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Introduction

Given a commutative algebra A over a field k, it is a well known result that the first Hochschild homology
group HH1(A) is isomorphic to the A-module of Kähler differentials Ω1(A), and the pair (Ω1(A), d : A →
Ω1(A)) is therefore a universal object for derivations from A into symmetric A-bimodules M . Dually,
HH1(A) ∼= Derk(A) = {f ∈ Homk(A,A) /f(ab) = af(b) + bf(a) ∀a, b ∈ A}.

This object has been studied for a long while, as its description is connected with important properties
of the algebra A. As one of the best-known examples, let us recall the Hochschild - Kostant - Rosenberg
theorem [13], and its reciprocal statement [2, 3], which tells us that for a perfect field k the algebra HH∗(A)
(for A an essentially finite type commutative algebra) is isomorphic to the exterior algebra ΛA(Ω1(A|k)) if
and only if A is smooth.

We define homologically the concept of a smooth coalgebra and study the properties of this kind of
coalgebras.

If C is a topological cocommutative k-coalgebra (the topology may be the discrete one), we define an
object Ω1

C and a coderivation d : Ω1
C → C such (Ω1

C , d) that is universal for coderivations of cosymmetric
C-bicomodules into C. We show that this object is isomorphic to the first cohomology group Hoch 1(C)
associated to the coalgebra ([6], [8], [17]).

The behaviour of Ω1
C with respect to localizations is studied. It turns out that Hoch1(C) localizes in more

general situations than those described in [9]. For the higher cohomology groups, we prove that in certain
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cases there is an isomorphism with the n-th component of the graded-cocommutative coalgebra Λ∗C(Ω1
C)

obtained from Ω1
C , which is described in section 6. This fact gives also localization results.

Finally we prove:
Theorem If k is a field, char(k) = 0 and C is a cocommutative coalgebra satisfying either one of the
following hypothesis:

• C is a smooth algebraic coalgebra and k.ei ∧ k.ei is finite dimensional for every group-like ei ∈ C.

• C is a smooth local topological coalgebra with group-like e provided with a topology verifying the
conditions stated in Proposition 5.1, C =

⋃
n∈N0

∧n(k.e)

then Hoch∗(C) is isomorphic to the exterior coalgebra on Ω1
C .

In fact, this theorem gives an answer to a problem which arises in [11] (Section 5). In this paper, the
authors give a proof of Hochschild - Kostant - Rosenberg theorem using G-algebras and expect that a dual
version for coalgebras will hold. Their problem is the lack of a definition dualizing regular sequences. Such
a definition appears here in the hypothesis of Theorem 3.8. It is worth to notice that they do not mention a
key problem: Hoch theory does not localize well except under certain conditions; in section 7 we solve this
localization problem.

The contents of the paper are as follows:
In section 1 we define what a “smooth coalgebra” is. Our definition is given in terms of extensions.

Section 2 is devoted to the definition of local coalgebras in terms of group-like elements and to study its
properties. A useful result is proven here: it is a “Nakayama’s Lemma” for local coalgebras. Smoothness is
also for coalgebras, a local concept.

In section 3 we construct Ω1
C . When C is (cocommutative) smooth, Ω1

C turns out to be, as expected, an
injective cosymmetric C-comodule.

We study the behaviour of the universal object Ω1
C with respect to localizations and also prove that Ω1

C

is a free comodule in the smooth local case.
We state at the end of this section an equivalence between the structure of the graded coalgebra associated

to C (which is now local) and the existence of a “Koszul resolution”.
We describe in section 4 the structure of gr(C). In fact, we prove a structure theorem for cocommutative

local smooth coalgebras (propositions 4.4 and 4.5).
We prove in section 5 that Ω1

C is isomorphic to Hoch1(C), then the last one commutes with localizations.
Since we are working with topological coalgebras, we prove a result allowing us to calculate the topological

version of Hoch∗ in terms of “resolutions”.
The definition of the exterior coalgebra on Ω1

C is given in section 6. We also study in detail the example of
the coalgebra of distributions supported on a smooth compact manifold X , which suggests that a coalgebra
version of a Hochschild - Kostant - Rosenberg type theorem exists.

Finally, in section 7 we give the arguments allowing us to pass from the global case to the local case, and
we then prove our main theorem.

We will suppose that the field k is algebraically closed. As we are interested in the cohomology groups
Hoch∗, this assumption is not restrictive in the sense that Hoch∗(M,C|k) ⊗ k = Hoch∗(M ⊗ k, C ⊗ k|k)
(with this notation, |k, resp |k, means that the tensor products are taken over k, resp. over k, and k denotes
the algebraic closure of k). C will be always a topological k-coalgebra, unless the contrary is stated, even
if we use the algebraic notation. In particular, usual coalgebras will be considered as topological ones with
the discrete topology, and the same will hold for comodules, Ce will denote C ⊗ Cop and the category of
C-bicomodules will be identified with Ce-comodules. All topologies considered will be Hausdorff. Given any
C-bicomodule, ρ− and ρ+ will respectively denote the left and right structure morphisms. We want to thank
Mariano Suárez Álvarez for his helpful (mathematical and formatting) comments. We also thank Jean-Louis
Loday for his remarks on the relation between commutative extensions and Harrison cohomology.
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1 Smooth coalgebras

Given a commutative k-algebra A, there are several equivalent definitions of what smoothness of A means.
One of them says that A is smooth if and only if the second cohomology Harrison group is trivial for every
symmetric A-bimodule M , or equivalently, every extension 0 →M → B → A→ 0 of commutative algebras
with M a square zero ideal of B, is split by an algebra morphism. The well known Hochschild - Kostant
- Rosenberg theorem says that if A is an essentially finitely generated commutative smooth algebra over a
perfect field, then its Hochschild homology groups HHn(A) are isomorphic to Ωn(A), ∀n ∈ N. In fact, both
conditions are equivalent [3, 13].

This section is devoted to the definition and study of basic properties of smooth coalgebras. As the
definition makes use of the Hochschild cohomology groups H∗(M,C) defined by Doi for M an arbitrary
C-bicomodule, we begin by recalling some results and definitions from [6].

Definition 1.1 Given a k-coalgebra C, an extension of C is a coalgebra D such that C is a subcoalgebra
of D. The exact sequence

0 C D D/C 0// // p // //

endows D/C with a structure of D-bicomodule. A structure of (non-counital) coalgebra on D/C is given by
∆D/C(d) := (p⊗ p)∆D(d) (d ∈ D).

Moreover, if D = C ∧ C (i.e. ∆(D) ⊆ C ⊗ D +D ⊗ C) we have that ∆D/C = 0 and also D := D/C is a

C-bicomodule. Denote by p : D → D the canonical projection. In this case, given a k-linear map ψ : D → C
extending idC , ρ+ ◦ p = (p⊗ ψ) ◦ ∆ and analogously for ρ− : D → C ⊗D.

If f : D → C ⊗ C is defined by f := (ψ ⊗ ψ)∆ − ∆ψ, then f(x) = 0 for x ∈ C, so, there exists
f : D → C ⊗ C such that f ◦ p = f .

Lemma 1.2 Given an extension D of C and f as above, f is a 2-cocycle in the complex (Hom(D,C⊗∗), δ∗).

Proof: Since p is surjective, it is enough to see that δ2(f)◦p = 0. This follows immediately fromD = C∧C.

The following result was proved in [6]:

Lemma 1.3 ([6], Lemma 7) Given k-linear maps ψ1, ψ2 : D → C such that ψi|C = idC (i = 1, 2), let f1

and f2 be defined as above. Then there exists h ∈ Homk(D,C) such that f1 − f2 = δ1(h).

The above lemmas show that there is an element of H2(D,C) associated to each extension of coalgebras.
Doi proved ([6], Theorem 4) that, in the above situation, [f ] = 0 in H2(D,C) if and only if there exists a
coalgebra morphism ψ : D → C such that ψ|C = idC .

Consequently, given a coalgebra C and a C-bicomodule M , the equivalence classes of extensions of C by
M are in 1-1 correspondence with elements of H2(M,C). As we are interested in cocommutative coalgebras,
we will consider only cosymmetric bicomodules and cocommutative extensions. This class of extensions is in
1-1 correspondence with a subgroup of H2(M,C). Given a 2-cocycle [f ] ∈ H2(M,C) with M cosymmetric,
we say that f is symmetric if f(m) = σ12(f(m)), where σ12 is the transposition of the first and second
factors. We remark that if g is an arbitrary 2-cocycle, then ĝ := σ12(g) is also a 2-cocycle; assuming 1/2 ∈ k,
the space of 2-cocycles can be decomposed into the direct sum of subspaces corresponding to the eigenvalues
1 and −1 of σ12. The boundary of a 1-cocycle is always symmetric, so the decomposition of cocycles gives
a decomposition of H2(M,C) = H2(M,C)sym ⊕ H2(M,C)antisym. It is clear that symmetric 2-cocycles
correspond to cocommutative extensions and viceversa. Our definition of smoothness of C is as follows:

Definition 1.4 Given a cocommutative k-coalgebra, we say that C is smooth if and only if H 2(M,C)sym =
0 for every cosymmetric C-bicomodule M .
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Remark: The subspace H2(M,C)sym is analogous to the second Harrison cohomology group for com-
mutative algebras and symmetric bimodules. A Harrison-type theory might be defined for cocommutative
coalgebras, but we are not going to consider other degrees because every property proved in this work
depends only on extensions.

Next, we give an alternative description of smoothness:

Proposition 1.5 The following statements are equivalent:

1. C is k-smooth.

2. Given an extension of cocommutative k-coalgebras 0 → D → E →M → 0 with E = D ∧D (and so M
is a D-cosymmetric bicomodule), and a k-coalgebra morphism ψ : D → C, the following diagram may
be completed with a morphism φ of k-coalgebras:

0 D E M 0

C

//

ψ

��

//

φ~~�
�

�
// //

Proof: 2.⇒ 1.) Let M be a cosymmetric C-bicomodule. Consider an extension 0 → C → E →M → 0 with
E cocommutative. M is then a cosymmetric E-bicomodule; the exactness of the sequence is equivalent to
E = C∧C. By hypothesis, the sequence is split by a coalgebra morphism φ, and we see that as H2(M,C)sym

classifies commutative extensions, H2(M,C)sym = 0.

1.⇒ 2.) Given an extension 0 → D → E →M → 0 where M is a cosymmetric D-bicomodule, E and D
are cocommutative and ψ : D → C a coalgebra morphism, consider the push-out P of C and E over D.

P is a cocommutative coalgebra provided of monomorphisms C → P and E → P , with coproduct given
by:

∆P : P → P ⊗ P{
∆P (c) = ∆C(c)
∆P (e) = ∆E(e)

We want to see that P = C ∧ C, or equivalently that P/C is a C-bicomodule. In fact, P/C ∼= M , the
C-structure on P/C being induced by the D-structure on M and the morphism ψ.

Now our hypothesis is that C is smooth. As extensions are classified by H2(C,P/C)sym, which is null, it
follows that there exists a coalgebra morphism σ : P → C splitting the exact sequence 0 → C → P →M → 0.
Defining φ := σ ◦ ψ we obtain the desired morphism splitting 0 → D → E →M → 0.

Given a complete topological cocommutative coalgebra C (we consider in particular the discrete case) and
a multiplicative subset S ⊂ C ′, the localization C[S] is another topological coalgebra provided of a morphism
π : C[S] → C, universal for coalgebra morphisms f : D → C from topological cocommutative coalgebras,
such that the elements of S define, by the C ′-action, invertible endomorphisms in D, or, equivalently s ◦ f
is invertible in the algebra D′ for all s ∈ S.

The construction of C[S] and of localization of comodules M[S] has been carried out in [18] for linear
topologies and in [9] for the locally convex case.

As expected, the smoothness property localizes well:

Proposition 1.6 Let C be a cocommutative smooth k-coalgebra. Then C[S] is smooth for any multiplicatively
closed subset S of C ′.

Proof: Let us consider an extension 0 → D → E → M → 0 with D and E cocommutative (and hence M
cosymmetric), and a coalgebra morphism ν : D → C[S]. As C is smooth, there exists u′ : E → C such that
u′ ◦ i = π ◦ ν. Given s ∈ S, s ◦ u′ ◦ i = s ◦ π ◦ ν is an invertible element in D′, as s ◦ π is invertible in (C[S])

′,

so, there exists t̃ ∈ D′ such that i∗(s ◦ u′).t̃ = 1. As i∗ is an epimorphism, there exists t ∈ E ′ such that
i∗(t) = t̃ and then, for some m ∈M ′, we have t.(s ◦ u′) = 1 +m and this is invertible because m is nilpotent
(in fact m2 = 0). As a consequence, s ◦ u′ is invertible for all s ∈ S and so u′ factors through C[S].
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2 Local Coalgebras

In this section (where C will always denote a cocommutative k-coalgebra) we study local coalgebras, i.e.
coalgebras obtained after “localization at maximal ideals”.

Note that coalgebra means either algebraic coalgebra or topological coalgebra.

Definition 2.1 Given C, a coideal D is a C-comodule provided of an epimorphism φ : C → D of (cosym-
metric) C-comodules.

Remark: In this situation, Ker(φ) is a subcoalgebra of C, and as C-comodule, D is isomorphic to C/Ker(φ).
We remark that this definition is dual to the definition of an ideal in ring theory. There, ideals are subobjects
of rings such that their quotients are also rings; here, a coideal is a quotient such that the Kernel of the
projection is a (sub)coalgebra. Our definition of coideal differs from Sweedler’s; we prefer ours in order to
preserve duality.

Definition 2.2 A coideal D of C is called maximal if Ker(φ) is a one dimensional subcoalgebra (necessarily
isomorphic to the base field k).

If (D,φ : C → D) is a maximal coideal and f : k → Ker(φ) is the corresponding isomorphism of coalgebras,
then e = f(1) is a group-like element in C. Conversely, given e define φ as the projection C → C/k.e.
We shall keep in mind in what follows this correspondence between “points” of the coalgebra, its maximal
coideals and group-like elements of C. As an example, let us take C = k[x]0 (see [16] for the definition of
(−)0) with k algebraically closed, k[x]0 = ⊕λ∈kk[s].e

λs. It is easy to see that the only group-like elements of
C are the exponentials eλs. Then C has ‘as many points as’ elements of k.

When k is algebraically closed, maximal coideals always exist. This follows because it is enough to find
a group-like element in a finite dimensional subcoalgebra C̃ ⊂ C, and such an element always exists because
algebra morphisms C̃∗ → k always exist.

Now, given a maximal coideal D in C, C ′ − D′ is clearly a multiplicative subset of C ′; we are able to
construct C[C′−D′], which is a topological coalgebra. We shall denote it by CD .

We next define the notion of prime coideal of a coalgebra:

Definition 2.3 A coideal D with kernel K of a coalgebra C is prime if the restriction map

C∗ ∼= ComC(C,C) → ComC(K,K)

is such that for all f ∈ C∗, f |K : K → K is null or an epimorphism.

Notice that the restriction map f 7−→ f |K : K → K is well-defined because f is C colinear and K is a
subcoalgebra. We also remark that, with this definition, every maximal coideal is prime.

Definition 2.4 A coalgebra C (over an algebraically closed field) will be called a local coalgebra if it has
a unique group-like element.

Remark: given a maximal coideal D in C, the exact sequence 0 → k → C → D → 0 is split by a coalgebra
morphism ε : C → k, so localization is exact for this sequence; we conclude that 0 → k → CD → DD → 0
is exact (kD = k because D′ acts by isomorphisms on k), and in particular we see that DD is a maximal
coideal in CD.

Proposition 2.5 With notations as above, and given a maximal coideal D of C (corresponding to a sub-
coalgebra k.x of C), CD is a local coalgebra.
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Proof: Consider a subcoalgebra K of CD corresponding to a maximal coideal; denoting by Im(K) (the
closure of) the image of the subcoalgebra K by the canonical map π : CD → C, we have a commutative
diagram:

0 K CD CD/K 0

0 Im(K) C

// //

��
π

��

// //

// //

(Im(K))⊥ is a subset of D′ = (k.x)⊥, so that Im(K) = k.x, because they have the same dimension. As a
consequence, if CD has a maximal coideal, it is unique.

Also, if s ∈ S = C ′ −D′ = {f ∈ C ′ / f(x) 6= 0}, then s.x = (1 ⊗ s)∆(x) = s(x).x. So we can define the
element { 1

s(x) .x}s∈S ∈
∏
s∈S(k.x)(s), where (k.x)(s) = k.x, ∀s ∈ S. Denoting by λs the element 1

s(x) .x, we

have, for t ∈ S,

t.λst =
1

(st)(x)
t(x).x =

1

s(x)t(x)
t(x).x = λs

so, {λs}s∈S ∈ (k.x)[S]. This proves that there is at least one maximal coideal (notice that the argument
assuring the existence of maximal coideals was stated only in the algebraic context).

We finish this section with a description of injective comodules over local coalgebras. We will prove that
given a finitely cogenerated injective comodule M over a local coalgebra C, it is C-free. In the algebraic
category the hypothesis of being finitely cogenerated is not necesary, this fact was already known (see [18]).
The methods in [18] differ from ours. We use a dualization of a Nakayama’s Lemma, and this allows us to
treat the topological case (at least for finitely cogenerated comodules) in the same way as the algebraic case.

We need a previous result, which is the analogue to Nakayama’s Lemma for algebras.

Lemma 2.6 Consider a cocommutative local coalgebra C with group-like x and a C-comodule M , together
with an injection M ↪→ C(I) for some set I; suppose that I is finite in the topological case. If the composition:

0 M C ⊗M C/K ⊗M// ρ //
� � OO

πK⊗id//

is a monomorphism for some subcoalgebra K ⊆ C, then M = 0.

Proof: Let K be a subcoalgebra of C. Then K contains at least an irreducible subcoalgebra of C, but there
is only one, so k.x ⊆ K.

This is clear in the algebraic context (see [16]), for the topological case it needs a proof:
Consider the inclusion k.x ↪→ C; by restriction it induces an algebra map r : C ′ → (k.x)′ = k with kernel

(k.x)⊥, which is a maximal ideal of C ′. The composition

C ′ K ′ K ′/π((k.x)⊥)π // //

is clearly a surjection, and (k.x)⊥ maps to zero, then it induces a surjection C ′/(k.x)⊥ → K ′/π((k.x)⊥).
Since C ′/(k.x)⊥ is a field, it is a monomorphism or it is zero. In this last case on has k.x = K, in particular
K contains an irreducible subcoalgebra of C. If it is a monomorphism then K ′/π((k.x)⊥) is isomorphic to
k and this proves that π((k.x)⊥) is a maximal ideal in K ′. Dualizing the diagram

C ′

K ′ k

r

� � � � � �   
π

��
//
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one obtains the commutative diagram

C ′′ C

K ′′ K k

oo
OO

oo

OO __�
�
�
�
�
�

oo�����
�� OO

The dashed arrow exists because K = K ′′ ∩ C, as x is the image of 1 ∈ k, the assertion is proved.
If (πK ⊗ id) ◦ ρ is a monomorphism, then (πk.x ⊗ id) ◦ ρ is also a monomorphism. It is then sufficient to

make the proof for K = k.x.
First step: suppose that M is a subcomodule of C.
Since C is cocommutative, M is a subcoalgebra and hence, if M 6= 0, it contains an irreducible subcoal-

gebra; but there is only one, so k.x ⊆M .
By hypothesis, the composition M → C ⊗M → C/k.x⊗M is injective, but the element x ∈ M is in the

kernel of this composition; this is a contradiction unless M = 0.
Second step: Suppose that there is an injectionM ↪→ Cm for somem ∈ N. Let us take n =min{m ∈ N|M

embeds in Cm}. Suppose n > 0.
The case n = 1 has already been dealt with in the first step, suppose then n > 1. Let φ : M → Cn

denote an embedding and take N = M ∩ φ−1(Cn−1 ⊕ 0).

If N = 0, then the composition M
φ
→ Cn

πn→ C is injective, because if z ∈ M ∩ Ker(πn ◦ φ) then
πn(φ(z)) = 0, z ∈ N = 0, and this contradicts the minimality of n, so N 6= 0. Now consider the diagram

N C ⊗N C/k.x⊗N

M C ⊗M C/k.x⊗M

���

��

//
� �

��

//
���

��
// //

If the composition in the bottom row is a monomorphism, then so is the composition in the top row, because
the columns are monomorphisms. Also φ|N : N → Cn−1 ⊕ 0 is injective; the inductive hypothesis implies
that N = 0, and this is a contradiction.

Third step: When the coalgebra C is algebraic, consider T an arbitrary finite dimensional subcomodule
of M , if (π ⊗ idM ) ◦ ρM is a monomorphism, so is its restriction to T . Since a finite dimensional comodule
is finitely cogenerated (consider the structure morphism T → C ⊗T ∼= Cdimk(T )), the second step applies to
T and we see that T = 0. But M is the union of its finite dimensional subcomodules, clearly now, M = 0.

Proposition 2.7 Let C be a local coalgebra and M an injective finitely cogenerated C-comodule. Then M
is a free C-comodule.

Proof: Let us suppose M 6= 0 and let n be as in the proof of the above lemma. Consider the diagram

0 M Cn

0 (k.x)n ∩M (kx)n

// //

//
��

OO

//
��

OO

1. M ∩ (kx)n 6= {0}: Identifying C ⊗M to a subspace of C ⊗ Cn ∼= (C ⊗ C)n and then considering the
composition

M → C ⊗M → C/k.x⊗M

we see that the image of an element z = (z1, . . . , zn) ∈M is zero if z is such that the image of (0, . . . , zi, . . . , 0)
is null for all i , and this is true if and only if zi = ε(zi).x for all i. Then z = (z1, . . . , zn) = (ε(z1).x, . . . , ε(zn).x),
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so if M ∩ (k.x)n = 0 this composition is injective and by Nakayama’s Lemma M = 0, a contradiction. Then
M ∩ (k.x)n is a non-zero subspace of (k.x)n. Let {m1, . . . ,ms} be a basis of it.

2. Consider the maps εn : Cn → (k.x)n ( (c1, . . . , cn) 7→ (ε(c1).x, . . . , ε(cn).x) and φ : M → Cs =
C⊗ (k.m1⊕ ...⊕k.ms) given by φ(m) = m−1⊗εn(m0). Notice that εn(M) ⊆ (k.x)n∩M = k.m1⊕ ...⊕k.ms.
Since φ is a morphism of C-comodules, Ker(φ) is a subcomodule of M . We want to show that it is zero.
Looking again at the diagram

Ker(φ) C ⊗ Ker(φ) C/k.x⊗ Ker(φ)

M C ⊗M C/k.x⊗M

//
� �

��

//
� �

��

���

��
// //

we observe that φ|(k.x)n∩M = id(k.x)n∩M and hence Ker(φ)∩ (k.x)n = 0 then, again by Nakayama’s Lemma,
Ker(φ) = 0.

3. Next we want to show that the cokernel of φ is zero. Let us denote Kφ the cokernel of φ and consider
the short exact sequence

0 →M → Cs → Kφ → 0

As M is injective, the sequence is split, and Cs ∼= M ⊕Kφ (identifying Kφ with its image by the splitting).
But Kφ ∩ (k.m1 ⊕ . . .⊕ k.ms) = 0 because (k.m1 ⊕ . . . k.ms) = (k.x)n ∩M and Kφ ∩M = 0. This proves
that Kφ = 0 because (k.m1 ⊕ . . .⊕k.ms) is the kernel of the composition Cs → C⊗Cs → C/k.x⊗Cs which
induces by restriction the composition Kφ → C ⊗Kφ → C/k.x⊗Kφ.

We conclude this section with two lemmas that will be necessary later, but are interesting on their own.

Lemma 2.8 Let C and D be two cocommutative k-coalgebras with k = k. Then

1. If C and D are local, then C ⊗D is also local.

2. If C and D are smooth, then C ⊗D is also smooth.

Proof: 1. We remark that C ⊗ D is the product in the category of cocommutative k-coalgebras, the
projections being pC = 1 ⊗ ε : C ⊗D → C and pD = ε ⊗ 1 : C ⊗D → D. If φ : E → C ⊗D is a coalgebra
morphism and E is cocommutative, then φ determines two coalgebra morphisms φC = pC ◦ φ, φD = pD ◦ φ,
and φ(x) = φC(x) ⊗ φD(x) for all x ∈ E. If e is a group-like element of C ⊗ D then it corresponds to a
coalgebra morphism k → C ⊗D, and as a consequence e must be of the type e = eC ⊗ eD with eC (resp.
eD) a group-like element of C (resp. D). But if C and D have unique group-like elements, then the same
holds for C ⊗D.

2. Let
0 → C ⊗D → E →M → 0

be an extension of cocommutative coalgebras with E = (C ⊗D)∧E (C ⊗D). We must produce a coalgebra
splitting. Consider the following commutative diagram:

0 D E ⊕pD
D MD 0

0 C ⊗D E M 0

0 C E ⊕pC
C MC 0

// // // //

// //

pD

OO

pC

��

OO

��

// //

OO

��
// // // //

where MC and MD are the respective Cokernels; which are cosymmetric. One sees easily that the induced
maps M →MC and M →MD are both surjective, so ∆MC

= 0 = ∆MD
, or, in other words, that E⊕pC

C =

8



C∧E⊕pC
CC and similarly for E⊕pD

D (notice that these are cocommutative coalgebras). Now because C and
D are smooth, there are coalgebra splittings of both extensions; let us denote them by s : E⊕pC

C → C and
t : E⊕pD

D → D. Composing them with the canonical projections E → E⊕pC
C and E → E⊕pD

D we obtain
two coalgebra morphisms S : E → C and T : E → D. Now the coalgebra morphism (S⊗T )◦∆E : E → C⊗D
is the desired splitting for the extension of C ⊗D by M .

Lemma 2.9 Let C be a cocommutative smooth coalgebra and K a subcoalgebra of C such that there exists
a coalgebra morphism ψ : C → K with ψ|K = idK. Then K is smooth. In particular, if C is smooth and
C = K1 ⊗K2, then K1 and K2 are smooth.

Proof: Consider 0 → D → E → M → 0 an extension of cocommutative coalgebras with E = D ∧E D, and
f : D → K a coalgebra morphism. Since K is a subcoalgebra of C, we can consider f as a morphism from
D to C (see diagram)

0 D E M 0

K C

// //

f

��

//

f̃
��

�

�

�

//

�� //
ψ

oo

The dashed morphism f̃ : E → C such that f̃ |D = f exists because C is smooth; if we define f : E → K by

f := ψ ◦ f̃ we obtain the desired extension of f .

3 Universal object for coderivations

Given a field k and a k-coalgebra (C,∆, ε), there is an object LC and a coderivation d : LC → C such
that the pair (LC , d) is universal for k-coderivations of bicomodules M into C [6, 8]. LC is the cokernel of
∆ : C → C ⊗ C. The sequence

0 C C ⊗ C LC 0// ∆ // // //

is k-split by means of s : C ⊗ C → C, s(c ⊗ c′) := ε(c)c′. LC is then a topological C-bicomodule with the
quotient topology of C ⊗ C/Im(∆).

If C is a cocommutative topological coalgebra, we shall be concerned with complete topological C-
bicomodulesM which are C-cosymmetric (i.e. σ12◦ρ

+
M = ρ−M ). In this context, a continuous map f : M → C

is called a coderivation if

∆ ◦ f = (id⊗ f) ◦ ρ−M + (f ⊗ id) ◦ ρ+
M = (1 + σ12) ◦ (id⊗ f) ◦ ρ−M

We consider the subcomodule of LC consisting of the cosymmetric elements and denote it Ω1
C , i.e.

Ω1
C := Sym(C ⊗ C/Im(∆)) = (C ∧Ce C)/C

Proposition 3.1 Ω1
C is a universal object for coderivations in the category of cosymmetric bicomodules.

Proof: Ω1
C is by definition a cosymmetric C-bicomodule. We must exhibit a coderivation d : Ω1

C → C.
It is given by

d([z]) := (ε⊗ id− id⊗ ε)(z) (z ∈ C ⊗ C)

Observe that d is well defined on LC because if z ∈ Im(∆) then (ε⊗ id− id⊗ ε)(z) = 0.
It is easy to see that d is a coderivation and that (Ω1

C , d) has the universal property with respect to
coderivations from cosymmetric bicomodules into C, using that Ω1

C is a subobject of LC .
We shall call Ω1

C the comodule of Kähler differentials of C.

Given a complete topological cocommutative coalgebra C (we consider in particular the discrete case)
and a multiplicative subset S ⊂ C ′, we want to establish the relation between the C[S] -bicomodules Ω1

C[S]

9



and
(
Ω1
C

)
[S]

. In fact, we shall prove that they are isomorphic when C has a topology with the same or

less open sets than the topology induced by C ′′ via the canonical evaluation map (for example when C is
reflexive, or when C is the dual of some other space).

We shall begin by proving that a coderivation D : M → C from a cosymmetric C-bicomodule M , induces
a coderivation D[S] : M[S] → C[S] such that the following diagram is commutative:

M[S] C[S]

M C

πM

��

D[S] //

πC

��
D //

In order to do so, we first define a coderivation M[S] →M ′′[S] → C ′′[S], analogous to the Leibniz rule “d( fg ) =
1
gdf − f

g2 dg”. More precisely:

M[S] →M ′′[S] → C ′′[S]

{ms}s∈S 7→ {ct}t∈S

where
ct(−) = mt(− ◦D) −mt2(−.(t ◦D))

The family {ct}t∈S ∈
∏
t∈S C

′′. In order to see that it is an element of C ′′[S] we have to verify that r.ctr =

ct, ∀r, t ∈ S. This follows from the formula (h.g) ◦D = h.(g ◦D) + g.(h ◦D) (h, g ∈ C ′), which implies
that r.ctr(f) = ct(f) ∀f ∈ C ′.

Notice that M ′ is a C ′-module by means of the structure map of M , namely M ′⊗C ′ → (C ⊗M)′
ρ∗

→M ′

and h ◦ D is an element of M ′. The above formula is a straightforward consequence of the definition of
coderivation.

We have to show now that Im(D[S]|M[S]
) ⊆ C[S]. To see that φ is not only in C ′′ but also in C, we must

find an element cφ ∈ C such that φ(f) = f(cφ) for all f ∈ C ′. In our case,

ct(f) = f(D(mt)) − f((1 ⊗ (t ◦D))ρ(mt2))

as a consequence ct = D(mt)− (1⊗ (t ◦D))ρ(mt2) ∈ C. The map {ms}s∈S 7→ {ct}t∈S is continuous because
the topology of C is induced by the inclusion C → C ′′.

The universal coderivation d : Ω1
C → C gives thus a coderivation d[S] : (Ω1

C)[S] → C[S], and by the
universal property of Ω1

C[S]
a C[S]-bicomodule map (Ω1

C)[S] → Ω1
C[S]

.

On the other hand, πC : C[S] → C induces a C-bicomodule map Ω1
C[S]

→ Ω1
C and therefore a C[S]-

bicomodule map π̃ : Ω1
C[S]

= (Ω1
C[S]

)[S] → (Ω1
C)[S]. Next we show that these maps are inverses to each

other.

Proposition 3.2 The C[S]-bicomodules Ω1
C[S]

and (Ω1
C)[S] are isomorphic.

Proof: With notation as above, let φ : (Ω1
C)[S] → Ω1

C[S]
and ψ : ΩC[S]

→ (ΩC)[S] be defined by:

φ ({mt}t∈S) = (id⊗ d[S]) ◦ ρ−({mt}t∈S) and ψ
(∑

{xt}t∈S ⊗ {ys}s∈S

)
=

{
1
r .

∑
x1 ⊗ y1

}
r∈S

, both extend-

ed by continuity.

In order to see that φ ◦ ψ = idΩC[S]
it is enough to prove, by the universal property of Ω1

C[S]
, that

dC[S]
◦ φ ◦ ψ = dC[S]

. Again it is sufficient to see that πC ◦ dC[S]
◦ φ ◦ ψ = πC ◦ dC[S]

and this is true due to
the following four equalities that we will prove in turn:

πC ◦ dC[S]
= dC ◦ π̃ (1)

π̃ ◦ φ = πΩC
(2)

10



πΩC
◦ ψ = π̃ (3)

dC ◦ π̃ = πC ◦ dC[S]
(4)

(1): π ◦ dC[S]
({mt}t∈S) = d(m1) − (1 ⊗ (ε ◦ d)) ◦ ρ(m1) = d(m1) because ε ◦ d = 0.

(2): πΩC
({mt}t∈S) = π ⊗ π({mt}t∈S). Also,

= π̃ ◦ φ({mt}t∈S) = (π ⊗ π) ◦ (id⊗ d[S]) ◦ ρ(ΩC)[S]
({mt}t∈S) =

= (π ⊗ π ◦ d[S]) ◦ ρ(ΩC )[S]
({mt}t∈S) = (id⊗ d) ◦ (π ⊗ πΩC

) ◦ ρ(ΩC )[S]
({mt}t∈S)

Using that (π ⊗ πΩC
) ◦ ρ(ΩC )[S]

({mt}t∈S) = ρΩC
◦ πΩC

({mt}t∈S), we have that the last expression equals:

(id⊗ d) ◦ ρΩC
◦ πΩC

({mt}t∈S) = (id⊗ d) ◦ ρΩC
(m1) =

= (id⊗ (ε⊗ 1) − (1 ⊗ ε)) ◦ ρΩC
(m1) = (id⊗ (ε⊗ 1)) ◦ ρΩC

(m1) − ((id⊗ (1 ⊗ ε)) ◦ ρΩC
(m1)

The first one of this last two terms equals πΩC
({mt}t∈S) because (ε ⊗ 1) ◦ ρ = id. So we have to see that

the other term equals zero, or equivalently that (id⊗ (1⊗ ε)) ◦ ρΩC
(m1) ∈ Im(∆C). If m = x⊗ y this is true

because id⊗(1⊗ε))◦ρ(x⊗y) = ∆(x)ε(y); it is also true when m is a linear combination of elementary tensors,
and finally when m belongs to the closure of the algebraic span of elementary tensors, using continuity and
the fact that Im(∆) is closed.

(3): πΩC
ψ

(∑
{xt}t∈S ⊗ {ys}s∈S

)
= πΩC

({
1
r .(

∑
x1 ⊗ y1)

}
r∈S

)
= πΩC

(
{
∑
xr ⊗ y1}r∈S

)
=

∑
x1 ⊗ y1 =

π̃
(∑

{xt}t∈S ⊗ {ys}s∈S

)

(4): d
(
π̃

(∑
{xt}t∈S ⊗ {ys}s∈S

))
= d (

∑
x1 ⊗ y1) =

∑
ε(x1)y1 − ε(y1)x1

On the other hand

πdC[S]

(∑
{xt}t∈S ⊗ {ys}s∈S

)
= π

(∑
ε({xt}t∈S){ys}s∈S − {xt}t∈Sε({ys}s∈S)

)
=

= π
(∑

ε(x1){ys}s∈S − {xt}t∈Sε(y1)
)

=
∑

ε(x1)y1 − ε(y1)x1

The proof that the composition in the other sense is the identity uses the same equalities:

ψ ◦ φ = id(ΩC)[S]
⇔ πΩC

◦ ψ ◦ φ = πΩC

By (3): πΩC
◦ ψ = π̃ and using (2) π̃ ◦ φ = πΩC

, then (πΩC
◦ ψ) ◦ φ = π̃ ◦ φ = πΩC

.

Example: Consider an algebraically closed field k of characteristic 0 and A = k[x]. It is a Hopf algebra with
comultiplication induced by ∆(x) = x ⊗ 1 + 1 ⊗ x and antipode x 7→ −x. Although A∗ is not a bialgebra,
there is an object denoted A0 which is the biggest subset of A∗ such that it is a Hopf algebra with the dual
structure of k[x] [16]. So, A0 ⊆ k[x]∗ = k[|x|]. The isomorphism γ : k[|x|] → k[|s|]

∑
anx

n 7→
∑

ann!sn

gives the identification A0 = k[s, eλs]λ∈k = ⊕λ∈kk[s]e
λs ⊂ k[|s|], where ∆(s) = s⊗ 1 + 1⊗ s and the algebra

structure is the usual one in k[|s|] viewed as formal power series (the exponentials are forced to be group-like).
Also, the coalgebra k[x]0 can be considered the topological dual of A = k[x] with respect to the following

linear topology:
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Given λ ∈ k and n ∈ N, take the k-vector space Vn,λ = 〈(x − λ).xm, m ≥ n〉 and {Vn,λ}(n,λ)∈N×k as a

basis of neighbourhoods of 0. Then the elements of the continuous dual of A are sequences {an}n∈N0
in k[|x|]

such that there exists λ ∈ k and n ∈ N0 with am+1 = λam, ∀m ≥ n, i.e. they differ modulo a polynomial
from the series representing 1

1−λx , and these series are exactly those ones giving exponentials when we apply

the isomorphism γ : k[|x|] ∼= k[|s|]. As k = k, {(x− λ)}λ∈k is nothing but the set of irreducible polynomials
in k[x], which correspond to semisimple (finite dimensional) representations of k[x], the collection of them
allowing the computation of k[x]0. If k is not algebraically closed, one replaces the family of polynomials
{(x− λ)}λ∈k by the family of irreducible polynomials of k[x].

Consider {V ⊂ A : ∃ I ⊂ V , I a finite codimensional ideal}, then A0 = A′ (the topological dual
with respect to the topology defined by this family of subspaces). Since Homcont(V,W

′) is isomorphic to

Homcont(W,V
′) (by (f 7→ f ′ ◦ iW ) we have that lim

←i

V ′i =

(
lim
→i

Vi

)′
, and so A0

[S] = (AS)′. However, the

continuous dual is taken with respect to the direct limit topology in AS . It agrees with the final topology of
the canonical map A→ AS , but it needs not be the same topology giving (AS)0.

Nevertheless, if A = k[x], S = {1, x, x2, x3, . . .} and C = k[x]0 = k[s, eλs]λ∈k = ⊕λ∈kk[s]e
λs then

the element x ∈ S induces the derivation operator in C, which is an isomorphism when restricted to the
components corresponding to exponentials eλs with λ 6= 0. We obtain by direct computation that C[S] =

k[s, eλs]λ∈k−0 = ⊕λ∈k−0k[s]e
λs. The canonical map C[S] → C is the inclusion k[s, eλs]λ∈k−0 → k[s, eλs]λ∈k.

Given another coalgebra D and a map f : D → C such that .x is an isomorphism in D, polynomials
cannot belong to Im(f), and then f factorizes through C[S]. On the other hand, AS = k[x, x−1], and

A0
S = k[s, eλs]λ∈k−0.

Proposition 3.3 Given a topological algebra A, C = A′ and a multiplicative subset S of Z(A), then:

1. C[S] = (AS)′.

2. Ω1
C = (Ω1(A))′.

3. (Ω1
C)[S] = (Ω1(A)′)[S] = (Ω1(A)S)′ = (Ω1(AS))′ = Ω1

C[S]
.

Proof:
1. This is proved in [18] for linear topologies and in [9] for the locally convex case.
In order to see 2., consider an arbitrary C-comodule M . Then,

ComC(M, Ω1

C) = Coder(M, C) = Coder(M, A
′) = Der(A, M

′) = HomA(Ω1(A),M ′) = ComC(M, Ω1(A)′)

Finally, one of the equalities of 3. states that Ω1(A) localizes for a topological algebra A. The proof of
this fact is similar to the coalgebra case, but no assumptions concerning the topology of A are needed, simply
define maps adb

s 7→ a
s d(

b
1 ) and a

s d(
b
t ) 7→

a
s (

1
t db−

b
t2 dt). The other equalities have already been proved.

The following proposition shows taht, similarly to the case of algebras, smoothness of a coalgebra C has
consequences on the structure of the comodule of differentials:

Proposition 3.4 If C is a k-smooth cocommutative coalgebra, then Ω1
C is an injective C-comodule.

Proof: Given a diagram

0 N M

Ω1
C

//

f

��

i //

f

~~�
�

�

where M and N are C comodules, and i, f are morphisms of comodules (i is a monomorphism), we need a
morphism f extending f .
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By the universal property of Ω1
C , f corresponds to a coderivation ∇f : N → C. Consider C ⊕ N as

cocommutative k-coalgebra, with structure given by: ∆((c, n)) = (∆C(c), ρ−(n), ρ+(n), 0) and similarly for
C ⊕M (note that cosymmetry of N implies cocommutativity of C ⊕N). Then we have:

0 C ⊕N C ⊕M M/i(N) 0

C

//

idC⊕∇f

��

(idC ,i)//

α
yy�

�

�

�

// //

The dotted arrow α exists because (idC , i) is a coalgebra morphism and C ⊕M = (C ⊕N) ∧ (C ⊕N).
The above diagram commutes, so the equality α = idC ⊕ Dα, necessarily holds (for some coderivation

Dα : M → C, extending ∇f ). This coderivation corresponds to a C-colinear morphism f : M → Ω1
C , such

that f ◦ i = f , because Dα ◦ i = ∇f .

Given a cocommutative coalgebra C and a coideal D, consider the usual exact sequence

0 → K → C → D → 0

(K is a subcoalgebra) and let γ be the composition map

D D ⊗ C D ⊗D
ρ+ // id⊗π //

We recall from [16] that K ∧K = {x ∈ C / ∆(x) ∈ C ⊗K +K ⊗C} = Ker((πK ⊗ πK) ◦∆).There is an
inclusion K → K ∧K. The comodules of Kähler differentials of both coalgebras are related by the following
proposition:

Proposition 3.5 1. There is an exact sequence of C-comodules

0 Ω1
K Ω1

C2CK (K ∧K)/K// i // δK //

2. If D is a maximal coideal, so that K = k.x, then the monomorphism Ω1
C2Ck → (K ∧ K)/K is an

isomorphism.

Proof:
1. The map i is the composition of the inclusion of Ω1

K = Sym(K⊗K/∆(K)) ⊆ Sym(C⊗C/∆(C)) = Ω1
C

with the structure map giving the isomorphism Ω1
C

∼= Ω1
C2CC. We notice that if an element z belongs to

Ω1
K ⊆ Ω1

C , then ρ(z) ∈ Ω1
C ⊗K, and so the image of this composition is included in Ω1

C2CK.
The map δK is defined by δK = pK ◦ (d⊗ ε) : Ω1

C2CK → (K ∧K)/K where d : Ω1
C → C is the universal

coderivation and pK : C → C/K is the canonical projection. The image of d ⊗ ε is contained in K ∧ K
because the domain is Ω1

2CK and not Ω1
C2CC.

It is then sufficient to prove that, for each K-comodule T , the following sequence is exact:

0 → ComK(T,Ω1
K) → ComK(T,Ω1

C2CK) → ComK(T, (K ∧K)/K)

The first term is Coderk(T,K), the second one is (by adjunction) isomorphic to ComC(hK(K,T ),Ω1
C) and

then to Coderk(T,C). The third one may be considered as embedded into ComC(T,D), so we get

0 → Coderk(T,K) → Coderk(T,C) → ComC(T, (K ∧K)/K) ⊆ ComC(T,D)

Observe that hK(K,T ) exists for all T , because it can be identified with T , considered as K-comodule and
then as C-comodule. For a definition of h (in the algebraic context) see for example [6]. Also, for any
K-comodule T considered as a C-comodule the image of any C-colinear map from T to a C-comodule M is
contained in M2CK, then ComK(T,Ω1

C2CK) = ComC(T,Ω1
C). The exactness of last sequence follows by

inspection.

2. In case K = k.e, Ω1
K is zero and so δK is a monomorphism. In order to see that δK is an epimorphism

it is possible to define an explicit splitting, but we notice that the coalgebra k.e is trivially smooth, and so
the result is a particular case of the following proposition:
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Proposition 3.6 Let K be a smooth subcoalgebra of a cocommutative coalgebra C. Then the sequence

0 → Ω1
K → Ω1

C2CK → (K ∧K)/K → 0

is split exact.

Proof: We only have to prove that the map Ω1
C2CK → (K ∧K)/K is split surjective, but this is equivalent

to the fact that the induced maps

(∗) ComK(T,Ω1
C2CK) → ComK(T, (K ∧K)/K)

are surjective for every K-comodule T . The domain is isomorphic to ComK(hK(K,T ),Ω1
C) ∼= Coderk(T,C).

First remark: given a coderivation δ : T → C one has that Im(δ) ⊆ K ∧K.
Second remark: the map π ◦ δ : T → (K ∧K)/K is K-colinear.
Third remark: since K is a smooth coalgebra, the exact sequence, where D is considered as K-bicomodule
with null-structure:

0 K C D 0//
i

//
roo��� �

π
//

soo����� //

The sequence splits; C is then isomorphic (as a vector space) to D ⊕K and r is a coalgebra morphism. If
r′ : C → K is another coalgebra morphism, then r′ ◦ s : D → K is a K-coderivation.

Given f : T → (K ∧K)/K a morphism of K-comodules, we construct the diagram

0 K E T 0

0 K K ∧K (K ∧K)/K 0

//
�
�
�
�
�
�

�
�
�
�
�
�

//� � � �

p1

��

p2 // //

f

��
// //

π
// //

where E is the pull-back of f along π. The diagram may be completed with the dashed arrow because K is
the kernel of the projection on the second factor p2. Also, as K is smooth and E is provided of a coalgebra
structure, E ∼= K⊕T . Then we obtain a coderivation δf : T → K, and hence the map (∗) is an epimorphism.
In particular, choosing T = (K ∧K)/K and f = id, we get the splitting of the sequence.

Corollary 3.7 In the situation of the proposition, if C is smooth then (K∧K)/K is a K-injective comodule.

Proof: As we have a retraction of Ω1
C2CK → (K ∧K)/K it is enough to see that Ω1

C2CK is K-injective,
but C is smooth, then Ω1

C is C-injective and so Ω1
C2CK is K-injective.

Remark that the proof above implies that if Ω1
C is finitely cogenerated as C-comodule then (K ∧K)/K

is finitely cogenerated as K-comodule. Looking for a moment at the dual situation (an ideal I of an algebra
A and the quotient algebra A/I) it is clear after the corollary that the object corresponding to (K ∧K)/K
is I/I2.

If K corresponds to a maximal ideal then K is local, the above map is an isomorphism and (K ∧K)/K
is a free K-comodule ((K ∧ K)/K ∼= Kn for some n ∈ N). This statement is much less clear that in the
case of algebras, because we cannot speak of generators or linear combinations, so it becomes necessary to
express it in terms of morphisms. We can dualize, obtaining ((K ∧K)/K)∗ ∼= (Kn)∗ ∼= (K∗)n.

Let us first take n = 1. Denote by u : (K∧K)/K → K the isomorphism and by f the element u∗(ε) (where
u∗ is the isomorphism u∗ : K∗ → ((K ∧ K)/K)∗ obtained as the transpose of u), f ∈ ((K ∧K)/K)

∗ ∼=
D∗/(D∗)2 (with D as above, remark that D∗ is an ideal of C∗). Also ((K ∧K)/K)∗ is embedded into
(K ∧K)∗ and we look at f ◦ π as an element of (K ∧K)∗, vanishing over K.
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Consider the short sequence

(∗) 0 K C C 0// // (f◦π). // //

The composition is clearly zero because K is a subcoalgebra and K = Ker(π). Consider also

(∗∗) 0 Ker((f ◦ π).) C C 0// // (f◦π). // //

In case (∗∗) is k-split (note that in the algebraic case this is not an additional assumption and in the
topological case the map ∆ : C ↪→ Ce is always split by means of ε ⊗ 1), by dualization we obtain the
commutative diagram:

0 K∗ C∗ C∗ 0

0 Ker((f ◦ π).)∗ C∗ C∗ 0

oo

��

oo (f◦π).∗oo oo

oo oo

�
�
�
�
�
�

�
�
�
�
�
�

(f◦π).∗oo

�
�
�
�
�
�

�
�
�
�
�
�

oo

The right horizontal map is a monomorphism (because in this case D∗/(D∗)2 is a C∗/D∗-module of rank
one, generated by the class of (f ◦ π)). By the same reasons, we know that both sequences are exact. Then
we have that K = Ker((f ◦ π).) and that the map (f ◦ π). : C → C is an epimorphism. This gives the
exactness of (∗). In this case, we have just obtained a “small” injective resolution of K as C-comodule.

Now we consider again an arbitrary n, and we give an analogue of the Koszul complex for algebras. The
following theorem will then allow us to construct a resolution of the coalgebra C as Ce-comodule and this
leads to the proof of the coalgebra version of Hochschild - Kostant - Rosenberg theorem (Theorem 7.1):

Theorem 3.8 Given a local cocommutative smooth coalgebra C (hence every subcoalgebra is local), let us
consider f1, . . . , fn ∈ C∗ = ComC(C,C) and K = ∩ni=1Ker(fi.). If

⋃
n∈N(ΛnK) = C then the second

statement bellow is a consequence of the first one:

1. (K ∧ K)/K is a free K-comodule, finitely cogenerated (i.e., (K ∧ K)/K ∼= Kn ∼= ⊕ni=1K.fi, where
the fi’s index the copies of K) and

⊕
n∈N Λn+1K/ΛnK is isomorphic to the K-free cocommutative

coalgebra on (K ∧K)/K, that is
⊕

n∈N Λn+1K/ΛnK ∼= K ⊗ sh(kn), where sh(kn) is the graded dual
coalgebra of the symmetric algebra S(kn).

2. The sequence 0 → K → C → ⊕n
i=1Cfi → ⊕i<jCfi ∧ fj → . . .→ Cf1 ∧ . . . ∧ fn → 0 is exact.

This theorem will be proved in section 4.

4 The associated graded coalgebra and a structure theorem

In this section we give a description of the cocommutative coalgebra C in terms of a shuffle coalgebra (Thm.
4.4 and Prop. 4.5), or a cofree cocomutative coalgebra in Sweedler’s terminology. It enables us to finish the
proof of Theorem 3.8 by means of an inductive argument.

In case n = 1 we have already seen that statement 2. is equivalent to the fact that

(2′) f. : C → C is an epimorphism

In this situation 1. clearly implies both.

Next we want to describe ⊕iΛ
i+1K/ΛiK when(K ∧K)/K is isomorphic to Kn.
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Lemma 4.1 Let C be a coalgebra (in the topological situation we also assume that every epimorphic image
of C is a finitely cogenerated C-comodule) and (K ∧K)/K as above, then the following diagram

0 K C C/K 0

(K ∧K)/K Kn Cn

// // π // //

ψ
��

�

�

�

� � � � �� � � � �

ψ

����
� � �

� �
� �

� � �
� �

� � 55

�� //

may be completed commutatively with a monomorphism of C-comodules ψ : C/K → Cn.

Proof: The existence of ψ is a consequence of the injectivity of Cn as C-comodule. Ker(ψ) is a C-
subcomodule of C/K. Now consider the diagram

Ker(ψ) Ker(ψ) ⊗ C Ker(ψ) ⊗ C/K

C/K C/K ⊗ C C/K ⊗ C/K

ρ+ //

i

� �

��

id⊗π//

i⊗id

��
ρ+ // id⊗π //

We will prove that (id⊗π)◦ρ+ is a monomorphism. Then, using Lemma 2.6 we will obtain that Ker(ψ) = 0.

Given x ∈ Ker(ψ), suppose that (id⊗ π) ◦ ρ+(x) = 0. Then i(x) ∈ Ker
(
(id⊗ π) ◦ ρ+

C/K

)
= K ∧K/K. As

a consequence i(x) ∈ Ker(ψ ◦ ψ), but ψ ◦ ψ is a monomorphism and then x = 0.

The proof of Theorem 3.8 is inductive, then we consider firstly the case n = 1. In this particular case the
above lemma says that the map f. : C → C is defined as the composition of π : C → C/K with the injective
extension of the inclusion K → C. Clearly Ker(f.) = Ker(π) = K.

Then the following diagram is commutative

0 K K ∧K (K ∧K)/K 0

0 K K ∧K K 0

// //
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

//

˜
�
�
�
�
�

�
�
�
�
�

//

// // f. // //

As a consequence f. : Λ2K → K is an epimorphism. We can now prove:

Proposition 4.2 If
⋃
n∈N ΛnK = C, then the following statements are equivalent:

1. The map f. : C → C defined in the above paragraph is an epimorphism.

2. gr(f.) : ⊕n∈NΛn+1K/ΛnK → ⊕n∈NΛn+1K/ΛnK is an isomorphism.

Proof: (1) ⇒ (2): The fact that f. is an epimorphism if and only if gr(f.) is an epimorphism follows
by standard filtration arguments. Next we claim that whenever Ker(f.) = K, the map (of degree −1)
gr(f.) : ⊕n∈NΛn+1K/ΛnK → ⊕n∈NΛn+1K/ΛnK is a monomorphism: given x ∈ Λn+1K, we claim that

f.x ∈ ΛnK. This is true because x ∈ Λn+1K ⇔ π⊗n+1∆nx = 0 ⇔ fn.x = 0 ⇔ f.x ∈ ΛnK.
Given x ∈ Λn+1K/ΛnK, there is a z ∈ Λn+2K/Λn+1K such that f.z = x. if and only if f.z − x ∈ ΛnK

⇔ fn.(f.z − x) = 0. But f. is an epimorphism, then there exists y ∈ C such that f.y = x, and it is clear
that y ∈ Λn+2K, so we take z = y.

Let us now see (2) ⇒ (1): The proof is inductive. Given x ∈ C we can choose n such that x ∈ ΛnK and
x /∈ Λn−1K. So x 6= 0 in ΛnK/Λn−1K. Since gr(f.) is an isomorphism, there exists y ∈ Λn+1K/ΛnK such
that gr(f.)(y) = x. Then f.y − x = z ∈ Λn−1K. By inductive hypothesis, there exists z′ ∈ ΛnK such that
z = f.z′. The proof finishes using that Λ0K = 0.
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Remark: Inductively, the above proposition provides the equivalence between the following statements:

(1) fi. : Ki := ∩i<jKer(fj .) → Ki is an epimorphism

(2) gr(fi.) : ⊕l≥0Λ
l+1Ki/Λ

lKi → ⊕l≥0Λ
l+1Ki/Λ

lKi is an isomorphism.

In the algebra case the corresponding statement on ⊕In/In+1 follows after noticing that I = 〈f〉 is not
a divisor of 0 because {0} is a prime ideal.

Given a smooth local coalgebra C with groupe-like element e, Ω1
C is C-free. We have that ∪n ∧

n k.e = C
and the rank of Ω1

C , by Proposition 3.5 is equal to dimk((k.e ∧ k.e)/k.e). Now we want to prove that if
φ ∈ ComC(C,C) = C∗, then φ = 0 or φ is an epimorphism (i.e. {0} is a prime coideal). Note that in
the topological case, we implicitely assume that the topology of C is the inductive limit topology of the
system {∪n≤m ∧n K}m∈N. An example of local smooth coalgebra verifying this condition is the coalgebra
of distributions over the real line supported at the origin. In this case the Dirac measure δ0 is the group-

like element, a basis is given by {δ
(n)
0 }n∈N0

and ∧j(C.δ0) = 〈δ0, δ
′
0, . . . , δ

(j)
0 〉.Lemma 4.3, theorem 4.4 and

proposition 4.5 bellow will achive the proof of the 1-dimensional case.

Lemma 4.3 If C is local and Ω1
C contains a subcomodule isomorphic to C, then there exists a coderivation

D : C → C and an element x ∈ C∗ such that x ◦D = ε.

Proof: By hypothesis we identify C with a subcomodule of Ω1
C , define D̃ : C → C as the composition

of the inclusion C → Ω1
C with the universal coderivation d : Ω1

C → C. In general, if N is a nontrivial
subcomodule of Ω1

C then the inclusion iN : N → Ω1
C is a non zero morphism, and by the universal property

ComC(N,Ω1
C) ∼= Coder(N,C) the corresponding coderivation d ◦ iN is not zero. We have then proved that

Ker(d : Ω1
C → C) does not contain non trivial subcomodules. In particular k.e is a subcomodule of C and

we identify it with a subcomodule of Ω1
C . By the above discussion, D̃(e) 6= 0, then there exists x ∈ C∗ such

that x(D̃(e)) 6= 0.

Since C∗ is a local algebra and (k.e)⊥ ∼= (C/K)∗ is a maximal ideal, then x ◦ D̃ is a unit in C∗. So take

u ∈ C∗ such that u ∗ (x ◦ D̃) = ε and define D := D̃(u.−). The element x ∈ C∗ and the derivation D have
the desired properties. Moreover, since ε ◦ D = 0 for any coderivation D, we may suppose that x(e) = 0,
replacing x by x− x(e).ε if necessary.

We remark that as D is a coderivation, the quotient C̃ := C/Im(D) is also a coalgebra.

Theorem 4.4 Suppose char(k) = 0. Let sh(k.x) denote the shuffle coalgebra on the generator x, i.e. the

graded dual of the polynomial ring k[x]. In the conditions of the above Lemma, C ∼= C̃ ⊗ sh(k.x).

Proof: With the notations of the above proof, given t ∈ C∗ such that t(e) = 0, consider the expression

E(D, t)(c) =
∑

n≥0

Dn

n!
(tn.c)

Since C =
⋃
n ∧

n(k.e), given c ∈ C there exists n0 ∈ N such that c ∈ Λn(k.e) for all n ≥ n0. Then tn.c = 0
for n ≥ n0 and the sum is finite, so that the map E(D, t) : C → C is well defined.

Let us take E : C → C defined by E(c) := E(D,−x)(c) =
∑

n≥0
(−1)nDn(xn.c)

n! . It is easy but tedious to
see that Im(E) = Ker(x.) (one inclusion is obvious, if c ∈ Ker(x.) then c = E(c), for the other inclusion one
must use a commutation formula for x. and Dn).

Next we define a map φ : C → C̃ ⊗ sh(k.x) by φ(c) =
∑
n≥0 x

n.c⊗ xn (it is a finite sum). Its inverse is

given by ψ : C̃ ⊗ sh(k.x) → C, ψ(
∑

n≥0 cn ⊗ xn) =
∑

n≥0
Dn

n! E(cn). In order to see that both are coalgebra
maps, it is necessary to proceed by cases, but no difficulty arises. When verifying that both compositions
are the identity, one should use the following facts:
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1.
∑2k
i=0

(−1)i

(2k−i)!i! = 0

2. x. ◦D = D ◦ x.+ ε

3. E(c) − c ∈ Im(D)

4. φ
(
DnE(c)
n!

)
= c⊗ xn

5. c =
∑

n≥0
DnE(xn.c)

n!

Remarks: 1. Taking into account the above isomorphisms, the map x. acts on C̃ ⊗ sh(k.x) in the following
way: it is the identity on the first coordinate and it acts by xn 7→ xn−1 (n ≥ 1) on the second one. As a
consequence, it is an epimorphism.
2. The element x of the above result may be chosen as f . In order to do so, it is sufficient to prove that
f ◦D is a unit in C∗. But f ◦ D is a unit if and only if f(D(e)) 6= 0. Now, f.D(e) = (f ◦ D).e + D(f.e)
as e is group-like. But f(e) = 0 then f.e = 0, so f.D(e) = (f ◦D).e = f(D(e))e. We want to prove then
that f(D(e)) 6= 0. This statement is true if and only if D(e) 6= λ.e for any λ ∈ k. But if D(e) = λ.e, then
λ = ε(D(e)) = 0, and this is impossible because x(D(e)) = 1.

Proposition 4.5 In the above proposition, C̃ is identified with k.e.

Proof: Since Im(D) ⊂ Ker(ε), we have an obvious surjective map C̃ = C/Im(D) → C/Ker(ε) ∼= k.e. Also,

there is a map form k.e to C̃ sending e to e. It is not null because E(D,−f) : C → C is a coalgebra morphism
with image equal to Ker(f.) = k.e. We have that e 6= 0 because φ(e) = e⊗ 1 + f.e⊗x+ . . . = e⊗ 1 + 0, and
φ is an isomorphism.

The composition k.e→ C̃ → k.e is the identity. Consider the other composition:

c→ ε(c).e 7→ ε(c).e = E(c) = c

where the equality ε(c).e = E(c) follows using E(c) = (ε⊗ 1)∆(E(c)).

The description of C thus obtained can now be used to give a description of gr(C) = ⊕n≥0Λ
n+1K/ΛnK.

We look at the subcomodule Λi(k.e) in C̃ ⊗ sh(k.x) via the isomorphism φ. For example when i = 2,
(k.e) ∧ (k.e) = Ker(π ⊗ π) = k.e ⊗ k.1 ⊕ k.e ⊗ k.x ∼= k.e ⊕ (k.e ∧ k.e)/k.e and in general Λi+1K =
(k.e⊗ k.1) ⊕ (k.e⊗ k.x) ⊕ ...⊕ (k.e⊗ k.xi). Then gr(C) = ⊕i≥0(k.e⊗ k.xi) = k.e⊗ (⊕i≥0k.x

i).

In a subsequent paper we shall treat the case of arbitrary characteristic. The advantage of the proof
given here for char(k) = 0 is that it is completely explicit.

We are now able to treat the case dimk((K ∧K)/K) = n and finish the proof of Theorem 3.8. Denote
by {f1, ..., fn} a basis of ((K ∧K)/K)

∗
. As we have Kn ∼= (K ∧K)/K ⊆ C/K, restriction gives a surjection

K⊥ ∼= (C/K)∗ → ((K ∧K)/K)
∗
, so we will consider {f1, . . . , fn} as elements of K⊥ ⊂ C∗. In this situation,

define C as the C-subcoalgebra C := Ker(f1.) and K = Ker(f1.) ∩K.

Lemma 4.6 The coalgebra C is smooth.

Proof: We recall that Im(E) = Im(E(D1,−f1)) = Ker(f1.) = C and that E|Ker(f1.) = id, then the

smoothness of C is a consequence of Lemma 2.9.

Remark: C being a subcoalgebra of the local coalgebra C, is also a local coalgebra.

Considering now the coalgebra C = Ker(f1.), then the rank of Ω1

C
= dimk(K ∧C K/K) ≤ n − 1 and,

by an inductive argument, gr(C) = ⊕i≥0Λ
i+1K/ΛiK ∼= k.e ⊗

(
⊕
i≥0

k[x2, ..., xn]i

)
where k[x2, ..., xn]i is
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the ith-component of the shuffle coalgebra on n − 2 generators; in fact C = k.e ⊗ sh(k.x2 ⊕ ...k.xn) and
(K ∧K)/K ∼= ⊕ni=2k.fi.

Next, we shall make use of the following bicomplex:

0 0 0 0

0 K C ⊕
n
i=2C.fi

... C.(f2 ∧ ... ∧ fn) 0

0 K C ⊕
n
i=2C.fi

... C.(f2 ∧ ... ∧ fn) 0

0 K C ⊕
n
i=2C.fi

... C.(f2 ∧ ... ∧ fn) 0

0 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � �

//

OO

//

OO

//

OO

// //

OO

//

// //

f1.

OO

−f1.

OO

//

f1.

OO

// //

±f1.

OO

//

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

//

j′

OO

j //

OO

//

OO

// //

OO

//
OO OO OO OO

By hypothesis, the columns are acyclic (considering the case n = 1), and j induces a quasi-isomorphism
between the complexes (0 → K → 0 → ...) and (0 → C → ⊕n

i=2C.fi → ... → C(f2 ∧ ... ∧ fn) → 0), which is,
in turn, quasi-isomorphic to the total complex of the bicomplex inside the dotted area.

So we obtain that the sequence

0 → K → C → ⊕ni=1C.fi → ⊕i<jC(fi ∧ fj) → . . .→ C.(f1 ∧ . . . ∧ fn) → 0

is exact, and this proves Theorem 3.8.

5 Ω∗
C and Hoch

∗(C)

We recall from [6, 8] that given an algebraic k-coalgebra C there exist two cohomology theories associated
to it, denoted Hoch∗(C) and H∗(C). The first is the derived functor of −2CeC, and the other one is the
derived functor of ComCe(−, C). In the topological case, they are defined as the cohomology groups of
the complexes corresponding to the canonical resolution of C as Ce-comodule, for example Hoch∗(C) is the
cohomology of the complex

0 C C⊗̃C C⊗̃C⊗̃C ...// b0 // b1 // //

with b0 = ∆ − σ12∆, b1 = ∆ ⊗ id − id ⊗ ∆ + σ132(∆ ⊗ id) and in general bn =
∑

i=1n(−1)i−1∆i +
(−1)nσ1,n,n−1,...,3,2∆1, where ∆i = idC⊗i−1 ⊗ ∆ ⊗ idC⊗n−i−1 and σ132, σ1,n,n−1,...,3,2 denote the cyclic
permutations (132) and (1, n, n− 1, ..., 3, 2) respectively.

However, Taylor ([19], section 4) has shown that in certain cases (for example for nuclear and Fréchet
algebras), the topological version of Hochschild homology behaves similarly to algebraic Hochschild homology.
The same holds for coalgebras, namely:

Proposition 5.1 Given a coalgebra C and an injective resolution of C as Ce-comodule 0 → C → X0 →
X1 → X2 → ..., if

1. C and Xi (i ∈ N0) are nuclear Fréchet spaces and M is Fréchet; or

2. C and Xi (i ∈ N0) are nuclear complete DF spaces and M is a complete DF space,
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the cohomology of the complex X∗2CeM is isomorphic to Hoch∗(M,C) (here 2Ce is defined like in the purely
algebraic case, using ⊗̃ instead of ⊗).

We shall need the following Lemma, analogous to Proposition 2.7 of [19]:

Lemma 5.2 Let M be a class of (topological) C-bicomodules containing C⊗̃M⊗̃C and the cokernel of
ρM : M → C⊗̃M⊗̃C whenever M ∈ M. Let Kp be a sequence of covariant functors from M into vector
spaces such that

1. K0(M) = Hoch0(M,C) for all M ∈ M.

2. Kp(C⊗̃M⊗̃C) = 0 for all p > 0 and M ∈ M.

3. Each short exact sequence 0 → M1 → M2 → M3 → 0 (Mi ∈ M) induces maps δp : Kp(M3) →
Kp+1(M1) such that

.. → Kp(M3) →
δ Kp+1(M1) → Kp+1(M2) → Kp+1(M3) → ...

is exact.
Then Kp(M) ∼= Hochp(M,C) for all M ∈ M.

Proof of the proposition: We shall see that the conditions of Lemma 5.2 are fulfilled. Take M as the
collection of Fréchet C-bicomodules and, with the notations of the above Lemma, Kp(M) := Hp(X∗2CeM)
where 0 → C → X∗ is a relatively injective C-split resolution of C as Ce-comodule and each Xi is a nuclear
Fréchet relative injective Ce-comodule (for example, take the standard resolution).

If M ∈ M, as C is Fréchet and nuclear, then C⊗̃M⊗̃C ∈ M as well (see for example [12]). Concerning
Coker(M → C⊗̃M⊗̃C), it is a quotient of a Fréchet space by a closed subspace, then it is Fréchet.

Also if Y ∈ M, the following sequence is exact,

0 → C⊗̃Y → X0⊗̃Y → X1⊗̃Y → ...

since C and the Xi’s are nuclear Fréchet spaces, then X2Ce(C⊗̃M⊗̃C) ∼= X⊗̃M so that Kp(C⊗̃M⊗̃C) = 0.
It follows by diagram chasing that Hoch0(M) = K0(M). Finally, as Xi is a relative injective C-

bicomodule, it is a direct sumand of Ce⊗̃Vi for some topological vector space Vi, and so given a C-split
exact sequence 0 → M1 → M2 → M3 → 0 the sequence 0 → Xi2CeM1 → Xi2CeM2 → Xi2CeM3 → 0
is exact too. The desired long exact sequence is the cohomology long exact sequence associated to the last
short exact sequence of complexes.

Next we want to show that Ω1
C is isomorphic to Hoch1(C), turning then the latter into an alternative

universal object for coderivations when the coalgebra C is not cocommutative.

Proposition 5.3 If C is a cocommutative coalgebra, then Hoch1(C) ∼= Ω1
C .

Proof: We first define γ : Ω1
C → Hoch1(C) by γ([z]) := z − (∆ ⊗ ε)(z), where [z] ∈ Ω1

C is the class of some
z ∈ C⊗̃C. The map γ is well defined because if z = ∆(c), then ∆(c) − (∆ ⊗ ε)(∆(c)) = ∆(c) − ∆(c) = 0.
On the other hand, we can see that Im(γ) ⊆ Hoch1(C) = Ker(b1) as follows:

Let [z] ∈ Ω1
C and π : C⊗C → LC the canonical projection, then 0 = ρ−([z])−σ312ρ

+([z]) = (id⊗π)(∆⊗
id)(z)− (id⊗π)σ312(id⊗∆)(z), so (∆⊗ id)(z)−σ312(id⊗∆)(z) ∈ Im(id⊗∆), and (∆⊗ id)(z)−σ312(id⊗
∆)(z) = (id⊗ ∆)(id⊗ id⊗ ε)(∆ ⊗ id)(z) − σ312(id⊗ ∆)(z) = (id⊗ ∆)(∆ ⊗ ε)(z) − (id⊗ ∆)σ12(z).

Computing b1(z− (∆⊗ ε)(z)) we obtain (∆⊗ id)(z)− (id⊗∆)(z)+σ132(∆⊗ id)(z)− (∆⊗ id)(∆⊗ ε)(z).
The above equation says, via the permutation a⊗ b⊗ c 7→ b⊗ c⊗ a that this expression is zero.
The inverse of γ is given by γ ′ : Hoch1(C) → Ω1

C (z 7→ [z]). Checking that Im(γ ′) ∈ Ω1
C , we immediately

obtain that they are inverses.

Example: Let k = k, char(k) = 0, A = k[x] and C = A0 ∼= ⊕λ∈kk[s]e
λs ⊂ k[|s|].
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Identifying k[x]⊗ k[x] ∼= k[x, y] in the standard way, then I = Ker(m : k[x]⊗ k[x] → k[x]) is corresponds
to < x− y >, so I/I2 = k[x].(x − y).

By definition, Ω1
A0 = Sym(A0 ⊗ A0/Im(∆)) ⊆ k[s,eλs]λ∈k⊗k[t,e

λt]λ∈k

Im(∆) . We show that Ω1
A0

∼= k[s, eλs]λ∈k

defining f̃ : k[s, t, eλs, eµt]λ,µ∈k → k[s, eλs]λ∈k by





f̃(1) = 0

f̃(sn) = nsn−1 if n > 0

f̃(t) = −1

f̃(snt) = −sn if n > 0

f̃(sntm) = 0 if n ≥ 0, m > 1

f̃(eλs) = λeλs

f̃(eµ.t) = −1

f̃ derives elements depending on s, and so Im(f̃) contains all polynomials and exponentials in s. Also,

as (s + t)n =
∑n

k=0

(
n
k

)
sn−ktk, f̃((s + t)n) = 0, so f̃ vanishes on Im(∆) and we have a well defined map

f :
k[s,t,eλs,eµt]λ,µ∈k

Im(∆) → k[s, eλs]λ∈k. Restricting f to the cosymmetric elements s(s + t)n with n ≥ 0, we

have f(s(s + t)n) = f(
(∑n

k=0

(
n
k

)
sn+1−ktk

)
= f(sn+1 + nsnt + o(t2)) = sn. Also f(s.eλ(s+t)) = eλs, then

polynomials divisible by s and exponentials belong to Im(f) and we obtain the result describing Ω1
A0 .

In this case, Ω1
A0 =

(
Ω1(A|k)

)0
, where on the right side, (−)0 means the A0-comodule with the universal

property:
HomA(Ω1(A|k), X∗) ∼= ComA0(X, (Ω1(A|k))0) (X a C-comodule)

As a consequence of Proposition 5.1 and Proposition 3.2, Hoch1(C) always localizes.
The category of topological C-bicomodules is not an abelian category, so we cannot use the cohomological

machinery to prove that Hoch∗(C) localizes.
Despite, we are able to construct long exact sequences for Hoch∗, but as we shall see, this argument

cannot be used because we don’t know if localization is exact and we don’t even have a general argument
to assure that localization of Fréchet (or DF-spaces) are Fréchet (resp. DF-spaces) except in particular
situations.

We shall next make explicit the isomorphisms between Hoch1(C[S]) and Hoch1(C)[S] in order to detect
the obstruction to localization for n > 1.

We first define j : Hoch1(C[S]) → Hoch1(C)[S] ({xs ⊗ yt}s,t∈S 7→ {xs ⊗ y1}s∈S) and µ : Hoch1(C)[S] →

Hoch1(C[S]) ({xs ⊗ y}s∈S 7→ {xrs ⊗ y + ∆(xrs2s(y))}r,s∈S). We will see through the computations, that µ
is well defined. The composition j ◦ µ gives:

(j ◦ µ) ({xs ⊗ y}s∈S) = j ({xrs ⊗ y + ∆(xrs2)s(y)}r,s∈S) = {xr ⊗ y + ∆(xr)ε(y)}r∈S

Since xr ⊗ yr ∈ Hoch1(C), xr,1 ⊗ xr,2 ⊗ y− xr ⊗ y1 ⊗ y2 + xr,2 ⊗ y⊗ xr.1 = 0 so ∆(xr)ε(y) = 0, implying
j ◦ µ = idHoch1(C)[S]

.

The composition µ ◦ j gives:

(µ ◦ j) ({xs ⊗ yt}s,t∈S) = µ ({xs ⊗ y1}s∈S) = {xrs ⊗ y1 + ∆(xrs2 )s(y1)}r,s∈S

In order to see that {xs ⊗ yt}s,t∈S coincides with the last expression, we embed C[S] in C ′′[S] = ((C ′)S)
′
and

evaluate both expressions on elements of AS = C ′S . Then:

{xrs ⊗ y1 + ∆(xrs2 )s(y1)}r,s∈S(
a

t
⊗
b

u
) = xtu(a)y1(b) + xtu2(ab)s(y1)

Since a
t ⊗

b
u − a

tu ⊗ b
1 + ab

tu2 ⊗ u
1 = 0 in HH1(AS), then:
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{xs ⊗ yt}s,t∈S(at ⊗
b
u ) = {xs ⊗ yt}s,t∈S( atu ⊗ b

1 − ab
tu2 ⊗ u

1 ) = xtu(a)y1(b) + xtu2(ab)s(y1) as we wanted to

show. In particular Im(µ) ⊆ Hoch1(C[S]) and then it follows that µ is well defined.
We remark that we have used that the map C → C ′′ is injective, which is true if and only if C is a

Hausdorff space. We have also used that Hoch1(C) is Hausdorff, but this is true when C is so, because
Hoch1(C) is a kernel in C⊗̃C and so a (closed) subspace of a Hausdorff space. In higher degrees, Hochn(C)
need not be Hausdorff. This is the obstruction not allowing the use of the long exact sequence argument.

6 The exterior coalgebra on Ω1
C and higher degrees of Hoch

∗

In this section we construct the “exterior coalgebra” on Ω1
C , considering the particular case of C being

the dual of a topological algebra A. We analyze in detail the example C = D(X) (distributions on a
compact smooth manifold). Its n-th component of the exterior coalgebra is isomorphic to Hochn(C). As a
consequence, it localizes in a more general situation than the case studied in [9]. Moreover, the isomorphism
between Hochn(C) and ΩnC in this case suggested us to compare both objects for any n ∈ N, for arbitrary
coalgebras.

Le C be a topological coalgebra andM a topological bicomodule. The construction of the tensor coalgebra
TkM of M over k in a purely algebraic context is carried out in detail in [16]. Let us define TCM as the
space ⊕n∈N0

M2Cn, where M2C0 = C, M2C1 = M and M2C(n+1) = M2C(M2Cn). The coproduct in TCM
is obtained as the transpose of the product in the tensor algebra. Note that the coalgebra map is defined
like in the “algebraic” TkM over the elementary tensors, extended by linearity and next by continuity to the
completion, and finally restricted to TCM which is a subobject of the “topological” TkM .

Let C be cocommutative. If M is a Z2-graded comodule, then so is TCM . For M a cosymmetric
C-bicomodule, we consider it as graded with deg(m) = 1 ∀m ∈ M , and let ΛCM be the biggest graded-
cocommutative subcoalgebra of TCM . It is characterized by a similar universal property with respect to
graded-cocommutative coalgebras which are (graded)cosymmetricC-bicomodules ( with deg(c) = 0, ∀c ∈ C).

Remark: If C = A0, then ΛCΩ1
C
∼= (ΛAΩ1(A))0 = Ω∗(A)0, as C-comodules.

Let (C∗(C), b) be the standard complex whose homology is used to compute Hoch∗(C). There is a
comultiplication ∆ in C∗(C) obtained dualizing the construction for algebras.

Then C∗(C) is a differential graded coalgebra and hence we have got a coalgebra structure in cohomology.
It turns out to be graded-cocommutative because C∗(C) is graded-cocommutative.

The existence of a graded-cocommutative coalgebra structure in Hoch∗(C) implies that the map Hoch∗(C) →
Hoch1(C) ∼= Ω1

C lifts to a coalgebra map Hoch∗(C) → ΛCΩ1
C .

Next we shall study the behaviour of Ωn(A) and ΩnA′ for a commutative topological algebra A. Let M be
a symmetric A-bimodule; even in the topological case, it is a fact that the tensor algebra T ∗A(M) localizes,
i.e. if S ⊂ A is a multiplicative set, then T ∗AS

(MS) = (T ∗A(M))S .
This isomorphism induces an isomorphism between the quotients, so (Λ∗A(M))S

∼= Λ∗AS
(MS). In partic-

ular, for M = Ω1(A) we have Ω1(A)S = Ω1(AS) and so Ω∗(A)S = Ω∗(AS).
Denoting by C the continuous dual coalgebra A′ and by Λ∗C(M ′) the graded cosymmetric coalgebra, the

fact that ΛnC(M ′) = (ΛnA(M))′ is deduced by checking that (ΛnA(M))′ satisfies the corresponding universal
property:

HomgcCoalg(X,Λ
∗
A(M)′) = HomgcAlg(Λ

∗
A(M), X ′) = HomA(M,X ′) = ComC(X,M ′) = HomgcCoalg(X,Λ

∗
C(M ′))

where gcCoalg = graded cocommutative coalgebras and gcAlg = graded commutative algebras. Taking
M = Ω1(A), we already know that Ω1

C = (Ω1(A))′. Concerning localization, we have that

(Ω∗C)[S] = (Ω∗(A))′[S] = (Ω∗(A)S)′ = (Ω∗(AS)) = Ω∗C[S]

The main example of this situation to be considered in this work is the following:
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Let X be a compact smooth manifold, A = C∞(X) and C = A′ = D(X). Choose an open covering
X = ∪ni=1Ui consisting of sets Ui homeomorphic to open balls and let {φi}i=1,...,n be a partition of unity
subordinated to the covering {Ui}i=1,...,n. Consider Si = {f ∈ C∞(X) / f(x) 6= 0, ∀x ∈ Ui}, then ASi is
the topological algebra C∞(Ui) (see [15]). The canonical morphism A → ⊕n

i=1ASi is in this case not only
a monomorphism but also a section, with left inverse ASi → A given by f 7→ f.φi. Consider the following
exact diagram:

0 A
⊕

i=1

n ASi ⊕
i<j

(ASi)Sj ... AS1....Sn 0

0 A
⊕

i=1

n ASi ⊕
i<j

ASi.Sj ... AS1....Sn 0

0 C∞(X) ⊕
i=1

n C∞(Ui) ⊕
i<j

C∞(Ui ∩ Uj) ... C∞(U1 ∩ ... ∩ Un) 0

// //
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

//
�
�
�
�
�

�
�
�
�
�

// //
�
�
�
�
�
�
�

�
�
�
�
�
�
�

//

//
�
�
�
�
�
�
�

�
�
�
�
�
�
�

//
�
�
�
�
�
�

�
�
�
�
�
�

//
�
�
�
�
�

�
�
�
�
�

// //
�
�
�
�
�
�
�

�
�
�
�
�
�
�

//

// // // // // //

which is split by an A-linear homotopy s. There is an analogous diagram for any A-module M . In
particular, taking M = Ω1(A), we obtain a (split) exact sequence

0 → Ω1(X) → ⊕
i=1

n Ω1(Ui) → ⊕
i<j

Ω1(Ui ∩ Uj) → ......→ Ω1(U1 ∩ ... ∩ Un) → 0 (∗)

where Ω1(Ui) denotes Ω1(C∞(Ui)) = Ω1(C∞(X)Si) = (Ω1(C∞(X))Si. The C∞(Ui)-module Ω1(Ui) is free
with basis {dx1

i , ..., dx
n
i } where xji is the j-th coordinate with respect to the local chart associated to Ui.

In this local case, all definitions of Ω1 (sections of the cotangent bundle, I/I2, universal object for
derivations) are coincident (to prove it, consider the universal property of each one of this objects). Moreover,
they all localize, so the exact sequence (∗) gives that all different definitions of Ω1(X) coincide.

As Ωn(AS) = ΛnAS
Ω1(AS) = ΛnAS

Ω1(A)S = (ΛnAΩ1(A))S , the n-th. component of Ω∗ also localizes.

Following Connes’ computations [4], a C-split projective resolution {Ei}i∈N of C∞(X) as C∞(X ×X)-

module is obtained by taking Ei = pull-back of Ωi(X) over the second projection. Tensoring this resolution
by A⊗Ae −, the complex calculating Hochschild homology (its topological version) has Ωi(X) in degree i and
the differential is null, so HHn(A) = Ωn(A). The resolution being C-split, the dual complex of D(X ×X)-
injective comodules is also exact and C-split. The complex obtained by cotensoring with C over Ce calculates
then Hoch∗(C) and has ΩiC in degree i because if P is a finitely generated projective Ae-module then P ′ is
a Ce-injective finitely cogenerated comodule and (A ⊗Ae P )′ = C2CeP ′. Then C2CeE′n = (Ωn(A))′ = ΩnC .
We conclude that in this case Hochn(C) = ΩnC .

Also, ifM is a D(Ui)-bicomodule (for some i, 1 ≤ i ≤ n) we can compare the cohomology Hoch∗(D(Ui),M)
with Hoch∗(D(X),M)[Si]. In a more general setting:

Proposition 6.1 Given a continuous map of nuclear Fréchet (resp. DF) coalgebras f : D → C such that

• D2CD ∼= D, and

• Hochi(D⊗̃D,C) = 0 ∀i > 0,

we have Hoch i(M,C) = Hoch i(M,D) for all i ∈ N0 and arbitrary Fréchet (resp. DF) D-bicomodule M .

As a corollary, Hoch∗(M,D(Ui)) = Hoch∗(M,D(X)) for all D(Ui)-bicomodule M , taking C = D(X) and
D = D(Ui).

When D = C[S] for a multiplicative subset S ⊂ Z(C ′), the first condition of the above proposition is
verified because localization is an “idempotent” functor, while the second condition is satisfied whenever one
can prove that localization is exact.
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Proof: It is a consequence of Lemma 5.2, taking Kp(M) := Hochp(M,C) because

Hoch0(M,C) = C2CeM = C2CeDe
2DeM ∼= (D2CC2CD)2DeM ∼= (D2CD)2DeM ∼= D2

e
DM = Hoch0(M,D)

Also Hochp(D⊗̃M⊗̃D,C) = 0 because D⊗̃D is C-coflat. The condition concerning long exact sequences
is also satisfied.

7 Proof of the main Theorem

The aim of this section is to calculate Hochn(C) for a smooth coalgebra C. Since we make use of simplified
resolutions, we consider two kind of situations.

Theorem 7.1 Suppose char(k) = 0. If C is a cocommutative coalgebra satisfying either one of the hypothesis
below:

• C is a smooth algebraic coalgebra and kei ∧ k.ei is finite dimensional for every group-like ei ∈ C.

• C is a smooth local topological coalgebra provided of a topology verifying Proposition 5.1 (for M = C),
C = ∪n∈N0

∧n (k.e) (e being the unique group-like of C) and k.e ∧ k.e is finite dimensional.

then Hoch∗(C) is isomorphic to the exterior coalgebra on Ω1
C .

Proof: The following argument allows us, when considering an arbitrary cocommutative smooth coalgebra
C, to reduce the problem to the local case. It works for “algebraic” coalgebras, but it does not work for
topological coalgebras.

Given then an algebraic cocommutative smooth coalgebra C, it is well known ([16], Theorem 8.0.5, p.163)
that C = ⊕i∈ICi, where I indexes the set of irreducible subcoalgebras of C. As C is a coalgebra over an
algebraically closed field k, each Ci contains at least a group-like element ei, and it cannot contain two of
them due to the irreducibility of Ci. Then each Ci is local.

Let us denote by Λ a set indexing the finite subsets of I and by {Iα}α∈Λ the set of all finite subsets of
I . Then C =lim

→
Λ

⊕i∈Iα
Ci, and since Hoch∗ commutes with direct limits, assuming the theorem for the local

case,

Hoch∗(C) = lim
→
Λ

Hoch∗ (⊕i∈Iα
Ci) ∼= lim

→
Λ

⊕

i∈Iα

Hoch∗(Ci) ∼=

∼=
⊕

i∈I

Hoch∗(Ci) ∼=
⊕

i∈I

Λ∗(Ω1
Ci

) ∼= Λ∗
(
⊕i∈IΩ

1
Ci

)
∼= Λ∗(Ω1

C)

where the second equality follows from the Mayer-Vietoris property of Hoch∗ (see [10]).
In the local smooth case (for both situations), the existence of a simple resolution makes the computation

of Hochn(C) easy. We know that Hochn(C) = CotornCe(C,C) and that Ce is a smooth local coalgebra (see
Lemma 2.8). Let ẽ be the unique group-like element in Ce (in fact ẽ = e⊗ e = ∆(e), where e is the unique
group-like element of C). The map ∆ : C → Ce is a monomorphism of coalgebras and, since C and Ce are
smooth, then C ∼= ∆(C) = ∩ni=1Ker(fi.), ∪jΛ

jC = Ce, for a certain “regular sequence” {f1, ..., fn} in the
sense that

0 → C → Ce → ⊕ni=1C
e.fi → ⊕i<jC

e(fi ∧ fj) → ...→ Ce.(f1 ∧ ... ∧ fn) → 0

is an exact sequence. Then Cotor∗Ce(C,C) = H∗(0 → C → ⊕ni=1C.fi → ⊕i<jC(fi ∧ fj) → ...→ C.(f1 ∧ ... ∧
fn) → 0). Using an analogue of the Künneth formula for coalgebras (see [7]) this is the cotensor product of
the cohomology of the complexes

0 C C 0// fi. // //

In other words, Cotor∗Ce(C,C) is a graded coalgebra isomorphic to the exterior coalgebra on Cotor1
Ce (C,C).

Since one always has an isomorphism Cotor1Ce (C,C) = Hoch1(C) ∼= Ω1
C , the proof is complete.

Conjecture: The reciprocal statement to the Hochschild - Kostant - Rosemberg theorem proved by [3] and
[2] suggests that in the coalgebra case the fact of being smooth is equivalent to the above isomorphism.
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