Secant varieties and degenerate subvarieties

***Algebraic Geometry, D-modules, Foliations and their interactions**21 - 26 July, 2008 - Buenos Aires, Argentina

NOTATION

$X \subset \mathbb{P}^r$ irreducible variety (not necessarily smooth) of dimension n

 $S^{k}(X) = embedded \ k\text{-secant variety} =$ $closure of \{ P \in < x_0, \dots, x_k >: x_i \in X \}$

N.B.
$$S^1(X) =$$
chordal variety

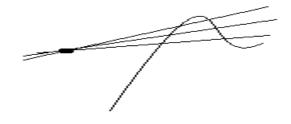
formal definition

 $AS^{k}(X) = abstract \ k\text{-secant variety in } X^{(k+1)} \times \mathbb{P}^{r} = closure of \ \{(x_{0}, \dots, x_{k}, P) : P \in \langle x_{0}, \dots, x_{k} \rangle\}$

 $S^k(X) =$ closure of the image of the secant map $AS^k(X) \xrightarrow{\phi_k} \mathbb{P}^r$ $AS^{k}(X) = abstract \ k\text{-secant variety in } X^{(k+1)} \times \mathbb{P}^{r} =$ closure of $\{(x_0, \dots, x_k, P) : P \in \langle x_0, \dots, x_k \rangle\}$

dimension of $AS^k(X) = kn + k + n$ (fixed)

dimension of $S^k(X) = kn + k + n - \dim(\text{ general fiber of } \phi_k)$



 $AS^k(X) \xrightarrow{\phi_k} \mathbb{P}^r$

X is k-defective when ϕ_k has not maximal rank

i.e.

 $r \leq kn + k + n$ and ϕ_k is not dominant, or $r \geq kn + k + n$ and ϕ_k is not generically finite

TERRACINI's LEMMA

The following are equivalent:

- X is k-defective

- through k + 1 general points of X there exists a subvariety $Y \subset X$ of dimension m, whose span has dimension < mk + m + k - qwhere $q = \max\{0, nk + n + k - r\}$ (a (k + 1)-filling family of highly degenerate subvarieties)

- the k-th tangential map $\tau_k : X \to X_k$ (i.e. the projection from k general tangent spaces) has positive dimensional general fibers, that is $\dim(X_k) < \dim(X)$

$$\Psi_k^{\checkmark}$$

EXAMPLES

(1)

 $X = \text{Veronese surface in } \mathbb{P}^5$ $\dim(S^1(X)) = 4 < \text{expected} = 5$ projection from a general tg space $X \to X_1 = \text{conic}$ through two general points of X there is a conic (a 2-filling family of conics)

(2)

 $X = \mathbb{P}^3 \times \mathbb{P}^3 \subset \mathbb{P}^{15}$ dim $(S^2(X)) = 14 <$ expected = 15 projection from two general tg spaces $X \to X_2 = \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ through three general points of X there is a $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$

- CLASSIFICATION OF DEFECTIVE VARIETIES

use the classification of varieties with many degenerate subvarieties

--- , C.Ciliberto. THE CLASSIFICATION OF DEFECTIVE THREEFOLDS. Projective Varieties with Unexpected Properties. de Gruyter (2005) 35-49

- k-DEFECTIVITY OF A SPECIFIC VARIETY X

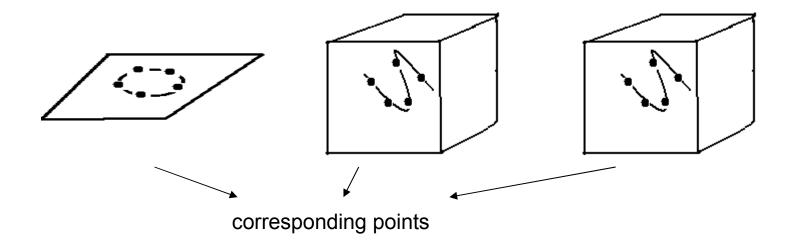
find a (k+1)-filling family of degenerate subvarieties

H.Abo, G. Ottaviani, C. Peterson. INDUCTION FOR SECANT VARIETIES OF SEGRE VARIETIES. MathAG/0607191v2

EXAMPLES

(3)

$$\begin{split} X &= \mathbb{P}^2 \times \mathbb{P}^3 \times \mathbb{P}^3 \subset \mathbb{P}^{47} \\ k &= 4 \text{ (i.e. 5 points)} \\ \dim(S^4(X)) &= 43 < \text{expected} = 44 \\ \text{through five general points of } X \text{ one can draw} \\ \text{a rational normal curve of } \mathbb{P}^8 \end{split}$$



(4)

 $X = \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ any number of times

classical:

 $X = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is 2-defective

namely through 3 general points of X one can draw a rational normal curve of \mathbb{P}^4

No other product of \mathbb{P}^1 's is defective

M. Catalisano, T. Geramita, A. Gimigliano. private communication

METHOD: use induction to reduce to a case in which taking "general" points and computing one gets the result

No other product of \mathbb{P}^1 's is defective

ALTERNATIVE METHOD (proposal): prove the non-existence

of (k+1)-filling family of degenerate subvarieties

e.g.

prove the non-existence of degenerate curves $C \subset \mathbb{P}^{2k}$ through k+1 general points in a product $X = \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (s times) (s>4)

prove the non-existence s linear pencils general enough on C, whose sum has dimension $\leq 2k$

almost obvious when $s\gg k$

such method is particularly interesting when X is a Segre product

SELDOM EXPLOITED

--- , C.Ciliberto. THE CLASSIFICATION OF DEFECTIVE THREEFOLDS. Projective Varieties with Unexpected Properties. de Gruyter (2005) 35-49

	description	k	r	$s^{(k)}$	δ_k	ϵ_k	n_k
(1)a	$X \subset$ cone over 2-uple of 3fold of min. deg in \mathbb{P}^{k+1} , vertex = point	≥ 2	4k + 2	4k+1	1	2	1
(1)b	$X \subset$ cone over 2-uple of 3fold of min. deg in \mathbb{P}^{k+1} , vertex = line	≥ 2	4k + 3	4k+2	1	2	2
(2)a	$X=2\text{-uple}$ of hypersurface of deg ≥ 3 in \mathbb{P}^4	3	14	13	1	2	1
(2)b	$X \subset \text{cone over } 2\text{-uple of hypersurface}$ of deg ≥ 3 in \mathbb{P}^4	3	15	14	1	2	2
(3)a	$X = 2$ -uple of 3fold of deg k in \mathbb{P}^{k+1} whose curve sections have $p_a = 1$	≥ 4	4k + 2	4k + 1	1	2	1
(3)b	$X \subset \text{cone over } 2\text{-uple of 3fold of } \deg k \text{ in } \mathbb{P}^{k+1}$ whose curve sections have $p_a = 1$	≥ 4	4k + 3	4k+2	1	2	2
(4)	$X = 2$ -uple of 3fold of deg k in \mathbb{P}^{k+1} whose curve sections have $p_a = 0$	≥ 4	4k + 3	4k + 2	1	2	2
(5)	$X = 2$ -uple of 3fold of deg ≥ 5 in \mathbb{P}^5 contained in a quadric	4	19	18	1	2	2
(6)	$X = 2$ -uple of 3fold of deg $k + 1$ in \mathbb{P}^{k+1} whose curve sections have $p_a = 2$	≥ 4	4k + 3	4k+2	1	2	2
(7)a	$X \subset \text{cone over } 2\text{-uple of surface of min.}$ $\deg k \text{ in } \mathbb{P}^{k+1}, \text{ vertex } = \mathbb{P}^k$	≥ 1	4k + 3	4k+2	1	2	2
(7)b	$X \subset \text{cone over } 2\text{-uple of surface of min.}$ $\deg k \text{ in } \mathbb{P}^{k+1}, \text{ vertex } = \mathbb{P}^{k-1}$	≥ 1	4k + 2	4k + 1	1	2	1
(8)	$X \subset \text{cone over } 2\text{-uple of surface of deg}$ $\geq 3 \text{ in } \mathbb{P}^3, \text{ vertex} = \text{line}$	2	11	10	1	2	2
(9)	$X \subset$ cone over 2-uple of surface of deg $k+1$ in \mathbb{P}^{k+1} , whose curve sections have $p_a = 1$, vertex = \mathbb{P}^{k-1}	≥ 3	4k + 3	4k + 2	1	2	2
(10)	$X\subset$ cone over surface not $k\text{-weakly}$ defective, vertex = \mathbb{P}^{k-1}	≥ 1	$\geq 4k+3$	4k+2	1	1	2
(11)	$X \subset \operatorname{cone}$ over curve, vertex = \mathbb{P}^{2k}	≥ 1	$\geq 4k+3$	4k + 2	1	2	2
(12)a	$X \subset$ cone over curve, vertex = \mathbb{P}^{2k-1}	≥ 1	4k + 2	4k + 1	1	2	1
(12)b	$X \subset$ cone over curve, vertex = \mathbb{P}^{2k-1}	≥ 1	$\geq 4k+3$	4k + 1	2	2	1
(13)a	$X = 2$ -uple of 3fold of min. deg in \mathbb{P}^{k+2}	≥ 1	4k + 5	4k+2	1	1	1
(13)b	X = projection from point of 2-uple of 3fold of min. deg k in \mathbb{P}^{k+2}	≥ 1	4k + 4	4k + 2	1	1	1
(13)c	X = projection from line of 2-uple of 3fold of min. deg k in \mathbb{P}^{k+2}	≥ 1	4k + 3	4k+2	1	1	1
(14)	$X \subset \mathbb{P}^{4k+3} \cap (\text{Segre of } \mathbb{P}^{k+1} \times \mathbb{P}^{k+1}) \text{ and } X \text{ dominates both } \mathbb{P}^{k+1}$'s	≥ 1	4k + 3	4k + 2	1	1	2

--- , C.Ciliberto. THE CLASSIFICATION OF DEFECTIVE THREEFOLDS. Projective Varieties with Unexpected Properties. de Gruyter (2005) 35-49

(14)
$$\begin{array}{c} X \subset \mathbb{P}^{4k+3} \cap (\text{Segre of } \mathbb{P}^{k+1} \times \mathbb{P}^{k+1}) \text{ and} \\ X \text{ dominates both } \mathbb{P}^{k+1} \text{'s} \end{array}$$

a more precise description is given through the paper

PROPOSITION 6.11. Let X be an irreducible, non-degenerate threefold in the Segre embedding of $\mathbb{P}^{k+1} \times \mathbb{P}^{k+1}$, $k \ge 2$, which lies in the 2-uple embedding of \mathbb{P}^{k+1} . Suppose the two projections of X to \mathbb{P}^{k+1} span \mathbb{P}^{k+1} . Then these projections coincide and are immersions of X in \mathbb{P}^{k+1} . Furthermore the dimension s of the linear span of X satisfies s > 4k + 3 unless:

- (a) s = 4k + 1 and the image of X in \mathbb{P}^{k+1} is a threefold Y of minimal degree;
- (b) s = 4k + 2 and the image of X in ℙ^{k+1} is a threefold Y of degree k with curve sections of arithmetic genus 1;
- (c) s = 4k + 3 and the image of X in \mathbb{P}^{k+1} is:
 - (c_1) either a threefold Y of degree k + 1 with curve sections of arithmetic genus 2 or
 - (c₂) a threefold Y of degree k which is the projection in ℙ^{k+1} of a threefold of minimal degree in ℙ^{k+2}. In the latter case Y is described in Lemma 1.6.

The threefolds in case (a) are (k-1)-defective, whereas the threefolds in cases (b), (c) are minimally k-defective.

CLASSIFICATION OF DEFECTIVE PRODUCTS $X \times \mathbb{P}^1$

X = curve : none ----, C.Ciliberto. THE GRASSMANNIANS OF SECANT VARIETIES OF CURVES ARE NOT DEFECTIVE. Indag.Math. 13 (2002) 23-28

X = surface :

THEOREM 5.1. let $X \subset \mathbb{P}^r$ be an irreducible, non-degenerate, projective surface which is minimally (1, k)-defective. Then k is even and X is in the following list:

- (1) X is contained in a cone with vertex of dimension $\frac{k}{2} 1$ and not smaller over a curve C with dim $(\langle C \rangle) \ge \frac{3}{2}k + 1$;
- (2) k=4 and X is the 3-Veronese embedding of \mathbb{P}^2 in \mathbb{P}^9 ;
- (3) $X \subset \mathbb{P}^{2k+1}$ is a rational normal scroll $S(a_1, a_2)$ with $a_1 \ge \frac{k}{2}$.

--- , C.Ciliberto. THE CLASSIFICATION OF (1,K)-DEFECTIVE SURFACES. Geom. Ded. 111 (2005) 107-123.

CLASSIFICATION OF DEFECTIVE PRODUCTS $X \times \mathbb{P}^1$

X = threefold: k=2 (Coppens, Cools)

Theorem 5.1. Let $X \subset \mathbb{P}^N$ be a non-degenerate irreducible smooth threefold. If X is (1, 2)-defective, then X is isomorphic to one of the following varieties:

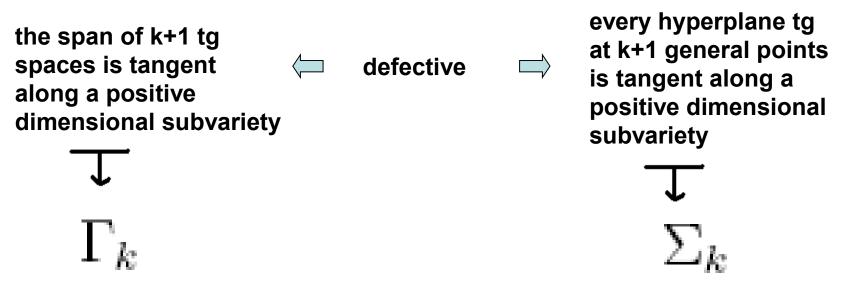
- i) the Segre variety $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$;
- ii) the rational normal scroll S(1,1,2) of minimal degree 4 in \mathbb{P}^6 ;
- iii) the rational normal scroll S(1, 1, 3) of minimal degree 5 in \mathbb{P}^7 ;
- iv) the rational normal scroll S(1,2,2) of minimal degree 5 in \mathbb{P}^7 ;

---- , F.Cools. CLASSIFICATION OF (1,2)-DEFECTIVE THREEFOLDS. preprint

The previously introduced method (control of families of degenerate subvarieties) is the main tool

REMARK

There are several filling families of degenerate varieties in a defective variety



the converse is false in general

varieties for which these properties hold are

k - WEAKLY DEFECTIVE

the classification of weakly defective varieties is known up to surfaces

--- , C.Ciliberto. WEAKLY DEFECTIVE VARIETIES Trans. Am. Math. Soc. 354 (2002) 151-178

k-weakly defective and r > nk + n + k

- through k + 1 general points of X there exists a subvariety $Y \subset X$ of dimension m, whose span has dimension $\leq mk + m + k$ (a (k + 1)-filling family of highly degenerate subvarieties)

compare with k-defectivity!

again a problem of (k+1)-filling families of degenerate subvarieties

Why weakly defective varieties are interesting?

--- , C.Ciliberto. ON THE CONCEPT OF k-TH SECANT ORDER OF A VARIETY. J. London Math. Soc. 73 (2006) 436-454.

COROLLARY 2.7. Let $X \subset \mathbb{P}^r$ be an irreducible, projective, non-degenerate variety of dimension n. Assume $s^k(X) = n(k+1) + k < r$, i.e. X is not k-defective, and $S^k(X)$ is a proper subvariety of \mathbb{P}^r . Then $\mu_k(X) = 1$ unless X is k-weakly defective.

IDENTIFIABILITY

if not, see e.g. C.Ciliberto, M. Mella, F. Russo. VARIETIS WITH ONE APPARENT DOUBLE POINT. J. Alg. Geom. 13 (2004) 475-512.

PROBLEM: weakly defectivity of Veronese varieties, Segre products etc.

VERONESE

M. Mella SINGULARITIES OF LINEAR SYSTEMS AND THE WARING PROBLEM. preprint.

IDENTIFIABILITY of Segre products

THEOREM (R. ELMORE, P. HALL, A. NEEMAN) If $\underline{s \gg k}$, the Segre product $X = \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (s times) is k-identifiable (not k-weakly defective).

(H. KASAHARA, S. KATSUMI) Extension to higher dimensional products

ALTERNATIVE METHOD (proposal): prove the non-existence

of (k+1)-filling family of degenerate subvarieties C

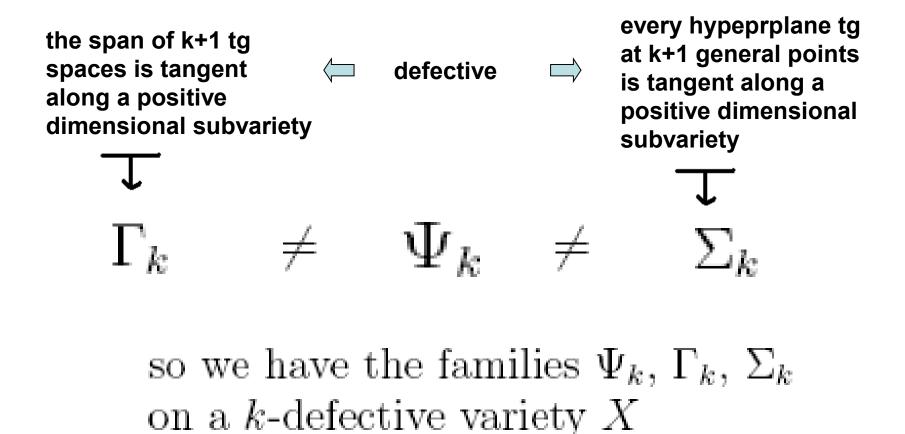
prove the non-existence s linear series general enough on C, whose sum has dimension $\leq 2k$ (for curves)

TASK: find improved (sharp?) bounds for the condition "s>>k" work in progress (C. BOCCI, --- , F. COOLS)

already the case of \mathbb{P}^3 's **DNA** : is interesting

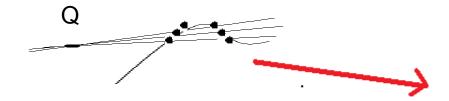
REMARK

There are several filling families of degenerate varieties in a defective variety



WHICH RELATIONS AMONG THESE FAMILIES? WHICH RELATIONS AMONG THESE FAMILIES AND THE ENTRY LOCI?

For $Q \in S^k(X)$ general, the entry locus E_Q is the closure of the set $\{x_0 \in X : \text{there are } x_1, \ldots, x_k \in X \text{ such that } Q \in \langle x_0, \ldots, x_1 \rangle \}$



ENTRY LOCUS of Q

PROPOSITION $\Psi_k \subseteq \Gamma_k \subseteq \Sigma_k$. If X is k-defective, then $E_Q \subseteq \Gamma_k$ and Ψ_k is a flat deformation of E_Q .

the span of k+1 tg spaces is tangent along a positive dimensional subvariety

COROLLARY If X is k-defective and $\Psi_k = \Gamma_k$, then $E_Q = \Psi_k = \Gamma_k$.

X is TAMELY DEFECTIVE

TWO GENERAL NON-SENSE

Knowing the entry locus E_Q is usually interesting.

It is much easier to compute Γ_k than E_Q or Ψ_k .

EXAMPLE

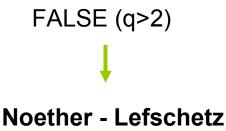
TRUE (q=2)

Let Y be a homogeneous form (hypersurface) of degree d in \mathbb{P}^q

Is it possible to express Y as the determinant of a 2×2 matrix of forms of degree < d?

$$Y = \det \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

E. Carlini, ---, T.Geramita. HYPERSURFACES CONTAINING COMPLETE INTERSECTIONS. preprint



WHAT HAS TO DO WITH SECANTS?

 $\mathbb{P}^N =$ space of hogeneous forms of degree d in \mathbb{P}^q $S_a \subset \mathbb{P}^N$, $S_a =$ variety of forms splitting in a product of a form of degree a and a form of degree d - a.

$$Y = \det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad a = \deg(A) = \deg(B)$$

Y belongs to the secant variety of S_a

If Y is a determinant, which are its determinantal expressions? fFind the entry locus of Y w.r.t the secant variety of S_a

 S_a is wildly defective

$$\Gamma_1 = \langle A, D \rangle \cap \langle B, C \rangle \cap S_a \qquad \qquad E_Y = ???$$

MAXIMALLY DEFECTIVE VARIETIES

 $X \subset \mathbb{P}^r \qquad \qquad S^k(X) \neq \mathbb{P}^r$

how small can r be?

THEOREM (F. ZAK) X smooth, k = 1. Then $s^{(k)}(X) \ge \frac{3}{2}n + 1$.

border cases (Severi varieties)

- (i) the Veronese surface $V_{2,2}$ in \mathbb{P}^5 ;
- (ii) the 4-dimensional Segre variety Seg(2,2) in \mathbb{P}^8
- (iii) the 8-dimensional Grassmann variety $\mathbb{G}(1,5)$ in \mathbb{P}^{14}
- (iv) the 16-dimensional E_6 -variety in \mathbb{P}^{26} .

REMARK: the following varieties are k-defective

(i) the (k+1)-dimensional Veronese variety V_{2,k+1} in P^{k(k+3)}/₂;
(ii) the 2(k+1)-dimensional Segre variety Seg(k+1, k+1) in P^{k²+4k+3};

(iii) the 4(k+1)-dimensional Grassmann variety $\mathbb{G}(1, 2k+3)$ in $\mathbb{P}^{\binom{2k+4}{2-1}}$.

EXTENSION OF ZAK'S THEOREM

--- , C.Ciliberto. ON THE DIMENSION OF SECANT VARIETIES. preprint (2008).

Theorem 7.4. Let $X \subset \mathbb{P}^r$ be a non-degenerate variety of dimension n. Assume X is a R_k -variety (or X is k-smooth). Then

 $either \quad S^k(X) = \mathbb{P}^r \quad or \quad s^{(k)}(X) \geq \frac{k+2}{2}n+k.$

technical condition, which extends smoothness

border cases (k-Severi varieties)

(i) the (k+1)-dimensional Veronese variety V_{2,k+1} in P^{k(k+3)/2};
(ii) the 2(k+1)-dimensional Segre variety Seg(k+1, k+1) in P^{k²+4k+3};
(iii) the 4(k+1)-dimensional Grassmann variety G(1, 2k+3) in P^{(2k+4)/2-1}.

Theorem 7.4. Let $X \subset \mathbb{P}^r$ be a non-degenerate variety of dimension n. Assume X is a R_k -variety (or X is k-smooth). Then

$$either \quad S^k(X) = \mathbb{P}^r \quad or \quad s^{(k)}(X) \ge \frac{k+2}{2}n+k.$$

Ingredients for the proof:

1) An extension of Zak's theorem on tangencies

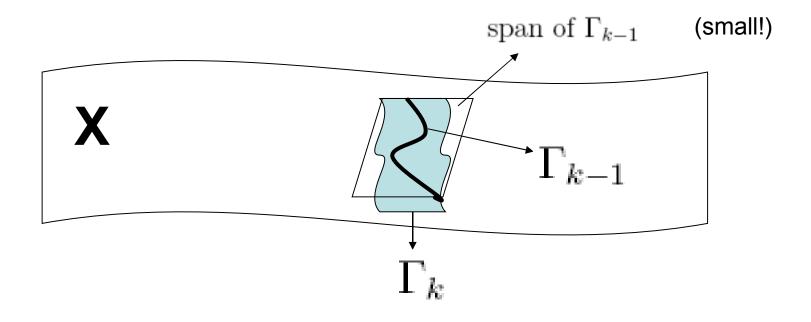
Theorem 6.1. Let $X \subset \mathbb{P}^r$ be a non-degenerate variety and let $L \neq \mathbb{P}^r$ be a proper linear subspace of \mathbb{P}^r which is J_k -tangent to X along a pure subvariety Y. Then:

(6.1) $\dim(L) \ge \dim(X) + \dim(J^k(Y)) \ge \dim(X) + \dim(S^{k-1}(Y)).$

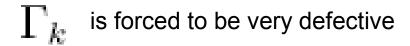
2) The study of the hierarchical structure of Γ_k and Ψ_k

2) The study of the hierarchical structure of Γ_k and Ψ_k

 Γ_{k-1} sits inside Γ_k and since it is highly degenerate, it forces the defectivity of Γ_k . Then apply the formula recursively.



play induction



Secant varieties and degenerate subvarieties

"Algebraic Geometry, D-modules, Foliations and their interactions"

21 - 26 July, 2008 - Buenos Aires, Argentina

THANK YOU FOR YOUR ATTENTION