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1

Measure Theory

1.1 Measures in abstract spaces

We start with the definition of a measure in an abstract setting.

Definition 1.1. Let Ω be an arbitrary set. A measure µ on Ω is a function
defined on the subsets of Ω, satisfying:

i. 0 ≤ µ(A) ≤ +∞, for all A ⊂ Ω.

ii. µ(∅) = 0.

iii. If A ⊆ B then µ(A) ≤ µ(B).

iv. µ(∪nAn) ≤
∑

n µ(An) for every collection {An}n∈N in Ω .

Property iii. is referred to as the monotonicity of the measure and Prop-
erty iv. as the σ-subadditivity. Note: In most books on measure theory the
set-function µ in Definition 1.1 is called an outer measure. We adopt here a dif-
ferent terminology since it is more appropriate for the study of Caratheodory’s
construction of measures. This is also the point of view in [?], [?], [?] and oth-
ers.

Next, we characterize a particular class of sets in Ω related to µ.

Definition 1.2. If µ is a measure on Ω, then we will say that a set E ⊂ Ω
is µ-measurable if for every set A ⊂ Ω,

µ(A) = µ(A ∩ E) + µ(A \ E).

Sometimes it is more convenient to use the next property that is equivalent
to measurability

Proposition 1.3. A set E ⊂ Ω is µ-measurable, if and only if for every
A ⊂ E, B ⊂ Ω \ E,

µ(A ∪B) = µ(A) + µ(B).
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The equivalence is straightforward.
We will usually refer to a µ-measurable set simply as a measurable set when

it is clear from the context which measure we are considering.

Remark 1.4. To verify that a set E is µ-measurable, it is sufficient to verify
that

µ(A) ≥ µ(A ∩ E) + µ(A \ E) ∀A ⊂ Ω (1.1)

or
µ(A ∪B) ≥ µ(A) + µ(B) ∀A ⊂ E,B ⊂ Ω \ E (1.2)

since the other inequality always holds, because µ is a measure.
Furthermore, (1.1) or (1.2) only has to be checked for sets A and B of

finite measure, since for infinite measure the inequality is trivially true.

Before our first theorem, we need two more definitions that are standard in
measure theory.

Definition 1.5. Let A be a class of subsets of a set Ω. We will say that A is
a σ-algebra if

a) ∅ ∈ A.

b) If A ∈ A then Ac ∈ A.

c) If A1, A2, . . . are in A then ∪kAk ∈ A.

Definition 1.6. We say that a set function ν defined on a σ-algebra of sets
A is a countably additive (or σ-additive) measure on A if ν satisfies,

a) 0 ≤ ν(A) ≤ +∞, for all A ∈ A.

b) ν(∅) = 0.

c) If A,B ∈ A and A ⊂ B, then ν(A) ≤ ν(B).

d) If A1, A2, · · · ∈ A are disjoint, then ν(∪kAk) =
∑

k ν(Ak).

Note that c) can be obtained from b) and d). We include it in the definition
to stress the monotonicity of the measure ν.

Theorem 1.7. Let µ be a measure on Ω. The class Mµ of µ-measurable
sets is a σ-algebra that contains the sets of µ-measure zero. Furthermore, the
measure µ is countably additive on Mµ.

Proof. We will prove first that any set of measure zero is measurable. Assume
that N ⊂ Ω, and µ(N) = 0. Consider A ⊂ N and B ⊂ Ω \N .

µ(A) ≤ µ(N) = 0, so µ(A) = 0.

µ(A ∪B) ≥ µ(B) = µ(A) + µ(B).
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Using (1.2) we see that N is measurable.
Let us now show that Mµ is a σ-algebra. Conditions a) and b) in Defini-

tion 1.5 are immediate consequence of the definition of Mµ.
We will prove now part c). Let A be an arbitrary set in Ω, and consider

first a sequence E1, E2, . . . of disjoint measurable sets. An induction argument
together with the measurability of Ek, shows that for all n, and arbitrary A

µ(A) ≥
n∑

k=1

µ(A ∩ Ek) + µ

(
A \

n⋃
k=1

Ek

)
.

So

µ(A) ≥
n∑

k=1

µ(A ∩ Ek) + µ

(
A \

∞⋃
k=1

Ek

)
∀n.

This implies that

µ(A) ≥
∞∑

k=1

µ(A ∩ Ek) + µ

(
A \

∞⋃
k=1

Ek

)
, (1.3)

and finally using the σ-subadditivity of µ,

µ(A) ≥ µ(A ∩
∞⋃

k=1

Ek) + µ(A \
∞⋃

k=1

Ek). (1.4)

If in equation (1.3) we let, A =
⋃

k Ek, we get

µ(
⋃
k

Ek) ≥
∑

k

µ(Ek),

and therefore the σ-subaditivity of µ.
To complete the proof of the Theorem it remains to show that the union

of arbitrary measurable sets is measurable.
For this, let us first show that if E1 and E2 are measurable, then E1 \E2

is as well. For, let A ⊂ E1 \ E2 and B ⊂ (E1 \ E2)c. Then,

A
⋃

B = (A
⋃

(B \ E2))
⋃

(B
⋂

E2) ,

and since A
⋃

(B \ E2) ⊂ Ec
2, and B \ E2 ⊂ Ec

1, by the measurability of first
E2 and then E1 we have that

µ(A
⋃

B) ≥ µ(A
⋃

(B\E2))+µ(B
⋂

E2) ≥ µ(A)+µ(B\E2)+µ(B
⋂

E2) = µ(A)+µ(B).

Now, since Ω is measurable, and E1

⋃
E2 = (Ec

1 \E2)c, we conclude that any
finite union of measurable sets is measurable.

Let now E1, E2, . . . be arbitrary measurable sets, and let

Dn = En \
n−1⋃
k=1

Ek.

The Dn are now measurable, disjoint and
⋃

k Dk =
⋃

k Ek, which finishes our
proof.
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Corollary 1.8. If µ is a measure on Ω, then µ is a countably additive measure
on Mµ.

Corollary 1.9. If A ⊂ Ω is any set and E1, E2, ..., is a sequence of disjoint
measurable sets, then

µ(A∩
⋃
k

Ek) =
∑

k

µ(A∩Ek) and µ(A) =
∑

k

µ(A∩Ek) + µ(A \
⋃
k

Ek).

Proof. Using that the sets Ek are disjoint, equation (1.3) now yields for all
A ⊂ Ω,

µ(A) ≥
∑

k

µ(A ∩ Ek) + µ(A \
⋃
k

Ek). (1.5)

Now, since

A =
(⋃

k

(A ∩ Ek)
)
∪
(

A \
⋃
k

Ek

)
we get the other inequality in (1.5) using the monotonicity of the measure.

Since
⋃

k Ek is measurable we have

µ(A) = µ(A ∩
⋃
k

Ek) + µ(A \
⋃
k

Ek). (1.6)

Now for every B ⊂ Ω, using (1.5) for A = B ∩
⋃

k Ek, we have

µ(B ∩
⋃
k

Ek) ≥
∑

k

µ(B ∩ Ek) ,

which yields the desired statements.

Definition 1.10. Let I be any index set and let {µα}α∈I be a family of mea-
sures on Ω. We define the supremum of the family {µα}α∈I to be the set
function ν on Ω such that

ν(A) = sup
α∈I

µα(A).

Proposition 1.11. The supremum of a family of measures on Ω is a measure.

We omit the proof of this Proposition, since it is an immediate consequence
of the definition of the supremum.

Note 1.12. The infimum of a family of measures on Ω is not necessarily a
measure. See Exercise 9.

We will now see some kind of continuity properties of a measure.
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Theorem 1.13. Let µ be a measure on Ω.

a) If E1 ⊂ E2 ⊂ E3 ⊂ . . . is a sequence of measurable sets, then

µ(
⋃
k

Ek) = lim
k→+∞

µ(Ek).

b) If E1 ⊃ E2 ⊃ E3 ⊃ . . . is a sequence of measurable sets, and µ(Ek) < +∞
for some k, then

µ(
⋂
k

Ek) = lim
k→+∞

µ(Ek).

Exercise: Extend Theorem 1.13 to the following case: Let A be an arbitrary
set in Ω. If E1 ⊂ E2 ⊂ E3 ⊂ . . . is a sequence of measurable sets, then

µ(A ∩
⋃
k

Ek) = lim
k→+∞

µ(A ∩ Ek).

If E1 ⊃ E2 ⊃ E3 ⊃ . . . is a sequence of measurable sets and µ(A∩Ek) < +∞,
for some k, then

µ(A ∩
⋂
k

Ek) = lim
k→+∞

µ(A ∩ Ek).

Proof. of Theorem 1.13.
To prove a), we observe that the equality is trivially true, if for some k

µ(Ek) = +∞. Then we can assume that µ(Ek) < +∞ ∀ k. Define D1 = E1

and Dk = Ek \ Ek−1 then the sets in the sequence {Dk} are measurable,
disjoint and

⋃
k Dk =

⋃
k Ek. So

µ(
⋃
k

Ek) = µ(
⋃
k

Dk) =
∞∑

k=1

µ(Dk)

= µ(E1) +
∞∑

k=2

µ(Ek \ Ek−1)

= µ(E1) +
∞∑

k=2

(µ(Ek) − µ(Ek−1))

= lim
k→+∞

µ(Ek).

To prove b), we can assume that µ(E1) < +∞. We first write E1 as disjoint
union of measurable sets:

E1 =
∞⋃

k=1

(Ek \ Ek+1) ∪
∞⋂

k=1

Ek (1.7)
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µ(E1) =
∞∑

k=1

µ(Ek \ Ek+1) + µ(
∞⋂

k=1

Ek)

= µ(E1) − lim µ(Ek) + µ(
∞⋂

k=1

Ek)

which completes the proof of b).

In the case that the sequence of sets is not monotone, we still can have
some weaker results, as we will see in the next theorem.

Definition 1.14. For an arbitrary sequence of sets {Ak}k∈N, define

A∗ =
∞⋃

n=1

⋂
k≥n

Ak and A∗ =
∞⋂

n=1

⋃
k≥n

Ak.

The sets A∗ and A∗ are called the lower limit and upper limit of the sequence
{Ak} respectively and we will denote them also by

A∗ = lim Ak and A∗ = limAk.

Note that a point belongs to A∗ if and only if there exists n ∈ N such that
the point belong to all the sets Ak with k ≥ n, and a point belongs to A∗

if and only if it belongs to infinitely many sets Ak. Obviously, A∗ ⊂ A∗.
When A∗ = A∗ we will say that the sequence has a limit. In particular this is
true when the sequence is monotone.

Theorem 1.15. Let µ be a measure on Ω. If E1, E2, . . . are measurable and
A is any set, then

a) µ(A ∩ E∗) ≤ lim µ(A ∩ Ek).

b) If µ(A ∩
⋃

k≥n Ek) < +∞ for some n, then limµ(A ∩ Ek) ≤ µ(A ∩ E∗).

In particular we have

a’) µ(E∗) ≤ lim µ(Ek).

b’) If µ(
⋃

k≥n Ek) < +∞ for some n, then lim µ(Ek) ≤ µ(E∗).

The proof is left as an exercise. Note that putting together a) and b) in
Theorem 1.15, we have that if µ(A ∩

⋃
k≥n Ek) < +∞, then

µ(A ∩ E∗) ≤ lim µ(A ∩ Ek) ≤ lim µ(A ∩ Ek) ≤ µ(A ∩ E∗).
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1.1.1 Regularity of a Measure.

Definition 1.16. Given a measure µ on Ω, and C a class of subsets of Ω, we
will say that µ is C-regular if for every set A ⊂ Ω, there exists D ∈ C, such
that A ⊂ D and µ(A) = µ(D).

When the class C is the σ-algebra Mµ of the µ-measurable sets, we will
say that the measure µ is regular without mentioning the σ-algebra. That is,
a measure µ on Ω is regular, if given A ⊂ Ω, there exists a measurable set E,
such that A ⊂ E and µ(A) = µ(E).

Regularity is an important property for a measure. In some situations it is
convenient to deal with a smaller class of sets, other than all the subsets of
Ω. In the next theorem we will see that if the measure is regular then part
a) of Theorem 1.13 can be extended to arbitrary (not necessarily measur-
ables) subsets of Ω. However, part b) can not be extended!!. (Can you find an
counterexample?)

Theorem 1.17. Let µ be a measure on Ω and assume that µ is regular. If
A1 ⊂ A2 ⊂ . . . are arbitrary subsets of Ω, then

µ(
⋃
k

Ak) = lim
k→+∞

µ(Ak).

The proof of this theorem is left as an exercise.

1.2 Construction of a Measure. The Method I

Definition 1.18. Let C be a collection of subsets of Ω, and τ a set function
defined on C such that

1. ∅ ∈ C.

2. 0 ≤ τ(C) ≤ +∞, C ∈ C.

3. τ(∅) = 0.

Then τ is called a pre-measure with domain C.

In what follow we will see one of the general methods to construct a measure
from a pre-measure.

Let C be a class of subsets of Ω. A covering of a set M from C is a countable
family {Ak}, of elements from C such that M ⊂

⋃
k Ak.

Given a pre-measure τ , we define a set function µ on each set M ⊂ Ω by

µ(M) = inf
∑

k

τ(Ck) . (1.8)
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where the infimum is taken over all the coverings {Ck}k∈N of M by elements
of C. We set inf{∅} = +∞. We will usually write,

µ(M) = inf
M⊂∪Ak

Ak∈C

∑
k

τ(Ak).

The size of the covering {Ak}k∈N is the value
∑

k τ(Ak). We will say that the
set function µ was constructed using Method I.
We immediately have,

Proposition 1.19. Every set function µ on Ω constructed using Method I, is
a measure.

Proof. See Exercise 2.

Example 1.20. Lebesgue measure in R is the measure associated to the pre-
measure τ defined on the class C = {[a, b) : a ≤ b} by τ([a, b)) = b− a.

Method I allows the construction of a measure on sets without any struc-
ture. Actually, it is easy to verify that any measure µ on a set Ω can be
obtained from a pre-measure using Method I, just taking as a pre-measure
τ = µ on the class of all subsets of Ω. (Prove it!!)

Now we are interested to know what properties are satisfied by measures
constructed using Method I. For example, we could ask whether the measure
would be regular, which class of sets are contained in the σ-algebra of mea-
surable sets or if the measure coincides with the pre-measure on the domain
of the pre-measure. For general pre-measures there is not too much to say.
Method I, for example, does not warranty regularity in general. Clearly these
properties will depend on the pre-measure and the class on which it is defined.
In what follows we will see some particular but very important cases, where
we can answer some of these questions.

Proposition 1.21. Every σ-additive measure on a σ-algebra F is a pre-
measure with domain F .

The proof is immediate.
The next Theorem shows that in the case that the pre-measure is a σ-

additive measure on a σ-algebra, then the measure obtained using Method I
is an extension of the σ-additive measure.

Theorem 1.22. Let ν be a σ-additive measure defined on a σ-algebra F of
sets in Ω. Then the measure λ constructed by Method I using ν as a pre-
measure defined on F is an extension of ν, i.e.

λ(E) = ν(E) ∀ E ∈ F and F ⊂Mλ.

Furthermore, λ is a regular measure and satisfies that for every A ⊂ Ω,

λ(A) = inf{ν(E) : A ⊂ E ∈ F}, (1.9)

with the infimum being attained.
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Proof. To show that λ is an extension of ν, we will prove first that λ(E) =
ν(E) for each set E ∈ F .

Since E ⊂
⋃

k Ek with E1 = E, and Ek = ∅,∀k > 1, then we have

λ(E) ≤ ν(E) ∀ E ∈ F . (1.10)

To prove the other inequality, let Ek ∈ F ∀k be a covering of E. Then

ν(E) ≤ ν(
⋃
k

Ek) ≤
∑

k

ν(Ek).

So
ν(E) ≤ inf

E⊂∪Ek
Ek∈F

∑
k

ν(Ek) = λ(E).

Next we will prove (1.9).
Consider A ⊂ Ω and Ek ∈ F ∀k with A ⊂

⋃
k Ek. Write

E =
⋃
k

Ek.

Then we have,
λ(A) ≤ λ(E) = ν(E) ≤

∑
k

ν(Ek).

This shows that for every covering of A, there exists E ∈ F such that A ⊂ E
and λ(A) ≤ ν(E) ≤

∑
k ν(Ek). So

λ(A) = inf
A⊂E
E∈F

ν(E).

We now want to show that the infimum will actually be attained. This is
obvious (taking E = Ω), if λ(A) = +∞, . Assume then that λ(A) < +∞. For
each n ∈ N choose En ∈ F such that

ν(En) ≤ λ(A) +
1
n

.

We can choose En such that En ⊃ En+1. So, setting E∗ =
⋂

k Ek we have,

ν(E∗) = lim
k→∞

ν(Ek) ≤ λ(A).

On the other side λ(A) ≤ λ(E∗) = ν(E∗). The set E∗ satisfies that
E∗ ∈ F , A ⊂ E∗, and ν(E∗) = λ(A). This ends the proof of (1.9).

To see that λ is regular notice that ν(E∗) = λ(E∗) = λ(A) implies the
stronger statement that λ is F-regular and then clearly, regular.

To finish the proof of the Theorem we need to show that F ⊂Mλ. Assume
that E ∈ F . Choose A ⊂ Ω with λ(A) < +∞. Using (1.9) we can find E∗ ∈ F
with A ⊂ E∗ and ν(E∗) = λ(E∗) = λ(A). So
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λ(A) = ν(E∗) = ν(E∗ ∩ E) + ν(E∗ ∩ Ec) ≥ λ(A ∩ E) + λ(A ∩ Ec).

The last inequality is a consequence of (1.9).

Recall that every measure µ on Ω has associated to it a σ-additive measure
ν on the σ-algebra of the measurable sets. The last Theorem says that we can
extend ν by an application of Method I. One can think that we can iterate this
procedure to obtain more extensions of the σ-additive measure ν. However,
the next Theorem shows that after the first extension we don’t get anything
new.

Theorem 1.23. Let µ be a measure on Ω, ν the restriction of µ to the σ-
algebra Mµ, and λ the measure constructed by Method I using the pre-measure
ν.Then we have,

i. λ is a Mµ-regular measure.(In particular λ is regular).
ii. Mµ ⊂Mλ.
iii. If A ∈Mλ and λ(A) < +∞ then A ∈Mµ.
iv. µ ≤ λ.
v. λ = µ if and only if µ is regular.

Proof. i. and ii. are consequences of Theorem 1.22.
To prove iv., let A be an arbitrary set in Ω. Using (1.9) we can choose

E ∈Mµ such that A ⊂ E and λ(A) = µ(E) ≥ µ(A).
Let us now prove iii. Assume A ⊂ Ω is a λ-measurable set of finite λ-

measure. As above we can choose E ∈ Mµ with A ⊂ E and λ(A) = µ(E).
Since A is λ-measurable

λ(E) = λ(E ∩A) + λ(E \A) < +∞.

So λ(E \A) = 0 and then, using iv., µ(E \A) = 0.
This shows that E \A is µ-measurable and since A = E \ (E \A) then A

is µ-measurable.
To finish the proof of the Theorem, it only remains to prove v. For this,

assume µ is regular and consider A ⊂ Ω to be an arbitrary set. Using the
regularity of µ we choose E ∈Mµ such that A ⊂ E and µ(A) = µ(E). So

µ(A) = µ(E) = λ(E) ≥ λ(A) ≥ µ(A).

The last inequality follows from iv. Then µ(A) = λ(A) for all A ⊂ Ω.

A consequence of last theorem is that starting with any pre-measure, the
application of Method I no more than two times produce a regular measure.

τ → µ → ν → λ
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1.3 Measures in Metric Spaces

So far we have studied measures defined on a general set Ω without any struc-
ture. In the study of measures in metric or more generally topological spaces
it is very fruitful to interrelate the topological structure with the measure-
theoretic structure. The topological structure is defined by the open sets. One
wants to study measures for which the open sets are measurable sets. There
exist a “minimal” σ-algebra (in a sense explained below) containing the open
sets. This is called the Borel σ-algebra. A measure in a metric space with the
property that the associated σ-algebra of the measurable sets contains the
Borel σ-algebra is called a Borel measure. The study of measures in metric
spaces is basically the study of Borel measures.

We are going first to describe the concept of minimal σ-algebra.

Theorem 1.24. Let I be an arbitrary index set and {Aα}α∈I a family of
σ-algebras of subsets of Ω. Then the class of subsets of Ω defined as the
intersection ⋂

α∈I

Aα = {A ⊂ Ω : A ∈ Aα,∀α ∈ I},

is a σ-algebra of subsets of Ω

The proof of Theorem 1.24 is straightforward.

Definition 1.25. Given a class C of subsets of Ω, we define the minimal σ-
algebra containing C as the intersection of all σ-algebras of Ω containing C,
that is ⋂

{A : A is a σ-algebra of Ω and C ⊂ A}.

The minimal σ-algebra containing a class C is characterized as a σ-algebra
H satisfying:

i. C ⊂ H.

ii. If F is a σ-algebra and C ⊂ F then H ⊂ F .

Arbitrary unions of σ-algebras are not necessarily σ-algebras. However, given
a collection of σ-algebras of Ω there exist a minimal σ-algebra containing the
union of the collection.

Definition 1.26. Let (X, d) be a metric space. The Borel σ-algebra B = B(X)
is the minimal σ-algebra containing the open sets. The elements of the Borel
σ-algebra are called Borel sets. A Borel measure on X is a measure on X
where all the Borel sets are measurable. (i.e. µ is a Borel measure on X if
B(X) ⊂Mµ.)

Equivalently the Borel σ-algebra is the minimal σ-algebra containing the
closed sets.
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Definition 1.27. Two subsets A,B of a metric space (X, d) are said to be
metrically separated if

d(A,B) > 0, where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Definition 1.28. A measure µ on a metric space (X, d) is a metric measure
if it satisfies that for all metrically separated A and B in X,

µ(A ∪B) = µ(A) + µ(B).

Next we will see a nice characterization of Borel measures.

Theorem 1.29. Let (X, d) be a metric space and µ a measure on X. Then µ
is a metric measure if and only if µ is a Borel measure.

Proof. Assume that µ is a Borel measure and consider A and B two metrically
separated sets. Then we can find an open set G such that

A ⊆ G and B ⊆ X \G.

Since G is µ-measurable and A and B are separated by G, we have that
µ(A∪B) = µ(A)+µ(B) which proves one implication. To prove the converse
we need the following

Lemma 1.30. Let A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ . . . be arbitrary sets in a metric
space X and let µ be a metric measure on X. Let A =

⋃
n An. If An and

A \An+1 are metrically separated for all n, then

µ(A) = lim
n→+∞

µ(An).

Proof. Since Ak ⊆ A for every k, then

lim
n→+∞

µ(An) ≤ µ(A).

therefore we need to prove that

µ(A) ≤ lim
n→+∞

µ(An). (1.11)

This inequality is trivial if the right hand side is infinity. Then we will assume
that limn→+∞ µ(An) < +∞. Write

A = An ∪Dn+1 ∪Dn+2 ∪ . . . n ≥ 1,

where Dk = Ak \Ak−1, k ≥ 2. It is easy to see that Dk and Ds are metrically
separated if |k − s| ≥ 2.
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Also
n∑

k=1

µ(D2k) = µ(
n⋃

k=1

D2k) ≤ µ(A2n) ≤ lim
k→+∞

µ(Ak) < +∞ n ≥ 1.

Then the series
∑

k µ(D2k) is convergent. A similar argument proves that∑
k µ(D2k+1) is convergent and hence

∑
k µ(Dk) is convergent.

So, for each n

µ(A) ≤ µ(An) + µ(
⋃

k>n

Dk)

≤ µ(An) +
∞∑

k=n+1

µ(Dk).

Hence, since the sum on the right hand side of the last equation above vanishes
when n goes to infinity, we obtain µ(A) ≤ limn→+∞ µ(An) as required.

To complete the proof of Theorem 1.29, assume that µ is a metric measure.
We will prove that the closed sets are measurable sets, then it will follow that
every Borel set is measurable (see Definition 1.26).

Let F ⊂ X be an arbitrary non-empty closed set. Consider sets A,B ⊂ X
such that A ⊂ F and B ⊂ FC .

We want to show that µ(A ∪ B) ≥ µ(A) + µ(B) which will prove the
measurability of F .

For each n ≥ 1 write Fn = {x ∈ X : d(x, F ) < 1
n} and Bn = B \ Fn. Note

that for x ∈ Bn we have d(x, F ) ≥ 1/n.
We have B1 ⊂ B2 ⊂ · · · ⊂ Bn ⊂ . . . and B =

⋃
n Bn since B ∩ F = ∅ and⋂

n Fn = F .
Furthermore, A and Bn are metrically separated for every n. Hence µ(A∪

Bn) = µ(A) + µ(Bn) ∀ n.
Now

µ(A ∪B) ≥ lim
n→+∞

µ(A ∪Bn) = lim
n→+∞

{µ(A) + µ(Bn)}

= µ(A) + lim
n→+∞

µ(Bn).

To finish the proof, it remains to show that limn→+∞ µ(Bn) = µ(B). Note
that since µ is not necessarily regular and neither of the sets Bn needs to be
necessarily µ-measurable, this equality could be false.

We will show that the sets Bn and B \Bn+1 are metrically separated then
we can apply Lemma 1.30 to get the equality.

Take x ∈ Bn and y ∈ B \Bn+1. For every z ∈ F we have

1
n

≤ d(x, z) ≤ d(x, y) + d(y, z).

Since B = (B ∩ Fn+1) ∪ Bn+1 and y 6∈ Bn+1 we must have d(y, F ) < 1
n+1 .

So
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1
n
≤ infz∈F {d(x, y) + d(y, z)},

which yields

1
n
≤ d(x, y) +

1
n + 1

and then d(Bn, B \Bn+1) > 0.

Definition 1.31. Given A ⊂ X and µ a measure on X, we define for each
E ⊂ X

µA(E) = µ(E ∩A). (1.12)

It is easy to show that µA is a measure on X. We will call this measure the
restriction of µ to A.

Definition 1.32. An algebra of sets is a collection of sets that contains the
empty set and is closed under complementation and finite unions.

We have the following Proposition:

Proposition 1.33. Let µ be a measure on X, A ⊂ X an arbitrary set and R
an algebra of sets from X. Then

1. If E is µ-measurable, then E is µA-measurable

2. If A is µ-measurable and µ(A) < +∞, then we have: If µ is R-regular
then µA is R-regular.

Remark 1.34. The converse of (1) is false in general.

Proof. We leave (1) as an exercise for the reader. To prove (2) consider R ∈ R
such that A ⊂ R and µ(R) = µ(A) < +∞. Since µ(R) = µ(R∩A)+µ(R∩Ac)
and µ(R ∩A) = µ(A) = µ(R), we have that µ(R \A) = 0.

Let C ⊂ X be an arbitrary set

µ(C ∩R) = µ((C ∩R) ∩A) + µ((C ∩R) ∩Ac)
≤ µ(C ∩A) + µ(R \A) = µ(C ∩A).

So µ(C ∩R) = µ(C ∩A).
We now choose T ∈ R such that C ∩R ⊂ T and µ(C ∩R) = µ(T ). Define

H = T ∪Rc. We have C ⊂ H , H ∈ R and

µA(H) ≤ µ(H ∩R) = µ(T ∩R) ≤ µ(T )
= µ(C ∩R) = µ(C ∩A) = µA(C).

We just proved that µA(H) = µA(C) and since C ⊂ H and H ∈ R, we
completed the proof.
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Theorem 1.35. If µ is a Borel measure and µ(X) < +∞. Then for each
ε > 0, and each Borel set B there exists a closed set Fε and an open set Gε

such that
Fε ⊂ B ⊂ Gε and µ(Gε \ Fε) < ε. (1.13)

If in addition µ is Borel-regular, then (1.13) holds for µ-measurable sets.

Proof. We will see that the class of sets that satisfy (1.13) is a σ-algebra that
contains the closed sets.

We say that a set A satisfies P if

∀ε > 0 there exist Fε closed and Gε open such that Fε ⊂ A ⊂ Gε and
ν(Gε \ Fε) < ε.

Let
M = {A ⊂ X : A satisfy P}.

Clearly the empty set belongs to M. It is also straightforward to see that
B ∈M if and only if Bc ∈M and that M is closed under finite unions.

We will now prove that the class M is closed under countable unions.
Consider Ak ∈M,∀k ≥ 1.

Write A =
⋃+∞

k=1 Ak and Bn =
⋃n

k=1 Ak. Take ε > 0.
For each n ≥ 1 we can choose a closed set Fn ⊂ Bn such that µ(Bn\Fn) ≤

ε
2n+2 . The sets Fn can be chosen such that Fn ⊂ Fn+1 ∀n.

Write H =
⋃+∞

n=1 Fn. Now,

µ(A \H) = µ((
⋃
n

Bn) \ (
⋃
n

Fn)) ≤ µ(
⋃
n
(Bn \ Fn)) ≤

∑
n

µ(Bn \ Fn) <
ε

4
.

(1.14)
On the other side

µ(H \ Fm) = µ(H)− µ(Fm) →m 0.

So, there exist a positive integer m0 such that

µ(H \ Fm0) <
ε

4
. (1.15)

Write F = Fm0 . The set F is closed, F ⊂ A and combining (1.14) and (1.15)
we have that,

µ(A \ F ) ≤ µ(A \H) + µ(H \ F ) <
ε

2
.

Now we choose G = ∪kGk where Ak ⊂ Gk, Gk is open and µ(Gk \Ak) <
ε

2k+1 . Then, using that (G \A) ⊂
⋃

(Gk \Ak), we have
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µ(G \A) ≤ µ

(⋃
k

(Gk \Ak)
)
≤
∑

k

µ(Gk \Ak) <
ε

2
.

So,
µ(G \ F ) ≤ µ(G \A) + µ(A \ F ) <

ε

2
+

ε

2
= ε.

which implies that A ∈M. This proves that M is a σ- algebra.
We now want to see that M contains the closed sets. If F is closed, then

F is a Gδ set, that is F =
⋂

n Gn with F ⊂ Gn and Gn open for each n. We
can choose Gn such that Gn ⊃ Gn+1.

Since µ(Gn) ↘ µ(
⋂

n Gn) = µ(F ), then for n large enough we have

µ(Gn \ F ) = µ(Gn)− ν(F ) < ε.

So, the closed sets are in M and then every Borel set is in M. This proves
the first claim of the Theorem.

Assume now that the Borel measure µ is Borel-regular. Let A be a µ-
measurable set and ε > 0. We can find a Borel set B such that B ⊃ A and
µ(B) = µ(A). By the first part of this Theorem, there exist an open set G,
such that B ⊂ G and

µ(G \B) < ε.

So
µ(G \A) = µ(G \B) + µ(B \A) < ε.

We need to find now a closed set aproximating A from inside. Using what
we just proved since Ac is µ-measurable, we can find an open set U with
Ac ⊂ U and µ(U \Ac) < ε.

Write F = U c. So F is closed, F ⊂ A and since U \Ac = A \ F , we have

µ(A \ F ) < ε.

In the case that µ(X) = +∞ we have the following version of Theorem 1.35.

Theorem 1.36. Let µ be a Borel measure on X. If B is any Borel set and
ε > 0 then,

1. If µ(B) < +∞, then there exists a closed set F ⊂ B such that µ(B\F ) < ε.

2. If B ⊂
⋃

n Gn with Gn open sets and µ(Gn) < +∞ ∀n, then there exists
an open set G ⊃ B such that µ(G \B) < ε.

3. If in addition µ is Borel-regular then (1) and (2) hold for µ-measurable
sets.
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Proof. To prove (1) consider the measure µB . This is a Borel measure, and
µB(X) < +∞. So choose F ⊂ B such that µB(B \ F ) < ε, then

ε > µB(B \ F ) = µ((B \ F ) ∩B) = µ(B \ F ),

which proves (1).
To prove (2), since B ⊂

⋃
n Gn, we can apply (1) to the set Gn \ B and

find for each n a closed set Fn ⊂ Gn \B with µ((Gn \B) \ Fn) < ε
2n .

Define G =
⋃

n(Gn ∩ F c
n). The set G is open, B ⊂ G and µ(G \B) < ε.

To prove (3) assume that µ is Borel-regular and let A be an arbitrary µ-
measurable set of finite measure. The measure µA is finite and Borel-regular
by Proposition 1.33. So we can apply Theorem 1.35 to µA to find a closed
set F with the required properties. To obtain the approximation property by
open sets we use a similar argument than above, replacing the Borel set B by
an arbitrary µ-measurable set A.

Starting with an arbitrary pre-measure, there is no guarantee that the measure
obtained by Method I is a Borel measure.

Caratheodory proposed another way of constructing measures on metric
spaces that solved this problem. This is the Caratheodory construction of a
measure and we sometimes call it Method II for constructing a measure.

This construction is done in a metric space, since it needs the notion of
diameter of a set. In the next section we will describe Method II for the
construction of a measure in a metric space.

1.4 Caratheodory construction of a measure - Method II

Let (X, d) be a metric space. If E ⊂ X is an arbitrary set, define by |E| the
diameter of E, that is

|E| = sup{d(x, y) : x, y ∈ E} if E is bounded, (1.16)

we set |E| = +∞ if E is not bounded and |∅| = 0.
Given δ > 0, we will say that a countable family {Eλ}λ∈J is a δ-covering

of E from the class C, if

i) Eλ ∈ C, ∀λ ∈ J

ii) |Eλ| < δ, ∀λ ∈ J

iii) E ⊂
⋃

λ∈J Eλ.

If τ is a pre-measure on X with domain C, we define as before the size of
the δ-covering with respect to τ to be∑

λ∈J

τ(Eλ). (1.17)
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We assign the value +∞ to the expression (1.17) when τ(Eλ) = +∞ for some
λ ∈ J , or if τ(Eλ) < +∞ and the series in (1.17) is not convergent. With this
convention, we have

0 ≤
∑
λ∈J

τ(Eλ) ≤ +∞.

Now we define, for δ > 0

µδ(E) = inf{
∑
λ∈J

τ(Eλ), {Eλ}λ∈J is a δ-covering of E from C}, (1.18)

(we adopt again the convention that inf{∅} = +∞), and

µ(E) = sup
δ>0

µδ(E). (1.19)

Note that 0 ≤ µδ(E) ≤ +∞ and if δ2 ≤ δ1 then µδ1(E) ≤ µδ2(E). Then the
expression (1.19) is equivalent to

µ(E) = lim
δ→0+

µδ(E).

Proposition 1.37. µδ, δ > 0 and µ are measures on X.

Proof. Set Cδ = {C ∈ C : |C| < δ}. Since µδ was constructed with Method I
using the pre-measure τ restricted to the class Cδ, by Proposition 1.19, µδ is
a measure for every δ > 0. We can use now Proposition 1.11 to conclude that
µ is a measure.

Our next step will be to show that every measure constructed in a metric
space (X, d), using Method II, will be a metric measure, and as a consequence,
a Borel measure.

Theorem 1.38. Let (X, d) be a metric space and µ a measure on X con-
structed using Method II. Then µ is a metric measure.

Proof. Let A,B two metrically separated sets. Since µ is a measure, µ(A∪B) ≤
µ(A) + µ(B). We need to prove that

µ(A ∪B) ≥ µ(A) + µ(B).

Write a = d(A,B) , and choose 0 < δ < a. Let Υ = {Uk}k∈J be a δ- covering
of A∪B and split this covering in two classes such that Υ = ΥA ∪ΥB , where
ΥA = {U ∈ Υ : U ∩A 6= ∅} and ΥB = Υ\ΥA. Then clearly ΥA is a δ-covering
of A. To see that ΥB is a δ-covering of B, it is enough to see that if U ∈ Υ
and U ∩B 6= ∅ then U ∩A = ∅, but this is a consequence of the choice of δ.

Therefore for every δ-covering of A∪B there exist δ-coverings of A and B
such that ∑

k∈J

τ(Uk) =
∑

U∈ΥA

τ(U) +
∑

U∈ΥB

τ(U).
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We conclude that

µδ(A ∪B) ≥ µδ(A) + µδ(B) ∀ δ < a.

Then, taking limδ→0+ in both sides of the inequality,

µ(A ∪B) ≥ µ(A) + µ(B),

which completes the proof.

Corollary 1.39. Let (X, d) be a metric space. Then every measure con-
structed using Method II is a Borel measure.

Proof. If µ is constructed using method II, then µ is metric. By Theorem 1.29,
µ is a Borel measure.

Remark 1.40. It can be seen that µδ is not necessarily a Borel measure (see
Exercise ). (See exercise I.1 from Mattila. [?])

Now we will study the regularity of the measures constructed using Method I
and Method II.

Theorem 1.41. Let (X, d) be a metric space and let τ be a pre-measure de-
fined on a class of sets C with X ∈ C. If µ is a measure constructed from τ by
Method I or Method II, then µ is Cσδ-regular.

Note 1.42. We denote here by Cσδ the class of sets that are countable unions
of countable intersections of elements from C.

Proof. Assume first that µ is constructed using Method I.
Let A be any subset of X. If µ(A) = +∞, we have A ⊂ X and µ(A) =

µ(X).
Assume now that µ(A) < +∞. For each n ≥ 1, there is a covering {Un

k }k∈N

such that ∑
k

τ(Un
k ) ≤ µ(A) +

1
n

.

Write C =
⋂

n

⋃
k Un

k .
Since A ⊂ C, clearly µ(A) ≤ µ(C). For the other inequality we observe

that for each n ∈ N,

µ(C) ≤ inf
C⊂∪Ck
Ck∈C ∀k

(∑
k

τ(Ck)

)
≤
∑

k

τ(Un
k ) ≤ µ(A) +

1
n

,

therefore µ(A) = µ(C) and C ∈ Cσδ.
This completes the proof for the case that µ was constructed using Method

I. Note that without the hypothesis of X being in C, µ is still Cσδ-regular for
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sets of finite µ-measure (i.e. for each A such that µ(A) < +∞, there exists
C ∈ Cσδ such that A ⊂ C, and µ(A) = µ(C).)

Now, if µ was constructed using Method II, for the case that µ(A) = +∞,
we use the same argument as before.

Consider now the case that µ(A) < +∞. For each δ > 0, µδ(A) < +∞. The
measure µδ is constructed using Method I from the pre-measure τ restricted
to the subclass of C of sets whose diameter is less than δ. So, µδ is Cσδ-regular
for finite measure sets.

For each n ≥ 1 we choose Cn ∈ Cσδ such that µ 1
n
(Cn) = µ 1

n
(A) and

A ⊂ Cn.
Write C = ∩nCn. C ∈ Cσδ, A ⊂ C. For 0 < 1

n < δ we have

µδ(C) ≤ µ 1
n
(C) ≤ µ 1

n
(Cn) = µ 1

n
(A) ≤ µ(A).

So µδ(C) ≤ µ(A) for each δ > 0, which implies that µ(C) = µ(A).

Corollary 1.43. If µ was constructed by Method I or by Method II then we
have

If every set in C is open then µ is Gδ-regular.
If every set in C is a Borel set, then µ is Borel-regular.
In addition, if µ was constructed by Method II in both cases µ is regular.

Proof. If X is not in C, then we can extend τ by τ(X) = +∞, without
changing µ. Then the first two claims follow from the fact that countable
unions of open sets or Borel sets are open or Borel sets respectively.

The last claim is a consequence of Theorem 1.38

Note 1.44. Method I does not guarantee the regularity of µ, even if the pre-
measure satisfies the hypothesis of the Corollary 1.43. Please find a coun-
terexample.

However, as we will see later, in the case of the Lebesgue measure we get
regularity.

1.5 Exercises

1. Give a proof of Theorem 1.17.

2. Give a proof of Proposition 1.19

3. Prove Theorem 1.15 and construct counterexamples to show that equality
a) and b) of that theorem doesn’t hold.



1.5 Exercises 21

4. Let µ be a measure on Ω. Prove that the measure λ on Ω obtained by
application of Method I using as a pre-measure τ = µ with domain in all
the subsets of Ω, coincide with µ.

5. Let λ a measure on Ω. Assume that λ is regular and λ(Ω) < +∞. Prove
that E ∈ Mλ if and only if λ(Ω) = λ(E) + λ(Ω \ E).

6. Let ν be a σ-additive measure on a σ-algebra A. We say that A is complete
respect to ν, if A satisfies that if N ∈ A and ν(N) = 0, then A ∈ A, for
all A ⊂ N .
Prove that every σ-additive measure on a σ-algebra A can be extended to
a measure ν on a σ-algebra A such that A is complete with respect to ν.
Hint: Consider the class

A = {E ⊂ Ω : ∃A,B ∈ A, A ⊂ E ⊂ B, and ν(B \A) = 0}.

Prove that A is a σ-algebra that contains A, and define for E ∈ Ã,
ν(E) = ν(B), where A ⊂ E ⊂ B and ν(B \A) = 0, A,B ∈ A.
Note that if µ is a measure on Ω, then Mµ is complete respect to ν (the
restriction of µ to the σ-algebra Mµ).

7. Using Exercise 6, show that Mµ = Mµ.

8. If µ is a measure on Ω which is not regular, then there exists A ⊂ Ω such
that

µ(A) < +∞ and µ(A) < inf{µ(E) : E ⊃ A,E ∈Mµ}.

9. a) Construct an example of a family of measures on a set Ω such that
the infimum of the family is not a measure.

b) If {µα}α∈I is a family of measures on a set Ω, then there exists a
measure µ on Ω such that

i. µ(A) ≤ inf
α

µα(A) ∀ A ⊂ Ω.

ii. If ν is a measure on Ω such that

ν(A) ≤ inf
α

µα(A) ∀ A ⊂ Ω, then ν ≤ µ.

c) Conclude from the previous item and Proposition 1.11 that the set of
measures on Ω is a complete lattice with the partial order defined by
µ 4 ν if ν(A) ≤ ν(A) ∀A ⊂ Ω..
Let us recall that a complete lattice is a parcially ordered set where
each subset has an infimum and a supremum.




