PARACYCLIC COMPLEXES ARISING FROM α-DERIVATIONS

María Julia Redondo and Andrea Solotar

1.Introduction

Let A be a k-algebra with $1, \alpha: A \rightarrow A$ an automorphism of algebras. In [R-S] we described a construction of the graded α-differential algebra $\Omega_{k}^{\alpha}(A)$. Now we define Karoubi's operator κ for α-differential non-commutative forms, and study some of its properties.

This operator allows us to construct a parachain complex for $\Omega_{k}^{\alpha}(A)$. This may be the first step to get a mixed complex for $\Omega_{k}^{\alpha}(A)$, in order to define the α-cyclic homology of A.

2.PARAChain complexes.

Definition 2.1. A parachain complex is a graded k-module $\bigoplus_{i \in N} V_{i}$ with two operators $b: V_{i} \rightarrow V_{i-1}, B: V_{i} \rightarrow V_{i+1}$ such that
(1) $b^{2}=B^{2}=0$
(2) the operator $T=1-(b B+B b)$ is invertible.

It may be easily checked that T commutes with b and B. When T is the identity, the two differentials b and B commute. Such a parachain complex is called a mixed complex.

Example. Let $\left(\bar{C}_{*}(A), b\right)$ be the normalized Hochschild complex given by $\bar{C}_{n}(A)=$ $A^{\otimes(n+1)} / D_{n}$, where D_{n} is spanned by the elements $a_{0} \otimes \cdots \otimes a_{n}$ such that $a_{i}=1$ for some i with $1 \leq i \leq n$, and

$$
\begin{aligned}
b\left(a_{0} \otimes \cdots \otimes a_{n}\right) & =\sum_{i=0}^{n-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n} \\
& +(-1)^{n} a_{n} a_{0} \otimes \cdots \otimes a_{n-1}
\end{aligned}
$$

Let $B: \bar{C}_{n}(A) \rightarrow \bar{C}_{n+1}(A)$ be the operator given by

$$
B\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n}(-1)^{i} n 1 \otimes a_{i} \otimes \cdots \otimes a_{n} \otimes a_{0} \otimes \cdots \otimes a_{i-1}
$$

Now $\left(\bar{C}_{*}(A), b, B\right)$ is a mixed complex, and the cyclic homology of A is

$$
H C_{*}(A)=H_{*}\left(\operatorname{Tot}\left(\bar{C}_{*}(A), b, B\right)\right)
$$

Definition. A bi-parachain complex is a N^{2}-graded k-module $\bigoplus_{(i, j) \in N^{2}} V_{i, j}$ with operators $b: V_{i, j} \rightarrow V_{i-1, j}, \bar{b}: V_{i, j} \rightarrow V_{i, j-1} B: V_{i, j} \rightarrow V_{i+1, j}, \bar{B}: V_{i, j} \rightarrow V_{i, j+1}$ such that
(1) $b^{2}=\bar{b}^{2}=B^{2}=\bar{B}^{2}=0$
(2) the operators $T=1-(b B+B b)$ and $\bar{T}=1-(\overline{b B}+\overline{B b})$ are invertible
(3) b and B commute in the graded sense with \bar{b} and \bar{B}.

Proposition. There is a functor $V \rightarrow T o t(V)$ from bi-parachain complexes to parachain complexes, where $\operatorname{Tot}(V)$ is:

$$
\operatorname{Tot}_{n}(V)=\sum_{i+j=n} V_{i, j}
$$

$$
\operatorname{Tot}(b)=b+\bar{b}, \quad \operatorname{Tot}(B)=\bar{B}+\bar{T} B \quad \text { and } \quad \operatorname{Tot}(T)=T \bar{T}
$$

So, when $\operatorname{Tot}(T)=1, \operatorname{Tot}(V)$ is a mixed complex.
Proof. It follows immediately that $\operatorname{Tot}(b)^{2}=\operatorname{Tot}(B)^{2}=0$. Now,

$$
\begin{aligned}
\operatorname{Tot}(T) & =1-(\operatorname{Tot}(b) \operatorname{Tot}(B)+\operatorname{Tot}(B) \operatorname{Tot}(b)) \\
& =1-(b+\bar{b})(\bar{B}+\bar{T} B)-(\bar{B}+\bar{T} B)(b+\bar{b}) \\
& =1-(b B+B b) \bar{T}-(\overline{b B}+\overline{B b}) \\
& =1-(1-T) \bar{T}-(1-\bar{T}) \\
& =T \bar{T} .
\end{aligned}
$$

The definition and proposition above can be generalized, getting multi-parachain complexes, and a functor from multi-parachain complexes to parachain complexes.

So, as the above proposition shows, the construction of parachain complexes may be the first step to get mixed complexes.

Example. Let A be a k-algebra, and G a finite group acting on A by automorphisms.
Take $V_{p, q}=k\left[G^{p+1} \otimes A^{\otimes p+1}\right.$. Define the operators:

$$
\begin{gathered}
d_{i}: V_{p, q} \rightarrow V_{p-1, q} \\
(d)_{i}: V_{p, q} \rightarrow V_{p,-1 q} \\
t: V_{p, q} \rightarrow V_{p, q} \\
\overline{(t)}: V_{p, q} \rightarrow V_{p, q}
\end{gathered}
$$

respectively by:

$$
\begin{gathered}
d_{i}\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{i} . a_{i+1}, \ldots, a_{q}\right)(0 \leq i \leq q-1) \\
d_{q}\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{0}, \ldots, g_{p} ;\left(\left(g_{0} \cdot g_{1} \ldots . g_{p}\right)^{-1} a_{q}\right) a_{0}, \ldots, a_{q-1}\right)
\end{gathered}
$$

$$
\begin{gathered}
\overline{(d)_{i}\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{0}, \ldots, g_{i} . g_{i+1}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)(0 \leq i \leq p-1)} \begin{array}{c}
\overline{(d)_{q}}\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{p} . g_{0}, \ldots, g_{q-1} ;\left(g_{p}\left(a_{0}\right)\right), \ldots,\left(g_{p}\left(a_{q}\right)\right)\right. \\
\left.t\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{0}, \ldots, g_{q} ;\left(g_{0} . g_{1} \ldots, g_{p}\right)^{-1} a_{q}\right), a_{0}, \ldots, a_{q-1}\right) \\
\overline{(} t)\left(g_{0}, \ldots, g_{p} ; a_{0}, \ldots, a_{q}\right)=\left(g_{p}, g_{0}, \ldots, g_{p-1} ; g_{p}\left(a_{0}\right), \ldots, g_{p}\left(a_{q}\right)\right)
\end{array} .
\end{gathered}
$$

Take $\left.\left.\left.b=\sum_{i=0}^{q} d_{i}, \overline{(b)}=\sum_{i=0}^{q} \overline{(} d\right)_{i}, B=(1-t) s N, \overline{(B)}=(1-\overline{(t})\right) \overline{(s)} \overline{(} N\right)$, $\left.T=t^{\prime} p+1\right)$ and $\left.\overline{(T)}=\overline{(} t\right)^{q+1}$.

Then $(V, b, B, \bar{b}, \bar{B})$ is a bi-parachain complex.
AS $T .(T)=1$, in this case we obtain, by taking $T o t$, a mixed complex.

3. α-Differential forms and the Karoubi operator κ.

Let A be an associative k-algebra with 1 and $\alpha: A \rightarrow A$ an automorphism of algebras. An α-derivation of A into an A-bimodule M is a k-linear map, $d_{\alpha}: A \rightarrow M$, such that

$$
d_{\alpha}(a b)=\alpha(a) d_{\alpha}(b)+d_{\alpha}(a) b \quad \text { for } a, b \in A .
$$

In [R-S] we described the construction of $\Omega_{k}^{\alpha}(A) . A$ and $A \otimes A^{o p}$ are considered as A-bimodules with the structures defined respectiveley by $a \circ x \circ b=a x \alpha(b)$, and $a \circ(x \otimes y) \circ b=a x \otimes y b$. Now $\Omega_{k}^{\alpha}(A)=I_{\alpha}=\operatorname{Ker}\left(A \otimes A^{o p} \xrightarrow{\mu_{\alpha}} A\right)$, where $\mu_{\alpha}(a \otimes b)=a \alpha(b)$, and $d_{\alpha}: A \rightarrow \Omega_{k}^{\alpha}(A)$ is defined by $d_{\alpha}(a)=1 \otimes a-\alpha(a) \otimes 1$.
$\Omega_{k}^{\alpha}(A)$ is an A-bimodule, as μ_{α} is a morphism of A-bimodules.
The pair $\left(d_{\alpha}, \Omega_{k}^{\alpha}(A)\right)$ is characterized by the following universal property:
Let δ be an α-derivation of A with values in an A-bimodule M, then there exists a unique homomorphism of bimodules $i_{\delta}: \Omega_{k}^{\alpha}(A) \rightarrow M$ such that $\delta=i_{\delta} \circ d_{\alpha}$.

Setting $\Omega^{0, \alpha}(A)=A, \Omega^{1, \alpha}(A)=\Omega_{k}^{\alpha}(A)$, and $\Omega^{n, \alpha}(A)=\Omega^{1, \alpha}(A) \otimes_{A} \cdots \otimes_{A}$ $\Omega^{1, \alpha}(A), \Omega^{\alpha}(A)=\bigoplus \Omega^{n, \alpha}(A)$ is naturally a graded algebra, and there is a unique α-differential d_{α} on $\Omega^{\alpha}(A)$ extending the derivation $d_{\alpha}: \Omega^{0, \alpha}(A) \rightarrow \Omega^{1, \alpha}(A)$. The graded α-differential algebra $\Omega^{\alpha}(A)$ is characterized by the following universal property: Let $\phi: A \rightarrow \Omega^{\prime}$ be an homomorphism of algebras with units where Ω^{\prime} is a graded α-differential algebra, then there is a unique homomorphism of graded α-differential algebras $\widehat{\phi}: \Omega^{\alpha}(A) \rightarrow \Omega^{\prime}$ which extends ϕ.

Lemma 3.1. The map $x \otimes \bar{y} \rightarrow x \otimes y-x \alpha(y) \otimes 1$ is an isomorphism of left A-modules

$$
A \otimes \bar{A} \xlongequal{\cong} \Omega_{k}^{\alpha}(A)
$$

Proof. One first remarks that $x \otimes y-x \alpha(y) \otimes 1$ depends only on the class of y in \bar{A}, so the map is well defined, and its image is in I_{α}. The quotient of $A \otimes A^{o p}$ by the relations $x \otimes y-x \alpha(y) \otimes 1$ maps isomorphically to A (with inverse map given by $x \rightarrow$ class of $x \otimes 1$). Therefore the kernel of this factor map is isomorphic to the kernel of μ_{α}.

Let us introduce the following usual notation: $x \otimes \bar{y}$ (or equivalently $x \otimes y-$ $x \alpha(y) \otimes 1)$ is written $x d_{\alpha}(y)$.
I_{α} is an A-bimodule because it is a sub- A-bimodule of $A \otimes A^{o p}$. So, by the isomorphism shown in the previous Lemma, $A \otimes \bar{A}$ becomes an A-bimodule. The left module structure is simply

$$
a\left(x d_{\alpha}(y)\right)=a x d_{\alpha}(y)
$$

The right module structure is

$$
\left(x d_{\alpha}(y)\right) b=x d_{\alpha}(y b)-x \alpha(y) d_{\alpha}(b)
$$

because, in I_{α},

$$
\begin{aligned}
(x \otimes y-x \alpha(y) \otimes 1) b & =x \otimes y b-x \alpha(y) \otimes b \\
& =(x \otimes y b-x \alpha(y b) \otimes 1)-(x \alpha(y) \otimes b-x \alpha(y b) \otimes 1)
\end{aligned}
$$

So we have the classical formula

$$
d_{\alpha}(y b)=\alpha(y) d_{\alpha}(b)+d_{\alpha}(y) b
$$

Now,

$$
\Omega^{n, \alpha}(A)=I_{\alpha} \otimes_{A} \cdots \otimes_{A} I_{\alpha}=A \otimes \bar{A}^{n}
$$

with the identification

$$
a_{0} d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n}\right)=a_{0} \otimes \overline{(a)_{1}} \otimes \cdots \otimes \operatorname{ovrline}(a)_{n}
$$

and the operator $d_{\alpha}: \Omega^{n, \alpha}(A) \rightarrow \Omega^{n+1, \alpha}(A)$ is given by

$$
d_{\alpha}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=1 \otimes \overline{\left.(a)_{0} \otimes \cdots \otimes \overline{(} a\right)_{n}}
$$

At this point it is interesting to remark a difference with the case A commutative and $\alpha=i d$, where the cohomology of the complex $\left(\Omega^{*, \alpha}(A), d\right)$ is trivial (by Poincaré's Lemma). When $\alpha \neq i d$ this fact not necessarily holds, take for example $A=k[t]$ where k is a field, $\operatorname{car}(k)=0, q$ an n-th root of 1 .

The product in the α-differential graded algebra ($\Omega^{\alpha}(A), d_{\alpha}$) is performed by using the rules of d_{α}, for instance,

$$
\begin{aligned}
(1 \otimes x)(y \otimes z) & =d_{\alpha}(x)\left(y d_{\alpha}(z)\right)=\left(d_{\alpha}(x) y\right) d_{\alpha}(z) \\
& =\left(d_{\alpha}(x y)-\alpha(x) d_{\alpha}(y)\right) d_{\alpha}(z) \\
& =1 \otimes x y \otimes z-\alpha(x) \otimes y \otimes z
\end{aligned}
$$

Now we will use the identification $\Omega^{n, \alpha}(A)=A \otimes \bar{A}^{n}$, so the α-Hochschild homology $H H_{\alpha, *}(A)=H H_{\alpha, *}(A, A)$ is the homology of the complex

$$
\ldots \rightarrow \Omega^{2, \alpha}(A) \xrightarrow{b} \Omega^{1, \alpha}(A) \xrightarrow{b} A \rightarrow 0
$$

with

$$
\begin{aligned}
& b\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right) \\
& =\left(a_{0} a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right)+\sum_{i=1}^{n-1}(-1)^{i}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}\right) \\
& +(-1)^{n}\left(\alpha\left(a_{n}\right) a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n-1}\right)
\end{aligned}
$$

Let the Karoubi operator $\kappa: \Omega^{\alpha}(A) \rightarrow \Omega^{\alpha}(A)$ be the degree zero operator given by

$$
\begin{aligned}
& \kappa\left(\omega d_{\alpha}\left(a_{n}\right)\right)=\kappa\left(a_{0} d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n}\right)\right) \\
& =(-1)^{|\omega|}\left(d_{\alpha}\left(a_{n}\right) \omega+d_{\alpha}\left((\alpha-i d)\left(a_{n}\right) a_{0}\right) d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n-1}\right)\right) \\
& =(-1)^{n+1}\left(d_{\alpha}\left(\alpha\left(a_{n}\right) a_{0}\right) d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n-1}\right)-\alpha\left(a_{n}\right) d_{\alpha}\left(a_{0}\right) d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n-1}\right)\right)
\end{aligned}
$$

Lemma 3.2.

(1) $b d_{\alpha}+d_{\alpha} b=1-\kappa$
(2) $b \kappa=\kappa b$ and $d_{\alpha} \kappa=\kappa d_{\alpha}$

Proof. (1) follows easily by direct computation, and (2) follows immediately by (1).
Let us define α : $\Omega^{n, \alpha}(A) \rightarrow \Omega^{n, \alpha}(A)$ by

$$
\alpha\left(a_{0} d_{\alpha}\left(a_{1}\right) \ldots d_{\alpha}\left(a_{n}\right)\right)=\alpha\left(a_{0}\right) d_{\alpha}\left(\alpha\left(a_{1}\right)\right) \ldots d_{\alpha}\left(\alpha\left(a_{n}\right)\right)
$$

Lemma 3.3. On $\Omega^{n, \alpha}(A)$, we have the identities:
(1) $\kappa^{n+1} d_{\alpha}=d_{\alpha} \alpha$
(2) $\kappa^{n}=\alpha+b \kappa^{n} d_{\alpha}$
(3) $\kappa^{n+1}=\alpha-d_{\alpha} b \alpha$
(4) κ is invertible

Proof.
(1) Using the identification $\Omega^{n, \alpha}(A)=A \otimes \bar{A}^{n}$, we have

$$
\begin{aligned}
\kappa\left(a_{0} \otimes \cdots \otimes \overline{\left.(a)_{n+1}\right)}\right. & \left.\left.=(-1)^{n+1}\left(\alpha\left(a_{n+1}\right) \otimes \overline{(} a\right)_{0} \otimes \cdots \otimes \overline{(} a\right)_{n}\right) \\
& \left.+(-1)^{n}\left(1 \otimes \overline{(} \alpha\left(a_{n+1}\right) a_{0}\right) \otimes \overline{(a)_{1}} \otimes \cdots \otimes \overline{(a)_{n}}\right)
\end{aligned}
$$

Now,
$\kappa(1 \otimes \overline{(} a)_{0} \otimes \cdots \otimes \overline{\left.(a)_{n}\right)}=(-1)^{n}\left(1 \otimes \overline{(} \alpha\left(a_{n}\right)\right) \otimes \overline{\left.\left.(a)_{0} \otimes \cdots \otimes \overline{(} a\right)_{n-1}\right)}$
showing that $\kappa^{n+1} d_{\alpha}=d_{\alpha} \alpha$ on $\Omega^{n, \alpha}(A)$.
(2) A direct computation shows that

$$
\begin{aligned}
\left.\kappa^{n} d_{\alpha}\left(a_{0} \otimes \cdots \otimes \overline{(} a\right)_{n}\right) & \left.\left.=\kappa^{n}(1 \otimes \overline{(} a)_{0} \otimes \cdots \otimes \overline{(} a\right)_{n}\right) \\
& \left.\left.=(-1)^{n}\left(1 \otimes \overline{(} \alpha\left(a_{1}\right)\right) \otimes \cdots \otimes \overline{(} \alpha\left(a_{n}\right)\right) \otimes \overline{(a)_{0}}\right)
\end{aligned}
$$

and
$\left.\kappa^{n}\left(a_{0} \otimes \cdots \otimes \overline{(a)_{n}}\right)=(-1)^{n}\left[\left(\alpha\left(a_{1}\right) \otimes \cdots \otimes \overline{(} \alpha\left(a_{n}\right)\right) \otimes \overline{(} a\right)_{0}\right)$

$$
\begin{aligned}
& \left.\left.\left.\left.+\sum_{i=1}^{n-1}(-1)^{i}\left(1 \otimes \overline{(} \alpha\left(a_{1}\right)\right) \otimes \cdots \otimes \overline{(} \alpha\left(a_{i} a_{i+1}\right)\right) \otimes \cdots \otimes \overline{(} \alpha\left(a_{n}\right)\right) \otimes \overline{(} a\right)_{0}\right) \\
& \left.+(-1)^{n}\left(1 \otimes \alpha\left(a_{1}\right) \otimes \cdots \otimes \alpha\left(a_{n}\right) a_{0}\right)\right]
\end{aligned}
$$

Now, it is immediate that $\kappa^{n}=\alpha+b \kappa^{n} d_{\alpha}$.
(3) By (1) and (2), we have that

$$
\begin{aligned}
\kappa^{n+1} & =\kappa \kappa^{n}=\kappa\left(\alpha+b \kappa^{n} d_{\alpha}\right) \\
& =\kappa \alpha+b \kappa^{n+1} d_{\alpha}=\left(\kappa+b d_{\alpha}\right) \alpha \\
& =\left(1-d_{\alpha} b\right) \alpha
\end{aligned}
$$

(4) The polynomial $\left(\kappa^{n}-\alpha\right)\left(\kappa^{n+1}-\alpha\right)$ has constant term α^{2}, which is invertible, and

$$
\left(\kappa^{n}-\alpha\right)\left(\kappa^{n+1}-\alpha\right)=\left(b \kappa^{n} d_{\alpha}\right)\left(-d_{\alpha} b \alpha\right)=0
$$

So κ is invertible.

We define the Connes operator B on $\Omega^{n, \alpha}(A)$ by

$$
B=\sum_{j=0}^{n} \kappa^{j} d_{\alpha}
$$

Proposition 3.4. $\left(\Omega^{\alpha}(A), B, b\right)$ is a "parachain complex" (see [G-J]).
Proof. We can compute $\kappa^{n(n+1)}$ in two ways. First, using (2) and (1), we have

$$
\begin{aligned}
\kappa^{n(n+1)}-\alpha^{n+1} & =\sum_{j=0}^{n} \alpha^{n-j} \kappa^{n j}\left(\kappa^{n}-\alpha\right)=\sum_{j=0}^{n} \alpha^{n-j} b \kappa^{n j+n} d_{\alpha} \\
& =\alpha^{n} b B
\end{aligned}
$$

On the other hand, using (3) and (1), we have

$$
\begin{aligned}
\kappa^{n(n+1)}-\alpha^{n} & =\sum_{j=0}^{n-1} \alpha^{n-1-j} \kappa^{(n+1) j}\left(\kappa^{n+1}-\alpha\right)=-\sum_{j=0}^{n-1} \alpha^{n-1-j} \kappa^{(n+1) j} d_{\alpha} b \alpha \\
& =-\alpha^{n} B b
\end{aligned}
$$

Thus we obtain

$$
\kappa^{n(n+1)}=\alpha^{n+1}+\alpha^{n} b B=\alpha^{n}-\alpha^{n} B b
$$

So

$$
b B+B b=1-\alpha
$$

The above proposition is a technical result. However, in some cases, (for example if α is given by the action of a group on A) we'll have the possibility of constructing a bi-parachain complex V such that $(\operatorname{Tot}(V), \operatorname{Tot}, \operatorname{Tot} B)$ is a mixed complex.

References

1. [C-Q] J.Cuntz-D.Quillen, Algebra extensions and nonsingularity, Journal AMS 8, 2 (1995), 251-289.
2. [D-M] M.Dubois-Violette-P.W.Michor, Dèrivation et calcul différentiel non commutatif II, C.R. Acad. Sci. Paris vol 319 , I (1994), 927-931.
3. [G] D.Gong, Bivariant twisted cyclic theory and spectral sequences of crossed products, Journal of Pure and Applied Algebra 79 (1992), 225-254.
4. [G-J] E.Getzler-J.D.S.Jones, The cyclic homology of crossed product algebras, J. Reine Angew. Math. 445 (1993), 161-174.
5. [N] V.Nistor, Group cohomology and the cyclic homology of crossed products, Inv.Math. 99 (1989), 411-424.
6. [R-S] M.J.Redondo-A.Solotar, α-Derivations, Can.Math.Bulletin 38(4) (1995), 481-489.
