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Abstract. We compute the cyclic homology of A
commutative ring k and a monic polynomial f.

k[XII < f > for an arbitrary

O.Introduction.

Let k be an arbitrary commutative unitary ring and f a monic polynomial in k[X].
The cyclic homology of A = k[XII < I >, for l.: a characteristic zero field was calculated
in [M-NI and [K], and for 1., an arbitrary ring and I = XP - 1 in [C-G-V). The first
general result in arbitrary characteristic appeared in [Bach], where the cyclic homology of
k[X]/ < .f >, for 1..a field, were calculated.

In [G-G], the authors replaced the complex B(A)norm of Loday and Quillen by a
simpler mixed complex 1\1(A) for the case.f = xr, This leads to the computation of cyclic
homology of monogenic extensions. It is possible to define the mixed complex M(A) for
k an arbitrary ring and .f a monic polynomial, and so it is natural to ask if its homology
coincides with the cyclic homology of A in every case. The positive answer was given in
[L-L] for A an integral domain. In this paper we give a considerably easier and cIearer
proof of this fact. which is valid for arbitrary k and A.

The paper is divided in two sections. In the first one we show a strong homotopy k-
map which induces a quasi-isomorphism fram the simplified complex M(A) to the standard
complex B(A)norm. An independent proof of this fact has been given by T. Lambre ([L]).
As an application. we compute the cyclic homology of A in a simple way which follows
the method used in Theorem 2.6 of [G-G]. In section 2 we give an explicit expression in
the case f = xr + a, by means of a decomposition of M(A) as a direct sum of r double
complexes.

l.Cyclic homology of k[X]/ < .f >.

We shall use freely the notion of mixed complex first introduced in [K] and [B-O]. To
prove our main theorem we need the properties of strong homotopy k-map between two
mixed complexes shown in [K,Proposition 1.3], [J,Lemma 2.1] and [G-G,Proposition 1.3]

Let k be an arbitrary commutative ring with 1, 1= Xr + Ir-1 Xr-1 +... + lo E k[X)
a monic polynomial and A = k[X]/ < I >. Let us denote by 6(A) = (C.(A),b.,B.) the
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normalized mixed complex associated to .4. The Hochschild, cyclic, periodic and negative
homology HH.(A), HC.(.4), HCfer(A) and HC;(A) of A are defined (see [L-Q]) as the
respective homologies of 6(A). In this section we introduce a mixed complex 1\1(A) =
(M.(A),d.,D.) simpler than 6(.4) and show that there exists a quasi-isomorphismfrom
1\1(A) to 6(A).

Since I is monic, we can carry out the division algorithm and denote by P the quotient
and by P the remainder, i.e. P = P.I + P, dg(P) < dg(l). The uniqueness of P and P is
obvious.

We define 1\1(A) as the mixed complex whose graded module is given by M,,(A) = A
'<Inand whose -1 and +1 differentials (d.: M.(A) -> M._I (A) and D.: M.(A1 -> M'+I (A)
I'espectively) are defined by d2m(P) = f'.P, d2m+1 = O, D2m(l) = O, D2m(X") =
-aXa-1 - m.f'X" if O < a < r and D2m+1 = O. The complex (M.(A),d.) was ob-
tained in [Bach] by tensoring A with the Ae-resolution Rs(A) of [Bach] which will be
denoted here as R'(A).

We shall use the following concept

1.1.Definition: The degree of

w = ¿ A.X";(O)0... <2>X";(n+l) E A <2>.4:"181A (OIi(j) < r '<Ii,j),

2) 0',,(lI8lPJ0.. .I8IP,,) = ¡oO',,(lI8lPJ0.. .OP" 1811) (with ¡(PO<8IQI8IP,,+2)= P,,+2POI8IQ
for Q E .4:"+1 and Pi E A).

3) D"=9"+10B"oh,,.
4) dg(O',,(w))::; dg(w) for w E .40.4:°.

Proof. 1) follows easily from the explicit definition of 9. given in [Bach,§I], 2) is trivial,
for 3) see [Bach, Proposition 2.1]. Let us see 4). Using the fact that dg(h" o g,,(w 1811))::;
dg(w 01) we can see that dg(O',,(w 01)) ::; dg(w 1811). Since 0',,(1 181P1 181...181P,,) =
10 0',,(10 P1 0...0 P" 01), it is clear that dg(O',,(w)) ::; dg(w)

Now, we are ready to prove the main result of this paper.

1.4.Theorem: There exists an strong homotopy k-map (G~i»)i>Ofrom 1\1(A) to 6(A)
. (O) - -wlth G. = h..

Proof. We shall build up the maps GjiJ by induction on i and j. Let n ~ O. Assume that

we have already built G~i) (O::; i ::; t) and G;t+1) (O::; j ::; n - 1), such that:

i) G~O)= h.
.. G(i) D D G(i) b G(i+l) G(i+l) d r' . O
11) j+1o j - 2i+j o j = 2i+1+2 o j - j_1 o j, ,or O::;z < t or z = ta ::;

j :S;n - 1 (wherewe consider Gj~1) =dj =Oif j =O)

iii) dg(G~j(X")) ::;a+rj anddg(G~j+i(X")) ::;a+l+rj
Let n = 2m and O::; a :S;r - 1. If

T = G~t¡1o D,,(Xa) - B2t-" o G~t)(X") + G~t:!:ll)o d,,(X"),

15:

dg(w) = maxdg(X";(O) 0... <8IX";(n+I)),

where dg(X"O 0 ... <81X".+I) = ¿~:Ol OIi. In a similar way we define the degree of an
plement of A 0.4:".

We have previously defined in [Bach,§I] morphisms of complexes g.: (AI8I.4:'181A, b') ->
R'(A) and h.:R'(A) -> (A 181.4*I8IA,b') such that g. oh. = id, dg(h2m(l01) = rm and
dg(h2m+1(101)) = rm + 1. Moreover, it is clear from the definitions that dg(hm ogm(W 181
1)) :S;dg(wOl)'<IwE AI8I.4:".

then it is clear that dg(T) ::; a + rm.From this fact and Remark 1.3 (1) it follows that
92t+"+I(T) = Ofor t > O. For t = O, as by Remark 1.3 (3) D" = 9"+10 B" o h", we have:

9"+I(T) = 9"+1 (G~021o D" - B" o G~O)+ G~121o d" )(X")

= (9,,+1 o h"+1 o 9"+10 B" o h" - 9"+10 B" o G~O)+ 9"+1 o G~121o d,,)(X")

= 9"+1 o G~21 o d,,(Xa)

1.2.Proposition: h. o g. is homotopic to the identity by 0'., where 0'. is the homotopy
of A-modules recursively defined by: 0'0 =Oand 0'" = Eao (h" o gn - id - O'n-Io b'), with
:::o(a)= 1181a for a E A 0.4:" 0.4.

Proof. We have:

b' o 0'''+1+0'" o b' = b' o Eo o (h"+1 o gn+1 - id - a" o b') + 0'" o b'

= hn+1 o g,,+1 - id - a" o b' - Ea o (h"+1 o g,,+1 - id - 0'" o b') + 0'" o b'

== hn+1 o g,,+1 - id -:::0 o h" o gn o b' + EOo b' + eo o b' o a" o b'

= h"+1 o g,,+1 - id -:::0 o h" o g" o b' + eo o b' + EOo (h" o gil - id - 0'" o b') o b'
= h"+1 o g,,+1 - id

Since dg(G~121od(X~)):S; mr, using again Remark 1.3 (1) we conclude that 9"+I(T) = O.
Nowlet G~t+I)(X")= -O'2t+"+I(T). From Proposition 1.3 of [G-G],b2t+,,+I(T)= O,so:

b2t+"+2 o G~t+I)(X") = -b2t+II+2 o O'2t+"+2(T)

= (id - ií2t+"+1 o 92t+II+1 + O'2t+" o b2t+"+I)(T) = T.

9.: C.(A) -> M.(.4), h.: M.(A) -> C.(A), a.: C.(A) -> C.+1(A),

Finally, iii) follows immediately because O'. preserves degree.
For n odd we can repeat the same proof as in the even case

1.5.Corollary: The cyclic, periodic and negative homology A are the respective homolo-
gies of 1\1(A).

Proof. See [K,Proposition 1.3] and [J,Lemma 2.1]

By tensoring g., h. and 0'. by AOA<, we obtain A-maps

verifying 9. o h. = id and h. 09. is homotopic to the identity by O'.

1.3.Remark: We have

1) 92m(W) = Oif dg(w) < mr alld 92m+I(W) = Oif dg(w) < mI' + 1.

2.Cyclic homology of k[X]/ < xr + a >
In this section we shall compute the cyclic homology of A = k[X]/ < xr +a > (a E k)

by means of a decomposition of the simplified complex 1\1(A).
This gives as a special case the cyclic homology of k[X]/ < xr > and k[X]/ <

xr - 1 >, computed in [BachJ and [C-G-V] respectively.
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Let us now show the promised decomposition. M(A) splits into a dired sum M(A) =
EB~~~M(A)(i), where M(A)(i) ='(M!i)(A),d~i),D~i») is the mixed complex of k modules
b

.
d f M (i)

(A)
1 d(i) O d(i)

) D(i) (0)
( )o tame rom n = ", 2m+1= , 2m(l = ra, 2m+1= O, D2m 1 = O and

D~%(1) = i + mr if i > OHence, the SBI sequence splits into a dired sum EB~~~ SBI( i) of
sequences

k
0-+ HC(i) ()

< (i + mr)xm,o, ra > -+ 2m+1(A) -+ HC2:"_1 (A) -+ O (m ~ 1) (*)

Now, as (ra : :rm,o) = 1 and k,is a principal domain,

k k

SBI(i) : ... -+ H~i)(A)!.HC~i)(A)~HC~i~2(A)~H~i~I(A)!.HC~i~I(A)~...,

< (i + rm)xm,o,ra > - < i + mr,ra >'

where H~i)(A) = H.(M(A)(i») and HC~i)(A) = HC.(M(A)(i»).

2.1.Lemma: If k is a U,F.D and ra # O, then HC~~(A) (O < m, O < i < r) is freely

generated by the 2m-cycle (xm,o, . . . ,xm,n), where

Hence, (*) splits by means of 1T':HC~~+I (A) -+ <i+':r,ra>' 1T'(XI,.", xm+¡) = XI

2.3.Theorem: Let A = k[X]j < xr + a>. We have
1) if ra = O,then

(
m-I

)(
m-h-I . .

)X =(_I)h ra z+Jr .
m.hTI (ra:i+jr) TI (ra:i+jr)}=m-h }=o

HC2m(A) = ~ HC~~(A) = k(r+m) (ij (~(~ Ann(i + jr)) )
HC2m+I(A) = ÉBHci~+I(A) = k(m+l)(ij(ÉB(EB . k) ),

i=O i=O j=O < Z+ Jr >
In particular Hd~(A) ~ k « na : i + jr) is the greatest common divisor of na and i + j r).

Proof. We shall prove it by induction on m. It is clear that Xo,O= 1 generates

HC¿i)(A) = k. Suppose that (xm.o,... ,Xm,m) is a 2m-cyde which freely generates

HCi~(A). It is immediate that (Xm+I,O,... ,Xm+1,m+¡) is a 2(m + 1)-cycle without tor-
sion. Let (Ym+I,O,...,Ym+I,m+¡) be a 2(m + 1)-cycle. Since (Ym+I,¡,...,Ym+1,m+¡) =

S(Ym+I.O,"', Ym+l.m+¡)) belongs to HC~~(A), there exists a unique a E k, such that
Ym+l.h = a.Xm,h-1 (1 :S h :S m + 1). As (Ym+I,O,... ,Ym+l.m+¡) is a 2(m + 1)-cycle, we
have:

2) If there exists a morphism of rings <p:k' -+ k, with k' a principal domain, char k = O
and a E lm(<p), then

(
r-I m-I

)
(m)

HC2m(A)=k(r)(ij ~(~ Ann(i+jr:ra))(ij(Ann(ra))
r-I m k k (m+1)

HC2m+I(A)= E9(E9 .. ) (ij (-) ,
i=1 j=O < Z + Jr, ra > < ra >

m-l . .

ra.Ym+I,O = (i + mr).Ym+I.1= a(i + mr).xm.o = a(i + mr). TI Z+ Jr
j=O (ra : Z+ J r

(
.

TI
m i+jr.=a ra : Z + mr).

(
. .

)
'

j=O ra: Z + Jr

where M(s) denotes the dired sum of s copies of M.

Proof. 1) It is immediate and 2) follows because using the Künneth formula we can
consider the case where k is a principal domain and a E k \ {O}.Then, the result is clear
from the previous lemmas .

Then (ra:;~mr).Ym+I.O= a.(TIj=o (r;~:hr»)' If the product in brackets is zero, Ym+I.O=
Xm+I,O= Oand if it is different from zero, there exists ¡3 E k such that:

HC~~+I(A) ~ EB( < i + jkr,ra »j=O
(m ~ O,i > O)
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