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Hodge Decomposition

Theorem: Let X be a smooth compact Kähler manifold. Then
Hd (X ,C) decomposes as:

Hd (X ,C) =
⊕

p+q=d

Hp,q ; Hq,p = Hp,q,

where Hp,q may be described as the set of cohomology
classes admitting a representative of bidegree (p,q).

Corollary: The odd Betti numbers of X are even.

Remark: The Hodge decomposition is compatible with the
algebra structure:

Hp,q ∪ Hp′,q′ ⊂ Hp+p′,q+q′
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Hard Lefschetz Theorem

Theorem (Lefschetz, Hodge): Let X be a k -dimensional
smooth compact Kähler manifold and ω ∈ H1,1(X ) ∩ H2(X ,R) a
Kähler class. Let Lω denote multiplication by ω. Then for all
` ≤ k the map

L`ω : Hk−`(X )→ Hk+`(X )

is an isomorphism.

Corollaries:
h2 ≥ 1, where h` := dim H`

C(X ,C).
Poincaré duality. In particular hk−` = hk+`.
h0 ≤ h2 ≤ h4 ≤ · · ·
h1 ≤ h3 ≤ h5 ≤ · · ·
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Lefschetz Decomposition

We define the primitive cohomology

Hk−`
0 (X ) := {α ∈ Hk−`(X ) : L`+1

ω α = 0}

Then

Hk−`(X ) = Hk−`
0 (X )⊕ Lω · Hk−`−2(X )

= Hk−`
0 (X )⊕ Lω · Hk−`−2

0 (X )

⊕L2
ω · Hk−`−4

0 (X ) + · · ·



Hodge-Riemann Bilinear Relations

Define a real bilinear form Q on H∗(X ,C) by

Q(α, β) = (−1)
d(d−1)

2

∫
X
α ∪ β ,

where deg(α) = d and the integral is assumed to be zero if
deg(α ∪ β) 6= 2k , where k = dimC(X ).

Then the Hodge decomposition is Q-orthogonal and:

ip−q Q(α,L`ω ᾱ) ≥ 0

for any

α ∈ Hp,q(X ) ∩ Hp+q
0 (X ,C) ; p + q = k − ` .

Moreover, equality holds if and only if α = 0.
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Example: dimC(X ) = 2

Hodge Diamond

H0,0

H1,0 ↓ Lω H0,1

H2,0 ↓ Lω H1,1 ↓ Lω H0,2

H2,1 ↓ Lω H1,2

H2,2

H1,1 = H1,1
0 ⊕ C · ω, where

H1,1
0 := {α : ω ∪ α = 0}

For α ∈ H1,1
0 ,

Q(α, ᾱ) = −
∫

X
α ∪ ᾱ ≥ 0.

Q(ω, ω̄) = −
∫

X
ω ∪ ω < 0.
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Example continued: Hodge Inequality

The sign of the intersection form 〈 , 〉 on H1,1
R (X ) is

(−, · · · ,−,+) (Hodge Index Theorem)

Hence the intersection form is hyperbolic and the reverse
Cauchy-Schwartz inequality holds:

If 〈α, α〉 ≥ 0, then ∀β: 〈α, β〉2 ≥ 〈α, α〉〈β, β〉

Dually, if C1,C2 are curves in X then:

〈C1,C2〉2 ≥ 〈C1,C1〉〈C2,C2〉 (Hodge Inequality)
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Mixed Hard Lefschetz Theorem

Theorem Let X be a k -dimensional smooth compact Kähler
manifold and ` ≤ k . Let ω1, . . . , ω` be Kähler classes. Then the
map

Lω1 · · · Lω`
: Hk−`(X )→ Hk+`(X )

is an isomorphism.



Mixed Lefschetz Decomposition

Theorem: Let ` ≤ k and ω1, . . . , ω`+1 be Kähler classes. Then

Hk−`(X ) = H̃k−`
0 (X )⊕ Lω`+1 · H

k−`−2(X )

where

H̃k−`
0 (X ) := Hk−l(X ) ∩ ker(Lω1 · · · Lω`

Lω`+1)



Mixed Hodge-Riemann Bilinear Relations

Theorem: Let ` ≤ k and ω1, . . . , ω`+1 be Kähler classes. Then

ip−q Q(α,Lω1 · · · Lω`
ᾱ) ≥ 0

for any

α ∈ Hp,q(X ) ∩ H̃k−`
0 (X ) ; p + q = k − ` .

Moreover, equality holds if and only if α = 0.



Simple corollary

Suppose ω1, ω2 are Kähler classes. Then MHL says that

Lω1Lω2 : Hk−2(X )
∼=−→ Hk+2(X ) .

In particular, if 0 6= α ∈ Hk−2(X ), then Lω1Lω2α 6= 0 .
Equivalently:

ker(Lω1) ∩ Im(Lω2) ∩ Hk (X ) = {0} (∗)

If a middle cohomology class is primitive for one Kähler class it
must have a primitive component relative to any other Kähler
class.
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Example: dim X = 2

For dim X = 2, MHL is the statement that:

Lω1Lω2 : H0(X )
∼=−→ H4(X ) .

This is equivalent to (∗) and follows from HRR since Q is
positive in kerLω1 ∩ H1,1

R and negative in ImLω2 ∩ H1,1
R .

Similarly, MHR reduces to showing that:

Q(1,Lω1Lω2 · 1) =

∫
X
ω1 ∪ ω2 > 0

which again follows from (∗).
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Example: dim X = 4

Suppose now that dim X = 4, then given a Kähler class ω:

H2,2 = H2,2
0 ⊕ LωH1,1

0 ⊕ L2
ωH0,0

0

and the sign of Q is (+,−,+).

Sign no longer implies existence of primitive component.

In fact, I don’t know of an elementary argument to show that

ker(Lω1) ∩ Im(Lω2) ∩ H2,2(X ) = {0}
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A little history

[C-Kaplan-Schmid, 1987] Results such as (∗) as
consequence of a Purity Theorem for intersection
cohomology

[Gromov, 1990] Statement of mixed theorems for Hp,p.
Proof for H1,1.
[Timorin, 1998,1999] Proof of mixed theorems in the linear
algebraic and simple polytope case.
[Dinh and Nguyên, 2006] Proof of mixed theorems in the
compact Kähler case.
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Combinatorics

Let P ⊂ Rk be a simplicial, k -dimensional polytope. Let fj(P) be
the number of j-dimensional faces of P.

The face numbers fj(P) must satisfy a number of constraints,
including the so called Dehn-Sommerville relations.

P. McMullen (1971) listed conditions, including
Dehn-Sommerville, which, conjecturally, characterized face
numbers of simplicial polytopes.

Billera and Lee (1981) proved, combinatorially, that these
conditions were sufficient.

Stanley (1980) proved that they were necessary using the
cohomology of toric varieties.
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Stanley’s argument

Suppose P is a simple polytope with integral vertices. There is
an associated smooth projective toric variety XP and for ` ≤ k :

h`(XP) =
∑
j≥`

(−1)j−`
(

j
`

)
fj(P).

The Dehn-Sommerville relations are exactly the restrictions
imposed on fj(P) by the Lefschetz restrictions on the Betti
numbers h`(XP).

The remaining McMullen conditions reflect the algebra
structure of H∗(XP). So, this proves one direction of the
conjecture for simple integral polytopes.
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Stanley’s argument

For integral simplicial polytopes the associated toric variety is
an orbifold and all the arguments go through.

A general simplicial polytope may be deformed to a rational one
without changing the combinatorial type.

For non-simplicial polytopes the h-numbers have been
generalized by Stanley (1987). For integral polytopes they are
intersection cohomology Betti numbers.

In the non-simplicial case, deformation techniques do not
necessarily work since certain combinatorial types are not
realized by rational polytopes.
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Cohomology algebras of polytopes

McMullen (1993); Brion (1997); Timorin (1999); Barthel,
Brasselet, Fieseler and Kaup (2002); Bressler-Lunts(2003,
2005), Karu (2004)

Combinatorial constructions of cohomology algebras
associated with polytopes which reduce to H∗ or IH∗ when
appropriate.
They satisfy the Lefschetz Theorems and Hodge-Riemann
bilinear relations relative to appropriate intersection form.
They have an even grading so we may define a Hodge
structure concentrated in bidegree (p,p).
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Alexandrov-Fenchel Inequality

Given polytopes P1, . . . ,Pk ∈ Rk , the mixed volume

MV (P1, . . . ,Pk )

is the polarization of the volume form.

Alexandrov-Fenchel Inequality (1936):

MV (P1,P2, . . . ,Pk )2 ≥ MV (P1,P1, . . . ,Pk ) ·MV (P2,P2, . . . ,Pk ).

The AF inequality is related to the isoperimetric and
Bruns-Minkowski inequalities.
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Bernstein’s Theorem

Bernstein’s Theorem: Let Pi be integral and

fi(t) :=
∑

α∈Pi∪Zk

ui
α tα

be Laurent polynomials supported in Pi . Then, for generic
coefficients,

MV (P1, . . . ,Pk ) = #{t ∈ (C∗)k : f1(t) = · · · = fk (t) = 0}.



Algebro-geometric proof of Alexandrov-Fenchel

Khovanskii (1978), Teissier (1978): Consider a suitable (toric)
compactification X of the surface in the torus

{t ∈ (C∗)k : f3(t) = · · · = fk (t) = 0}.

Then AF is equivalent to the Hodge inequality for the curves

Ci = closureX{fi = 0}, i = 1,2

provided MV (P1,P2,P3, . . . ,Pk ) = 〈C1,C2〉 (i.e. no solutions at
infinity).

The introduction of X is necessary to apply the Hodge
inequality for surfaces.

Gromov (1990): Interpret MV ( ∗ , ∗ ,P3, . . . ,Pk ) as a mixed
form:

Q( ∗ ,Lω3 · · · Lωk ∗ )

in H1,1(Y ) for a suitable toric variety Y .
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Polarized Hodge-Lefschetz Modules

Let V∗ be a Z-graded finite-dimensional real vector space, k a
positive integer, and Q a non-degenerate real bilinear form of
parity (−1)k . Let a ⊂ o−2(V ,Q) be an abelian subspace and
N0 ∈ a. Then (V∗,Q, a,N0) is said to be a polarized
Hodge-Lefschetz module of weight k if the following are
satisfied:

There is a bigrading

VC =
⊕

0≤p,q≤k

V p,q ; V q,p = V p,q, (∗∗)

such that
(V`)C =

⊕
p+q=`+k

V p,q.

Hence, the bigrading (∗∗) restricts to a Hodge structure of
weight k + ` on V`.
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Polarized Hodge-Lefschetz Modules

T (V p,q) ⊂ V p−1,q−1 for all T ∈ a.

For ` ≥ 0,
N`

0 : V` → V−`

is an isomorphism.
For ` ≥ 0, the induced Hodge structure on
P`(N0) := ker{N`+1

0 : V` → V−`−2} is polarized by the form
Q( . ,N`

0 . ).

We let K denote the connected cone containing N0 of elements
in a for which the Lefschetz and polarization properties are
preserved. (Polarizing cone)
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Example 1:

X a compact Kähler manifold and Q the polarization form.

k = dimC(X ).

V = H∗(X ,R).

V` = Hk−l(X ,R).

a = {Lα, α ∈ H1,1(X ) ∩ H2(X ,R)}.

N0 = Lω, where ω is a Kähler class

K = Kähler cone of X .
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Example 2:

P a k -dimensional polytope.

V = IH∗(P,R) its combinatorial intersection cohomology.

IH∗(P,R) =
k⊕

r=0

IH2r (P,R)

V p,p = (V2p−k )C = IH2k−2p(P,C)

a is a vector space of maps conewise linear in the normal fan of
P. The polarization cone consists of strictly convex maps.
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Example 3:

V → (∆∗)r a polarized variation of Hodge structure of weight k
with flat polarization form Q and unipotent monodromy.

VC = Vt0 the typical fiber, Q = Qt0 .

N1, . . . ,Nr ∈ End(VR) the monodromy logarithms, a their span,
and K their positive cone.

Let (W (K)[−k ],Flim) be the limiting mixed Hodge structure and

VC =
⊕

Ip,q(W ,F0)

the bigrading associated with a real splitting of the limiting MHS.

V` =
⊕

p+q=k+`

(Ip,q(W ,F0))R
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Example 3 continued

Theorem (Griffiths, Schmid, Kaplan, C.): If N0 ∈ K, then

(V∗,Q, a,N0)

is a polarized Hodge-Lefschetz module. Moreover, every
polarized Hodge-Lefschetz module arises in this way.



Main Result

Theorem : The mixed versions of the Hard Lefschetz
Theorem, the Lefschetz Decomposition, and the
Hodge-Riemann Bilinear Relations hold for Polarized
Hodge-Lefschetz modules.



Descent Lemma

Suppose (V∗,Q, a,N0) is a polarized Hodge-Lefschetz module
of weight k and let T ∈ K. Set:

Ṽ = T · V , Ṽ` = T · V`+1

Q̃(T · u,T · v) = Q(u,T · v)

ã = a acting on T · V , Ñ0 = N0 acting on T · V .

Theorem [CKS, 1987]: (Ṽ∗, Q̃, ã, Ñ0) is a polarized
Hodge-Lefschetz module of weight k − 1 with bigrading

Ṽ p,q = T · V p+1,q+1.
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Example: k = 2

V2 V 2,2

V1 V 2,1 ↓ T V 1,2

V0 V 2,0 ↓ T V 1,1 ↓ T V 0,2

V−1 V 1,0 ↓ T V 0,1

V−2 V 0,0

Ṽ1 T · V 2,2

Ṽ0 T · V 2,1 ↓ N0 T · V 1,2

Ṽ−1 T · V 1,1

ImT ∩ ker N0 ∩ V0 = {0}
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Mixed Hard Lefschetz Theorem

Theorem: Let (V∗,Q, a,N0) be a polarized Hodge-Lefschetz
module of weight k , ` ≤ k , and T1 . . .T` ∈ K. Then the map

T1 · · ·T` : V` → V−`

is an isomorphism.



Proof of the Mixed Hard Lefschetz Theorem

It suffices to show that for T1, . . . ,T` ∈ K, the map:

T1 · · ·T` : V` → V−`

is injective

Suppose v ∈ V` is such that T1 · · ·T` · v = 0. Let
u = T2 · · ·T` · v .

Consider Ṽ = T2 · · ·T` · V , then

u ∈ T2 · · ·T` · V` = Ṽ1

Now, by the Descent Lemma T1 satisfies the Lefschetz
property in Ṽ , therefore:

ker T1 ∩ Ṽ1 = {0}.

Therefore u = 0, and the result follows inductively.
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