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The Hodge decomposition

Infinitesimal

variations at @ X smooth projective variety, dim¢(X) = n.
infinity .\
i @ As a real manifold, for all k:
J Fn:rrLlHrkuJ&.z ] Hk()(7 (C) = Hk(X, R) X C,
e Q: HX(X,R) x HX(X,R) — R non-degenerate bilinear
form (Hodge-Riemann).
@ Hodge decomposition:

Hodge Theory

k
HY(X,C) = @ HPP(X) (1)
p=0

@ such that:
o HE-p(X) = HP¥-P(X)
e (1) is polarized by Q (induced by the intersection pairing
on X).
@ Technicality: must restrict to the primitive cohomology
HX(X, C)o.
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Hodge structure

Infinitesimal

varatons t @ Abstract version of the previous setup.
@ A Hodge structure of weight k is a direct sum
decomposition of the complexification of a fixed vector
space H.
o

Hodge Theory
k

HeC=HHPP
p=0

Hk=pp = HPK=P  forall p
@ If the decomposition is Q-orthogonal and some
positivities hold it is a polarized Hodge structure.

]
Q(HPHK—P HP' =Py =0 unless p' =k-p

i kQ(a,@) >0 forall ae HPKP — {0}
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D is the space of splittings of H ® C satisfying the
conditions of the previous slide.

Hodge Theory e Dis the space of splittings of H @ C satisfying only the
orthogonality condition.

Dc Dcl,Gr(hPk=P,H® C)
D and D are complex manifolds
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D=G:/P and D=G/B
where G¢ .= O(H® C, Q) and G = O(H, Q).
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Classifying space of polarized Hodge

structures

Infinitesimal

variations at @ F* € D defines filtration of gc by

infinity
Fogc = {X € gc : X(F?) C F** % for all a}.

TSI @ If F* e D the filtration F*gc becomes a Hodge structure

of weight 0 on g with grading:

g2 % = {X € go: X(H¥79) c H****~2for all a}.

(TD)F+ ~ gc/Fgc  and  (TD)p- = Gacog® 2.
@ Horizontal bundle: (TpD)g- C (TD)E-

(ThD)r- = F'gc/F%c  and (TD),_—*:g(E“
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Variations of Hodge structure

Infinitesimal

varatons a @ Abstract version of the period mapping for families of
smooth projective varieties.

@ A variation of Hodge structure (VHS) is, essentially, a
Hodge Theory submanifold of D...

@ that meets a certain condition called transversality:

@ Infinitesimal level: the subspaces E C Ty, D that are
tangent to VHS are called infinitesimal variations of
Hodge structure, /VHS.

{IVHS} < {abelian subspaces of 9(51’1 .
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variations at @ Mixed Hodge structure (MHS): (Ws, F*) with
m}f'rn"f e W, increasing filtration of H

S Fornandez e F* decreasing filtration of H @ C

such that F* induces HS of weight j on Ger*.

hoympiote @ Polarized mixed Hodge structure (PMHS) of weight k
on H:
o MHS (W,, F*)
e NcF'gcng
e Bilinear form Q
such that
° Nk+1 =0
o W, = (W(N)[-k])-
e Q(F3 Fk—at1)y =0
o the HS of weight k + / induced by F* on
ker(N1: Gryz, — Gr.",_,) is polarized by Q(-, N'-).
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Nilpotent orbits

Infinitesimal

varatons t @ Nilpotent orbit: horizontal map 6 : C" — D of the form
0(2) = exp(d>_zN,) F*
Asymplotic for F* € Dand {Ny,...N,} ¢ F~'gc N g commuting

RO TS subset such that 6(z) € D for all large Im(z).

@ Schmid’s nilpotent orbit Theorem: associated to every

PVHS over (A*)" x A™ there is a nilpotent orbit
{Ny,...,Ny; F*}.

@ The nilpotent operators N; are the logarithms of the
monodromy operators.
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Nilpotent orbits

Infinitesimal

variations at o If {N1 ey N;; F*} is a nilpotent orbit, then
infinity
@ N*T =0 where k is the weight of the PHS in D.

E. Cattani,
o renandes @ Every N € C(Ns, ..., N;) defines the same weight
filtration WC.
Asympotic Q ((WC[—K])., F*) is a PMHS, polarized by every

Hodge Theory

N e C(N,...,N,).
@ Conversely, if F* € D, and {Ny, ..., N,} are commuting
nilpotent elements of F~'gc N g that satisfy the
conditions 1, 2 and 3 for some N € C(Ns, ..., N;), then
{Ni,...,N;; F*} is a nilpotent orbit.
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infinity

/9P — Ip.a  mod Da<p,b<q [a:b.
o @ Bigrading I**g¢ of (W.gc, F*gc)-

symptotic

Ll oy = 5p%cand g = Bacopa.
@ Then

(TD)e+=g_ and (TpD)r- =p_1.
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infinity

E. Cattani, °
J. Fernandez

®(z,t) = exp(D_ zN;) - exp(T (exp(2riz), 1)) - F*,
Asymptotic

Hodge Theory Whel’e

e (N ... N F*)is anilpotent orbit, F* = ¥(0,0).
o [: A" x A™ — g_ is holomorphic.

@ More compact ®(z,t) = exp(X(z,t)) - F* for

X (A" x A™ —g_.
@ Horizontality < exp(—X)dexp(X) = dX_1 € p_1
@ In particular, dX_1 A dX_1 =0 for

X_4 :ZZjI\Ij+F_1.
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Construction of degenerating PVHS

Infinitesimal

variations at @ Given a nilpotent orbit (N ..., N;; F*)

infinity

@ andl_;: A" x A™ — p_4 holomorphic
@ such that
aX_i1AndX_1=0

Asymptotic
Hodge Theory for

X_q :Z;/M+r_1

@ Then, there exist PVHS that degenerate to the given
data.
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IVHS of degenerating PVHS

Infinitesimal

varatons t @ ® a PVHS on W := (A*)" x A™ with nilpotent orbit
. (N ....N; F*).
J. Fernandez @ Forwy e W,
APy - (TW)wo — (ThD)o(wy) C Bahom(Grg ™), Grite)y
@ /** bigrading of MHS. J* := @, /*? grading of F*.
@ L*:=exp(X(wp)) - F* grading of
d(wp) = exp(X(wp)) - F*.
o hom(Gry ™ Gr¥()) ~ hom(L?, L&~ 1) ~
hom(J2, Ja—1).
@ Under the isomorphisms,
d®y, : (TW)w, — ®ahom(J3,J31)

de = dX_1.
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is a triple ({Ni, ..., Ny; F*}; a) where
@ {Nj,...,N;; F*} is a nilpotent orbit




Limit of IVHS

Infinitesimal

variations at ) X_1 — E szVj +T_q

infinity

o . ar _1(so,k) . O _1(80,1)
Bl © M dPu, = (N TRRmisy, TR C b
. ar_4(0,0
@ limy, _(0,0) dPw, = (N 8(1‘/)> Cp-1

o2,

Notion of VI . . L .
@ a? is abelian (limit of abelian subspaces).

An infinitesimal variation of Hodge structure at infinity (1VI)
is a triple ({Ni, ..., Ny; F*}; a) where

@ {Nj,...,N;; F*} is a nilpotent orbit

@ a C p_4 C gc is an abelian subspace




Limit of IVHS

Infinitesimal

variations at ) X_1 — E szVj +T_q

infinity

o . ar _1(so,k) . O _1(80,1)
Bl © M dPu, = (N TRRmisy, TR C b
. ar_4(0,0
@ limy, _(0,0) dPw, = (N 8(1‘/)> Cp-1

o2,

Notion of VI . . L .
@ a? is abelian (limit of abelian subspaces).

Definition

An infinitesimal variation of Hodge structure at infinity (1VI)
is a triple ({Ni, ..., Ny; F*}; a) where

@ {Nj,...,N;; F*} is a nilpotent orbit

@ a C p_4 C gc is an abelian subspace

@ (Ny,....N;) Ca.
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Integrability of IVIs

Infinitesimal
variations at
infinity

E. Cattani, @ The IVHS of every PVHS degenerate to an IVI.

J. Fernandez
@ Every IVl arises as limit of the IVHS of (the germ of) a
PVHS.

Notion of VI
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Dimensional bounds for IVHS
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Theorem (Carlson, Kasparian, Toledo, Mayer)
E. Cattani,

W There are sharp upper bounds for the dimension of IVHS. In
the case k = 2,

120 %hz,o(h1,1 —1) 41, ifh"" is odd
- FA="> 1,95 00011 s ptd

dim < sh="h%' if h™' is even
gl?g!igr;bras If h2’0 = 1 5 h1 1 .

@ Since every IVI can be integrated to a PVHS, the
previous bounds hold for IVI.

@ Furthermore, explicit constructions prove that they
remain sharp for all IVIs.

@ Same results hold for all weights k.



The case h?° = A!'1 =

Infinitesimal
variations at
infinity

(G aten Jis nilpotent cones | max dim IVI
YT =3 {0} 4
Pr="=1,20=2 dim 1 4

?=1,20=2j1T=3 [ dm1,2and 3 | allcases 3
PP="T=21=p20=1] dimt1and2 | allcases3
cobalbabras 2 =2,/20=1,/"1=3 | dm1,2and3 | all cases 3

22 =j"1=3 dim1,2and 3 | all cases 3

Table: MHS, nilpotent cones and IVIs obtained when k = 2 and
h2 0 _ h1 1 _ =3
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Nilpotent orbits rather than MHS

Infinitesimal

variations at ] k = 2,j272 :j171 = 2d

infinity

E. Cattani,

Iog
J. Fernandez o le real baS|S Where Q e —]:[Qd f
Ioqg

@ pcp 41 =>¢= (A ) with A € C29x2d
At

iy o)
A'B — B'A

o N, := (Ea,a )1N0N1+"'+N2d-
Eaa

Abelian
subalgebras

@ N polarizes the MHS.
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Nilpotent orbits rather than MHS

Infinitesimal

variations at ("] Nllpotent orbit ({N1, ..

infinity

.y Nog}, J**). a C p_4 abelian
and containing the nilpotent elements = “matrix

o Fornaniez components” are diagonal = dima < 2d.
. . . _fal+ i !
@ Nilpotent orbit ({Np}, J*). If A= < N 4l ia>
for a € C, o € C9*9 symmetric. a is the space of those
Aol “matrix components” = dima = d(d + 1) + 1

subalgebras

@ In the first case dim < 2d while in the second,
dim > td(d + 1) + 1. If d > 3 both dimensions don’t
agree.
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MHS of Hodge-Tate type

Infinitesimal

Variir?ftiir?irt]; . @ Bigrading J#2 for 0 < a < k with dim J%2 = n.
E. Gattani, ® Np € p_q such that Ng : J3@ — ya-1a-1 s
o emandes isomorphism.
@ (No, J**) is a nilpotent orbit
@ (Np,J**,a)is an IVI

@ Max dim a < max dim abelian subalgebra of symmetric
i g matrices in gl(n, C)

@ (Carlson—Toledo), n = 2a + 8 with 3 = 0,1

dim a < Sa(a+1)+B+1forn>1
“|1forn=1.

@ (up to conjugation) only one maximal if nis even and
two if nis odd.
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