ANALISIS REAL.

Segundo Cuatrimestre de 2002. Practica 5.

PRACTICA: DIFERENCIACION.

- 1. Sea $L^1_{loc}(\mathbb{R}^n)$ el conjunto formado por aquellas funciones medibles que son integrables sobre todo compacto $K \subseteq \mathbb{R}^n$. Probar:
 - a) Si $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, entonces $f \in L^1_{loc}(\mathbb{R}^n)$.
 - b) Si $f \in L^1_{loc}(\mathbb{R}^n)$ entonces f^* es semicontinua inferiormente.
- 2. Definimos, para $f \in L^1_{loc}(\mathbb{R}^n)$

$$f^{**}(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f|$$

Probar que existen constantes c, C > 0 que dependen s'olo de la dimensi'on, tal que

$$cf^*(x) \le f^{**}(x) \le Cf^*(x)$$

es decir, f^{**} y f^* son funciones equivalentes.

- 3. Sea $f \in L^1_{loc}(\mathbf{R}^n)$ que satisface: $|\{x \in \mathbf{R}^n : f(x) \neq 0\}| > 0$. Probar que existe c > 0 tal que $f^*(x) \geq c|x|^{-n}$ para $|x| \geq 1$. Deducir que $f^* \notin L^1(\mathbf{R}^n)$, salvo que $f \equiv 0$.
- 4. Sea $f \in L^p(\mathbb{R}^n)$.
 - a) Probar que si $1 \leq p < \infty$, existe c > 0 que no depende de f tal que para todo $\alpha > 0$ $|\{x \in \mathbf{R}^{\mathbf{n}} : f^*(x) > \alpha\}| \leq \frac{c}{\alpha} \int_{\{x:|f(x)| \geq \alpha/2\}} |f(x)| dx.$
 - b) Probar que si $1 , entonces <math>f^* \in L^p(\mathbb{R}^n)$. Adem'as existe $c_p > 0$ que no depende de f tal que $||f^*||_p \le c_p ||f||_p$.
- 5. Se
a $f \in L^1_{loc}(\mathbf{R^n}).$ Un punto xse dice
 $punto \ de \ Lebesque \ de \ f$ sii

$$\frac{1}{|Q|}\int_Q |f(y)-f(x)|dy\to 0$$
 cuando $Q\searrow x$

Probar que casi todo punto de \mathbb{R}^n es un punto de Lebesgue de f.

6. Sea $\{S\}$ una familia de conjuntos medibles. Se dice que $\{S\}$ se contrae regularmente a x sii

1

- a) Los di'ametros de los conjuntos S tienden a 0
- b) Si Q es el cubo m'as peque'no con centro en x que contiene a S, entonces existe una constante k independiente de S tal que $|Q| \le k|S|$

Los conjuntos S no necesitan contener a x.

- a) Probar que $\{B(x,r)\}_{r>0}$ se contrae regularmente a x
- b) Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$, entonces en todo punto de Lebesgue de f

$$\frac{1}{|S|} \int_{S} |f(y) - f(x)| dy \to 0$$

para toda familia $\{S\}$ que se contrae regularmente a x.

7. Sea ϕ definida sobre \mathbb{R}^n una funci'on medible y acotada tal que $sop(\phi) \subseteq \{x : |x| \leq 1\}$ y $\int_{\mathbb{R}^n} \phi dx = 1$. Para cada $\epsilon > 0$, sea $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(x/\epsilon)$. Dada $f \in L^1(\mathbb{R}^n)$, probar que:

$$\lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x) = f(x),$$

si x es un punto de Lebesgue de f.

8. Hallar $f:[0,1]\to \mathbb{R}$ creciente, continua y tal que

$$\int_0^1 f'(x)dx < f(1) - f(0).$$

- 9. Sea $f:[a,b]\to \mathbb{R}$ integrable y $F(x)=\int_a^x f(t)dt$. Probar:
 - a) F es absolutamente continua.
 - b) F es derivable en casi todo punto y F'(x) = f(x).
- 10. Sea $g:[a,b] \to \mathbb{R}$ estrictamente creciente y absolutamente continua con g(a)=c y g(b)=d.
 - a) Si $G \subseteq [c,d]$ es abierto, entonces $|G| = \int_{g^{-1}(G)} g'(x) dx$.
 - b) Sea $H=\{x:g'(x)\neq 0\}$. Si $E\subseteq [c,d]$ y |E|=0 entonces $g^{-1}(E)\cap H$ tiene medida nula.
 - c) Si $E \subseteq [c,d]$ es medible, entonces $F = g^{-1}(E) \cap H$ es medible y $|E| = \int_F g' = \int_a^b \chi_E(g(x))g'(x)dx$.
 - d) Si f es medible y no negativa sobre [c,d], entonces $(f \circ g)g'$ es medible sobre [a,b] y $\int_c^d f(y)dy = \int_a^b f(g(x))g'(x)dx$.

11. Sean $F:[a,b]\to R$, absolutamente continua en $[a,b],\,g$ integrable sobre [a,b] y

$$G(x) = G(a) + \int_{a}^{x} g(t)dt.$$

Probar que:

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b G(x)F'(x)dx.$$