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Introduction

We describe generalized Szegö projectors and Toeplitz operators,
which generalize pseudo-differential operators on arbitrary contact
manifolds. An important case arises from CR analysis. In this
contact context, the analogue of Fourier integral transformations is
easy to visualize.

For general elliptic systems of Toeplitz operators there is no
K-theoretical or cohomological formula relating the index of such a
system to its symbol (because the Toeplitz space is only defined
via its ”symbol” up to a finite dimensional space, so the index is
not defined at all - although there is one for elliptic matrices of
Toeplitz operators). However in presence of a compact group
action, there is a good notion of ”asymptotic trace” (generalizing
the Wodzicki residual trace) and ”asymptotic index”, an avatar of
M.F. Atiyah’s index theory for relatively elliptic equivariant
pseudodifferential operators



Toeplitz operators

In this section we recall the mechanism of generalized Szegö
projectors and Toeplitz operators (references:[10, 7, 9]).

As in [10, 7, 9], we call symplectic cone a smooth (paracompact)
manifold which is a principal R×+ bundle, equipped with a
symplectic form ω homogeneous of degree 1. The Liouville form is
its horizontal primitive λ = ρyω (ω = dλ), where ρ denotes the
radial (Euler) vector field, infinitesimal generator of homotheties.
The basis X = Σ/R×+ is an oriented contact manifold; its contact
form λX (any pull of λ by a smooth section) is defined up to a
smooth positive factor, and Σ is canonically identified with the set
of positive multiples of λX in T ∗X .



Microlocal model

We first describe the microlocal model for generalized Szegö
projectors given in [3]. Let (x , y) = (x1, . . . , xp, y1, . . . , yq) denote
the variable in Rp+q. We consider the system of pseudodifferential
operators D = (Dj) with

Dj = ∂yj + |Dx |yj (j = 1, . . . , q)

The Dj commute; the complex involutive variety char D is defined
by the complex equations ηj − i |ξ|yj = 0; it is � 0, in the sense of
[22, 23]. Its real part is the symplectic manifold Σ : {ηj = yj = 0}.



The kernel of D in L2 is the range of the Hermite operator H (in
the sense of [3]) defined by its partial Fourier transform:

f ∈ L2(Rp) 7→ Hf with FxHf (ξ, y) = (π−1|ξ|)
q
4 e−

1
2
|ξ|y2

f̂ (ξ)

The orthogonal projector on ker D is S = HH∗:

f 7→ (2π)−p

∫
R2p+q

e i(<x−x ′,ξ>+i 1
2

(y2+y ′2)(π−1|ξ|)
q
2 f (x ′, y ′)dx ′dy ′dξ

As H, it is a Fourier integral operator, whose complex canonical
relation is � 0, with real part the graph of Id Σ (Fourier integral
operators are described in [21], Fourier integral operators with
complex canonical relation are described in [22, 23]).



Generalized Szegö projectors

Let M be a compact manifold, and Σ ⊂ T •M a symplectic
subcone (T •M denotes T ∗M deprived of its zero section). A
generalized Szegö projector associated to Σ (or Σ-Szegö projector)
is a self adjoint1 elliptic Fourier integral projector S of degree 0
(S = S∗ = S2), whose complex canonical relation C is � 0, with
real part the diagonal diag Σ (elliptic means that the principal
symbol of S does not vanish on Σ).

From [10, 7, 9], we recall:

1the requirement that S be self adjoint is convenient but not essential



1) A Σ-Szegö projector S always exists. It is microlocally
isomorphic (mod. some elliptic FIO transformation) to the
model above.
We will denote H ⊂ C−∞(M) its range. Modulo C∞, it
defines a sheaf µH on Σ - a subsheaf supported by Σ of the
sheaf of microfunctions on T •M.

2) Toeplitz operators defined by S are the operators on H of the
form u ∈ H 7→ TP(u) = SPS(u) with P a pseudodifferential
operator on M. More generally, if P is any FIO whose
canonical relation is complex positive, with real part
containing diag Σ, then SPS is a Toeplitz operator.
Modulo operators of degree −∞ (smoothing operators),
Toeplitz operators form a sheaf AΣ of algebras on Σ, acting
on µH; (AΣ, µH) is locally isomorphic to the sheaf of
pseudodifferential operators in p real variables (2p = dim Σ),
acting on the sheaf of microfunctions. The principal symbol
(principal part) of TP is σ(P)|Σ.



3) If S ,S ′ are two Σ-Szegö projectors with range H,H′, S ′

induces a quasi isomorphism H→ H′ (the restriction of SS ′

to H is a positive (≥ 0) elliptic Toeplitz operator).

More generally, if Σ ⊂ T •M,Σ′ ⊂ T •M ′ are two symplectic cones
and f : Σ→ Σ′ a homogeneous symplectic isomorphism, there
always exists a Fourier integral operator F from M to M ′, inducing
an “elliptic” Fredholm map H→ H′, e.g. there exists a complex
canonical relation C � 0 with real part the graph of f , and we may
take F = S ′ ◦F ′ where F ′ is any elliptic FIO with canonical relation
C (such elliptic FIO exist, they were called “adapted” in [10, 7]).
Thus the pair AΣ, µH consisting of the sheaf micro Toeplitz
operators (i.e. smoothing operators), acting on µH is well defined,
up to (non unique) isomorphism: it only depends on the symplectic
cone Σ, not on the embedding.



Holomorphic case

An first example of Toeplitz structure is Σ = T •M (M a compact
manifold), S = Id : the Toeplitz algebra is the algebra of
pseudodifferential operators acting on the sheaf of microfunctions
on M.

In general, as noted above, the basis X = Σ/R×+ of Σ is a contact
manifold, and Σ can be canonically embedded in T •X as the set
of positive multiples of the contact form. An important particular
case is the holomorphic case: X is the smooth, strictly
pseudoconvex boundary of a Stein complex manifold; the contact
form of X is the form induced by Im ∂φ where φ is any defining
function (φ = 0, dφ 6= 0 on X , φ < 0 inside - e.g. if X is the unit
sphere bounding the unit ball of Cn, with defining function
z̄ · z − 1, the contact form is Im z̄ · dz|X ). Then the Szegö projector
S is the orthogonal projector on the space of boundary values of
holomorphic functions in L2(X ) (the fact that it is Fourier integral
operator as above was proved in [4]).



The pseudodifferential algebra is a special case of holomorphic
Toeplitz algebra: if M is a manifold, it has a real analytic compact
manifold; if Mc is a complexification of M, small tubular
neighborhoods of M in Mc (for some hermitian metric) are Stein
manifold with strictly complex boundary X ∼ S∗M, and the
pseudodifferential algebra of M acting on microfunctions is
isomorphic to the Toeplitz algebra of X acting on H. In fact there
exists an adapted Fourier integral operator from M to X which
defines an isomorphism from C−∞(M) to H(X )2 and interchanges
pseudodifferential operators on M and Toeplitz operators on X .

2e.g. e iεA with A =
√
−∆ for some real analytic Riemannian metric on M,

cf [5].



Fourier integral operators
The analogue of Fourier integral transformations is the following:
let X ,X ′ be two contact manifolds, S , S ′ generalized Szegö
projectors, anf f : X → X ′ a contact isomorphism. The
pushforward map u 7→ f∗u = u ◦ f −1 does not send H to H′: we
correct it as for Toeplitz operators Tf (u) = S ′(f∗u); this behaves
as an elliptic Fourier operator attached to the contact map f . All
other analogues of F.I.O attached to f are (mod smoothing
operators) of the form u 7→ A′Tf u, A′ a Toeplitz operator on X ′.

The Atiyah-Weinstein problem can be described as follows: If X is
a compact contact manifold, and S , S ′ to Szegö projectors defined
by two embeddable CR structures giving the same contact
structure, then the restriction of S ′ to H is a Fredholm operator
H→ H′ (SS ′ induces an elliptic Toeplitz operator on H). In this
case the spaces H,H′ and the index are well defined. The
Atiyah-Weinstein conjecture computes the index in terms of
topological data of the situation (topology of the holomorphic
fillings of which X is the boundary).



Equivariant Toeplitz algebra

Let G be a compact Lie group, dg its Haar measure (
∫

dg = 1), g

its Lie algebra.
Let Σ be a G - symplectic cone (with compact basis), ω its
(invariant) symplectic form, λ the Liouville form (ω = dλ). As
mentioned above, the basis X = Σ/R×+ is a G -compact oriented
contact manifold; replacing it by its G -mean, we may choose an
invariant form λX defining the contact structure, and Σ is
canonically identified with the set of positive multiples of λX in
T ∗X .



As was shown in [10, 7], the statements of §1 allow a compact
group action: if M is a compact G -manifold and Σ is embedded as
an invariant symplectic subcone of T •M, there exists an
G -invariant generalized Szegö projector associated to Σ 3; if S ′ is
another one, it induces an equivariant Fredholm map H→ H′, and
more generally if u is an equivariant isomorphism
Σ ⊂ T •M → Σ′ ⊂ T •M ′, there exists an equivariant adapted FIO
F inducing an equivariant elliptic Toeplitz FIO H→ H′.

3e.g. the Szegö projector of an invariant embeddable CR structure is
invariant.



If S is an equivariant generalized Szegö projector, G acts on H and
on the Toeplitz algebra, so as on their microlocalization µH,AΣ.
The infinitesimal generators of G (vector fields image of elements
ξ ∈ g) define Toeplitz operators Tξ of degree 1 on H and HE . The
elements of G act as unitary Fourier integral operators - or
“Toeplitz-FIO’s”.

The Toeplitz space HE (and its Sobolev counterparts) splits

according to the irreducible representations of G : H =
⊕̂

Hα.



Equivariant trace

The G -trace and G -index (relative index in [1]) were introduced by
M.F. Atiyah in [1] for equivariant pseudo-differential operators on a
G -manifold. The G -trace of P is a distribution on G , describing
tr (g ◦ P). Here we adapt this to Toeplitz operators.

Below we will use the following extension: an equivariant Toeplitz
bundle is the range of an equivariant Toeplitz projector P of degree
0 on some HN . The symbol of E is the range of the principal
symbol of P; it is an equivariant vector bundle on X ; any
equivariant vector bundle on X is the symbol of an equivariant
Toeplitz bundle. We will denote by E(s) its space of Sobolev Hs

sections.



If E,F are two equivariant Toeplitz bundles, there is an obvious
notion of Toeplitz (matrix) operator P : E→ F, and of its principal
symbol σd(P) if it is of degree d , which is a homogeneous
vector-bundle homomorphism E → F on Σ. P is elliptic if its
symbol is invertible; then it is a Fredholm operator E(s) → F(s−d)

and has an index which does not depend on s.



Definition
We denote char g (characteristic set of g) the closed subcone of Σ
where all symbols of infinitesimal operators Tξ, ξ ∈ g vanish.

char g contains the fixed point set ΣG , whose basis is the fixed
point set X G (because G is compact). The base Z of char g is the
set of points of X where all Lie generators Lξ, ξ ∈ g are orthogonal
to λX . Note that ΣG is always a smooth symplectic cone and its
base X G a smooth contact manifold; char g and Z may be singular.

Let E be an equivariant Toeplitz bundle. If P : E→ E is a Toeplitz
operator of trace class (deg P < −n), the trace function
TrGP (g) = tr (g ◦ P) is well defined; it is a continuous function on
G . It is smooth if P is of degree −∞ (P ∼ 0). If P is equivariant,
its Fourier coefficient for the representation α is 1

d α
tr P|Hα

(dα the
dimension of α).

The following result is an immediate adaptation of the similar
result of [1] for pseudo-differential operators.



Proposition Let P : E→ E be a Toeplitz operator, with P ∼ 0
near char g. Then TrGP (g) = tr g ◦ P is well defined as a
distribution on G . If P equivariant, tr P |Hα

is well defined (finite),
and we have, in distribution sense:

TrGP =
∑ 1

dα
tr P|Hα

χα (1)

where α runs over the set of irreducible representation of G , with
dimension dα and character χα.

We have seen above that this is true if P is of trace class. Let D
be a bi-invariant elliptic operator of order m > 0 on G , e.g. the
Casimir of a faithful representation (with m = 2); its image DX on
X defines an invariant Toeplitz operator E→ F, with characteristic
set char g.
If P ∼ 0 near Σ, we can divide it repeatedly by DX (mod.
smoothing operators) and get for any N:

P = DN
X Q + R with R ∼ 0



The degree of Q is deg P −mN, so it is of trace class if N is large
enough. We set TrGP = DNTrGQ + TrGR : this is well defined as a
distribution; the fact that it does not depend on the choice of
D,N,Q,R is immediate.

Formula 1 for equivariant operators, obviously follows. Note that
the series converges in distribution sense, i.e. the coefficients have
at most polynomial growth (with respect to the eigenvalues of D).

More generally if we have let an equivariant Toeplitz complex of
finite length:

(E, d) : · · · → Ej
d−→ Ei+1 → . . .

i.e. E is a finite sequence Ek of equivariant Toeplitz bundles,
d = (dk : Ek → Ek+1) a sequence of Toeplitz operators such that
d2 = 0. Then for a Toeplitz operator P : E→ E,P ∼ 0 near
char g, its equivariant supertrace TrGP =

∑
(−1)kTrGPk

is well
defined; it vanishes if P is a supercommutator.



Equivariant index

Let E0,E1 be two equivariant Toeplitz bundles. We will say that
an equivariant Toeplitz operator P : E0 → E1 is G -elliptic
(relatively elliptic in [1]) if it is elliptic on char g, i.e. the principal
symbol σ(P), which is a homogeneous equivariant vector bundle
homomorphism E0 → E1, is invertible on char g. Then there exists
an equivariant Q : F→ E such that QP ∼ 1E,PQ ∼ 1F near
char g. The G -index IndI G

P is then defined as the distribution
TrG1−QP − TrG1−PQ .

More generally, an equivariant complex (E, d) as above is G -elliptic
if the principal symbol σ(d) is exact on char g. Then there exists
an equivariant Toeplitz operator s = (sk : Ek → Ek−1) such that
1− [d , s] ∼ 0 near char g ([d , s] = ds + sd). The index (Euler
characteristic) is the super trace
I G
(E,d) = supertr (1− [d , s]) =

∑
(−1)jTrG(1−[d ,s])j

.



bigskip If P is G -elliptic, for any irreducible representation α, the
restriction Pα : E0,α → E1,α is a Fredholm operator with index Iα
is finite dimensional (resp. more generally the cohomology H∗α of
d|Eα

is finite dimensional), and we have

IndI G
P =

∑ 1

dα
Iα χα (resp. IndG

(E,d) =
∑ (−1)

dα

j

dim Hj
α χα)

(2)



Asymptotic index

The G -index Ind G
P is obviously invariant under compact

perturbation and deformation, so for fixed Ej it only depends on
the homotopy class of the symbol σ(P). However it does depend
on the choice of Szegö projectors: as mentioned, the Toeplitz
bundles Ej are known in practice only through their symbols Ej ,
and are only determined up to a space of finite dimension, so as
the Toeplitz spaces H. However if E,E′ are two equivariant
Toeplitz bundles with the same symbol, there exists an equivariant
elliptic Toeplitz operator U : E→ E′ with quasi-inverse V (i.e.
VU ∼ 1E,UV ∼ 1′E). This may be used to transport equivariant
Toeplitz operators from E to E′: P 7→ Q = UPV . Then if P ∼ 0
on X0, Q = UPV and VUP have the same G -trace, and since
P ∼ VUP, we have TP − TQ ∈ C∞(G ). Thus the equivariant
G -trace or index are ultimately well defined up to a smooth
function on G .



Definition
We define the asymptotic G -trace AsTrGP as the singularity of the
distribution TrGP (i.e. TrGP mod. C∞(G )).

If P ∼ 0, we have TrGP ∼ 0, i.e. the sequence of Fourier coefficients
is of rapid decrease, O(cα)−m for all m, where cα is the eigenvalue
of DG in the representation α.

Definition
If P is elliptic on char g, the asymptotic G -index AsIndG

P is defined
as the singularity of of IndG

P .

It only depends on the homotopy class of the principal symbol
σ(A), and since it is obviously additive we get :



Theorem
The asymptotic index defines an additive map from KG

X−Z (X ) to
Sing(G ) = C−∞/C∞(G )(Z ⊂ X denotes the basis of char g).

KG
X−Z (X ) denotes the equivariant K-theory of X with compact

support in X − Z , i.e. the group of stable classes of triples
(E ,F , u) where E ,F are equivariant G -bundles on X , u an
equivariant isomorphism E → F defined near Z , with the usual
equivalence relations ((E ,F , a) ∼ 0 if a is stably homotopic near Z
to an isomorphism on the whole of X ). The asymptotic index is
also defined for equivariant Toeplitz complexes, exact near Z .



The sequence of Fourier coefficients 1
dα

tr Pα has at most
polynomial growth w.r. to the eigenvalues of DG ; if P ∼ 0 it is of
rapid decrease. The Fourier coefficients of the asymptotic index
are integers: they are completely determined, except for a finite
number of them, by the asymptotic index.

Example : let Σ be a symplectic cone, with free positive elliptic action
of U(1), i.e. the Toeplitz generator A = 1

i ∂θ is elliptic with positive
symbol (this is the situation studied in [10]). Then the algebra of
invariant Toeplitz operators (mod. C∞) is a deformation star algebra,
setting as “deformation parameter” ~ = A−1. char g is empty and the
asymptotic trace or index is always defined. The asymptotic trace of any
element a is the series

∑∞
−∞ akekiθ, ak = tr a|Hk

, mod smooth functions
of θ, i.e. the sequence (ak) is known mod rapidly decreasing sequences.
It is standard knowledge that the sequence (ak) has an asymptotic
expansion:

ak ∼
∑
k≤k0

αjk
−j . (3)

In this case the asymptotic trace is as well defined by this asymptotic

expansion; it encodes the same thing as the residual trace.



Remark. For a general the circle group action, with generator
A = e iθ, all simple representations are powers of the identity
representation, denoted T , and all representations occurring as
indices can be written as sums.∑

k∈Z
nkT k (mod. finite sums) (4)

In fact, using the sphere embedding below, it can be seen that the
positive and negative parts of the series have a weak periodcity
property: they are of the form

P±(T ,T−1)

(1− T±k)k

for a suitable polynomial P± and some integer k ; in other words
they represent rational functions whose poles are roots of 1, and
whose Taylor series have integral coefficients.



K-theory and embedding

It will be convenient (even though not technically indispensable) to
reformulate some constructions above in terms of sheaves of
Toeplitz algebras and modules, in particular to follow the index in
an embedding (§7).
As above we use the following notation: for distributions, f ∼ g
means that f − g is C∞; for operators, A ∼ B (or A = B mod.
C∞) means that A− B is of degree −∞, i.e. has a smooth
Schwartz kernel. If M is a manifold, T •M denotes the cotangent
bundle deprived of its zero section; it is a symplectic cone with
base the cotangent sphere S∗M = T •M/R+.

As pointed out above, if Σ is a G symplectic cone, the micro sheaf
AΣ of Toeplitz operators acting on µH are well defined with the
action of G , up to (non unique) isomorphism, independently of any
embedding Σ→ T •M. The asymptotic trace AsTrGP resp. index
AsIndG

P are well defined for a section P of AΣ vanishing (resp.
invertible) near char g.



If M is a G -manifold and X = S∗M (Σ = T •M), AΣ identifies
with the sheaf of pseudodifferential operators acting on the sheaf
µH of microfunctions on X (note that even in that case the exact
index problem does not make sense: a Toeplitz bundle E on X
corresponds to a vector bundle on the cotangent E on X , not
necessarily the pullback of a vector bundle on M, so E is in general
at best defined up to a space of finite dimension).

It will be convenient to use the language of E-modules. In the C∞

category E is not coherent and general E-module theory is not
practical. We will just stick to two useful examples.4

If M is an A-module, resp. a complex of A modules, it
corresponds to a system of pseudodifferential (resp. Toeplitz)
operators, whose sheaf of solutions is HomA(M, µH). E.g. a
locally free complex of (E , d)-modules defines a Toeplitz complex
(E,D) = Hom (L,H).

4In proof of the Atiyah-Weinstein conjecture we need to patch together two
smooth embedded manifolds near their boundaries: this cannot be done in the
real analytic category, where things work slightly better



More generally we will say that a E-module M is “good” if it is
finitely generated, equipped with a filtration M =

⋃
Mk (i.e.

EpMq =Mp+q,
⋂
Mk = 0) such that the symbol grM has a

finite locally free resolution. We denote σ(M) =M0/M−1, which
is a sheaf of C∞ modules on the basis X ; since there exist global
elliptic sections of E , grM is completely determined by the
symbol, so as the resolution.
It is elementary that a resolution of σ(M) lifts to a “good
resolution” of M, i.e. a good finite locally free resolution of M5.
It is also standard that two resolutions of of σ(M) are homotopic,
and σ(M) has locally finite locally free resolutions it also has a
global one (because we are working in the C∞ category on a
compact manifold or cone with compact support, and dispose of
partitions of unity); this lifts to a global good resolution of M.

5the converse is not true: if d is a locally free resolution of M its symbol is
not necessarily a resolution of the symbol of M - if only because filtrations
must be defined to define the symbol and can be modified rather arbitrarily.



If M is “good”, it defines a K-theoretical element [M] ∈ KY (X )
(Y = suppσ(M)), viz. the K-theoretical element defined by the
symbol of any good resolution (this does not not depend on the
resolution of σ(M) since any two such are homotopic).

This works just as well in presence of a G -action (one must choose
invariant filtrations etc.).

The asymptotic trace and index extend in an obvious manner to
endomorphisms of good complexes or modules:

I if M = AN is free, EndA(M) identifies with the ring of
N × N matrices with coefficients in the opposite ring Aop,
and if A = (Aij vanishes near char g we set
AsTrG (A) =

∑
AsTrG (Ajj).

I If M is isomorphic to the range PN of a projector P in a free
module N (this does not depend on the choice of N our if
A ∈ EndA(M) we set AsTrG (A) = AsTrG (PA).

I If (L, d) is a locally free complex and A is a A = (Ak)
endomorphism, vanishing near char g, we set
AsTrG (A) =

∑
(−1)kAsTrG (Ak) (the Euler characteristic or

super trace; if A,B are endomorphisms of opposite degrees
m,−m, we have AsTrG [A,B] = 0, where
[A,B] = AB − (−1)m2

BA is the superbracket).



I If M is a good A-module, (L, d) a good locally free resolution
of M, A ∈ EndA(M), we set AsTrG (A) = AsTrG (Ã, where Ã
is any extension of A to (L, d) (such an extension exists, and
is unique up to homotopy i.e. up to a supercommutator).

I Finally if M is a locally free complex with symbol exact on
char g, or a good A-module with support outside of char g, it
defines a K-theoretical element [M] ∈ KG

Z (X ), and its
asymptotic index (the supertrace of the identity), is the image
by the index map of theorem4 of [M].

Remark. The equivariant trace or index are defined just as well for
modules admitting a projective resolution (projective meaning
direct summand of some AN , with a projector not necessarily of
degree 0). What does not work for these more general objects is
the relation to topological K-theory.



Let Σ be a G -symplectic cone, embedded equivariantly in T •M
with M a compact G -manifold, and S an equivariant Szegö
projector. As recalled in §1, the range µH of S is the sheaf of
solutions of an ideal I ⊂ EM . The corresponding EM -module
M = EM/I is good as one can see on the microlocal model.

We have End E(M) = [I : I ], the set of ψDO a such that Ia ⊂ I
acting on the right. The map a 7→ TrGa (TrGa f (1) = fa(1)) is an
isomorphism from End E(M) to the algebra of Toeplitz operators
mod. C∞. M is a E , E ′ bimodule.
If P is a (good) E ′-module, the transfered module is M⊗E ′ P,
which has the same solution sheaf
(Hom (M⊗P,H) = Hom (P,Hom (M,H) and
Hom (M,H) = H′). Thus the transfer preserves traces and indices.



This extends obviously to the case where Σ is embedded
equivariantly in another symplectic cone Σ ⊂ Σ′: the small
Toeplitz sheaf µH is realized as HomAΣ

(M, µH′), with M = E/I
and I ⊂ E is the annihilator of the Szegö projector S of Σ.

Theorem
Let X ′,X be two compact contact G-manifolds and f : X → X ′ be
an equivariant embedding. Then the K-theoretical push-forward
(Bott homomorphism) KG

X−Z (X )→ KG
X ′−Z ′(X ′) commutes with

the asymptotic G index.

Let F : AΣ → A′Σ be an equivariant embedding of the
corresponding Toeplitz algebras (above f ), and let M be the
A′Σ-module associated with the Szegö projector SΣ. We have seen
that transfer P 7→M⊗P preserves the asymptotic index.

Lemma
The K-theoretical element (with support in Σ) [M] ∈ KG

Σ (T •M) is
precisely the Bott element used to define the Bott isomorphism
KG (X )→ KG

X (X ′).6
6if f : X → Y is a map between manifolds (or suitable spaces), the

K-theoretical push-forward is the topological translation of the Grothendieck
direct image in K-theory (for algebraic or holomorphic spaces). Its definition
requires a spinc structure on the virtual normal of f (cf [12], §1.3) and this
always exists (canonically) if X , Y are almost symplectic or almost complex, or
as here if f is an immersion whose norma tangent bundle is equipped with a
symplectic or complex structure.



Proof: We have already noticed that M is good; it has, locally
(and globally), a good resolution. Its symbol is a locally free
resolution of σ(M) = C∞(X )/σ(I ). Let us identify a small
equivariant tubular neighborhood of Σ with the normal tangent
bundle N of Σ in Σ′; N is a symplectic bundle; the ideal I endows
it with a compatible positive complex structure Nc , i.e. the first
order jet of elements of σ(I ) are holomorphic in the fibers of Nc ; if
a, b are such symbols be have {a, b}N = 0; 1

i {a, ā}N � 0). In such
a neighborhood a good symbol resolution is homotopic to the
Koszul complex : the Koszul complex is the complex (E , d) with
Ep =

∧−p(Nc∗) (0 if p > 0), the differential d at a point with
complex coordinates z of N is the interior product (contraction)
dω = zyω. The K-theoretical element [(E , d)] ∈ GG

Σ (Σ′) is
precisely the Bott element.



E.g. if Σ′ = CN − {0}, with Liouville form Im z̄ .dz 7, with basis
the unit sphere X = S2N−1), H the space of holomorphic functions
on the sphere X ′ = S2N−1, X ⊂ X the diameter
z1 = · · · = zk = 0, Σ′, H′ = the functions independent of
z1, . . . , zk , I is the ideal spanned by the Toeplitz operators T∂k

.

The transfer module M is A/I with I =
∑k

0 zjA, its resolution is
the standard Koszul complex.

Remark. It is always possible to embed a compact contact
manifold in a canonical contact sphere with linear G-action:

7the coordinates zj are homogeneous of degree 1
2
.



Lemma
Let Σ be a G cone (with compact base), λ a horizontal 1-form,
homogeneous of degree 1 (Lρλ = λ, ρyλ = 0, where ρ is the radial
vector field, generating homotheties). Then there exists a
homogeneous embedding x 7→ Z (x) of Σ in a complex
representation V c of G such that λ = Im Z̄ .dZ

In this construction, Z must be homogeneous of degree 1
2 as

above. This applies of course is Σ is a symplectic cone, λ its
Liouville form (the symplectic form is ω = dλ and λ = ρyω. We
first choose a smooth equivariant function Y = (Yj), homogeneous
of degree 1

2 , realizing an equivariant embedding of Σ in V − {0},
where V is a real unitary G -vector space (this always exists if the
basis is compact). Then there exists a smooth function X = (Xj)
homogeneous of degree 1

2 such that λ = 2X .dY . We can suppose
X equivariant, replacing it by its mean

∫
g .X (g−1x) dg if need be.

Since Y is of degree 1
2 we have 2ρydY = Y hence X .Y = ρy = 0.

Finally we get λ = Im Z̄ .dZ with Z = X + iY (the coordinates zj

on V are homogeneous of degree 1
2 so that the canonical form

Im Z̄ .dZ is of degree 1)
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