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The Hodge decomposition

X smooth projective variety, dimC(X ) = n.

As a real manifold, for all k :
Hk (X ,C) = Hk (X ,R)⊗ C,
Q : Hk (X ,R)× Hk (X ,R)→ R non-degenerate bilinear
form (Hodge-Riemann).

Hodge decomposition:

Hk (X ,C) =
k⊕

p=0

Hk−p,p(X ) (1)

such that:

Hk−p,p(X ) = Hp,k−p(X )
(1) is polarized by Q (induced by the intersection pairing
on X ).

Technicality: must restrict to the primitive cohomology
Hk (X ,C)0.
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Hodge structure

Abstract version of the previous setup.

A Hodge structure of weight k is a direct sum
decomposition of the complexification of a fixed vector
space H.

H ⊗ C =
k⊕

p=0

Hk−p,p

Hk−p,p = Hp,k−p for all p

If the decomposition is Q-orthogonal and some
positivities hold it is a polarized Hodge structure.

Q(Hp,k−p,Hp′,k−p′) = 0 unless p′ = k − p

i2p−k Q(α, α) > 0 for all α ∈ Hp,k−p − {0}
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Classifying space of polarized Hodge
structures

Given H, Q, k , and hp,k−p ∈ N ∪ {0}

D is the space of splittings of H ⊗ C satisfying the
conditions of the previous slide.
Ď is the space of splittings of H ⊗ C satisfying only the
orthogonality condition.
D ⊂ Ď ⊂

∏
p Gr(hp,k−p,H ⊗ C)

D and Ď are complex manifolds

Ď = GC/P and D = G/B

where GC := O(H ⊗ C,Q) and G = O(H,Q).
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Ď = GC/P and D = G/B

where GC := O(H ⊗ C,Q) and G = O(H,Q).



Infinitesimal
variations at

infinity

E. Cattani,
J. Fernandez

Hodge Theory

Asymptotic
Hodge Theory

Notion of IVI

Abelian
subalgebras

Classifying space of polarized Hodge
structures

F ∗ ∈ Ď defines filtration of gC by

F sgC := {X ∈ gC : X (F a) ⊂ F s+a for all a}.

If F ∗ ∈ D the filtration F ∗gC becomes a Hodge structure
of weight 0 on g with grading:

g
s,−s
C := {X ∈ gC : X (Ha,k−a) ⊂ Ha+s,k−a−s for all a}.

(TĎ)F∗ ' gC/F 0gC and (TD)F∗ = ⊕a<0g
a,−a.

Horizontal bundle: (ThĎ)F∗ ⊂ (T Ď)F∗

(ThĎ)F∗ = F−1gC/F 0gC and (TD)F∗ = g
−1,1
C
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(ThĎ)F∗ = F−1gC/F 0gC and (TD)F∗ = g
−1,1
C



Infinitesimal
variations at

infinity

E. Cattani,
J. Fernandez

Hodge Theory

Asymptotic
Hodge Theory

Notion of IVI

Abelian
subalgebras

Families of smooth projective varieties

U open (simply connected).

X → U family of smooth projective varieties.
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Variations of Hodge structure

Abstract version of the period mapping for families of
smooth projective varieties.

A variation of Hodge structure (VHS) is, essentially, a
submanifold of D...
that meets a certain condition called transversality:

Im(dΦF∗) ⊂ (ThD)F∗ .

Infinitesimal level: the subspaces E ⊂ TH0D that are
tangent to VHS are called infinitesimal variations of
Hodge structure, IVHS.

{IVHS} ↔ {abelian subspaces of g
−1,1
C }.
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Mixed Hodge structures

Mixed Hodge structure (MHS): (W∗,F ∗) with
W∗ increasing filtration of H
F ∗ decreasing filtration of H ⊗ C

such that F ∗ induces HS of weight j on GrW∗
j .

Polarized mixed Hodge structure (PMHS) of weight k
on H:

MHS (W∗,F ∗)
N ∈ F−1gC ∩ g
Bilinear form Q

such that

Nk+1 = 0
W∗ = (W (N)[−k ])∗
Q(F a,F k−a+1) = 0
the HS of weight k + l induced by F ∗ on
ker(N l+1 : GrW∗

k+l → GrW∗
k−l−2) is polarized by Q(·,N l ·).
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N ∈ C(N1, . . . ,Nr ).

Conversely, if F ∗ ∈ Ď, and {N1, . . . ,Nr} are commuting
nilpotent elements of F−1gC ∩ g that satisfy the
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{N1, . . . ,Nr ; F ∗} is a nilpotent orbit.
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Bigrading I∗,∗gC of (W∗gC,F ∗gC).
pa := ⊕bIa,bgC and g− := ⊕a<0pa.
Then

(T Ď)F∗ = g− and (ThĎ)F∗ = p−1.
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Infinitesimal
variations at

infinity

E. Cattani,
J. Fernandez

Hodge Theory

Asymptotic
Hodge Theory

Notion of IVI

Abelian
subalgebras

Asymptotic description of PVHS

Φ : (∆∗)r ×∆m → D a PVHS

(N, . . . ,Nr ; F ∗) is a nilpotent orbit, F ∗ = Ψ(0,0).
Γ : ∆r ×∆m → g− is holomorphic.

More compact Φ(z, t) = exp(X (z, t)) · F ∗ for
X : (∆∗)r ×∆m → g−.
Horizontality⇔ exp(−X )d exp(X ) = dX−1 ∈ p−1

In particular, dX−1 ∧ dX−1 = 0 for

X−1 =
∑

zjNj + Γ−1.
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and Γ−1 : ∆r ×∆m → p−1 holomorphic
such that

dX−1 ∧ dX−1 = 0

for
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zjNj + Γ−1.

Then, there exist PVHS that degenerate to the given
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Φ a PVHS onW := (∆∗)r ×∆m with nilpotent orbit
(N, . . . ,Nr ; F ∗).

For w0 ∈ W,

dΦw0 : (TW)w0 → (ThĎ)Φ(w0) ⊂ ⊕a hom(GrΦ(w0)
a ,GrΦ(w0)

a−1 )

I∗,∗ bigrading of MHS. J∗ := ⊕bI∗,b grading of F ∗.
L∗ := exp(X (w0)) · F ∗ grading of
Φ(w0) = exp(X (w0)) · F ∗.
hom(GrΦ(w0)

a ,GrΦ(w0)
a−1 ) ' hom(La,La−1) '

hom(Ja, Ja−1).
Under the isomorphisms,
dΦw0 : (TW)w0 → ⊕a hom(Ja, Ja−1)

dΦ = dX−1.
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is a triple ({N1, . . . ,Nr ; F ∗}; a) where
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PVHS.
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Theorem (Carlson, Kasparian, Toledo, Mayer)
There are sharp upper bounds for the dimension of IVHS. In
the case k = 2,

dim ≤

 if h2,0 > 1,

{
1
2h2,0(h1,1 − 1) + 1, if h1,1 is odd
1
2h2,0h1,1, if h1,1 is even

if h2,0 = 1,h1,1.

Since every IVI can be integrated to a PVHS, the
previous bounds hold for IVI.
Furthermore, explicit constructions prove that they
remain sharp for all IVIs.
Same results hold for all weights k .
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The case h2,0 = h1,1 = 3

j∗,∗ nilpotent cones max dim IVI
j2,0 = j1,1 = 3 {0} 4

j2,1 = j1,1 = 1, j2,0 = 2 dim 1 4
j2,2 = 1, j2,0 = 2, j1,1 = 3 dim 1, 2 and 3 all cases 3
j2,2 = j1,1 = j2,1 = j2,0 = 1 dim 1 and 2 all cases 3
j2,2 = 2, j2,0 = 1, j1,1 = 3 dim 1, 2 and 3 all cases 3

j2,2 = j1,1 = 3 dim 1, 2 and 3 all cases 3

Table: MHS, nilpotent cones and IVIs obtained when k = 2 and
h2,0 = h1,1 = 3
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k = 2, j2,2 = j1,1 = 2d .

Fix real basis where Q =

 I2d
−I2d

I2d

,

φ ∈ p−1 ⇒ φ =

A
At

 with A ∈ C2d×2d

[φ, ψ] =


AtB − BtA

.

Na :=

Ea,a
Ea,a

, N0 = N1 + · · ·+ N2d .

N0 polarizes the MHS.
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Nilpotent orbit ({N1, . . . ,N2d}, J∗,∗). a ⊂ p−1 abelian
and containing the nilpotent elements⇒ “matrix
components” are diagonal⇒ dim a ≤ 2d .

Nilpotent orbit ({N0}, J∗,∗). If A :=

(
aI + iα α
α aI− iα

)
for a ∈ C, α ∈ Cd×d symmetric. a is the space of those
“matrix components”⇒ dim a = 1

2d(d + 1) + 1
In the first case dim ≤ 2d while in the second,
dim ≥ 1

2d(d + 1) + 1. If d ≥ 3 both dimensions don’t
agree.
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MHS of Hodge-Tate type

Bigrading Ja,a for 0 ≤ a ≤ k with dim Ja,a = n.

N0 ∈ p−1 such that N0 : Ja,a → Ja−1,a−1 is
isomorphism.
(N0, J∗,∗) is a nilpotent orbit
(N0, J∗,∗, a) is an IVI
Max dim a⇔ max dim abelian subalgebra of symmetric
matrices in gl(n,C)

(Carlson–Toledo), n = 2α + β with β = 0,1

dim a ≤

{
1
2α(α + 1) + β + 1 for n > 1
1 for n = 1.

(up to conjugation) only one maximal if n is even and
two if n is odd.
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Bigrading Ja,a for 0 ≤ a ≤ k with dim Ja,a = n.
N0 ∈ p−1 such that N0 : Ja,a → Ja−1,a−1 is
isomorphism.
(N0, J∗,∗) is a nilpotent orbit
(N0, J∗,∗, a) is an IVI
Max dim a⇔ max dim abelian subalgebra of symmetric
matrices in gl(n,C)

(Carlson–Toledo), n = 2α + β with β = 0,1

dim a ≤

{
1
2α(α + 1) + β + 1 for n > 1
1 for n = 1.

(up to conjugation) only one maximal if n is even and
two if n is odd.
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