qn, Γn(D) ∈ A for all n ≥ 0}.

Proposition Given a sequence {Qn}n≥0 of orthogonal polynomials and
D ∈ D(W ) let Γ(D,n) = Γn(D). Then D 7→ Γ(D,n) is a representation
of D(W ) into A, for each n ≥ 0. Moreover the sequence of representations
{Γn}n≥0 separates the elements of D(W ).
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The adjoint operation

Proposition. If D ∈ D is a right-hand side linear differential operator which
satisfies the symmetry condition (PD,Q) = (P,QD) for all P,Q ∈ A[x],
then D ∈ D(W ).

Theorem. Let {Pn}n≥0 be the sequence of monic orthogonal polynomials
associated to the weight matrix W = W (x). Given D =

∑s
i=0 ∂

iFi ∈
D(W ) let D̃ =

∑s
i=0 ∂

iGi ∈ D, where the Gi are defined inductively by

(i) G0 = (P0, P0)Λ0(D)∗(P0, P0)−1, and

(ii ) j!Gj = (Pj, Pj)Λj(D)∗(Pj, Pj)−1Pj −
∑j−1

i=0 ∂
i(Pj)Gi for 1 ≤ i ≤ s.

Then (PD,Q) = (P,QD̃) for all P,Q ∈ A[x].
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Corollary. For any D ∈ D(W ) there exists a unique differential operator
D∗ ∈ D(W ) such that (PD,Q) = (P,QD∗) for all P,Q ∈ A[x]. We shall
refer to D∗ as the adjoint of D. The map D 7→ D∗ is a *-operation in the
algebra D(W ), and the orders of D and D∗ coincide. Moreover S(W ) is a
real form of the space D(W ), i.e.

D(W ) = S(W )⊕ iS(W ).

If {Qn}n≥0 is a sequence of orthogonal polynomials and {Γn}n≥0 is the
corresponding sequence of representations of D(W ), then

Γn(D∗) = (Qn, Qn)Γn(D)∗(Qn, Qn)−1

for all D ∈ D(W ). In particular if {Qn}n≥0 is a sequence of orthonormal
polynomials then D is symmetric if and only Γn(D) is Hermitian for all
n ≥ 0.
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Corollary. The representations Λn of D(W ) are completely reducible.

We observe that given a weight matrix W (x) the algebra D(W ) is most
likely going to be trivial. By integration by parts one finds necessary and
sufficient conditions on smooth weights W to have a symmetric second
order differential operator. A similar result holds for a symmetric differential
operator of any order. Therefore one has, modulo the difficult task of
explicitly solving the corresponding system of differential equations, a way
of getting S(W ) and hence D(W ).
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The ad-conditions

We have a sequence of representations {Λn}n≥0 of D(W ) into A. In
other words we have a homomorphism Λ of D(W ) into the direct product
of N0 copies of A. Moreover Λ is injective. To give a precise description of
the range of this homomorphism, recall that our starting point is a weight
matrix W (x) on the real line and its unique sequence of monic orthogonal
polynomials {Pn}n≥0, together with the three-term recursion relation

xPn(x) = AnPn−1(x) +BnPn(x) + Pn+1(x), n ≥ 0,

where we put P−1(x) = 0.
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It is convenient to introduce the block tridiagonal matrix L

L =

B0 I
A1 B1 I

. . . . . . . . .


The recursion relation now takes the form

LP = xP (1)

where P stands for the vector

P (x) =


P0(x)
P1(x)
P2(x)

...
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Assume that D ∈ D(W ), i.e.,

PnD = ΛnPn n ≥ 0.

If Λ denotes the block diagonal matrix

Λ =

Λ0

Λ1
. . .


we observe that from (1) we get, for any integer m ≥ 0,

(adL)m(Λ)P = (L− xI)mΛP.
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Theorem If D ∈ D(W ) and Λ is the block diagonal matrix with Λn =
Λn(D) we have

(ad L)m+1(Λ) = 0 (2)

for some m. Conversely, if Λ is a block diagonal matrix satisfying this
condition for some m ≥ 0, then there is a unique differential operator D in
D(W ) such that Λn = Λn(D) for all n ≥ 0. Moreover the order of D is
equal to the minimum m satisfying (2).

F. A. Grünbaum and T, IEOT, 2007.
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Scalar examples

Classical Orthogonal Polynomials

Jacobi:
w(x) = (1− x)α(1 + x)β, −1 < x < 1; α, β > −1

α = β Gegenbauer; α = β = 1
2 Chevishev first kind;

α = β = −1
2 Chevyshev second kind; α = β = 0 Legendre

Laguerre:
w(x) = xαe−x, x > 0; α > −1

Hermite:
w(x) = e−x2

, −∞ < x <∞
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D(pn)(x) = a2(x)p′′n(x) + a1(x)p′n(x) = λnpn(x)

Jacobi:

(1− x2)p′′n + (β − α− (α+ β + 2)x)p′n = −n(n+ α+ β + 1)pn

changing variables: x = 1− 2z

z(1− z)p′′n + (α+ 1− (α+ β + 2)z)p′n = −n(n+ α+ β + 1)pn

Laguerre: xp′′n + (α+ 1− x)p′n = −npn

Hermite: p′′n − 2xp′n = −2npn

L. Miranian, Thesis UC Berkeley, 2005: D(w) = C[D].

22



A matrix instructive example

Wa(x) = e−x2
eAxeA∗x −∞ < x <∞

A =
(

0 a
0 0

)
, a ∈ C×

Rodrigues’ formula

Pn(x) =(−2)−nex2
(

1 0
0 2

|a|2n+2

)[
e−x2

(
1 + |a|2x2 + |a|2n

2 ax
āx 1

)](n)

×
(

1 −ax
−āx 1 + |a|2x2

)

(Grünbaum, Durán, IMRN 2004)
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If a = |a|e2iθ, then(
e−iθ 0
0 eiθ

)
Wa(t)

(
eiθ 0
0 e−iθ

)
= W|a|(t).

This implies that D(Wa) and D(W|a|) are conjugated. Therefore we
will assume that a > 0. M. Castro and F. A. Grünbaum, (see IMRN, 2006)
experimentally, with assistance from symbolic computation, conjectured
that D(W ) was generated by the following differential operators:

D1 = −1
2
∂2 + ∂(xI − aE12) + E11

D2 = ∂2 a
2

2
(axE12 − E11) + ∂ a(axE22 + E12 − E21) + 2E22
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D3 = ∂2 a2
(
a2x2E12 + ax(E22 − E11)− E21

)
+ ∂ 2a

(
a(a2 + 2)xE12 + E22 − (a2 + 1)E11

)
+ 2(a2 + 2)E12

D4 = −∂2 a
2

4
E12 + ∂

a

2
(E11 − E22) + E21

Λ1 = nI + E11, Λ2 = fE22, Λ3 = f(f + a2)E12, Λ4 = E21,

where f = a2n+ 2.
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Proposition The set {Di
1, D

i
1D2, D

i
1D3, D

i
1D4 : i ≥ 0} is a basis of D(W ),

and the multiplication table is

D2D1 = D1D2, D2D2 = (a2D1 + 2I)D2, D2D3 = 0

D2D4 = (a2D1 + 2I)D4, D3D1 = (D1 − I)D3

D3D2 = (a2D1 + (2− a2)I)D3, D3D3 = 0

D3D4 = a4D2
1 − a2D1D2 + a2(4− a2)D1 + (a2 − 2)D2 + 2(2− a2)I

D4D1 = (D1 + I)D4, D4D2 = 0

D4D3 = (a2D1 + (2 + a2)I)D2, D4D4 = 0

Moreover D1 and D−1 = D3 + 4D4 generates D(W ).

(T, 2007)
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The proof of the proposition starts with the following

Proposition Let Pn =
∑n

i=0 x
iBn

i and D =
∑s

j=0 ∂
jFj(t), with Fj(t) =∑j

i=0 t
iF j

i . Then D ∈ D(W ) if and only if

n−m∑
r=0

Bn
m+r

( s−r∑
i=0

[m+ r]i+rF
i+r
i

)
−
( s∑

i=0

[n]iF i
i

)
Bn

m = 0, (3)

for all 0 ≤ m ≤ n, 0 ≤ n.

This is an infinite system of linear equations where the unknowns are the
matrices F j

i . In order to simplify this system we take advantage of an
involutive automorphism that the algebra D(W ) possesses.
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Let

T =
(

1 0
0 −1

)
,

then
W (−t) = TW (t)T.

Given D =
∑

0≤i≤s ∂
iFi ∈ D(W ) let D̃ =

∑
0≤i≤s ∂

i(−1)iT F̌iT, where

F̌i(t) = Fi(−t). Then D̃ ∈ D(W ) and the map D 7→ D̃ is an involutive
automorphism of the algebra D(W ). Let

D1(W ) = {D ∈ D(W ) : D̃ = D}, D−1(W ) = {D ∈ D(W ) : D̃ = −D}.

Then
D(W ) = D1(W )⊕D−1(W ).
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Then we are able to find the space of all differential operators in D1(W )
of order less or equal to two, which turns out to be of dimension three
and generated by I,D1 and D2. Similarly we determine the space of all
differential operators in D−1(W ) of order less or equal to two, which turns
out to be of dimension two and generated by D3 and D4.

Let A(W ) be the subalgebra of D(W ) generated by all D ∈ D(W ) of
order less or equal to two, and let

A1(W ) = A(W ) ∩ D1(W ) and A−1(W ) = A(W ) ∩ D−1(W ).

In order to prove that A(W ) = D(W ), let C1 be equal to the linear space
generated by the leading coefficients of all D ∈ D1(W ) of order less or
equal to two.
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The linear space C1 is a two dimensional subalgebra of A[t]. Moreover,
for any F ∈ C1 and r ∈ N there exists D ∈ A1(W ) of order 2r, with leading
coefficient F . Then we establish that there is no D ∈ D1(W ) of odd order,
and that if F is the leading coefficient of a differential operator D ∈ D1(W )
then F ∈ C1, from where it follows that A1(W ) = D1(W ).

Let Dn, D1,n and D−1,n be, respectively, the subspaces of D(W ),
D1(W ) and D−1(W ) of all differential operators of order less or equal to
n. Similarly let A1,n and A−1,n be, respectively, the subspaces of A1(W )
and A−1(W ) of all differential operators of order less or equal to n.
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Then

Theorem For any r ≥ 1 we have,

(i) dim(D1,2r/D1,2(r−1)) = 2,

(ii) dim(D−1,2r/D−1,2(r−1)) = 2,

(iii) dim(D2r/D2(r−1)) = 4,

(iv) dim(A−1,2r/A−1,2(r−1)) = 2,

(v) A−1(W ) = D−1(W ).

Statement (iii) was conjectured by Castro and Grünbaum. At this
point since A1(W ) = D1(W ) and A−1(W ) = D−1(W ) it follows that the
algebras D(W ) and A(W ) coincide. In other words the algebra D(W ) is
generated by the subspace D2(W ).
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Now it follows easily that

{Di
1, D

i
1D2, D

i
1D3, D

i
1D4 : i ≥ 0}

is a basis over C of D(W ).

The element D−1 = D3 + 4D4 ∈ D−1(W ), has two nice properties: the
set {D1, D−1} generates the algebra D(W ) and D2

−1 is a central element.
Let Z = C[D2

−1] be the polynomial subalgebra of D(W ) generated by the
algebraically independent element D2

−1. Then we establish that D(W ) is a
free module over Z of dimension eight. More precisely the set

{I,D1, D
2
1, D

3
1} ∪ {D−1, D1D−1, D

2
1D−1, D−1D1}

is a Z-basis of D(W ).
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The algebra D(W ) is also presented by generators and relations: it is
generated by two elements E and F , and the relations are

F 2E − EF 2 = 0,

F 4 − 2a4F 2E2 − 8a2F 2E − 8F 2 + a8E4 + 8a6E3

− a4(a4 − 24)E2 − 4a2(a4 − 8)E − 4(a4 − 4)I = 0,

− 4a6E3 + 2a2EF 2 − a2FEF − 24a4E2 + 2F 2 + 4a2(a4 − 12)E

+ 8(a4 − 4)I = 0,

E3 + E2[E,F ]− a4E2F − a4E2[E,F ] + a2(a2 − 4)EF

+ a2(a2 − 4)E[E,F ] + 2(a2 − 2)F + 2(a2 − 2)[E,F ] = 0,

F 3 − 4a4EFE − 8a2(EF + FE)− 16F = 0,

FE2 + E2F − 2EFE − F = 0.
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Then we compute the center of D(W ). Set

Z =
(
3
4D

2
−1 + (a4 − 12)I

)
D1 − 6a2 − a4D3

1.

We establish that the center Z(W ) of the algebra D(W ) is generated by
D2
−1 and Z, and that it is isomorphic to the affine algebra of the elliptic

curve

4x3− y2−12xy+(a4−36)x2−4(a4−4)y−24(a4−4)x−4(a4−4)2 = 0.

A big, and rather blurry, challenge is that of finding the appropriate
algebro-geometric objects associated to D(W ) for any weight matrix W ,
that reduce in the abelian case to a curve and a vector bundle on it. Further
study of this example may be instructive in this respect.
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