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Abstract. For a smooth quasipro-
jective variety over C, we give an
explicit description of the Bloch cy-
cle class map from the higher Chow
eroups to Beilinson’s absolute Hodge
cohomology. We then arrive at an
explicit formula for a weight filtered
Abel-Jacobi map. This talk is based
on earlier joint work with Matt Kerr
Inv. math. 170].




1. STATEMENT

X/C smooth projective, dim X =
d, Y C X a NCD. KLM = Kerr

- Lewis - Miller-Stach, Compositio
Math. 142 (02), 2006).

CHy(X,m) —  Hyy™(X,Q(r))

| |
CH'(X,m) "2 HZT™(X,Q(r)
| |

Dy —
CH(X\Y,m) — HZ~™(X\Y,Q(r))
where H7.i is absolute Hodge coho-
mology, and fits in the s.e.s.:

Extyips (Q(0), H ~™ =Y~ Q(r))) —
Hy =™ (=, Q(r)) -
— homygyg (Q(0), H*~"(—,Q(r))).



For a Q-MHS H, write
[(H) := homyys (Q(0), H).

J(H) = Exty g (Q(0), H)
The Abel-Jacobi map is the induced
map AJym :

CH! (—,m)— J(H""™" 1~ Q(r))).

hom
Example. m =0

CH} (X, O)Aﬁ’OJ(HQT_l(X, Q(r)))

(Carlson) R

{Fd—r+lH2d—2r+1<X7<c>}\/
Hyg_9,41(X,Q)

5 . (w c Fd—r+1H2d—27“+1(X, (C))
= fa—lgw



2. HIGHER CHOW GROUPS

(I) Bloch’s higher Chow groups. Let
W/C a quasiprojective variety. Put
2"(W) = free abelian group gener-
ated by subvarieties of codimension
r (= dimW —r) in W. Consider
the m-simplex:

Am _ Spec{ C[t07 . .77.17 tm] } ~ Cm
(1 - ijo tj)
We set

2 (W,m) = {.5 e 2/ (W x A™) ‘

§ meets all faces {t;, = -+~ =1;, =0,

¢>1} properly}.



Note that 2"(W,0) = 2" (W). Now
set 0 1 2"(W,m) — 2"(W,m — 1),
the restriction to j-th face given by
tj = 0. The boundary map

m
0 = Z(—l)jﬁj :
=0
Z(Wom) — 2"(W,m — 1),
satisfies 92 = 0.
Defn. CH®*(W,e) = homology of
{2*°(W,e),d}.
Put CH" (W) := CH"(W,0).
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(IT) Alternate take: Cubical ver-
sion. Let O™ = (PM\{1})™ with
coordinates z; and 2" codimension
one faces obtained by setting z;, =
0, oo, and boundary maps

0="> (—1)715] — o),
where (9?, 07 denote the restriction
maps to the faces z; = 0, z; = o0
respectively. The rest of the defini-
tion is completely analogous except
that one has to divide out degenerate

cycles. It is known that both com-
plexes are quasiisomorphic. Put

CH" (W, m;Q) := CH" (W, m) ® Q.



Example. (“Totaro (pre-)cycle”)
X =Pt,a € C\{1}, Vy(a) =
{(t.1-t,1-at™Y) |t e P'} () O
One computes OVs(a) =

[ [(Loo) = (o0, )]

$—[(1,1—a) (o0, 1)] p () O

+(a,1 —a)—(0,1)] |
= (a,1 — a)

\
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Example. X = P2 with homoge-
neous coordinates [zq, 21, z9]. Pt =
fj = V(Zj), 7 =0,1,2. Let P =
0,0,1] = bgnty, Q = [1,0,0] =
1Nty R=10,1,0] = £y Ny In-
troduce f; € C(¢;)”, where (fy) =
P—R, (fi)=Q—-P, (fo) = R—Q.

Then since

2
> div(fj) =0,
=0

and taking graphs,
2

> (fj.¢)) € CHA(P2, 1)
j=0
represents a higher Chow cycle.

Exercise. Show that it is nonzero.




9

Example. Again X = P2, Let C' C
X be the nodal rational curve given
in affine coordinates by y? = 25 +a2.
Let C' ~ P! be the normalization
of C', with morphism 7 : C — C.
Put P = (0,0) € C (node) and
let R+ Q) = 7T_1(P). Choose f €
C(C)* = C(C)*, such that (fla=
R—@Q. Then div(f)~ = 0 and hence
(f,C) € CH?(P?,1) defines a higher
Chow cycle.




CH"(X\Y,m): Recall X/C a proj
mfld of dim d, and Y =Y U--- U
Yy € X aNCD. Fort > 0 € Z,
put vt = disjoint union of ¢-fold
intersections of the Y;’s, with corre-
sponding coskeleton vl Set Y()

to be the union of t-fold intersections
of the Y;’s. Note: vyl = desing of

vyt vyl — vy = x vyl =
H{V Yj, vyl = vy, Propr hyper-

—

cover: ---—=YEZYll ¥ De-
scent = can compute homology of
Y in terms of Y/, Arrows are (al-
ternating) Gysin maps (Gy).
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If {§} € CH'(X\Y,1), then after
a moving lemma, get § € 2"(X, 1)
with 96 € CH" (Y, 0), which de-

N

fines a “residue” 9¢ belonging to a
subquotient of CH" (Y1, 0). Leads
to higher residues on CH"(X\Y, m).
Corresponding to vl -yl .— x
is a third quadrant double complex
By’ (r) = 2"y =), 4, j <0
il
EO
To
Eéaj Gy EéJrl;j
12 s.8.’s of the sgle cplx s*E(r), i+
7 =9, D =0=+Gy, with Eo-terms:
I P4 .__ ryP q/ 19,9
B = Hgy(Ha(EO (1))

I"P,qd . 1P q o0
EY? = HY(HE (E3*(r))



The 2nd s.s., together with a quasi-

isomorphism (S. Bloch):
z'( X, >1<> Restriction

Z{/(X, *) - - Z‘<X\Y7 *)7
= H "™(s*E(r)) ="Ey "
— CH"(X\Y,m).

The 1st s.s. gives:
E;J —
" Gy : CH™ (v, —j) —
cl CHHAHL(y =i+ )
Gy(CHT—H'—l(Y[i—l]7 _]))




3 1 wt filtration Im(CH"(X,m) —
CH"(X\Y, m)) =: CH"(X\Y,m) =
W_nCH (X\Y,m)C --- C
WoCH" (X\Y, m) = CH (X\Y,m).
Geometric interpretation. Let {£} €
W,CH"(X\Y, m). Then
5%+m(§) c Im (CHT—E—m<Y[€—|—m]’ _E)
_ CHT—K—N@(y(g—Fm)\Yw—Fm—Fl)’ _g)) .
Ex ™™t = Gl CHT (X\Y, m)
A subquotient of

— CHT—E—m(Y[ﬁ—Fm], —0)

0 =—m,...0
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Ex. Y = Yy = Y7UYy C X,
hence VI = ¥ [ V5, Y2 = Y2 =
Y1NYs. We focus on CH" (U, 2), with
i+j=—-2and U = X\Y:

=2y o) X -1yl o) & arx o)

o [0 [0
o2y & Lyl ) & rx
[0 [0
oLyl 9y &Y L ix 9
Let {¢} € CH"(U,2). 3¢ € 2"(X,2)
st. {€|;} = {&}. 1 9¢ = 0, then
{&} € W_9CH"(U,2). In general
|0€] € Y. One can lift this to a cycle
0¢ € 2~ HyW 1), 1f 9(0¢) =
then {f/}\E/W_lCHT(U, 2). Other-

wise {8(5%)} e CH"2(Y 2, 0),
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Let D = 0 £ Gy. The triple

— N—

(0(08).06.¢)
defines a D- Closed diagonal class in
52 @B @B
2y R o) @ Yyl )
@ (X, 2),

and where modulo D-coboundary;,
W_g, W_y, Wy,

correspond respectively to classes of
the form

(0,0,%), (0,%,%), (x,%,%).
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3. DELIGNE COHOMOLOGY
f: (A% d) — (B®,d) amorphism of
complexes, then the mapping cone is

Cone (A'AB')
whose differential is given by
(Cone(A*5B%)]1 = ATt g BY
d(a,b) = (—da, h(a) + db).
DS = sheaf of currents acting on
(compactly supported) C'° (2d—e)-
forms. C§, = sheaf of (Borel-Moore)

Q(r)-coeff chains of real codim e.
Defn. Deligne cohomology with Q-

coeff is given by H%(X, Q(r)) =
H” (Cone(C% (X, Q(r)®F DY (X)
= DY(X))[-1])
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4. THE HIGHER ABEL-JACOBI
MAP — KLLM FORMULA:
SMOOTH PROJECTIVE CASE

Bloch (and Beilinson via K-theory)
constructed cycle class maps

/b, CH (X, m) — HZ~™(X,Q(r))

D —
— H7_zn "X, Q(r)).
Deligne cohomology sits in an exact
sequence: J(HQT_m_l(X, Q(r)))
D —
— Hp~"(X,Q(r))

- D(HZ (X, Q(r))-
Defn. CHj (X, m) is the kernel
of the composite map

CH"(X,m) — D(H*~™(X,Q(r))).
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(ii) From (i), we have an induced
map

J(HT=HX,Q(r)))
AJr,m

/
|

N

CHY

hom

Fd—T+1H2d—|—m—27“—|—1(X C)V

Hoqim—2r41(X,Q(d—1)) 7
called the Abel-Jacobi map.




W e 2"(X x ") in general posi-
tion. m - W — X, mo : W — O™,
and currents:

m
g = /\dlogzj, RO =
1

d d
/logzl/\ﬁ/\---/\ﬁ/\(?)

2 Zm
Z\z7 ~00,0]
dz dz
—27Ti/1og 9NN - A—ZNA(?)
<3 Zm

21_1[_0070]\(21XZQ)_I[_OQOF

(—27i)™ ! / log zm A (?)]

(21 X -+ X Zp—1) " [~00, 0]
\(z] X -+ X zm)_l[—oo,O]

TH = (2mi)™ / (7).

[—O0,0]m

m

m

1
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Ry = T1.% © WSRDa

Oy = T % © WSQD,

Ty = T] % © W%TD.
In the Deligne homology complex,
the differential 0 is given by:

§((2m1) ™ MW (T Oy, Ryy)) =
(27Ti)_ dim W(dTw, dﬂw, Tw—Qw—de) .
dimW =m+d—r, d= dim X |
M3, := Cone{C% (X, Q(r))

BF DYoo(X) — DSoo(X) 1]
The homology of this complex, at
e = 2r — m is precisely the Deligne
cohomology H%T_m(X ,Q(r)).

(X, 0) — MZ*
W — (27'(1)_ dimW(Tw, O, Rw).



21

On the nullhomologous cycle level,
with {W} € CHj (X, m) now a
cycle with Rgyy = 0, one has v =
{7’(‘2_1[—00, 0"} N W = 9¢, and the
AJ map is given by Ryy—+(—2mi)"™ fC'
More explicitly, using the cubical com-
plex, the formula for the AJ map
Ay - CHE (X, m) — J(X)
B {Fd_r+1H2d_2T+m+1(X, C)}\/
Hog—op4m+1(X,Q(d —1))
forw € Fd_r+1H2d_2T+m+1(X, C):




1
(27Ti)d—’r+m

[/ 5 ((log 21) /\dlog zj) A7 (w)
2
W\{W Ny ([—00,0)xO™ 1)}

—(2m1) / 75 ((log 29)) /\ dlog zj) AT (W)

3

X
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5. QUASIPROJECTIVE CASE
H,(X\Y,Q(j)): Recall Y = Y] U
-+ -UYy a NCD in a smooth projec-
tive X/C, dim X = d, with coskele-
ton Y1*). For i < 0:

D(T)i,j _ DZT—l—ZH—j (Y[—’L]>
C(T)i’j _ CQT-I—Q’H—j (Y[_Z]7 Q(T—l—l))
with diff’ls Gy, d (D = d £ Gy).

s*D(r) = @ D(r)*"
_ €B D2r+zz'+o (Y[—z'])7
s*C(r) = @ C(r)*

_ EB C2rtite (Y[_i], Q(r + Z)),

(247 = ) the associated single com-
plexes with differential D.
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Consider | “Weight” filtration

'W(s*D(r)) = P D)
1 >0
/W€ OC @C 20 ?
1 >0
Put

Q3/(r) = Cone{/WOS'C' (1)
@WOFOS D(r) — € Wis*D(r) }[-1].

where WOS =

k+1
ker (D WESF (r) — 5™ (r) )7

’Wk+1sk+1(r)

and accordingly put
Hy H(X\Y,Q(r)) == H (Q3(r)).



Q%(T) = the single complex s*H(r)
assoc to the double cplx Hy/ (r) :=

2

ker d ¢ DA+ (y1=il if j=1
) kerd C c2r+i)yl-i @('r + 1))
D ker d ¢ FODAr+i)yl=il)

~

@DZT—?—QZ. 1<Y[ ]) lf] — 0
Moy Q(r + 1)) if j < 0

\

Recall that Zé’j (1) = TH(Y[ d ,—J)-
The KLM map ZO’] (1) — HO’]( ),

induces a morphism of double com-
plexes. At the infinity level, we have:

Hoo ™ (r) = Griy HE ™ (X\Y, Q(r),
GriyCH'(X\Y, m) —
Griy Hy, ™X\Y,Q(r)),{ = —m,...,0.

0 if 7 >1
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Consider the s.e.s.:
0— Wy —Wy— Gr%’f_l — 0
applied to H2r—m=1(X\Y,Q(r))
Put =y := Image of
C(Grit~ HZ =M= X\ Y, Q(r)))
J(Gry, HTTHX\Y, Q(r))
Prop. Hgom_g’g(r) ~
J(GriZ VHZ ==X\ Y, Q(r)))
for —m < ¢ < 0. Iéor ¢ =0,dses.
J(Griy H == HX\Y,Q(r))
=0

Hod"(r) — T(H~™(X\Y, Q(r))).

)
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6. THE ABEL-JACOBI MAP
Define CH} __(X\Y,m;Q) :=
ker {CH"(X\Y,m; Q) —

[(HT™(X\Y,Q(r))},
with induced Abel-Jacobi map

AJrm : CHy (X\Y,m; Q)

hom
— J(HTT"HX\Y,Q(r))),
and corresponding Grt AJ:
GriyCHI  (X\Y,m; Q)

hom

|
J(Grig tHZ ==X \Y, Q(r)))

— )

4
for —m < ¢ < (. This is evaluated

using the KLM formula for smooth
projective varieties.
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Example. We will work out the case

CHI(X\Y, 1) — HZ~(X\Y,Q(r),

where Y = Y7 U Y5. In this case
YW=y

v —v@ —yviny,
The weight filtration on CH"(X'\Y, 1)
1s 2-step, Vviz.,
CH"(X\Y,1) = WyCH"(X\Y, 1)
> W_1CH"(X,1) = Gry;/CH'(X\Y, 1)
— CH"(X\Y, 1) = 2% (r).
We calculate the highest weight sit-

uatioll% first. 11% this caisg we have
"B’ :’E2 V=l 2y (1) =

Gry,CH' (X\Y, 1) =
ker Gy : CH' LY 1l) - CH"(X)
Gy(CH™2(v12])) |




We have a diagram

0
F(H”—l()z\x@w»)
s 1
25 - Hoo ' (r)
AT O\ T

J(Grigt H=2(X\Y,Q(r)))

—
—
—0

I
0

where for ¢ € CH"(X\Y, 1;Q), the
map AJ(§) is only defined if & €
CH} . (X\Y,1,Q), ie. [§] =0.



We ‘caleulate’ 25,00 — H;}’O(r).

Put W, = W;H*~HX\Y,Q(r)),
and consider the s.e.s.

O—>W_1—>W0—>Gr%/—>0.
We have '(W_1) = 0, (W) =
[ (HQT_l(X\Y, Q(r))), hence

D(HHX\Y,Q(r))) — D(Gry)).
Gryy HHX\Y, Q(r)) =

ot e - )

Gy(Hr =412, Q(r - 2)))
Let £ € 2"(X\Y, 1) represent {£} €
CH"(X\Y,1), with € € 2"(X,1).
9 =0on X\Y = [0¢| C Y. 3 lift

O on YU with [35} € (x), agreeing
with [¢] € T(HZ~1{(X\Y,Q(r))).

S~

If [GE] = (), then have ‘detected’ €.
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Assume [E)E] = 0, hence looking at

J(Gryt H—2(X\Y, Q(r)))
=0 '

Note that Grit H¥2(X\Y, Q(r)) =~

cohomology: HZ—5(y 12, @(7"_2))9};

HQ?”—?)(}/M’ @(T—l))%HZT_l(X, Q(r))

hence the dual is the cohomology of
204 (x, QU — 1)

[_]2d—2?“—|—1()/[1]7 Q(d . 7,))

G_yjHQd—Q?“—l—l(Y[Z]? Q(d . 7“))

Apply FO=m+ after @ C. For w €
Fd—?“—i—lHQd—QT—i—l(Y[l]’ C), Gy*(W) _
dn on vy (n having Hodge type
FA=mH1) we compute AJ(€)(w).

AJ(&) €
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Thus we can assume given [y] €
H=27=2(v P Q(r—2)), s.t. [0€] =
2miGyly] € H*2(v 1, Q(r - 1)).
In this case 06 — 2miGy(Y) ~pom O
on Ym, and therefore

0¢ — 2miGy(y) = 0,
bounds an integral (real) chain (. One
shows that

AJ(E)(w) — /c w + 27 [y "

Note that if v is algebraic, then by
Hodge type of 1, we have

/77:0.
N

This AJ map calculation is well de-
fined modulo “periods”.
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Note that =g ~ Image of
(Hyo i (YPLQ(r=2) = J(--)),

ker Gy

If 0¢ determines a nonzero value in

7 ker Gy:H2r—3<Ym ,Q(T—1>>—>H2T_1<X,Q<T>>
Gy(H2—5(Y,Q(r-2)))

=0

then again we have detected £. But

suppose this value is zero. Then there
is still no guarantee that & belongs

to the lower weight filtration. How-

ever, if we assume strict compatibil-

ity of the weight filtrations for both

the Chow groups and absolute Hodge

cohomology, then we can now attempt

to detect & cohomologically on the
lowest weight W_1CH"(X\Y,1).
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Specifically we can assume (after pos-
sibly modifying & by a cycle supported
on Y) that ¢ = 0 on X. Then £ €
W_1CH"(X\Y,1) = CH"(X\Y, 1),
and the formula, which again will in-
volve additional “periods” =_1:

H2T2<X,@<r>>)
HI2(X,Q(r))

—
—
L—J_l

and which now involves the pure HS

H (X, Q(r)) _
Hy ~(X,Q(r))
ker { H*T=22(X, Q(d — 7))
_ [JQCZ—QT—I—Q(Y'7 @(d o T))}\/,
is given by the KLM formula.

g
CH(X\Y; 1) —

Y,
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7. ARITHMETIC NORMAL
FUNCTIONS

Consider a smooth projective X /C,
and £ € CH"(X,m;Q). One can
spread out X and & in the form:

p: X —S8,
where p is a smooth and morphism of
smooth quasiprojective varieties over
Q, £ € CH"(X/Q,m; Q), where if 1
is the generic point of S/Q, then wrt
a suitable embedding Q(n) — C,
X =X xCand § =&, The result-
ing cohomological datum associated
to p amounts to an arithmetic VHS.
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3 a cycle map CH"(X, m; Q)
— ExtigHﬁL (@X( )7@X(T>)'

The Leray Spectral sequence for p de-
generates at Eg 4=

EXt]K/IHM S) ((Qs(0), R1pxQx(r)),
(p+q=2r—m)
= Bt (Qu(0).Qu(r).

Further, the Leray spectral sequence
associated to S(C) — Spec(C), to-
gether with MHM (Spec(C)) = MHS,
leads us to the s.e.s.:

0 — J(HPH(S, R1p.Q(r)) —

EXtquM )((QS( ), RpsQu )) —

(H”(S,qu*Q( ))) — 0.



Ifweset p=v,=q=2r—m —
v, we can rewrite the aforementioned

s.e.s. in the form: Qéﬁ“m_”( ) —

V2r—m—v v,2r—m—ru
Lod (p) = éoo (p)-
Jinduced {FYCH" (X, m; Q) },>05.t.
Gri-CH' (X, m; Q) — EX" "V (p).
A limit process leads to a candidate
B-B filtration

{FYCH'(X/C,m: Q) }y>0,
which in fact stabilizes F" 1 = Fr+2 —
- (and is conjecturally zero). One
approach to attempt to describe this
filtration explicitly is in terms of arith-
metic normal functions.
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Assume S is affine, V. C S(C) a

smooth closed afline, dimV = v —1.

XV — X
pyv | Lp
V = S
0 0
| |
Eggr—m—u(p) R Eggr—m—u(pv)
| |
E&Qr—m—u( ) R Eg(,)Q'r—m—z/( )
| |
Eggr—m—u( ) g E&Zr—m—u( V)
| |
0 0

By varying V' € S(C), a class £ €
FYCH" (X, m; Q) induces a normal
function, which we call an arithmetic
normal function.
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Questions. (i) Can one characterize
the B-B filtration in terms of arith-
metic normal functions?

(ii) By choosing V' sufficiently gen-
eral, can one characterize the B-B fil-
tration in terms of the corresponding

Abel-Jacobi map?



