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1.Introduction

Let A be a k-algebra with 1, α: A → A an automorphism of algebras. In [R-S]
we described a construction of the graded α-differential algebra Ωα

k (A). Now we
define Karoubi’s operator κ for α-differential non-commutative forms, and study
some of its properties.

This operator allows us to construct a parachain complex for Ωα
k (A). This may

be the first step to get a mixed complex for Ωα
k (A), in order to define the α-cyclic

homology of A.

2.Parachain complexes.

Definition 2.1. A parachain complex is a graded k-module
⊕

i∈N Vi with two op-
erators b: Vi → Vi−1, B: Vi → Vi+1 such that

(1) b2 = B2 = 0
(2) the operator T = 1 − (bB + Bb) is invertible.

It may be easily checked that T commutes with b and B. When T is the identity,
the two differentials b and B commute. Such a parachain complex is called a mixed
complex.

Example. Let (C∗(A), b) be the normalized Hochschild complex given by Cn(A) =
A⊗(n+1)/Dn, where Dn is spanned by the elements a0 ⊗ · · · ⊗ an such that ai = 1
for some i with 1 ≤ i ≤ n, and

b(a0 ⊗ · · · ⊗ an) =

n−1∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ · · · ⊗ an−1

Let B: Cn(A) → Cn+1(A) be the operator given by

B(a0 ⊗ · · · ⊗ an) =

n∑

i=0

(−1)in1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1

Now (C∗(A), b, B) is a mixed complex, and the cyclic homology of A is

HC∗(A) = H∗(Tot(C∗(A), b, B))
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2 MARÍA JULIA REDONDO AND ANDREA SOLOTAR

Definition. A bi-parachain complex is a N 2-graded k-module
⊕

(i,j)∈N2 Vi,j with

operators b: Vi,j → Vi−1,j , b: Vi,j → Vi,j−1 B: Vi,j → Vi+1,j , B: Vi,j → Vi,j+1 such
that

(1) b2 = b
2

= B2 = B
2

= 0
(2) the operators T = 1 − (bB + Bb) and T = 1 − (bB + Bb) are invertible
(3) b and B commute in the graded sense with b and B .

Proposition. There is a functor V → Tot(V ) from bi-parachain complexes to
parachain complexes, where Tot(V ) is:

Totn(V ) =
∑

i+j=n

Vi,j

Tot(b) = b + b, T ot(B) = B + TB and Tot(T ) = TT

So, when Tot(T ) = 1, Tot(V ) is a mixed complex.

Proof. It follows immediately that Tot(b)2 = Tot(B)2 = 0. Now,

Tot(T ) = 1 − (Tot(b)Tot(B) + Tot(B)Tot(b))

= 1 − (b + b)(B + TB) − (B + TB)(b + b)

= 1 − (bB + Bb)T − (bB + Bb)

= 1 − (1 − T )T − (1 − T )

= TT.

The definition and proposition above can be generalized, getting multi-parachain
complexes, and a functor from multi-parachain complexes to parachain complexes.

So, as the above proposition shows, the construction of parachain complexes may
be the first step to get mixed complexes.

Example. Let A be a k-algebra, and G a finite group acting on A by automorphisms.
Take Vp,q = k[Gp+1 ⊗ A⊗p+1 . Define the operators:

di : Vp,q → Vp−1,q

(d)i : Vp,q → Vp,−1q

t : Vp,q → Vp,q

(t) : Vp,q → Vp,q

respectively by:

di(g0, . . . , gp; a0, . . . , aq) = (g0, . . . , gp; a0, . . . , ai.ai+1, . . . , aq)(0 ≤ i ≤ q − 1)

dq(g0, . . . , gp; a0, . . . , aq) = (g0, . . . , gp; ((g0.g1. . . . .gp)
−1aq)a0, . . . , aq−1)
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(d)i(g0, . . . , gp; a0, . . . , aq) = (g0, . . . , gi.gi+1, . . . , gp; a0, . . . , aq)(0 ≤ i ≤ p − 1)

(d)q(g0, . . . , gp; a0, . . . , aq) = (gp.g0, . . . , gq−1; (gp(a0)), . . . , (gp(aq))

t(g0, . . . , gp; a0, . . . , aq) = (g0, . . . , gq ; (g0.g1. . . . .gp)
−1aq), a0, . . . , aq−1)

(t)(g0, . . . , gp; a0, . . . , aq) = (gp, g0, . . . , gp−1; gp(a0), . . . , gp(aq))

Take b =
∑q

i=0 di, (b) =
∑q

i=0 (d)i, B = (1 − t)sN , (B) = (1 − (t))(s)(N),

T = t(p + 1) and (T ) = (t)q+1.

Then (V, b, B, b, B) is a bi-parachain complex.

AS T.(T ) = 1, in this case we obtain, by taking Tot, a mixed complex.

3.α-differential forms and the Karoubi operator κ.

Let A be an associative k-algebra with 1 and α: A → A an automorphism of
algebras. An α-derivation of A into an A-bimodule M is a k-linear map, dα: A → M ,
such that

dα(ab) = α(a)dα(b) + dα(a)b for a, b ∈ A.

In [R-S] we described the construction of Ωα
k (A). A and A⊗Aop are considered

as A-bimodules with the structures defined respectiveley by a ◦ x ◦ b = axα(b),

and a ◦ (x ⊗ y) ◦ b = ax ⊗ yb. Now Ωα
k (A) = Iα = Ker(A ⊗ Aop µα

−−→ A), where
µα(a ⊗ b) = aα(b), and dα: A → Ωα

k (A) is defined by dα(a) = 1 ⊗ a − α(a) ⊗ 1.
Ωα

k (A) is an A-bimodule, as µα is a morphism of A-bimodules.

The pair (dα, Ωα
k (A)) is characterized by the following universal property:

Let δ be an α-derivation of A with values in an A-bimodule M , then there exists
a unique homomorphism of bimodules iδ: Ω

α
k (A) → M such that δ = iδ ◦ dα.

Setting Ω0,α(A) = A, Ω1,α(A) = Ωα
k (A), and Ωn,α(A) = Ω1,α(A) ⊗A · · · ⊗A

Ω1,α(A), Ωα(A) =
⊕

Ωn,α(A) is naturally a graded algebra, and there is a unique
α-differential dα on Ωα(A) extending the derivation dα: Ω0,α(A) → Ω1,α(A). The
graded α-differential algebra Ωα(A) is characterized by the following universal prop-
erty: Let φ: A → Ω′ be an homomorphism of algebras with units where Ω′ is a graded
α-differential algebra, then there is a unique homomorphism of graded α-differential

algebras φ̂: Ωα(A) → Ω′ which extends φ.

Lemma 3.1. The map x ⊗ y → x ⊗ y − xα(y) ⊗ 1 is an isomorphism of left
A-modules

A ⊗ A
∼=
−→ Ωα

k (A)

Proof. One first remarks that x ⊗ y − xα(y) ⊗ 1 depends only on the class of y in
A, so the map is well defined, and its image is in Iα. The quotient of A ⊗ Aop by
the relations x ⊗ y − xα(y) ⊗ 1 maps isomorphically to A (with inverse map given
by x → class of x⊗ 1). Therefore the kernel of this factor map is isomorphic to the
kernel of µα.
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Let us introduce the following usual notation: x ⊗ y (or equivalently x ⊗ y −

xα(y) ⊗ 1) is written xdα(y).
Iα is an A-bimodule because it is a sub-A-bimodule of A ⊗ Aop. So, by the

isomorphism shown in the previous Lemma, A ⊗ A becomes an A-bimodule. The
left module structure is simply

a(xdα(y)) = axdα(y)

The right module structure is

(xdα(y))b = xdα(yb) − xα(y)dα(b)

because, in Iα,

(x ⊗ y − xα(y) ⊗ 1)b = x ⊗ yb − xα(y) ⊗ b

= (x ⊗ yb − xα(yb) ⊗ 1) − (xα(y) ⊗ b − xα(yb) ⊗ 1)

So we have the classical formula

dα(yb) = α(y)dα(b) + dα(y)b

Now,
Ωn,α(A) = Iα ⊗A · · · ⊗A Iα = A ⊗ A

n

with the identification

a0dα(a1) . . . dα(an) = a0 ⊗ (a)1 ⊗ · · · ⊗ ovrline(a)n

and the operator dα: Ωn,α(A) → Ωn+1,α(A) is given by

dα(a0 ⊗ · · · ⊗ an) = 1 ⊗ (a)0 ⊗ · · · ⊗ (a)n

At this point it is interesting to remark a difference with the case A commuta-
tive and α = id, where the cohomology of the complex (Ω∗,α(A), d) is trivial (by
Poincaré’s Lemma). When α 6= id this fact not necessarily holds, take for example
A = k[t] where k is a field, car(k) = 0, q an n-th root of 1.

The product in the α-differential graded algebra (Ωα(A), dα) is performed by
using the rules of dα, for instance,

(1 ⊗ x)(y ⊗ z) = dα(x)(ydα(z)) = (dα(x)y)dα(z)

= (dα(xy) − α(x)dα(y))dα(z)

= 1 ⊗ xy ⊗ z − α(x) ⊗ y ⊗ z

Now we will use the identification Ωn,α(A) = A ⊗ A
n
, so the α-Hochschild

homology HHα,∗(A) = HHα,∗(A, A) is the homology of the complex

. . . −→ Ω2,α(A)
b
−→ Ω1,α(A)

b
−→ A −→ 0
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with

b(a0 ⊗ a1 ⊗ · · · ⊗ an)

= (a0a1 ⊗ a2 ⊗ · · · ⊗ an) +

n−1∑

i=1

(−1)i(a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(α(an)a0 ⊗ a1 ⊗ · · · ⊗ an−1)

Let the Karoubi operator κ: Ωα(A) → Ωα(A) be the degree zero operator given
by

κ(ωdα(an)) = κ(a0dα(a1) . . . dα(an))

= (−1)|ω| (dα(an)ω + dα ((α − id)(an)a0) dα(a1) . . . dα(an−1))

= (−1)n+1 (dα(α(an)a0)dα(a1) . . . dα(an−1) − α(an)dα(a0)dα(a1) . . . dα(an−1))

Lemma 3.2.

(1) bdα + dαb = 1 − κ
(2) bκ = κb and dακ = κdα

Proof. (1) follows easily by direct computation, and (2) follows immediately by (1).

Let us define α: Ωn,α(A) → Ωn,α(A) by

α(a0dα(a1) . . . dα(an)) = α(a0)dα(α(a1)) . . . dα(α(an))

Lemma 3.3. On Ωn,α(A), we have the identities:

(1) κn+1dα = dα α
(2) κn = α + bκndα

(3) κn+1 = α − dαbα
(4) κ is invertible

Proof.

(1) Using the identification Ωn,α(A) = A ⊗ A
n
, we have

κ(a0 ⊗ · · · ⊗ (a)n+1) = (−1)n+1(α(an+1) ⊗ (a)0 ⊗ · · · ⊗ (a)n)

+ (−1)n(1 ⊗ (α(an+1)a0) ⊗ (a)1 ⊗ · · · ⊗ (a)n)

Now,

κ(1 ⊗ (a)0 ⊗ · · · ⊗ (a)n) = (−1)n(1 ⊗ (α(an)) ⊗ (a)0 ⊗ · · · ⊗ (a)n−1)

showing that κn+1dα = dα α on Ωn,α(A).

(2) A direct computation shows that

κndα(a0 ⊗ · · · ⊗ (a)n) = κn(1 ⊗ (a)0 ⊗ · · · ⊗ (a)n)

= (−1)n(1 ⊗ (α(a1)) ⊗ · · · ⊗ (α(an)) ⊗ (a)0)



6 MARÍA JULIA REDONDO AND ANDREA SOLOTAR

and

κn(a0 ⊗ · · · ⊗ (a)n) = (−1)n[(α(a1) ⊗ · · · ⊗ (α(an)) ⊗ (a)0)

+
n−1∑

i=1

(−1)i(1 ⊗ (α(a1)) ⊗ · · · ⊗ (α(aiai+1)) ⊗ · · · ⊗ (α(an)) ⊗ (a)0)

+ (−1)n(1 ⊗ α(a1) ⊗ · · · ⊗ α(an)a0)]

Now, it is immediate that κn = α + bκndα.

(3) By (1) and (2), we have that

κn+1 = κ κn = κ(α + bκndα)

= κ α + bκn+1dα = (κ + bdα) α

= (1 − dαb) α

(4) The polynomial (κn−α)(κn+1−α) has constant term α2, which is invertible,
and

(κn − α)(κn+1 − α) = (bκndα)(−dαb α) = 0

So κ is invertible.

We define the Connes operator B on Ωn,α(A) by

B =

n∑

j=0

κjdα

Proposition 3.4. (Ωα(A), B, b) is a “parachain complex” (see [G-J]).

Proof. We can compute κn(n+1) in two ways. First, using (2) and (1), we have

κn(n+1) − αn+1 =

n∑

j=0

αn−jκnj(κn − α) =

n∑

j=0

αn−jbκnj+ndα

= αnbB

On the other hand, using (3) and (1), we have

κn(n+1) − αn =

n−1∑

j=0

αn−1−jκ(n+1)j(κn+1 − α) = −

n−1∑

j=0

αn−1−jκ(n+1)jdαb α

= −αnBb

Thus we obtain
κn(n+1) = αn+1 + αnbB = αn − αnBb

So
bB + Bb = 1 − α

The above proposition is a technical result. However, in some cases, (for example
if α is given by the action of a group on A) we’ll have the possibility of constructing
a bi-parachain complex V such that (Tot(V ), T otb, T otB) is a mixed complex.
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C.R. Acad. Sci. Paris vol 319 , I (1994), 927–931.

3. [G] D.Gong, Bivariant twisted cyclic theory and spectral sequences of crossed products, Journal
of Pure and Applied Algebra 79 (1992), 225–254.

4. [G-J] E.Getzler-J.D.S.Jones, The cyclic homology of crossed product algebras, J. Reine Angew.
Math. 445 (1993), 161–174.

5. [N] V.Nistor, Group cohomology and the cyclic homology of crossed products, Inv.Math. 99
(1989), 411–424.

6. [R-S] M.J.Redondo-A.Solotar, α-Derivations, Can.Math.Bulletin 38(4) (1995), 481–489.


