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Abstract: One encounters many ‘“slope filtra-
tions” (indexed by rational numbers) in alge-
braic geometry, asymptotic analysis (of linear
differential equations), ramification theory and
p-adic theories.

We outline a unified treatment of their
common features, and survey how new ties
between various mathematical domains have
been woven via deep correspondences between
different slope filtrations.



I. Four basic examples of slope filtrations.
% ok 5k

I.1. General setting. We deal with descending
filtrations of objects M (of some category C)
by subobjects F=* M indexed by \ € Q.

T he filtration is supposed to be left-continuous
and locally constant: it comes from a finite
flag

OCFZMMc...CF2M™M =M

where the A1 > ... > A\ are the breaks of the
filtration. It is assumed that one can form the
graded pieces gr*M (in the category C).

It is also assumed that objects of C have
a well-defined rank in N (typically they are
linear objects with extra structure, and the
rank/dimension refers to the underlying linear
structure).



T his allows to attach to any object M its New-
ton polygon:

deg M

0 rk M

The “principle” is that, in the presence of slope
filtrations, one can “unscrew” objects M ac-
cording to their Newton polygons, functorially
in M.

Although the breaks \; are not necessarily in-
tegral, it happens in all “natural examples”
that the vertices of the Newton polygons al-
ways have integral coordinates (deg M € 7).
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I.2. In Asymptotic Analysis:

the Turrittin-Levelt filtration. A fundamen-
tal fact of asymptotic analysis is the ubiquity of
Gevrey series of (precise) rational order s € Q:
power series » "anz™ such that Z—x has fi-

nite radius of convergence: namely,

any infinite power series which occurs as a so-
lution (or in the asymptotic expansion of a so-
lution) of a (linear or non-linear) analytic differ-
ential equation is Gevrey of some precise order

s € Q.

In the linear case, for s > 0, Ramis showed that
this reflects (up to an inversion s = 1/)\) the
so-called Turrittin-Levelt filtration of the cor-
responding differential module M (“localized”
at the singularity).



8 =z, acting on (K,v) = (C((x)), ordp).

C = {K{(d)-modules of finite length} (differen-
tial modules)

Any M € Cis of the form K{(9)/K{(0).P for some
n .

P =) b0, by, =1. P factors according to
0

its Newton polygon:

(2, —v(bp—i))

NP(M) := NP(P) is independent of P: comes
from the Turrittin-Levelt slope filtration of M.
deg M is the so-called irregularity of M.

Note: This theory is now being generalized to
higher dim. (Sabbah, A., Mochizuki).



I.3. In Number Theory:

e Ramification theory: the Hasse-Arf filtra-
tion.

(K,v): complete discretely valued field with
perfect residue field, G = Gal(K*P/K). By
analysing the “norm’ of g —d acting on finite
extensions L /K, ramification theory provides a
decreasing sequence of normal subgroups

A
G\M Gk, A e Qy
— slope filtration of objects of

C = {F-linear “finite"” representations of G}
(finite Galois representations)

(F: auxiliary field of car. 0).



K?%°P = {Puiseuxseries 3 aixi/n }

|
K = C((z))
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Hasse-Arf: NP(M) has integral vertices
(deg M, the so-called Swan conductor of M,

is an integer).

Note: Recent generalization to the case
of non-perfect residue field, using non-
archimedean rigid geometry (Abbes-Saito,

Xiao).



e Difference modules: the Dieudonné-Manin
filtration.

(K,v): complete discretely valued field of car.
0, ¢ isometry of K of infinite order.

C := {¢-modules of finite K-dim.}
D M®K,q§ K=M

Any M € C is of the form K{(¢)/K{(¢).P for

n
some P =) a;¢', ap = l,a9 7 0. P factors

0
according to its Newton polygon:

(2, —v(an—;))



NP(M) := NP(P) is independent of P: comes
from a slope filtration of M (which splits if ¢
is invertible).

e '-isocrystals: v. p-adic, ¢ = power of Frobe-
nius — (descending) Dieudonné-Manin fil-
tration.

e g-difference equations:

(K,v) = (C((x)),ordp), ¢(z) = qx.

(in the context of g-calculus: n+—ng=14q+
ot

The slope filtration also exists on the (non-
complete) field C({x}) of germs of meromor-
phic functions at 0: the Adams-Sauloy fil-
tration, related to the Bézivin's g-analogues
of Gevrey series if |q| # 1...).
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I.4. In Algebraic Geometry:

the Harder-Narasimhan filtration.
X: smooth projective curve /C

M # 0O: vector bundle on X.

deg M = degdet M, pu(M) = drekgl\flw (slope)

M semistable iff for any subbundle N #* O,
p(N) < p(M) (Mumford)

Any M has a (unique) Harder-Narasimhan flag

OCM{=FZMMC...CMy=M=F2»M

where the X\ > ... > X\, and grM is
semistable of slope \; = u(gr*iM).
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Note: Fundamental in moduli theory. Many
generalizations (parabolic bundles, Higgs bun-
dles, higher dimension, derived categories...).
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II. A unified context.

Xk >k

I1.1. Additive category C, Short exact se-

quences (S.E.S):
o-NLMLP_o

f = ker g, g = coker f;
N strict subobject, P strict subquotient

C quasi-abelian if
- any morphism f has a kernel and a cokernel

- strict quotients (strict subobjects) preserved
by pull-back (push-out). (Schneiders,...)

Ex: Vector bundles on a smooth curve.
Rank function: rk : C — N: additive on S.E.S,

rKM =0& M =20
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II.2. Slope functions and slope filtrations.
Slope function: p:C\ 0 — Q,

- N — M mono+epi = u(N) < u(M)

- deg := rk x u additive on S.E.S.

Note: if C abelian, a slope function is just an
additive function deg divided out by rk.

M semistable iff for any [strict] subobject N #
0, u(N) < u(M)
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Slope filtration: separated, exhaustive, left-
continuous, descending filtration of objects M
by strict subobjects FZAM, X € Q,

(— flag: OCFZM M C...C F2M M = M,

A1 > ...> A\ ), satisfying:

- F2AM is functorial in M,

- gfr)‘gr)‘M = gr)‘M,

A
- u(M) = 2 Aﬂif\gr M s a slope function.

Then:

e the associated flag is the unique one with
gr*M semistable of slope .

e bijection: { slope filtrations } « { slope
functions}.
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Now, (C,®) F-linear.

Two types of slope filtrations, according to the
behaviour w.r.t. ®:

1) breaks(M1 ® M>) < max( breaks (M7q),
breaks (M>)),

M semistable slope A\ = MV too .

Such filtrations split: M = grM (ex: Turrittin-
Levelt, Hasse-Arf)

2) M; semistable slope \;,i = 1,2,= M1 ® M>
semistable slope A\; + A» and MY semistable
slope — ;.

Then degM = degdetM (ex: Dieudonné-
Manin, Harder-Narasimhan).
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III. Variation of Newton polygons in families.

Xk X

III. 1. Families of g-modules.

Family of ¢g-modules parametrized by an alge-
braic variety S of char.p (F-isocystal M/S)

(Dieudonné-Manin's) NP(Msg) lower semi-
continuous (Grothendieck); finitely many pos-
sible “degenerations’.
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Note: - variant for a family of ¢g-difference
equations (g fixed),

- similar result for families of linear meromor-
phic differential equations, in the absence of
confluence

- q — 1. g-difference equations — differential
equations

fla) = f@) df
glx — 1) dr
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III. 2. Families of vector bundles.

M/X x S, flat family of vector bundles on the
smooth projective curve X, parametrized by S

(Harder-Narasimhan's) NP(Mg) upper semi-
continuous (Shatz); infinitely many possible
“degenerations’.
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IV. Further slope filtrations and correspondences
> 5k

IV.1. p-adic Galois representations of Fp((x))
and p-adic differential equations.

Analogy: Galois rep’'s/wildness « differential
equations/irregularity

becomes much more precise in the p-adic set-
ting.

Fontaine-Tsuzuki's functor

D : Repsin GFP((CIS‘)) — C = {p-adiC differential
equations over a thin annulus of outer radius
1, which admit a Frobenius structure}
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The Christol-Mebkhout slope filtration on
C

e Im D : semisimple objects (my proof uses a
general structure theorem for slope filtrations
— structure of C — structure of objects of C).

e D : sends Hasse-Arf filtration to Christol-
Mebkhout filtration (Tsuzuki)

Note. Has just been generalized to local field
of char. p with imperfect residue field by Xiao.
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IV.2. p-adic Galois representations of p-adic
fields and filtered ¢-modules. Fontaine's func-
tor

D Repcrys G@p — C = {¢—mOdU|eS/Qp,
+ fitration of the underlying Q, — space}

break(det D)) —v(d|get p)
rk M ’

slope fn u(D) =
whence a slope filtration.

e /m D : semistable objects of slope O
(Fontaine-Colmez).

Note. using the infinitesimal generator of the
cyclotomic quotient of G@p' one builds a link
between p-adic Galois rep’s and p-adic differen-
tial equations over a thin annulus with Frobe-
nius structure (Fontaine, ..., Berger).

(p-adic) diff. eq. <« (p-adic) Galois rep’s > (p-
adic) linear algebra.
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