CYCLIC HOMOLOGY OF MONOGENIC ALGEBRAS

The Buenos Aires Cyclic Homology Group *
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1, Ciudad Universitaria (1428), Buenos Aires, Argentina.

Abstract

We compute the cyclic homology of $A=k[X] /<f>$ for an arbitrary commutative ring k and a monic polynomial f.

0. Introduction.

Let k be an arbitrary commutative unitary ring and f a monic polynomial in $k[X]$. The cyclic homology of $A=k[X] /\langle f\rangle$, for k a characteristic zero field was calculated in $[\mathrm{M}-\mathrm{N}]$ and $[\mathrm{K}]$, and for k an arbitrary ring and $f=X^{p}-1$ in [C-G-V]. The first general result in arbitrary characteristic appeared in [Bach], where the cyclic homology of $k[X] /\langle f\rangle$, for k a field, were calculated.

In [G-G], the authors replaced the complex $B(A)_{\text {norm }}$ of Loday and Quillen by a simpler mixed complex $\bar{M}(A)$ for the case $f=X^{r}$. This leads to the computation of cyclic homology of monogenic extensions. It is possible to define the mixed complex $\tilde{M}(A)$ for k an arbitrary ring and f a monic polynomial, and so it is natural to ask if its homology coincides with the cyclic homology of A in every case. The positive answer was given in [L-L] for A an integral domain. In this paper we give a considerably easier and clearer proof of this fact, which is valid for arbitrary k and A.

The paper is divided in two sections. In the first one we show a strong homotopy k map which induces a quasi-isomorphism from the simplified complex $\tilde{M}(A)$ to the standard complex $B(A)_{\text {norm }}$. An independent proof of this fact has been given by T. Lambre ([L]). As an application, we compute the cyclic homology of A in a simple way which follows the method used in Theorem 2.6 of [G-G]. In section 2 we give an explicit expression in the case $f=X^{r}+a$, by means of a decomposition of $\tilde{M}(A)$ as a direct sum of r double complexes.
1.Cyclic homology of $k[X] /\langle f\rangle$.

We shall use freely the notion of mixed complex first introduced in $[\mathrm{K}]$ and $[\mathrm{B}-\mathrm{O}]$. To prove our main theorem we need the properties of strong homotopy k-map between two mixed complexes shown in [K,Proposition 1.3], [J,Lemma 2.1] and [G-G,Proposition 1.3]

Let k be an arbitrary commutative ring with $1, f=X^{r}+f_{r-1} X^{r-1}+\cdots+f_{0} \in k[X]$ a monic polynomial and $A=k[X] /\langle f\rangle$. Let us denote by $C(A)=\left(C_{*}(A), b_{*}, B_{*}\right)$ the

[^0]normalized mixed complex associated to A. The Hochschild, cyclic, periodic and negative homology $H H_{*}(A), H C_{*}(A), H C_{*}^{\text {per }}(A)$ and $H C_{*}^{-}(A)$ of A are defined (see [L-Q]) as the respective homologies of $\tilde{C}(A)$. In this section we introduce a mixed complex $\tilde{M}(A)=$ $\left(M_{*}(A), d_{*}, D_{*}\right)$ simpler than $C(A)$ and show that there exists a quasi-isomorphism from $\dot{M}(A)$ to $\tilde{C}(A)$.

Since f is monic, we can carry out the division algorithm and denote by \bar{P} the quotient and by \ddot{P} the remainder, i.e. $P=\bar{P} . f+\ddot{P}, d g(\ddot{P})<d g(f)$. The uniqueness of \bar{P} and \ddot{P} is obvious.

We define $\dot{M}(A)$ as the mixed complex whose graded module is given by $M_{n}(A)=\hat{A}$ $\forall n$ and whose -1 and +1 differentials $\left(d_{*}: M_{*}(A) \rightarrow M_{*-1}(A)\right.$ and $D_{*}: M_{*}(A) \rightarrow M_{*+1}(A)$ respectively) are defined by $d_{2 m}(P)=f^{\prime} \cdot P, d_{2 m+1}=0, D_{2 m}(1)=0, D_{2 m}\left(X^{a}\right)=$ $-a X^{a-1}-m \cdot \overline{f^{\prime} X^{a}}$ if $0<a<r$ and $D_{2 m+1}=0$. The complex $\left(M_{*}(A), d_{*}\right)$ was obtained in [Bach] by tensoring A with the A^{e}-resolution $R s(A)$ of [Bach] which will be denoted here as $R^{\prime}(A)$.

We shall use the following concept
1.1.Definition: The degree of

$$
w=\sum \lambda \cdot X^{\alpha_{i(0)}} \otimes \ldots \otimes X^{\alpha_{i(n+1)}} \in A \otimes \bar{A}^{n} \otimes A \quad\left(\alpha_{i(j)}<r \quad \forall i, j\right)
$$

is:

$$
d g(w)=\max d g\left(X^{\alpha_{i(0)}} \otimes \ldots Q X^{\alpha_{i(n+1)}}\right)
$$

where $d g\left(X^{\alpha_{0}} Q \ldots \otimes X^{\alpha_{n+1}}\right)=\sum_{i=0}^{n+1} \alpha_{i}$. In a similar way we define the degree of an element of $A \ominus \bar{A}^{n}$.

We have previously defined in [Bach, $\S 1]$ morphisms of complexes $g_{*}:\left(A \otimes \bar{A}^{*} \otimes A, b^{\prime}\right) \rightarrow$ $R^{\prime}(A)$ and $h_{*}: R^{\prime}(A) \rightarrow\left(A \otimes \bar{A}^{*} \otimes A, b^{\prime}\right)$ such that $g_{*} \circ h_{*}=i d, d g\left(h_{2 m}(1 \otimes 1)\right)=r m$ and $d g\left(h_{2 m+1}(1 \otimes 1)\right)=r m+1$. Moreover, it is clear from the definitions that $d g\left(h_{m} \circ g_{m}(w \otimes\right.$ 1)) $\leq d g(w \otimes 1) \forall w \in A \otimes \bar{A}^{n}$.
1.2.Proposition: $h_{*} \circ g_{*}$ is homotopic to the identity by σ_{*}, where σ_{*} is the homotopy of A-modules recursively defined by: $\sigma_{0}=0$ and $\sigma_{n}=\varepsilon_{0} \circ\left(h_{n} \circ g_{n}-i d-\sigma_{n-1} \circ b^{\prime}\right)$, with $\varepsilon_{0}(a)=1 \otimes a$ for $a \in A \otimes \bar{A}^{n} \otimes A$.
Proof. We have:

$$
\begin{aligned}
b^{\prime} \circ \sigma_{n+1} & +\sigma_{n} \circ b^{\prime}=b^{\prime} \circ \varepsilon_{0} \circ\left(h_{n+1} \circ g_{n+1}-i d-\sigma_{n} \circ b^{\prime}\right)+\sigma_{n} \circ b^{\prime} \\
= & h_{n+1} \circ g_{n+1}-i d-\sigma_{n} \circ b^{\prime}-\varepsilon_{0} \circ\left(h_{n+1} \circ g_{n+1}-i d-\sigma_{n} \circ b^{\prime}\right)+\sigma_{n} \circ b^{\prime} \\
= & h_{n+1} \circ g_{n+1}-i d-\varepsilon_{0} \circ h_{n} \circ g_{n} \circ b^{\prime}+\varepsilon_{0} \circ b^{\prime}+\varepsilon_{0} \circ b^{\prime} \circ \sigma_{n} \circ b^{\prime} \\
= & h_{n+1} \circ g_{n+1}-i d-\varepsilon_{0} \circ h_{n} \circ g_{n} \circ b^{\prime}+\varepsilon_{0} \circ b^{\prime}+\varepsilon_{0} \circ\left(h_{n} \circ g_{n}-i d-\sigma_{n} \circ b^{\prime}\right) \circ b^{\prime} \\
= & h_{n+1} \circ g_{n+1}-i d
\end{aligned}
$$

By tensoring g_{*}, h_{*} and σ_{*} by $A \otimes_{A^{e}}$, we obtain A-maps

$$
\bar{g}_{*}: C_{*}(A) \rightarrow M_{*}(A), \quad \bar{h}_{*}: M_{*}(A) \rightarrow C_{*}(A), \quad \bar{\sigma}_{*}: C_{*}(A) \rightarrow C_{*+1}(A)
$$

verifying $\bar{g}_{*} \circ \bar{h}_{*}=i d$ and $\bar{h}_{*} \circ \bar{g}_{*}$ is homotopic to the identity by $\bar{\sigma}_{*}$

1.3.Remark: We have

1) $\bar{g}_{2 m}(w)=0$ if $d g(w)<m r$ and $\bar{g}_{2 m+1}(w)=0$ if $d g(w)<m r+1$.
2) $\bar{\sigma}_{n}\left(1 \otimes P_{1} \otimes \ldots \otimes P_{n}\right)=\gamma \circ \sigma_{n}\left(1 \otimes P_{1} \otimes \ldots \otimes P_{n} \otimes 1\right)\left(\right.$ with $\gamma\left(P_{0} \otimes Q \otimes P_{n+2}\right)=P_{n+2} P_{0} \otimes Q$ for $Q \in \bar{A}^{n+1}$ and $P_{i} \in A$).
3) $D_{n}=\bar{g}_{n+1} \circ B_{n} \circ \bar{h}_{n}$.
4) $d g\left(\bar{\sigma}_{n}(w)\right) \leq d g(w)$ for $w \in A \otimes \bar{A}^{\ominus^{n}}$

Proof. 1) follows easily from the explicit definition of \bar{g}_{*} given in [Bach, $\left.\left.\S 1\right], 2\right)$ is trivial, for 3) see [Bach, Proposition 2.1]. Let us see 4). Using the fact that $d g\left(h_{n} \circ g_{n}(w \otimes 1)\right) \leq$ $d g(w \otimes 1)$ we can see that $d g\left(\sigma_{n}(w \otimes 1)\right) \leq d g(w \otimes 1)$. Since $\bar{\sigma}_{n}\left(1 \otimes P_{1} \otimes \ldots \otimes P_{n}\right)=$ $\gamma \circ \sigma_{n}\left(1 \otimes P_{1} \otimes \ldots \otimes P_{n} \otimes 1\right)$, it is clear that $d g\left(\bar{\sigma}_{n}(w)\right) \leq d g(w)$

Now, we are ready to prove the main result of this paper.
1.4.Theorem: There exists an strong homotopy k-map $\left(G_{*}^{(i)}\right)_{i \geq 0}$ from $\tilde{M}(A)$ to $\tilde{C}(A)$ with $G_{*}^{(0)}=\bar{h}_{*}$.
Proof. We shall build up the maps $G_{j}^{(i)}$ by induction on i and j. Let $n \geq 0$. Assume that we have already built $G_{*}^{(i)}(0 \leq i \leq t)$ and $G_{j}^{(t+1)}(0 \leq j \leq n-1)$, such that:
i) $G_{*}^{(0)}=\bar{h}_{*}$
ii) $G_{j+1}^{(i)} \circ D_{j}-D_{2 i+j} \circ G_{j}^{(i)}=b_{2 i+j+2} \circ G_{j}^{(i+1)}-G_{j-1}^{(i+1)} \circ d_{j}$, for $0 \leq i<t$ or $i=t a \quad 0 \leq$
$j \leq n-1$ (where we consider $G_{j-1}^{(i+1)}=d_{j}=0$ if $j=0$)
iii) $d g\left(G_{2 j}^{(i)}\left(X^{a}\right)\right) \leq a+r j$ and $d g\left(G_{2 j+i}^{(i)}\left(X^{a}\right)\right) \leq a+1+r j$

Let $n=2 m$ and $0 \leq a \leq r-1$. If

$$
T=G_{n+1}^{(t)} \circ D_{n}\left(X^{a}\right)-B_{2 t-n} \circ G_{n}^{(t)}\left(X^{\alpha}\right)+G_{n-1}^{(t+1)} \circ d_{n}\left(X^{a}\right)
$$

then it is clear that $d g(T) \leq a+r m$.From this fact and Remark 1.3 (1) it follows that $\bar{g}_{2 t+n+1}(T)=0$ for $t>0$. For $t=0$, as by Remark 1.3 (3) $D_{n}=\bar{g}_{n+1} \circ B_{n} \circ \bar{h}_{n}$, we have:

$$
\begin{aligned}
g_{n+1}(T) & =\bar{g}_{n+1}\left(G_{n+1}^{(0)} \circ D_{n}-B_{n} \circ G_{n}^{(0)}+G_{n-1}^{(1)} \circ d_{n}\right)\left(X^{a}\right) \\
& =\left(\bar{g}_{n+1} \circ \bar{h}_{n+1} \circ \bar{g}_{n+1} \circ B_{n} \circ \bar{h}_{n}-\bar{g}_{n+1} \circ B_{n} \circ G_{n}^{(0)}+\bar{g}_{n+1} \circ G_{n-1}^{(1)} \circ d_{n}\right)\left(X^{a}\right) \\
& =\bar{g}_{n+1} \circ G_{n-1}^{(1)} \circ d_{n}\left(X^{a}\right)
\end{aligned}
$$

Since $d g\left(G_{n-1}^{(1)} \circ d\left(X_{n}^{a}\right)\right) \leq m r$, using again Remark $1.3(1)$ we conclude that $\bar{g}_{n+1}(T)=0$. Now let $G_{n}^{(t+1)}\left(X^{a}\right)=-\bar{\sigma}_{2 t+n+1}(T)$. From Proposition 1.3 of [G-G], $b_{2 t+n+1}(T)=0$, so:

$$
\begin{aligned}
b_{2 t+n+2} \circ G_{n}^{(t+1)}\left(X^{a}\right) & =-b_{2 t+n+2} \circ \bar{\sigma}_{2 t+n+2}(T) \\
& =\left(i d-\bar{h}_{2 t+n+1} \circ \bar{g}_{2 t+n+1}+\bar{\sigma}_{2 t+n} \circ b_{2 t+n+1}\right)(T)=T
\end{aligned}
$$

Finally, iii) follows immediately because $\bar{\sigma}_{*}$ preserves degree.
For n odd we can repeat the same proof as in the even case
1.5.Corollary: The cyclic, periodic and negative homology A are the respective homologies of $\tilde{M}(A)$.
Proof. See [K,Proposition 1.3] and [J,Lemma 2.1]
2. Cyclic homology of $k[X] /<X^{r}+a>$

In this section we shall compute the cyclic homology of $A=k[X] /<X^{r}+a>(a \in k)$ by means of a decomposition of the simplified complex $\tilde{M}(A)$.

This gives as a special case the cyclic homology of $k[X] /<X^{r}>$ and $k[X] /<$ $X^{r}-1>$, computed in [Bach] and [C-G-V] respectively.

Let us now show the promised decomposition. $\tilde{M}(A)$ splits into a direct sum $\tilde{M}(A)=$ $\bigoplus_{i=0}^{r-1} \tilde{M}(A)^{(i)}$, where $\tilde{M}(A)^{(i)}=\left(M_{*}^{(i)}(A), d_{*}^{(i)}, D_{*}^{(i)}\right)$ is the mixed complex of k modules obtained from $M_{n}^{(i)}(A)=k, d_{2 m+1}^{(i)}=0, d_{2 m}^{(i)}(1)=r a, D_{2 m+1}^{(i)}=0, D_{2 m}^{(0)}(1)=0$ and $D_{2 m}^{(i)}(1)=i+m r$ if $i>0$ Hence, the SBI sequence splits into a direct sum $\bigoplus_{i=0}^{r-1} \mathrm{SBI}^{(i)}$ of sequences

$$
\mathrm{SBI}^{(i)}: \ldots \rightarrow H_{n}^{(i)}(A) \xrightarrow{I} H C_{n}^{(i)}(A) \xrightarrow{S} H C_{n-2}^{(i)}(A) \xrightarrow{B} H_{n-1}^{(i)}(A) \xrightarrow{I} H C_{n-1}^{(i)}(A) \xrightarrow{S} \ldots,
$$

where $H_{*}^{(i)}(A)=H_{*}\left(\dot{M}(A)^{(i)}\right)$ and $H C_{*}^{(i)}(A)=H C_{*}\left(\tilde{M}(A)^{(i)}\right)$.
2.1.Lemma: If k is a U.F.D and $r a \neq 0$, then $H C_{2 m}^{(i)}(A)(0<m, 0<i<r)$ is freely generated by the $2 m$-cycle $\left(x_{m, 0}, \ldots, x_{m, n}\right)$, where

$$
x_{m, h}=(-1)^{h}\left(\prod_{j=m-h}^{m-1} \frac{r a}{(r a: i+j r)}\right)\left(\prod_{j=0}^{m-h-1} \frac{i+j r}{(r a: i+j r)}\right)
$$

In particular $H C_{2 m}^{(i)}(A) \cong k((n a: i+j r)$ is the greatest common divisor of $n a$ and $i+j r)$. Proof. We shall prove it by induction on m. It is clear that $x_{0,0}=1$ generates $H C_{0}^{(i)}(A)=k$. Suppose that $\left(x_{m, 0}, \ldots, x_{m, m}\right)$ is a $2 m$-cycle which freely generates $H C_{2 m}^{(i)}(A)$. It is immediate that $\left(x_{m+1,0}, \ldots, x_{m+1, m+1}\right)$ is a $2(m+1)$-cycle without torsion. Let $\left(y_{m+1,0}, \ldots, y_{m+1, m+1}\right)$ be a $2(m+1)$-cycle. Since $\left(y_{m+1,1}, \ldots, y_{m+1, m+1}\right)=$ $S\left(\left(y_{m+1,0}, \ldots, y_{m+1, m+1}\right)\right)$ belongs to $H C_{2 m}^{(i)}(A)$, there exists a unique $\alpha \in k$, such that $y_{m+1, h}=\alpha \cdot x_{m, h-1}(1 \leq h \leq m+1)$. As $\left(y_{m+1,0}, \ldots, y_{m+1, m+1}\right)$ is a $2(m+1)$-cycle, we have:

$$
\begin{aligned}
r a \cdot y_{m+1,0} & =(i+m r) \cdot y_{m+1,1}=\alpha(i+m r) \cdot x_{m, 0}=\alpha(i+m r) \cdot \prod_{j=0}^{m-1} \frac{i+j r}{(r a: i+j r)} \\
& =\alpha(r a: i+m r) \cdot \prod_{j=0}^{m} \frac{i+j r .}{(r a: i+j r)} .
\end{aligned}
$$

Then $\frac{r a}{(r a: i+m r)} \cdot y_{m+1,0}=\alpha \cdot\left(\prod_{j=0}^{m} \frac{i+j r}{(r a: i+j r)}\right)$. If the product in brackets is zero, $y_{m+1,0}=$ $x_{m+1,0}=0$ and if it is different from zero, there exists $\beta \in k$ such that:

$$
y_{m+1,0}=\beta \cdot \prod_{j=0}^{m} \frac{i+j r}{(r a: i+j r)} \quad \text { and } \quad \alpha=\beta \cdot \frac{r a}{(r a: i+m r)}
$$

In both cases $\left(y_{m+1,0}, \ldots, y_{m+1, m+1}\right)$ is a multiple of $\left(x_{m+1,0}, \ldots, x_{m+1, m+1}\right)$
2.2.Lemma: If k is a principal ideal domain, char $k=0$ and $a \in k \backslash\{0\}$, then

$$
H C_{2 m+1}^{(i)}(A) \cong \bigoplus_{j=0}^{m}\left(\frac{k}{<i+j r, r a>}\right) \quad(m \geq 0, i>0)
$$

Proof. Let $i \neq 0$. Since $H_{2 m}^{(i)}(A)=0, H_{2 m+1}^{(i)}(A)=k /<r a>$ and $B: H C_{2 m}^{(i)}(A) \rightarrow$ $H_{2 m+1}^{(i)}(A)$ sends $\left(x_{m+1,0}, \ldots, x_{m+1, m+1}\right)$ to $(i+m r) x_{m, 0}$ (Lemma 2.1), from the $\mathrm{SBI}^{(i)}$ sequence we obtain short exact sequences

$$
\begin{equation*}
0 \rightarrow \frac{k}{<(i+m r) x_{m, 0}, r a>} \rightarrow H C_{2 m+1}^{(i)}(A) \rightarrow H C_{2 m-1}^{(i)}(A) \rightarrow 0 \quad(m \geq 1) \tag{*}
\end{equation*}
$$

Now, as $\left(r a: x_{m, 0}\right)=1$ and k is a principal domain,

$$
\frac{k}{<(i+r m) x_{m, 0}, r a>}=\frac{k}{<i+m r, r a>}
$$

Hence, $(*)$ splits by means of $\pi: H C_{2 m+1}^{(i)}(A) \rightarrow \frac{k}{\langle i+m r, r a\rangle}, \pi\left(\overline{x_{1}, \ldots, x_{m+1}}\right)=\bar{x}_{1}$
2.3.Theorem: Let $\left.A=k[X] /<X^{r}+a\right\rangle$. We have

1) if $r a=0$, then

$$
\begin{aligned}
H C_{2 m}(A) & =\bigoplus_{i=0}^{r-1} H C_{2 m}^{(i)}(A)=k^{(r+m)} \oplus\left(\bigoplus_{i=0}^{r-1}\left(\bigoplus_{j=0}^{m-1} A n n(i+j r)\right)\right) \\
H C_{2 m+1}(A) & =\bigoplus_{i=0}^{r-1} H C_{2 m+1}^{(i)}(A)=k^{(m+1)} \oplus\left(\bigoplus_{i=0}^{r-1}\left(\bigoplus_{j=0}^{m-1} \frac{k}{<i+j r>}\right)\right),
\end{aligned}
$$

2) If there exists a morphism of rings $\varphi: k^{\prime} \rightarrow k$, with k^{\prime} a principal domain, char $k=0$ and $a \in \operatorname{Im}(\varphi)$, then

$$
\begin{aligned}
H C_{2 m}(A) & =k^{(r)} \oplus\left(\bigoplus_{i=0}^{r-1}\left(\bigoplus_{j=0}^{m-1} A n n(i+j r: r a)\right)\right) \oplus(A n n(r a))^{(m)} \\
H C_{2 m+1}(A) & =\bigoplus_{i=1}^{r-1}\left(\bigoplus_{j=0}^{m} \frac{k}{<i+j r, r a>}\right) \oplus\left(\frac{k}{\langle r a>}\right)^{(m+1)}
\end{aligned}
$$

where $M^{(s)}$ denotes the direct sum of s copies of M.
Proof. 1) It is immediate and 2) follows because using the Künneth formula we can consider the case where k is a principal domain and $a \in k \backslash\{0\}$. Then, the result is clear from the previous lemmas

REFERENCES

[Bach] Buenos Aires Cyclic Homology Group, "Cyclic homology of algebras with one generator", K-Theory 5 (1991), 51-69:
[B-O] D. Burghelea and C. Ogle, "The Künneth formula in cyclic homology", Math Z. 193 (1986), 527-536.
[C-G-V] G. Cortiñas, J.A. Guccione and O.E. Villamayor, "Cyclic homology of $k[Z / p Z]$ ", K-Theory 2 (1989), 603-616.
[G-G] J.A. Guccione and J.J. Guccione, "Cyclic homology of monogenic extensions", Journal of Pure and Applied Algebra 66 (1990), 251-269.
[J] J.D.S. Jones, "Cyclic homology and equivariant homology", Inv. Math. 87 (1987), 403-423.
[K] C. Kassel, "Cyclic homology, comodules and mixed complexes", J.Algebra 107 (1987), 195-216.
[L] T. Lambre, "Sur le caractere de Chern des anneaux d'entiers de corps de nombres", Preprint (1993)
[L-L] M. Larsen and A. Lindenstrauss, "Cyclic homology of Dedekind domains", K-Theory 6 (1992), 301-334.
[L-Q] J.L. Loday and D. Quillen, "Cyclic homology and the Lie algebra homology of matrices", Comment. Math. Helv. 59 (1984), 565-591.
[M-N] T. Masuda and T. Natsume, "Cyclic cohomology of certain affine schemes", Publ. Res. Inst. Math. Sci. 21 (1985), 1261-1279.

Received: August 1993
Revised: December 1993

[^0]: * The following people participated in this research: Jorge A. Guccione, Juan José Guccione. María Julia Redondo, Andrea Solotar and Orlando E. Villamayor.

