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♦ Motivations and examples

♦ Definition of binomial D-modules

♦ More examples

♦ Questions

♦ Main tools

♦ (Flavour of the) Answers
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♦ Hypergeometric functions in one variable

Euler (1748), Gauss (1812), Kummer (1836), Riemann (1857), . . . , . . .

Given α, β, γ ∈ C, γ /∈ Z≤0 and (α)n = α · (α + 1) . . . (α + n − 1),

• Gauss hypergeometric function

F (α, β, γ; x) =
∑

n≥0

(α)n(β)n

(γ)n

xn

n!
, |x| < 1.

For example,

F (α, β, β.x) = (1 − x)−α − xF (1, 1, 2; x) = log(1 − x).
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...

F (α, β, γ; x) =
∑

n≥0

(α)n(β)n

(γ)n

xn

n!
, |x| < 1.

• Kummer and Riemann’s point of view: F (α, β, γ; x) satisfies

x(1 − x)y′′ + (γ − (α + β + 1)x)y′ − αβy = 0,

or, denoting Θ := x d
dx

,

[Θ(Θ + γ − 1) − x(Θ + α)(Θ + β)](y) = 0.

Up to normalization, this is a general linear differential equation with 3 regular
singular points.
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An :=
(α)n(β)n

(γ)nn!
, F (α, β, γ; x) =

∑

n≥0

Anxn.

• The coefficients An satisfy the following linear recurrence

(γ + n)(1 + n)An+1 − (α + n)(β + n)An = 0 (0.2)

An+1

An

= R(n).

• (0.2) is equivalent to the fact that F (α, β, γ; x) satisfies the differential
equation

[Θ(Θ + γ − 1) − x(Θ + α)(Θ + β)](y) = 0.
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♦ Hypergeometric functions in several variables

System of hypergeometric PDE’s for Horn’s function G3

(

x(2θx − θy + a′)(2θx − θy + a′ + 1) − (−θx + 2θy + a)θx

)

f = 0 ,
(

y(−θx + 2θy + a)(−θx + 2θy + a + 1) − (2θx − θy + a′)θy

)

f = 0 .

Its holonomic rank is 4 (a, a′ generic parameters)

• Erdélyi (Acta Mathematica, 1950) noted that, in a neighborhood of a given
point, three linearly independent solutions of this system can be obtained
through contour integral methods. He also finds a fourth linearly independent
solution: the Puiseux monomial x−(a+2a′)/3y−(2a+a′)/3. He remarks that
the existence of this elementary solution is puzzling, and offers no explanation
for its occurrence.
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♦ Hypergeometric functions in several variables (suite)

System of hypergeometric PDE’s for Appell’s function F1

(

x(θx + θy + a)(θx + b) − θx(θx + θy + c − 1)
)

f = 0 ,
(

y(θx + θy + a)(θy + b′) − θy(θx + θy + c − 1)
)

f = 0

• For generic values of the parameters a, b, b′ and c, the holonomic rank of
this system, that is, the dimension of its space of local complex holomorphic
solutions around a nonsingular point, is 3 < 2.2 = 4.

5



♦ Hypergeometric functions in one variable, revisited GKZ style

GKZ = Gel’fand, Kapranov and Zelevinsky (89)

Consider the configuration in R
3

A =





1 1 1 1
0 1 1 0
0 1 0 1



 .

kerZ(A) = 〈(1, 1, −1, −1)〉 (1, 1, −1, −1) = (1, 1, 0, 0) − (0, 0, 1, 1)

• The following system of equations in four variables x1, x2, x3, x4 is a nice
encoding for Gauss equation in one variable:















(∂1∂2 − ∂3∂4) (ϕ) = 0
(x1∂1 + x2∂2 + x3∂3 + x4∂4) (ϕ) = β1ϕ

(x2∂2 + x3∂3) (ϕ) = β2ϕ
(x2∂2 + x4∂4) (ϕ) = β3ϕ
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(∂1∂2 − ∂3∂4) (ϕ) = 0
(x1∂1 + x2∂2 + x3∂3 + x4∂4) (ϕ) = β1ϕ

(x2∂2 + x3∂3) (ϕ) = β2ϕ
(x2∂2 + x4∂4) (ϕ) = β3ϕ

(0.3)

• Given any (β1, β2, β3) and v ∈ C
n such that A · v = (β1, β2, β3) and

v1 = 0, any solution ϕ of (0.4) can be written as

ϕ(x) = xv f

(

x1x2

x3x4

)

,

where f(z) satisfies Gauss equation with

α = v2 , β = v3 , γ = v4 + 1.
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(∂1∂2 − ∂3∂4) (ϕ) = 0
(x1∂1 + x2∂2 + x3∂3 + x4∂4) (ϕ) = β1ϕ

(x2∂2 + x3∂3) (ϕ) = β2ϕ
(x2∂2 + x4∂4) (ϕ) = β3ϕ

(0.4)

• Given any (β1, β2, β3) and v ∈ C
n such that A · v = (β1, β2, β3) and

v1 = 0, any solution ϕ of (0.4) can be written as

ϕ(x) = xv f

(

x1x2

x3x4

)

,

where f(z) satisfies Gauss equation with

α = v2 , β = v3 , γ = v4 + 1.

The binomial operator (∂1∂2 − ∂3∂4) “represents” the hypergeometric recursion
on the coefficients of the series.
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♦ Hypergeometric functions in several variables, roots of generic univariate
polynomials

Birkeland, Mayr, Mellin, Sturmfels, . . . ,
Cattani – D’Andrea – D.(’99), Passare – Tsikh (’04), D. – Sadykov (’07)

Given coprime integers 0 < k1 < . . . < km < n, set

A =

(

1 1 . . . 1 1
0 k1 . . . km n

)

,

and β = (0, −1).

• The local roots ρ(x) of the generic sparse polynomial (f(x, ρ(x)) = 0)

f(x; t) := x0 + xk1 tk1 + · · · + xkm tkm + xn tn ,

viewed as functions of the coefficients, are algebraic solutions to the associated
A-hypergeometric system.
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For example:

A =

(

1 1 1 1
0 1 3 4

)

,

β = (0, −1), f(x; t) = x0 + x1 t + x3 t3 + x4 t4 , θi := xi∂i,

• The corresponding A-hypergeometric system is given by:
(

∂2
0∂3 − ∂3

1

)

(ϕ) = 0
(

∂3
0∂4 − ∂4

1

)

(ϕ) = 0
(∂0∂4 − ∂1∂3) (ϕ) = 0

(

∂1∂
2
4 − ∂3

3

)

(ϕ) = 0
(θ0 + θ1 + θ3 + θ4) (ϕ) = 0

(θ1 + 3θ3 + 4θ4 + 1) (ϕ) = 0.

Also residues, periods, generating functions of intersection numbers in moduli
spaces are hypergeometric.
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♦ Hypergeometric functions in several variables, revisited GKZ style

System of hypergeometric PDE’s for Horn’s function G3

(

x(2θx−θy + a′)(2θx−θy + a′ + 1) − (−θx + 2θy + a)
(

1θx + 0θy

))

f = 0 ,
(

y(−θx + 2θy + a)(−θx + 2θy + a + 1) − (2θx − θy + a′)θy

)

f = 0 .

Explanation (D.– Matusevich – Sadykov (’05):

Look at the binomials

q1 = ∂2
1∂

0
4 − ∂1

2∂
1
3, q2 = ∂1∂4 − ∂2

2

in the commutative polynomial ring C[∂1, . . . , ∂4].
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(

x(2θx−θy + a′)(2θx−θy + a′ + 1) − (−θx + 2θy + a)
(

1θx + 0θy

))

f = 0 ,
(

y(−θx + 2θy + a)(−θx + 2θy + a + 1) − (2θx − θy + a′)θy

)

f = 0 .

System of hypergeometric PDE’s for Horn’s function G3

Explanation (D.– Matusevich – Sadykov (’05):

Look at the binomials

q1 = ∂2
1∂

0
4 − ∂1

2∂
1
3, q2 = ∂1

1∂
0
4 − ∂2

2

in the commutative polynomial ring C[∂1, . . . , ∂4].
Its zero set has the component “at infinity” {∂1 = ∂2 = 0} , with multiplicity

equal to the intersection multiplicity µ0 at the origin of the system of 2 binomials
in 2 variables

p1 = ∂a
1 − ∂b

2, p2 = ∂c
1 − ∂d

2 , a = 2, b = 1, c = 1, d = 2

µ0 = min{|a · d|, |b · d|} = 1,

which equals the dimension of the space of solutions to the Horn system which
have finite support.
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♦ Hypergeometric functions in several variables, revisited GKZ style

System of hypergeometric PDE’s for Appell’s function F1

(

x(1θx + 1θy + a)(1θx + 0θy + b) − (1θx + 0θy)(1θx + 0θy + c − 1)
)

f = 0 ,
(

y(θx + θy + a)(θy + b′) − θy(θx + θy + c − 1)
)

f = 0

Explanation (D.– Matusevich – Sadykov (’05):

Look at the binomials

q1 = ∂1
1∂

1
3 − ∂1

2∂
1
4, q2 = ∂1∂5 − ∂2∂6

in the commutative polynomial ring C[∂1, . . . , ∂4].
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System of hypergeometric PDE’s for Appell’s function F1

(

x(1θx + 1θy + a)(1θx + 0θy + b) − (1θx + 0θy)(1θx + 0θy + c − 1)
)

f = 0 ,
(

y(θx + θy + a)(θy + b′) − θy(θx + θy + c − 1)
)

f = 0

Explanation (D.– Matusevich – Sadykov (’05):

Look at the binomials

q1 = ∂1
1∂

1
3 − ∂1

2∂
1
4, q2 = ∂1∂5 − ∂2∂6

in the commutative polynomial ring C[∂1, . . . , ∂4].
Its zero set has the component “at infinity” {∂1 = ∂2 = 0} , with multiplicity

equal to the intersection multiplicity µ0 at the origin of the system of 2 binomials
in 2 variables

p1 = ∂a
1 − c1∂

b
2, p2 = ∂c

1 − c2∂
d
2 , a = 1, b = 1, c = 1, d = 1,

µ0 = min{|a · c|, |b · d|} = 1,

but since (1, −1), (1, −1) are linearly dependent, it does NOT give any solution
to the Horn system for generic values of the parameters. Thus, there are only
3 = 4 − 1 linearly independent local solutions.
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♦ What is a binomial D-module?

Data:

• An integer matrix A ∈ Z
d×n such that the cone generated by the columns

a1, . . . , an of A contains no lines, all of the ai are nonzero, and ZA = Z
d

• A binomial ideal is an ideal generated by binomials ∂u −λ∂v, where u, v ∈
Z

n are column vectors and λ ∈ C.
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♦ What is a binomial D-module?

Data:

• An integer matrix A ∈ Z
d×n such that the cone generated by the columns

a1, . . . , an of A contains no lines , all of the ai are nonzero, and ZA = Z
d.

• A binomial ideal is an ideal generated by binomials ∂u −λ∂v, where u, v ∈
Z

n are column vectors and λ ∈ C.

• A induces a Z
d-grading of the polynomial ring C[∂1, . . . , ∂n] = C[∂],

deg(∂i) = −ai.

• An ideal of C[∂] is A-graded if it is generated by elements that are homogeneous
for the A-grading.
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♦ What is a binomial D-module?

Data:

• An integer matrix A ∈ Z
d×n such that the cone generated by the columns

a1, . . . , an of A contains no lines, all of the ai are nonzero, and ZA = Z
d

• A binomial ideal is an ideal generated by binomials ∂u −λ∂v, where u, v ∈
Z

n are column vectors and λ ∈ C.

A binomial ideal is A-graded precisely when it is generated by binomials ∂u − λ∂v

each of which satisfies either Au = Av or λ = 0
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♦ What is a binomial D-module? (suite)

• The Weyl algebra D = Dn of linear partial differential operators (in n
variables) written with the variables x and ∂, is also A-graded by additionally
setting deg(xi) = ai.
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♦ What is a binomial D-module? (suite)

• For each i ∈ {1, . . . , d}, the i-th Euler operator is

Ei = ai1θ1 + · · · + ainθn.

• Given a vector β ∈ C
d, we write E − β for the sequence

E1 − β1, . . . , Ed − βd.

• These operators are A-homogeneous of degree 0.
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♦ What is a binomial D-module? (suite)

• For an A-graded binomial ideal I ⊆ C[∂], we denote by HA(I, β) the left
ideal I + 〈E − β〉 in the Weyl algebra D.

• Finally, the binomial D-module associated to I is D/HA(I, β).
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♦ What is a binomial D-module? (suite)

• For an A-graded binomial ideal I ⊆ C[∂], we denote by HA(I, β) the left
ideal I + 〈E − β〉 in the Weyl algebra D.

• Finally, the binomial D-module associated to I is D/HA(I, β).

• When I equals the toric ideal IA we have an A-hypergeometric system.

• When I is a lattice basis ideal, we have a Horn system (in binomial version).
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♦ What is a binomial D-module? (suite)

• A binomial D-module is a quotient by a left D-ideal generated by an A-
homogeneous binomial ideal I with constant coefficients plus Euler operators
associated to the row span of A.

• Binomial differential operators annihilating a (multivariate Puiseux) series are
equivalent to (special) linear recurrences satisfied by its coefficients.

• Euler operators prescribe A-homogeneity (infinitesimally).
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♦ A (non holonomic) example

Consider

A =

[

1 1 0 0
0 1 1 1

]

and B =









1 1
−1 −1

1 0
0 1









,

so that

H(B, β) = 〈∂1∂3−∂2, ∂1∂4−∂2〉+〈x1∂1−x2∂2−β1, x2∂2+x3∂3+x4∂4−β2〉.

If β1 = 0, then any (local holomorphic) bivariate function f(x3, x4) annihilated
by the operator x3∂3 + x4∂4 − β2 is a solution of H(B, β).

The space of such functions is infinite-dimensional; in fact, it has uncountable
dimension, as it contains all monomials

xw3
3 xw4

4

with w3, w4 ∈ C and w3 + w4 = β2.
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♦ Finding polynomial solutions of binomial ideals

M =

(

4 5
−3 −5

)

The system H(I(M), 0) is defined by the operators

∂4

∂x4
1

−
∂3

∂x3
2

,
∂5

∂x5
1

−
∂5

∂x5
2

.

It has 15 linearly independent polynomial solutions, with the following minimal
supports:
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♦ Description of solutions to CI Horn binomial D-modules

Consider the matrices:

B =













0 −1 2
−1 0 −1

0 1 −1
4 5 0

−3 −5 0













; A =

[

1 1 1 1 1
5 10 0 7 6

]

I = I(B) = x2x
3
5 − x4

4, x1x
5
5 − x3x

5
4, x2

1 − x2x3.

We concentrate on the decomposition:

M =

[

4 5
−3 −5

]

; N =





0 −1
−1 0

0 1



 ; B̂ =





2
−1
−1





Note that gcd{2, −1, −1} = 1, so there is only one associated prime coming
from this decomposition:

I[ 1 1 1
5 10 0 ]

+ 〈∂4, ∂5〉
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♦ Description of solutions to CI Horn binomial D-modules (suite)

• The quatrinomial p = 5x4
4x

2
5 + 2x5

4 + 2x5
5 + 40x4x

3
5 is a solution of the

constant coefficient system I(M).

• Let f be a solution of the [ 1 1 1
5 10 0 ]-hypergeometric system that is homoge-

neous of appropriate degree.

• Then the following function is a solution of H(B, β):

5x4
4x

2
5∂

2
2∂3f + 2x5

4∂1∂2f + 2x5
5∂2∂3f + 40x4x

3
5∂1f
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♦ Questions

• For which parameters does the space of local holomorphic solutions around
a nonsingular point of a binomial Horn system have finite dimension as a
complex vector space?

• What is a combinatorial formula for the minimum such dimension, over all
possible choices of parameters?

• Which parameters are generic, in the sense that the minimum dimension is
attained?

• How do (the supports of) series solutions centered at the origin of a binomial
Horn system look, combinatorially?

• When is D/HA(I, β) a holonomic D-module?

• When is D/HA(I, β) a regular holonomic D-module?
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♦ Holonomic rank

P =
∑

kα,βxα∂β, P 6= 0

σ(P ) = in(0,e)(P ) =
∑

|β|=ord(P )

kα,βxαξβ ∈ C[x, ξ]

J ⊂ Dn = Dn(C) left ideal, in(0,e)(J) := 〈σ(P ), P ∈ J, P 6= 0}.

The holonomic rank rank(J) of J is the dimension over C of the space of its local
holomorphic solutions around a (generic = non singular) point. It equals

rank(J) = dimC(x)

(

C(x)[ξ]/C(x)[ξ].in(0,e)(J)
)

.

Basic block: A-hypergeometric binomial D-modules are always holonomic with
non zero holonomic rank [GKZ’89], [Adolphson’94].
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♦ Our main tools

• Precise description of combinatorial commutative algebra of binomial ideals
in semigroup rings (based on: Binomial ideals , Eisenbud – Sturmfels (’94))
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♦ Our main tools

• Precise description of combinatorial commutative algebra of binomial ideals
in semigroup rings (based on: Binomial ideals , Eisenbud – Sturmfels (’94))

• Functorial translation of those results into D-module theory by means of
Cayley-Koszul complexes (based on: Homological methods for hypergeo-

metric families , Matusevich – Miller – Walther (’05))
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♦ Our main tools

• Precise description of combinatorial commutative algebra of binomial ideals
in semigroup rings (based on: Binomial ideals , Eisenbud – Sturmfels (’94))

• Functorial translation of those results into D-module theory by means of
Cayley-Koszul complexes (based on: GKZ(’89,’90), Adolphson(’94), Matuse-
vich – Miller – Walther (’05))

• And, of course, some direct generalizations of the beautiful theory of A-
hypergeometric systems developed by Gel’fand, Kapranov, and Zelevinsky!
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♦ Primary components of binomial ideals

• Eisenbud-Sturmfels: An irredundant primary decomposition of an arbitrary
binomial ideal I ⊆ C[∂] is given by

I =
⋂

Iρ,J∈Ass(I)

Hull(I + Iρ + 〈∂j : j /∈ J〉e)

for any large integer e, where Hull means to discard the primary components
for embedded (i.e., nonminimal associated) primes.

• We make this Hull operation explicit, by characterizing the monomials in each
primary component of I.

Basic blocks:

• “Prime binomial ideals = toric ideals ”

• Zero dimensional ideals I(M), where M is a m × m mixed square matrix.
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♦ Primary components of binomial ideals

For example: I = 〈x2 − y, x3 − y2〉, 0 ∈ V (I)

• Which are all the monomials that are present in I0?

• Our answer: I0 = I+〈x3, xy, y2〉, and these are exactly all the monomials
in I0.

• For instance, a Singular computation gives a standard basis {y −x2, x3}
(for local lex order with y > x).
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♦ Euler-Koszul homology

• Euler-Koszul homology allows us to functorially translate the commutative al-
gebra of A-graded primary decomposition directly into the D-module setting
and to pull apart the “contributions” of each of the primary components of

binomial ideals in a binomial D-module.
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♦ Euler-Koszul homology

• For z A-homogeneous in an A-graded left D-module, define

(Ei − βi) ◦ z = (Ei − βi − degi(z))z,

• Fix β ∈ C
d and an A-graded ideal I. The Euler-Koszul complex

K.(E − β; C[∂]/I)

is the Koszul complex of left D-modules defined by the sequence
E − β of commuting endomorphisms on the left D-module D ⊗C[∂] V ,
(V = C[∂]/I), concentrated in homological degrees d to 0.

• The i-th Euler-Koszul homology is Hi(E − β; V ) = Hi(K.(E − β; V )).

• The binomial Horn D-module with parameter β is H0(E − β; C[∂]/I).

• Each graded piece of the Euler-Koszul complex coincides with a commutative
Koszul complex over the ring C[θ1, . . . , θn].
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♦ Euler-Koszul homology

• The i-th Euler-Koszul homology of the quotient V = C[∂]/Iρ corresponding
to a toral primary component Iρ of I is nonzero for some i ≥ 1 if and only if
−β lies in the Zariski closure of the degrees α ∈ Z

d such that the α-graded
piece of the local cohomology module Hi

m
(V )α is non zero for some i < d.

• This Zariski closure is a finite union of linear subspaces.
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♦ General answers

• We explicitly classify all primary components of I (in particular, all monomi-
als that are present), their multiplicities, their behaviour with respect to the
grading (toral and Andean components), and their holonomic rank.

• We explicitly define two finite subspace arrangements associated to the Andean
components (Andean arrangement) and to the pairwise intersections of two
components (primary arrangement) as the Zariski closure of parameters for
which the corresponding piece in certain local cohomology modules is non
zero, which account for non generic behaviour of the complex parameter β.

• The basic building blocks are associated A-hypergeometric systems (for sev-
eral different A).

27



• The dimension is finite exactly for −β not in the Andean arrangement.

• The generic (minimum) rank is
∑

µ(L, J)·vol(AJ), the sum being over all
toral associated sublattices with CAJ = C

d, where vol(AJ) is the volume
of the convex hull of AJ and the origin, normalized so a lattice simplex in ZAJ

has volume 1.

• The minimum rank is attained precisely when −β lies outside of an explicit
affine subspace arrangement determined by certain local cohomology modules,
containing the Andean arrangement.

• When the Horn system is regular holonomic and β is general, there are
µ(L, J) · vol(AJ) linearly independent solutions supported on (translates
of) the L-bounded classes, with hypergeometric recursions determining the
coefficients.

• Only g · vol(A) many Gamma series solutions have full support, where g =
| ker(A)/ZB| is the index of ZB in its saturation ker(A).

• Holonomicity is equivalent to finite dimension of the (local holomorphic) so-
lutions spaces.

• Holonomicity is equivalent to regular holonomicity when I is standard Z-
graded—i.e., the row-span of A contains the vector [1 · · · 1]. Conversely,
if there exists a parameter β for which D/HA(I, β) is regular holonomic,
then I is standard Z-graded.
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. . .

Thanks for your attention!
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