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History

Let K be a field,

p(y) ∈ K[y]

an irreducible polynomial degree d.

Abel:
if d > 4 then there are polynomials p not
solvable by radicals.

If λ ∈ K
p(λ) = 0

cannot be (for instance) written:

λ = .... ni+1

√
qi(a) + ni

√
...

where q ∈ K(x1, x2, ..., xd+1), a = (a1, a2, ..., ad+1) are the coeff. of p.

Galois :

The Galois group of the splitting field of p :

G(p)

is not solvable.
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Riemann:
K = C(x)

p(y) = P (x, y) = 0

defines a plane complex algebraic curve and
then a Riemann surface X .

The ”roots” of p are the alg. functions,

G(p) ≡M(y)

M(y) monodromy group of the map:

y : X → CP1

induced by the projection (x, y)→ y.
M(y) topological invariant of the covering can be computed by arcs lifting .
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Definition
Let X be a Riemann surface of genus g,

R(X)

its rational functions field. We say that X
is

rationally uniformized by radicals

if there is y ∈ R(X) such that

R(X) = C(x)(y), X = {p(x, y) = 0} :

M(y) ≡ G(p)

is solvable.

Zariski :
Solution to a question posed by Enriques:

Theorem: If g ≥ 7 and X has gen-
eral moduli, X cannot be rationally uni-
formized by radicals.

If g ≤ 6, X has gonality ≤ 5 and hence is rationally uniformized by radicals
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Proof of Zariski theorem ( Sketch)
Assume y ∈ R(X) : M(y) solvable, y inde-
composable:
y 6= f · g maps of degree > 1 f : X → Z g : Z → CP1.

Fix x ∈ CP1 not a branch point, A =
p−1(x).

From Galois theory :

1. d = deg y = #A = pr, p prime;

2.A is an affine space over Zp;
3. Galois action G× A→ A is affine.

Hence:

1. h ∈M gives an affine map h : A→ A;

2. fixed points of h form affine subspace;

3. ramification index at any branch point is

≥ pr − pr−1

2
ramifications are big:example p ≥ 5 r = 1 the ram. index ≥ 2.

Count of moduli gives that X is not general
if g ≥ 7.
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Generalization

Theorem (Friedland-Guralnick-Magaard-
Neubauer....)
Let X be the general complex curve of

genus g > 3,

y ∈ R(X)

indecomposable (non constant). Then

M(y) = Ad or Sd

the symmetric or the alternating group.
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Existence result: Sd is possible (for any
algebraic variety);

Ad is possible:
Magaard Volklein: (general curves)

d ≥ 2g + 1

(admissible coverings)

Artebani-P : any curve d > 12g + 4 (uses
an Algebraic De Rham)

(Brivio-P. for a surface S, Ad is possible if
d >> 0; open in higher dimension.)

Everything is open in higher dimension.

Problem
Are surfaces uniformized by radicals?
Consider the case of ruled surfaces.
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Zariski conjecture

Definition

Let X be a genus g, Riemann surface R(X) its ra-
tional functions field, X is

algebraically uniformized by radicals

if there is an algebraic field extension

R(X) ⊂ S = R(Y )

which corresponds to a dominant map π : Y → X :

Y is rationally uniformized by radicals .

Remark

Rationally uniformized means that there is a y :
X → CP1 : for the Galois closure L = R(X)

y
of

C(x) ⊂ R(X) = C(x)(y) is solvable. Algebraic
uniformization by radicals requires to embed

R(X) ⊂ S

such that some
C(x) ⊂ S

is solvable.
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Zariski wrote :

Si potrebbe dunque pensare che si possa in-
vece fornire per ogni equazione f = 0 una
risoluzione multipla per radicali x = x(t),
y = y(t), in cui ad ogni punto (x, y) della
curva f = 0 corrispondano più valori di t.
. . . È poco probabile che ciò accada effettiva-
mente, ma in ogni modo si ha qui un nuovo
problema, che noi non discutiamo in questa
Nota e che potrà essere oggetto di una ulteri-
ore ricerca.

(One may therefore think that for every equa-
tion f = 0 one can find a multiple solution
by radicals x = x(t), y = y(t), in which sev-
eral values of t correspond to every given point
(x, y) of the curve f = 0. . . . It is unlikely that
this could really happen, but in any case we
have here a new problem, which we do not dis-
cuss in this Note, and which might be object
of further research).

Zariski conjecture. The general curve of genus
g ≥ 7(??) cannot be algebraically uniformized by
radicals.
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The question is to embed R(X) ⊂ S the rational
field of X in S; S obtained by a series of abelian
covering of C(x).

The Zariski conjecture/problem seems very diffi-
cult.

We consider a related problem:

Problem
Find a curve algebraic uniformized by radicals
but not rationally uniformized by radicals.

Result: Two examples of curves alg. but not rat.
uniformized by radicals:

1. P-Schlesinger: g=7 (Debarre -Fahlaoui) counterex-
ample to a conjecture of Abramovich-Harris con-
jecture

2. P-Schlesinger-Rizzi g=9.

Remark: If Y → X is dominant and the gonal-
ity of Y is k the gonality of X is ≤ k. Hence if
k < 5 both Y and X are rationally uniformized by
radicals.
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Construction of curves algebraically
uniformized by radicals

1. C smooth curve of genus p;

2. C(k) = kth-symmetric power of C;

3. H hyperplane of C(k):

H ≡ {x + C(k−1) ⊂ C(k)}.

4. X curve, f : X → C(k) birational onto its image.

Assume

1. C rationally uniform. by rad.

2. H · f (X) ≤ 4;

Define the correspondence:

Y ′ ∈ C ×X = {(p, y) : f (p) = y}
Y normalization of Y ′.

Second projection gives map

Y → X ;

First projection gives g : Y → C deg g ≤ 4

If y : C → CP1 has solvable monodromy, g ◦ y
has solvable monodromy.

Y is rat. uniform. and X is alg. uniform.
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For k = 2 we find curves in S = C(2) using
Riemann Roch for divisor L; X ∈ |L|.

1. Debarre Fahlaoui (∆ = diagonal in S =

C(2))

g(C) = 1, L = 3H −KS = 3H +
∆

2
2. P.R.S.

g(C) = 2, L = 3H + KS = 5H − ∆

2

One proves that the general curve is not
rat. unif. by radicals

step 1. y ∈ R(X) deg(y) ≥ 5, M(y) not
solvable.

step 2. The gonality of X > 4.

step 1. follows the proof of Zariski with
some refinement on group theory.
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Proof that the gonality of X > 4
(it is the geometric part).

Two methods:

1. Lazarsfeld : Vector bundle: used by De-
barre. Some complications. The vec-
tor bundles are not numerically unstable.
One cannot argue using Bogomolov the-
orem etc. .

2. Mumford Tyurin : when g(C) = 2, C(2)

is the blow up of the Jacobian J(C) of
C. J(C) is symplectic.
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Consider the second case g(C) = 2.
Assume by contradiction that any curveX ∈
|L| has gonality 4 (other cases are easier).
Let

Z = hilb4(C(2))

for any X ∈ |L|, X(4) ⊂ Z

M = {D ∈ Z : D ∈ X(4), h0(X,OX(D) > 1}.

One considers the albanese map:

alb : hilb4(C(2))→ J(C)

Following Beauville (Mumford Tyurin) the
fibres K4 of alb outside the exceptional di-
visor of

C(2)→ J(C)

are symplectic variety of dimension 6 with
respect to a natural form Ω
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One proves (part 2 needs some extra work)

1.M ⊂ K4

2.M is Lagrangian with respect to Ω

Consequence dimM ≤ 3

Next translate into projective geometry:

|L| = P5

consider the map:

ρ : S = C(2)→ |L| = P5

Look at the incidence correspondence

I ⊂M × P5 = {(D, [X ]) : D ⊂ X}.

The fibers of the projection

π2 : I → P5

have dimension 1, hence

dim I = 6
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The general fibre of

π1 : I →M

is a linear space of dimension ≥ 3 :

The point D of M impose only 2 conditions
on L :

It follows that the 4 points of D ∈ M lie
on a 4-secant line of ρ(S).

This is impossible by a standard argument.
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