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Web geometry : first definitions

M : a C-manifold (M = (C2, 0))

Definition : Foliation F

≃
locally

Definition : 1. A completely decomposable (CD) d-web is

Wd = F1 ⊠F2 ⊠ · · · ⊠ Fd

where F1, . . . ,Fd are foliations in general position on M.

2. d-web Wd : defined by gluing local CD d-webs.
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Web geometry

Fig.: A non decomposable 2-web

Fig.: A planar 3-web
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Web geometry : a classification problem

Definition : Wd and W ′
d are equivalent if it exists ϕ invertible s.t.

ϕ∗
(

W ′
d

)

= Wd

Web geometry :

Classification of webs up to equivalence.

Classically : equivalence = local analytic equivalence

?

Fig.: The local geometry of a 2-web is trivial in dimension 2
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Web geometry : a classification problem

Claim : The local geometry of a planar 3-web is rich
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Web geometry : a classification problem

Claim : The local geometry of a planar 3-web is rich
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Web geometry : a classification problem

Claim : The local geometry of a planar 3-web is rich

?

Fig.: Problem of linearization
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Web geometry : a classification problem

Claim : The local geometry of a planar 3-web is rich

?

?
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Webs : examples

Example 1 : planar 3-web associated to ϕ ∈ Diff (C2, 0)

U V

ϕ
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Webs : examples

Example 1 : planar 3-web associated to ϕ ∈ Diff (C2, 0)
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ϕ

p

ϕ(p)
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Webs : examples

Example 1 : planar 3-web associated to ϕ ∈ Diff (C2, 0)

U V

ϕ
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Webs : examples

Example 2 : Bol’s web B

1.
B = M0,5

−→
−→ M0,4 ≃ P

1 \ {0, 1,∞}

2.

3.

B = W

(

x , y ,
x

y
,
1 − x

1 − y
,
x(1 − y)

y(1 − x)

)
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Webs : examples

Example 3 : Algebraic web

Reduced algebraic curve C ⊂ P2, deg(C ) = d
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Webs : examples

Example 3 : Algebraic web

Reduced algebraic curve C ⊂ P2, deg(C ) = d

projective dualityˇ

��
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Webs : examples

Example 3 : Algebraic web

Reduced algebraic curve C ⊂ P2, deg(C ) = d

projective dualityˇ

��

Linear algebraic d-web WC on P̌2
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Webs : examples

Example 3 : Algebraic web

Reduced algebraic curve C ⊂ P2, deg(C ) = d

projective dualityˇ

��

Linear algebraic d-web WC on P̌2

Remark :

V r ⊂ Pn+r algebraic
deg(V r ) = d

ˇ
−→ algebraic d-web of codim r on Gn(P

n+r )
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Algebraic webs

C ⊂ P2 : reduced algebraic curve

deg(C ) = d
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Algebraic webs

C ⊂ P2 : reduced algebraic curve

deg(C ) = d ⇐⇒ Č ⊂ P̌2 is of classe d

p

Č
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Algebraic webs

C ⊂ P2 : reduced algebraic curve

deg(C ) = d ⇐⇒ Č ⊂ P̌2 is of classe d

p

Č ℓ1(p)

ℓ2(p)

ℓ3(p)

ℓ4(p)
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Algebraic webs

C ⊂ P2 : reduced algebraic curve

deg(C ) = d ⇐⇒ Č ⊂ P̌2 is of classe d

q

p

Č

Definition : the algebraic web WC is the linear d-web on P̌2

formed by the tangents lines to Č .
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A real picture of an algebraic web

Fig.: Algebraic 3-web formed by the tangents of a hypocycloid
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Another picture of an algebraic web

Fig.: Algebraic 4-web formed by the tangents of an astroid
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Algebraic webs

p

Č ℓ1(p)

ℓ4(p)

ℓ3(p)

ℓ2(p)

Remark : the maps

P̌
2 ∋ p 7−→ ℓi (p) ∈ C

are (local) first integral for the algebraic web WC .
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Abelian relations and rank

C ⊂ P2 algebraic curve of degree d : WC = W (ℓ1, . . . , ℓd).

Abel’s Theorem :
∣

∣

∣

∣

∣

∣

∣

∣

∑d
i=1 Fi

(

ℓi(p)
)

= 0 ⇐⇒ ∃ω ∈ H0(C , ω1
C ) s.t. Fi(•) =

∫ •
ω.
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Abelian relations and rank

C ⊂ P2 algebraic curve of degree d : WC = W (ℓ1, . . . , ℓd).

Abel’s Theorem :
∣

∣

∣

∣

∣

∣

∣

∣

∑d
i=1 Fi

(

ℓi(p)
)

= 0 ⇐⇒ ∃ω ∈ H0(C , ω1
C ) s.t. Fi(•) =

∫ •
ω.

Generalization to webs :

Let Ui : (C2, 0) → C are first integrals of Wd = W (U1, . . . ,Ud).

Definitions :

1. Abelian relation (AR)

F1(U1) + · · · + Fd(Ud) = 0

2. C-vector space A(Wd) =
〈

AR ′s of Wd

〉

3. Rank of Wd : rk(Wd) = dim A(Wd)
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Properties of abelian relations and of the rank

Proposition : If Wd = WC with deg(C ) = d , then
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1. A(WC ) ≃ H0(C , ω1
C )

2. rk(WC ) = h0(ω1
C ) = pa(C ) = (d−1)(d−2)

2

Bol’s Theorem : For any d-web Wd
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

rk(Wd) ≤
(d − 1)(d − 2)

2
=: πd (Bol’s bound)

Definition : Wd is of maximal rank if rk(Wd) = πd

Example : Algebraic webs are examples of webs of maximal rank
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Webs of maximal rank : algebraization

Theorem (Lie, Poincaré) :
∣

∣

∣

∣

∣

∣

∣

∣

rk(W4) = π4 = 3 =⇒ W4 is algebraizable

Theorem (Blaschke-Howe, Griffiths) : For any n ≥ 2 :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Wd : 1 − codimensional
linear d-web on U ⊂ Cn

with one complete AR
=⇒ Wd is algebraizable
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Webs of maximal rank : algebraization

Theorem (Bol, (Chern-Griffiths), Trépreau) : For n > 2 :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Wd : 1 − codimensional
d-web on U ⊂ Cn

of maximal rank π(d , n)
=⇒ Wd is algebraizable

Work in progress (Pirio-Trépreau) : Algebraization of maximal
rank webs of codimension r > 1

Philosophy : Sufficiently many AR =⇒ algebraization
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Webs of maximal rank : exceptional webs

Fact : for a planar 5-web W5
∣

∣

∣

∣

∣

∣

∣

∣

rk(W5) = π5 = 6 6; W5 is algebraizable

Bol’s counterexample :

∣

∣

∣

∣

∣

∣

∣

∣

B = W
(

x , y , x
y
, 1−x

1−y
, x(1−y)

y(1−x)

)

is
1. not linearizable

2. of maximal rank π5 = 6

Definition :

Exceptional web =

{

non-algebraizable web
of maximal rank
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Abelian relations of Bol’s web

Rogers dilogarithm

D(x) := Li2(x) +
1

2
log(x) log(1 − x) −

π2

6

satisfies Abel’s 5-terms relation (Ab) :

D(x) − D(y) − D
(x

y

)

− D
(1 − y

1 − x

)

+ D

(

x(1 − y)

y(1 − x)

)

= 0

Luc PIRIO Exceptional planar webs and their associated (exceptional) surfaces



Abelian relations of Bol’s web

Rogers dilogarithm

D(x) := Li2(x) +
1

2
log(x) log(1 − x) −

π2

6

satisfies Abel’s 5-terms relation (Ab) :

D(x) − D(y) − D
(x

y

)

− D
(1 − y

1 − x

)

+ D

(

x(1 − y)

y(1 − x)

)

= 0

Thus (Ab) is an abelian relation for

B = W

(

x , y ,
x

y
,
1 − y

1 − x
,
x(1 − y)

y(1 − x)

)

=⇒ Bol’s web is exceptional (Bol, 1936).
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Chern’s problem

Chern’s Problem : Classify all exceptional webs
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Why is Chern’s problem interesting

Reason 1 : Chern-Griffiths (1981)

(...) we cannot refrain from mentionning what we
consider to be the fundamental problem on the subject,
which is to determine the maximum rank non-linearizable
webs. The strong conditions must imply that there are
not many.

Reason 2 : Abel’s 5-terms relation (Ab) appears in

◮ hyperbolic geometry

◮ algebraic K-theory

◮ etc...

=⇒ Abelian relations of exceptional webs could be related to
others domains in mathematics.
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Exceptional webs and algebraic geometry

Credo :

Exceptional planar webs are analogs of plane algebraic curves.

Such webs exist :

◮ First new example : Pirio, Robert (2001)

◮ A continuous family : Pirio-Trépreau (2003)

◮ ...
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Webs with an infinitesimal symmetry

Joint work with D. Mar̀ın and J.-V. Pereira

Wd with an infinitesimal symmetry X ⇒ LX ∈ End
(

A(Wd)
)

Theorem :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X= infinitesimal symmetry of Wd s.t. FX 6∈ Wd

rk(Wd ⊠ FX ) = rk(Wd) + (d − 1)

Corollary :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For any d ≥ 5, it exists a continuous family
of exceptional d-webs on P2 of the form

WC ⊠ FX

« Proof » : for any d , there are continuous families of algebraic
curves C ⊂ P2 invariant by a linear action of C∗ on P2
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Characterization of webs of maximal rank

Blaschke-Dubourdieu :

W3 on U ⊂ C2
 curvature K (W3) ∈ Ω2

U

Remark : for ϕ invertible

K
(

ϕ∗W3

)

= ϕ∗
(

K (W3)
)

Theorem :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W3 has maximal rank
i.e. rk(W3) = π3 = 1

⇐⇒
W3 is « flat »

i.e. K (W3) ≡ 0
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Characterization of webs of maximal rank

Generalization to planar d-webs
( Pantazi-Mihăileanu

Hénaut-Ripoll

)

Wd on U ⊂ C2
 

(E ,∇Wd
) fiber bundle on U

of rank πd = 1
2(d − 1)(d − 2)

such that A(Wd) →֒ Ker
(

∇Wd

)

Theorem (Pantazi-Hénaut) :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Wd has maximal rank
i.e. rk(Wd) = πd

⇐⇒
(E ,∇Wd

) is flat
i.e. K (∇Wd

) ≡ 0
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Characterization of webs of maximal rank

Definition : the curvature of Wd is

K (Wd ) :=
∑

W3<Wd

K (W3) ∈ Ω2
U

Corollary (Mihăileanu) :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Wd has maximal rank
i.e. rk(Wd) = πd

=⇒
Wd is « flat »

i.e. K (Wd ) ≡ 0

Remark : if Wd is a global d-web on a surface S with singular set
∆ = ∆(Wd) ⊂ S , one can also define its curvature

K (Wd) ∈ Ω2
S(⋆∆)
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CDQL webs

Joint work with J.-V. Pereira

Remark : Bol’s web B = 4 pencils of lines + a pencil of conics

Definition:CDQL web = Completely Decomposable QuasiLinear web

• CDQL web on P2 = pencils of lines + a non-linear foliation

• CDQL web on T = pencils of lines + a non-linear foliation

CDQL version of Chern’s Pbm : Classify exceptional CDQL webs
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Exceptional CDQL webs on P2 : classification

Theorem (Pereira-Pirio) :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Up to projective equivalence, there are
4 infinite families and
13 sporadic examples
of exceptional CDQL webs on P2

The four infinite families are (with k ≥ 1)

◮ Ak
I = [(dxk − dyk) d(xy)]

◮ Ak
II = [dx dy (dxk − dyk) d(xy)]

◮ Ak
III = [(xdy − ydx)(dxk − dyk) d(xy)]

◮ Ak
IV = [dx dy (xdy − ydx) (dxk − dyk) d(xy)]
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Exceptional CDQL webs on P2 : classification

Among the sporadic examples, 7 are invariant by homotheties.
These are (with ξ = exp(2iπ/3))

◮ Aa
5 = [ dx dy d(x/y) d(x + y)]⊠ [d(xy(x + y))]

◮ Ab
5 = [ dx dy d(x/y) d(x + y) ]⊠ [d(xy/(x + y))]

◮ Ac
5 = [ dx dy d(x/y) d(x + y) ]⊠ [d(x2+xy+y2

xy(x+y) )]

◮ Ad
5 = [dx dy d(x + y) d(x + ξ y)]⊠ [d(xy(x + y)(x + ξ y))]

◮ Aa
6 = [dx dy d(x +y) d(x +ξ y) d( x

y
)]⊠ [d(xy(x +y)(x +ξ y))]

◮ Ab
6 = [dx dy (dx3 + dy3)]⊠ [d(x3 + y3)]

◮ Aa
7 = [dx dy (dx3 + dy3) d(x/y)] ⊠ [d(x3 + y3)].
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Exceptional CDQL webs on P2 : classification

Among the last sporadic examples, there are Bol’s web and his
brothers

◮ B = [dx dy d( x
1−y

) d( y
1−x

) ]⊠
[

d( xy
(1−x)(1−y))

]

◮ B6 = B ⊠ [d(x + y)]

◮ B7 = B6 ⊠ [d(x/y)]

◮ B8 = B7 ⊠ [d( 1−x
1−y

)]
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Exceptional CDQL webs on P2 : classification

The last two sporadic examples are

◮ H5 =
[

(dx3 + dy3) d(x/y)
]

⊠Hesse

◮ H10 =
[

(dx3 + dy3)
∏2

i=0 d(y−ξi

x
)

∏2
i=0 d(x−ξi

y
)
]

⊠Hesse

where Hesse designates Hesse’s pencil of cubics

Hesse =

[

d
( xy

1 + x3 + y3

)

]
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2.3 Exceptional CDQL webs on tori : classification

Corollary (Pereira-Pirio) :
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Up to isogenies, there are

— 1 continuous family (for d = 5)

— 3 sporadic examples (one for each d ∈ {5, 6, 7})

of exceptional CDQL d-webs on 2-dimensional complex tori
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Classification on P2 : « proof »

0. • Wd+1 = Lp1 ⊠ · · · Lpd
⊠ F with

{

p1, . . . , pd ∈ P2

F ∈ Fol(P2)

• singular set of Wd+1 =: ∆ ⊂ P2

1.
[ Wd+1 has

max. rank

]

Mihaileanu
=⇒ K (Wd+1) ≡ 0 ⇔

[ K (Wd+1)
holom. on P2

]

—————– =⇒

[

K (Wd+1) is holom. over
the generic point of C ⊂ ∆

]

=(1)

2. (1) =⇒

[ constraints on
P = {p1, . . . , pd}

F ∈ Fol(P2)

]

=⇒

{deg(F) ≤ 4

P ⊂ ℓF ∪ Sing(F)
. . . . . . . . .

3. Case by case classification depending on deg(F) ∈ {1, 2, 3, 4}�
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Canonical map : algebraic curves

C : smooth algebraic curve of genus g

〈

ωλ
∣

∣λ = 1, . . . g
〉

= H0(C ,Ω1
C )

Let z be a local coordinate on C . Thus

ωλ(z) = f λ(z) dz

Definition : the canonical map of C is

ϕ|Ω1
C
| : C −→ P

g−1

z 7−→
[

f 1(z) : · · · : f g (z)
]
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Canonical map : webs

Wd = W (U1, . . . ,Ud) d-web with FI Ui : (C2, 0) → Ci = Im(Ui ).

Assume π = rk(Wd) > 0
〈

∑d
i=1 Fλ

i (Ui) = 0 | λ = 1, . . . , π
〉

= A(Wd)

m
〈

∑d
i=1 f λ

i (Ui )dUi = 0 | λ = 1, . . . , π
〉

= A(Wd)

Definition : 1. the ith canonical map of Wd is

ϕi : Ci −→ P
π−1

ui 7−→
[

f 1
i (ui ) : · · · : f π

i (ui )
]

2. the canonical map of Wd is ϕWd
= (ϕi ) : ⊔iCi → Pπ−1
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Canonical curve of webs of maximal rank

Algebraic curves

∣

∣

∣

∣

∣

Exceptional webs

C ′ = Im ϕ|Ω1
C
| ⊂ Pπd−1

∣

∣

∣

∣

∣

C ′
Wd

= ⊔iC
′
i ⊂ Pπd−1

C ′
i = Im ϕi

C ′ non-degenerate

∣

∣

∣

∣

∣

C ′
Wd

non-degenerate

C ′ algebraic

∣

∣

∣

∣

∣

C ′
Wd

algebraic or transcendent

deg(C ) = 2g − 2

∣

∣

∣

∣

∣

?
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Canonical curves of webs of maximal rank

Wd = W (U1, . . . ,Ud) of maximal rank on Ω ⊂ C2

Pd

p

Ω
Wd

U1
U2

Ud

C1

C2

Cd
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Canonical curves of webs of maximal rank

Wd = W (U1, . . . ,Ud) of maximal rank on Ω ⊂ C2

Pπd−1

p

Ω
Wd

U1
U2

Ud

C1

C2

Cd

C ′
1

C ′
2

C ′
d

ϕ1

ϕ2

ϕd
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Canonical curves of webs of maximal rank

Pπd−1

p

H(p)

Ω
Wd

U1
U2

Ud

C1

C2

Cd

C ′
1

C ′
2

C ′
d

ϕ1

ϕ2

ϕd
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Canonical curves of webs of maximal rank

Proposition : Let p ∈ Ω : the osculating spaces

Oscd−3
C ′

i

(

ϕ1

(

U1(p)
)

)

i = 1, . . . , d

span a hyperplane H(p) ∈ P̌πd−1

Proposition :

1. : The map HWd
:
Ω → P̌πd−1

p 7→ H(p)
parametrizes a surface

SWd
⊂ P̌

πd−1

with regular osculation of order d

2. : Wd is algebraizable ⇐⇒ SWd
= Vd (Veronese surface)

3. : HWd ∗

(

Wd

)

is canonically defined on SWd
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Principal directions on projective surfaces

Projective surface S ⊂ P̌πd−1 with regular osculation of order d

Proposition : (Segre d = 5)

Let s ∈ S . Counted with multiplicities, there are exactly 5
principal hyperplanes K1, . . . ,K5 ∈ P5 such that

Ki ∩ S = tacnode in s

=⇒ 5 principal directions tangent to S at s

=⇒ Segre’s 5-web on S (invariantly attached to S)

Proposition (Segre d=5) :
S totally umbilic ⇐⇒ S ⊂ Veronese surface V2 ⊂ P5
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Principal directions on projective surfaces

Exceptional 5-web W5 ⇒
{ HW5

: Ω → P̌5

SW5
= Im

(

HW5

)

Proposition :

Segre’s 5-web of SW5
= HW5∗

(

W5

)

=⇒ SW5
determines W5

Definition : Notion of exceptional surface S ⊂ Pπd−1
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Examples of exceptional surfaces

Proposition : the following 5-web is exceptional

W
(

x , y , x + y , x − y , x2 + y2
)

Canonical curve :

Associated exceptional surface :

H =
[

1 : x2+y2 : x2y2 :
(

x2+y2
)2

: x3
(

5y2−x2
)

: y3
(

5 x2−y2
)

]
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Examples of exceptional surfaces

Proposition : the following 5-web is exceptional

W
(

x , y , x + y , x − y , x2 − y2
)

Canonical curve :

Associated exceptional surface :

H =
[

1 : x2 : y2 : x3 : y3 :
(

x2 − y2
)2

]
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