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1 Introduction

Derived categories were invented by A. Grothendieck and his school in the early sixties. The
volume [Ve] reproduces some notes of his pupil J.L.Verdier, dating from 1963, which are the
original source on derived categories (see also [Ve1]).

Let A be an abelian category and C(A) the category of complexes in A, that is, objects
are sequences of maps

· · · → Xn−1 dn−1

→ Xn dn

→ Xn+1 → · · ·

with dn ◦ dn−1 = 0 for all n ∈ Z, and a morphism f : X → Y between complexes is a family
of morphisms fn : Xn → Y n in A such that dn

Y ◦ fn = fn+1 ◦ dn
X . The cohomology groups

of the complex X are by definition

Hn(X) = Ker dn/ Im dn−1.

A morphism f : X → Y induces a group morphism Hn(f) : Hn(X) → Hn(Y ) in each
degree. We say that f is a quasi-isomorphism if Hn(f) is an isomorphism for all n ∈ Z.

The derived category D(A) of A is obtained from C(A) by formally inverting all quasi-
isomorphisms.

Recall that the definition of derived functors in homological algebra is as follows. Assume
that A has enough projectives and let F : A → Ab be a contravariant left exact functor.
Then the right derived functor RFn : A → Ab is defined in the following way. Let M be an
object in A and let

· · · → P2 → P1 → P0 → 0

be a projective resolution of M , that is,

· · · → P2 → P1 → P0 → 0 · · ·
↓ ↓ ↓ ↓

· · · → 0 → 0 → M → 0 · · ·

is a quasi-isomorphism. Then RFn(M) is the group homology in degree n of the complex

0→ F (P0)→ F (P1)→ F (P2)→ · · · .
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These are well defined functors since the projective resolution of an object M is unique up
to quasi-isomorphisms. Moreover, for any short exact sequence 0 → M1

f→ M2
g→ M3 → 0

there is a long exact sequence

· · · → RFn(M3)
RF n(g)→ RFn(M2)

RF n(f)→ RFn(M1)
δn

→ RFn+1(M3)→ · · ·

where δ is the so called connecting morphism.
In fact, when we are doing homological algebra, we are not dealing with objects and coho-

mology groups but with complexes up to quasi-isomorphisms and their cohomology groups.
Hence it is natural to work in D(A) instead of A or C(A).

Any object in A can be identified in D(A) by the complex concentrated in degree zero.

Let 0→ X
f→ Y

g→ Z → 0 be a short exact sequence in A. Observe that

· · · → 0 → X
f→ Y → 0 → · · ·

↓ ↓ ↓ g ↓
· · · → 0 → 0 → Z → 0 → · · ·

is a quasi-isomorphism. So the previous short exact sequence can be identified in D(A) by
the sequence of complexes

0 → 0 → 0 → 0 → 0
↓ ↓ ↓ ↓ ↓
0 → 0 → 0 → X → 0
↓ ↓ ↓ ↓ f ↓
0 → X

f→ Y = Y → 0
↓ ↓ ↓ ↓ ↓
0 → 0 → 0 → 0 → 0

which is not an exact sequence.
In this new category, the concept of ”short exact sequences” (which are determined by

two morphisms f, g) will be replaced by that of ”distinguished triangles”(determined by

three morphisms f, g, h). If 0→ X
f→ Y

g→ Z → 0 is a short exact sequence in A, then

0 → 0 → 0 → 0
↓ ↓ ↓ ↓
0 → 0 → X = X
↓ ↓ ↓ f ↓
X

f→ Y = Y → 0
↓ ↓ ↓ ↓
0 → 0 → 0 → 0

X → Y → Z → X[1]
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is a triangle in D(A).

We will consider ”cohomological functors” defined in D(A), that applied to distinguished
triangles will give long exact sequences with morphisms induced by f, g, h. That is, the
extra morphism we are considering when defining triangles is a morphism of complexes that
induces the corresponding connecting morphism.

So, when considering the derived category D(A) of A, we replace objects in A by com-
plexes, and invert quasi-isomorphisms between complexes. As we shall see, D(A) is not
abelian if A is not semisimple. The abelian structure of A, and of C(A), has to be replaced
by a triangulated structure.

2 Triangulated categories

Let T be an additive category with an additive automorphism T : T → T called the
translation functor. We will write X[n] and f [n] for Tn(X) and Tn(f) respectively. A
triangle in T is a diagram of the form

X
f→ Y

g→ Z
h→ X[1]

that will be denoted as (X,Y, Z, f, g, h), and a morphism of triangles is a triple

(α, β, γ) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

forming a commutative diagram in T

X
f→ Y

g→ Z
h→ X[1]

↓ α ↓ β ↓ γ ↓ α[1]

X ′ f ′→ Y ′ g′→ Z ′
h′→ X ′[1]

A morphism of triangles is said to be an isomorphism if α, β, γ are isomorphisms in T .

DEFINITION 2.1. A structure of triangulated category on T is given by a translation
functor T and a class of distinguished triangles verifying the following four axioms:

TR1. a) (X,X, 0, idX , 0, 0) is a triangle, for any object X;

b) Every triangle isomorphic to a distinguished one is distinguished;

c) Every morphism X
f→ Y can be embedded in a distinguished triangle (X,Y, Z, f, g, h).

TR2. (Rotation) A triangle (X,Y, Z, f, g, h) is distinguished if and only if (Y, Z,X[1], g, h,−f [1])
is distinguished.
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TR3. (Morphisms) Every commutative diagram

X
f→ Y

g→ Z
h→ X[1]

↓ α ↓ β
X ′ f ′→ Y ′ g′→ Z ′

h′→ X ′[1]

whose rows are distinguished triangles can be completed to a morphism of triangles by
a morphism Z

γ→ Z ′.

TR4. (The octahedral axiom) Given X
f→ Y and Y

g→ Z morphisms in A, and distinguished
triangles

(X,Y,X ′, f, f ′, s), (X,Z, Y ′, g ◦ f, h, r), (Y, Z, Z ′, g, g′, t),

there exist morphisms X ′ u→ Y ′, Y ′ v→ Z ′ such that

(X ′, Y ′, Z ′, u, v, f ′[1] ◦ t)

is a distinguished triangle and

X
f→ Y

f ′→ X ′ s→ X[1]
‖ ↓ g ↓ u ‖
X

g◦f→ Z
h→ Y ′ r→ X[1]

↓ f ‖ ↓ v ↓ f [1]

Y
g→ Z

g′→ Z ′
t→ Y [1]

↓ f ′ ↓ h ‖ ↓ f ′[1]
X ′ u

99K Y ′ v
99K Z ′

w→ X ′[1]

is a commutative diagram.

Observe that all the rows in the previous diagram are distinguished triangles, and mor-
phisms between rows determined the following morphisms of triangles

(X,Y,X ′, f, f ′, s)
(idX ,g,u)−→ (X,Z, Y ′, g ◦ f, h, r) (f,idZ ,v)−→ (Y, Z, Z ′, g, g′, t)

(Y, Z, Z ′, g, g′, t)
(f ′,h,idZ′ )−→ (X ′, Y ′, Z ′, u, v, w)

(s,tv,w)−→ (X[1], Y [1], X ′[1], f [1], f ′[1], s[1])

The name of last axiom comes from the fact that it can be viewed as a picture of a octa-
hedron, where four faces are distinguished triangles, and all the other faces are commutative.
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DEFINITION 2.2. Let T be a triangulated category and A an abelian category. An additive
functor H : T → A is said to be a cohomological functor if, for any distinguished triangle
(X,Y, Z, f, g, h) in T , we get an exact sequence in A

H i(X)
Hi(f)→ H i(Y )

Hi(g)→ H i(Z)

where H i denotes H ◦ T i = H(−[i]).

REMARK 2.3. By TR2, if (X,Y, Z, f, g, h) is a distinguished triangle then (Y, Z,X[1], g, h,−f [1])
is also distinguished. Then, if H is a cohomological functor,

H i(Y )
Hi(g)→ H i(Z)

Hi(h)→ H i+1(X)

is also exact. So we get a long exact sequence

· · · → H i(X)
Hi(f)→ H i(Y )

Hi(g)→ H i(Z)
Hi(h)→ H i+1(X)→ · · ·

LEMMA 2.4. Let (X,Y, Z, f, g, h) be a distinguished triangle in T . Then

i) g ◦ f = 0;

ii) If u : U → Y is such that g ◦ u = 0, then there exists v : U → X such that u = f ◦ v;

iii) If s : Y →W is such that s ◦ f = 0, then there exists t : Z →W such that s = t ◦ g.

Proof. i) From TR1 we know that (X,X, 0, idX , 0, 0) is a distinguished triangle, and from
TR3 we know that there exists a morphism of triangles

X
idX→ X → 0 → X[1]

↓ idX ↓ f ↓ s ↓ idX [1]

X
f→ Y

g→ Z
h→ X[1]

and hence g ◦ f = 0.
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ii) From TR2 and TR3 we know that the diagram

U
idU→ U → 0 → U [1]

↓ u ↓
X

f→ Y
g→ Z

h→ X[1]

can be completed to a morphism of triangles. Hence, there exists U v→ X such that
f ◦ v = u.

� �

COROLLARY 2.5. If U is an object in a triangulated category T , then HomT (U,−) :
T → Ab and HomT (−, U) : T op → Ab are cohomological functors.

COROLLARY 2.6. Any distinguished triangle is determined, up to isomorphisms, by one
of its morphisms.

Proof. From TR2, it suffices to prove that the distinguished triangles (X,Y, Z, f, g, h) and
(X,Y, Z ′, f, g′, h′) are isomorphic. By TR3, there exists a morphism of triangles

X
f→ Y

g→ Z
h→ X[1]

↓ idX ↓ idY ↓ t ↓ idX [1]

X
f→ Y

g′→ Z ′
h′→ X ′[1]

If we apply the cohomological functors HomT (−, Z) and HomT (Z ′,−), by the 5-lemma we
get that

t∗ : HomT (Z ′, Z)→ HomT (Z,Z), t∗ : HomT (Z ′, Z)→ HomT (Z ′, Z ′)

are isomorphisms. Then, t has left and right inverse, and therefore, t is an isomorphism. �
�

PROPOSITION 2.7. For any distinguished triangle (X,Y, Z, f, g, h), the following condi-
tions are equivalent:

(i) f is a monomorphism;

(ii) h = 0;

(iii) there exists Z s→ Y such that g ◦ s = idZ ;

(iv) g is an epimorphism;

(v) there exists Y t→ X such that t ◦ f = idX .
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Proof. (iii)⇒ (iv) and (v)⇒ (i) are immediate.
(i) ⇒ (ii) By TR2 and Lemma 2.4(i) we have that f [1] ◦ h = 0. Since f is a monomor-

phism, h = 0.
(ii)⇒ (iii) If h = 0, by Corollary 2.5,

HomT (Z, Y )
g∗→ HomT (Z,Z) 0→ HomT (Z,X[1])

is exact, so there exists s : Z → Y such that g ◦ s = idZ .
(iv)⇒ (v) By Lemma 2.4(i) we know that h ◦ g = 0. Since g is an epimorphism we have

that h = 0, and by Corollary 2.5,

HomT (Y,X)
g∗→ HomT (X,X) 0→ HomT (Z[−1], X)

is exact, so there exists t : Y → X such that t ◦ f = idX . � �

COROLLARY 2.8. In any triangulated category any monomorphism splits and any epi-
morphism splits. Moreover, f is an isomorphism if and only if f is a monomorphism and
an epimorphism.

3 Distinguished triangles in K(A)

Let A be an abelian category, and let C(A) be the category of complexes in A. The homo-
topy category K(A) is defined as follows: the objects of K(A) are the objects in C(A), and
morphisms in K(A) are the homotopy equivalence classes of morphisms in C(A). That is,
HomK(A)(X,Y ) = HomC(A)(X,Y )/ ', where f ' g if there exists hn : Xn → Y n−1 with
dn−1

Y ◦ hn + hn+1 ◦ dn
X = fn − gn. So, the morphisms homotopic to zero in C(A) become the

zero morphisms in K(A) and the homotopic equivalences become isomorphisms.

It can be checked that K(A) is well defined as a category, and moreover, it is an additive
category, and the quotient C(A)→ K(A) is an additive functor.

Observe that HomK(A)(X,Y ) can also be defined as the quotient of HomC(A)(X,Y ) by
the subgroup

Ht(X,Y ) = {X f→ Y : f is homotopic to 0}

since Ht is an ideal in C(A), that is, g ◦ f ∈ Ht if f or g belongs to Ht.

Let T : C(A) → C(A) be the automorphism defined in the following way: for any com-

plex X in C(A), T (X)n = Xn+1 and T (d)n = −dn+1; for any morphism X
f→ Y in C(A),

T (f)n = fn+1. The functor T is additive and it is an automorphism. Since T (f) is a mor-
phism homotopic to zero if and only if f is a morphism homotopic to zero, it induces an
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additive automorphism T : K(A)→ K(A). We denote X[n] = Tn(X) and d[n] = Tn(d), for
any n ∈ Z.

We will see that K(A) is a triangulated category with translation functor T .

LEMMA 3.1. The cohomology functors Hn : C(A) → A induce well defined functors
Hn : K(A)→ A.

Proof. If f, g : X → Y are homotopic, then dn−1
Y ◦hn+hn+1◦dn

X = fn−gn, soHn(f) = Hn(g).
� �

DEFINITION 3.2. Let X
f→ Y be a morphism in C(A).

(i) The mapping cone of f is the complex cone(f) such that cone(f)n = Xn+1 ⊕ Y n, and
the differential dn

f : Xn+1 ⊕ Y n → Xn+2 ⊕ Y n+1 is given by

dn
f =

(
−dn+1

X 0
f dn

Y

)
.

(ii) The mapping cylinder of f is the complex cyl(f) such that cyl(f)n = Xn⊕Xn+1⊕Y n,
and the differential dn : Xn ⊕Xn+1 ⊕ Y n → Xn+1 ⊕Xn+2 ⊕ Y n+1 is given by

dn =

 dn
X id 0
0 −dn+1

X 0
0 f dn

Y

 .

PROPOSITION 3.3. Any short exact sequence 0→ X
f→ Y

g→ Z → 0 in C(A) fits into a
commutative diagram

0 → Y
h→ cone(f) δ→ X[1] → 0

↓ α ‖
0 → X

ν→ cyl(f) π→ cone(f) → 0
‖ ↓ β ↓ γ

0 → X
f→ Y

g→ Z → 0

defined in degree n by the following diagram

Y n

„
0
id

«
−→ Xn+1 ⊕ Y n

`
id 0

´
−→ Xn+1

↓
0@ 0

0
id

1A ‖

Xn

0@ id
0
0

1A
−→ Xn ⊕Xn+1 ⊕ Y n

„
0 id 0
0 0 id

«
−→ Xn+1 ⊕ Y n

‖ ↓ ` −fn 0 id
´ ↓ ` 0 gn ´

Xn fn

→ Y n gn

→ Zn
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with exact rows, α, β homotopy inverse equivalences and γ a quasi-isomorphism.

Proof. A direct computation shows that all the maps are morphisms of complexes. It is clear
that β ◦ α = id. On the other hand,

(id− α ◦ β)(x, x′, y) = (x, x′, y)− (0, 0,−f(x) + y) = (x, x′, f(x)) = (h ◦ d+ d ◦ h)(x, x′, y),

where h(x, x′, y) = (0, x, 0). Then α and β are homotopy equivalences, so they are quasi-
isomorphisms. Now, since β is a quasi-isomorphism, the 5-lemma applied to the long exact
sequences obtained from the second and the third row, implies that γ is a quasi-isomorphism.
� �

DEFINITION 3.4.

(i) A short exact sequence 0→ X
f→ Y

g→ Z → 0 in C(A) semi-splits if 0→ Xn fn

→ Y n gn

→
Zn → 0 splits, for all n.

(ii) A triangle in K(A) is a distinguished triangle if it is isomorphic, in K(A), to one of

the form X
f→ Y

h→ cone(f) δ→ X[1].

THEOREM 3.5. [Ve1, II.1.3.2] The category K(A) is a triangulated category with trans-
lation functor T .

Let Hn : C(A) → A be the functor defined by Hn(X) = Ker dn/ Im dn−1. For any mor-
phism f homotopic to zero, Hn(f) = 0. Then Hn factors uniquely through K(A).

The following are immediate consequences of Proposition 3.3.

PROPOSITION 3.6. The functor Hn : K(A) → A is a cohomological functor, for any
n ∈ Z.

Proof. Let X
f→ Y → Z → X[1] be a distinguished triangle in K(A). By definition, it is

isomorphic to
X

f→ Y
h→ cone(f) δ→ X[1]

Since 0 → Y
h→ cone(f) δ→ X[1] → 0 is a short exact sequence in C(A), it induces an exact

sequence

Hn(Y )
Hn(h)→ Hn(cone(f))

Hn(δ)→ Hn+1(X)

� �

A simple computation shows that the connecting morphism Hn+1(X) → Hn+1(Y ) as-
sociated to the exact sequence appearing in the previous proof is Hn+1(f): recall that the
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connecting morphism is defined by chasing the following diagram

Xn+1 ⊕ Y n
`

id 0
´

−→ Xn+1 → 0
↓ dn

f =

„
−dn+1

X
0

f dn
Y

«

0 → Y n+1
hn+1 =

„
0
id

«
−→ Xn+2 ⊕ Y n+1

so, if x ∈ Xn+1 is such that dn+1
X (x) = 0, then x = δn(x, 0). Finally,

dn
f (x, 0) = (−dn+1

X (x), f(x)) = (0, f(x)) = hn+1(f(x)).

PROPOSITION 3.7. Any short exact sequence in C(A) is quasi-isomorphic to a semi-split
short exact sequence.

PROPOSITION 3.8. Any distinguished triangle in K(A) is quasi-isomorphic to one in-
duced by a semi-split short exact sequence in C(A).

REMARK 3.9. Let 0 → X
f→ Y

g→ Z → 0 be a semi-split short exact sequence in C(A),
that is, Y n ' Xn ⊕ Zn. Then Y is isomorphic to the complex

· · · → Xn−1 ⊕ Zn−1

 
dn−1

X
hn−1

0 dn−1
Z

!
−→ Xn ⊕ Zn

„
dn

X hn

0 dn
Z

«
−→ Xn+1 ⊕ Zn+1 → · · ·

where h : Z → X[1] is a morphism of complexes and

X
f→ Y

g→ Z
h→ X[1]

is a distinguished triangle in K(A). Moreover, the connecting morphism δ in the long exact
sequence

· · · → Hn(X)
Hn(f)→ Hn(Y )

Hn(g)→ Hn(Z) δn

→ Hn+1(X)→ · · ·
is just Hn(h).

4 Derived categories

As we said in the introduction, the derived category D(A) of A is obtained from C(A) by
formally inverting all quasi-isomorphisms. So D(A) is the localization of C(A) with respect
to the class of quasi-isomorphisms in C(A): there exists a functor Q : C(A)→ D(A) sending
quasi-isomorphisms to isomorphisms which is universal for such property, that is, for any
functor F : C(A) → B sending quasi-isomorphisms to isomorphisms, there exists a functor
G : D(A)→ B, unique up to isomorphism, making the following diagram commutative

C(A)

F

��

Q // D(A)

B
G

::vvvvvvvvv
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The category D(A) can be obtained just by adding formally inverses for all quasi-
isomorphisms. But in this case, morphisms in D(A) are just formal expressions of the
form

f1 ◦ s−1
1 ◦ f2 ◦ s−1

2 ◦ · · · ◦ fn ◦ s−1
n ,

where all fi are morphism in C(A) and si are quasi-isomorphisms en C(A). To work with
these kind of expressions, we would like to find a ”common denominator”. It was Verdier’s
observation that we can obtain a better description of the morphisms by a ”calculus of
fractions” if we construct D(A) in several steps:

C(A)→ K(A)→ D(A)

that is, we consider complexes and their morphisms, then complexes and homotopy classes
of morphisms of complexes, and finally, we invert all quasi-isomorphisms in K(A). Then
D(A) = K(A)[S−1] is the localization of K(A) with respect to the class S of all quasi-
isomorphisms.

DEFINITION 4.1. A class S of maps in a category C is said to be a multiplicative system
if it satisfies the following conditions:

S1. For any object X in C, idX ∈ S. If s, t are composable maps in S, then s ◦ t ∈ S.

S2. Given X s→ Y , X
f→ Z and W

g→ Y with s ∈ S, there exist morphisms in C completing
the following diagrams in a commutative way

X
s→ Y Y ′ u→ W

↓ f ↓ f ′ ↓ g′ ↓ g
Z

t→ X ′ X
s→ Y

with t, u ∈ S.

S3. Given f, g : X → Y , there exists W s→ X with f ◦ s = g ◦ s if and only if there exists
Y

t→ Z with t ◦ f = t ◦ g.

The multiplicative system S is said to be saturated if it satisfies:

S4. A morphism X
s→ Y belongs to S if and only if there exist morphisms Y

f→ Z and
W

g→ X such that f ◦ s ∈ S and s ◦ g ∈ S.

If C is a triangulated category with translation functor T , the multiplicative system S is said
to be compatible with the triangulation if it satisfies:

S5. A morphism s belongs to S if and only if T (s) belongs to S.

S6. Given a morphism of triangles (α, β, γ) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′), if α
and β belong to S, then γ belongs to S.
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If S is a multiplicative system, the morphisms of the localization of C with respect to S
can be described by a ”calculus of fractions”.

If S is saturated and Q : C → C[S−1] is the localization functor, then s belongs to S if
and only if Q(s) is an isomorphism.

Finally, if S is compatible with the triangulation, C[S−1] is a triangulated category, with
distinguished triangles isomorphic to images of distinguished triangles in C.

We refer to [Ve1, II.2] for more details.

PROPOSITION 4.2. Let S be the class of quasi-isomorphisms in K(A). Then S is a
saturated multiplicative system in K(A), compatible with the triangulation.

Proof. See for instance [Ha, I.4]. � �

REMARK 4.3.

(1) The class S̃ of quasi-isomorphism in C(A) is not a multiplicative system.

(2) The localization of C(A) with respect to S̃ is isomorphic to the localization of K(A)
with respect to S.

Now we can describe D(A). The objects are those of K(A). The morphisms X → Y in
D(A) are equivalence classes of pairs

s−1 ◦ f = (X
f→ U

s← Y )

with s ∈ S. The equivalence relation is defined as follows:

(X
f→ U

s← Y ) ' (X
g→ V

t← Y )

if there exists a commutative diagram

U

α

��
X

f
>>|||||||| h //

g
  B

BB
BB

BB
B W Y

s
``AAAAAAAA

u
oo

t~~}}
}}

}}
}}

V

β

OO

with u ∈ S, that is, s−1◦f ' t−1◦g if and only if (α◦s)−1◦(α◦f) = u−1◦h = (β◦t)−1◦(β◦g).
The composition of morphisms in D(A) can be visualized by the diagram

W

U

h
>>}}}}}}}}

V

u

``AAAAAAAA

X

f
>>~~~~~~~~

Y

s
``AAAAAAAA

g
>>}}}}}}}}

Z

t

__@@@@@@@
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that is,
(t−1 ◦ g) ◦ (s−1 ◦ f) = (u ◦ t)−1 ◦ (h ◦ f),

where the existence of u and h comes from S2.
Finally, the functor Q : K(A) → D(A) is defined as the identity in objects and sends a

morphism X
f→ Y to the equivalence class of the pair id−1

Y ◦ f = (X
f→ Y

idY← Y ).

Since S is saturated, a morphism X
f→ Y in K(A) is a quasi-isomorphism if and only if

Q(f) is an isomorphism.

REMARK 4.4.

(i) A complex X in K(A) is quasi-isomorphic to zero if and only if Q(X) = 0 in D(A).

(ii) Let X
f→ Y be a morphism in C(A). Then Q(f) = 0 in D(A) if and only if there exists

a quasi-isomorphism Y
s→ Z such that s ◦ f is homotopic to zero in C(A). Moreover,

if f is a monomorphism (epimorphism) in K(A), then Q(f) is so.

(iii) The cohomological functor Hn : K(A)→ A sends quasi-isomorphisms to isomorphisms,
so it factors through D(A), inducing a cohomological functor Hn : D(A)→ A, for any
n ∈ Z.

The automorphism T : K(A)→ K(A) sends quasi-isomorphisms to quasi-isomorphisms,
so it induces an automorphism T : D(A)→ D(A).

THEOREM 4.5. The category D(A) is a triangulated category with translation functor T .

Proof. The class of quasi-isomorphisms in K(A) is a multiplicative system compatible with
the triangulation, so the localization is triangulated and the distinguished triangles are those
isomorphic to images by Q of distinguished triangles in K(A). � �

Since A → C(A) is fully faithful, we identify objects and morphisms in A with objects
and morphisms in C(A) concentrated in degree zero.

PROPOSITION 4.6. The composition A → C(A) → K(A) → D(A) is a fully faithful
functor.

Proof. Denote q : A → D(A) the composition functor. For any object X in A, q(X) is the

complex concentrated in degree zero, and for any morphism X
f→ Y , q(f) is the equivalence

class of the pair (X
f→ Y

idY← Y ). Observe that the composition of q with the cohomological
functor H0 : D(A)→ A is the identity of A.
The functor q is faithful: if q(f) = 0, there exists a quasi-isomorphism s such that s ◦ f
is homotopic to zero; then H0(s) ◦ H0(f) = 0, but H0(s) is an isomorphism, and hence
f = H0(f) = 0.

13



The functor q is full: let (q(X)
f→ Z

s← q(Y )) be a representative of the equivalence class of
a morphism in D(A) from q(X) to q(Y ). Since s is a quasi-isomorphism, the complex Z has
cohomology Y in degree zero, and zero otherwise. Then, the morphism of complexes

Z · · · → Z−1 d−1

→ Z0 d0

→ Z1 d1

→ Z2 → · · ·
↓ u ↓ ↓ u0 ‖ ‖
U · · · → 0 → Z0/ Im d−1 h0

→ Z1 d1

→ Z2 → · · ·

is a quasi-isomorphism and Y
(u◦s)0→ Z0/ Im d−1 is the kernel of Z0/ Im d−1 h0

→ Z1. Now,
h0 ◦ u0 ◦ f = d0 ◦ f = 0, so there exists a unique morphism X

g→ Y in A such that
u0 ◦ s0 ◦ g = u0 ◦ f . Finally the commutative diagram

Z

u

��
X

f
>>}}}}}}}u◦f //

g
  A

AA
AA

AA
U Y

s
``@@@@@@@

u◦s
oo

idY~~~~
~~

~~
~

Y

u◦s

OO

says that s−1 ◦ f and id−1
Y ◦ g are equivalent, so q is full. � �

From now on, we will identify A with the full subcategory q(A). We already know that
HomD(A)(X,Y ) ' HomA(X,Y ) for any pair of objects X,Y in A. Now we want to describe
HomD(A)(X[m], Y [n]) for any m,n ∈ Z.

It is clear that HomD(A)(X[m], Y [n]) ' HomD(A)(X,Y [n−m]), so we only have to study
HomD(A)(X,Y [n]) for n 6= 0.

Let Extn
A(X,Y ) be the set of exact sequences

ψ : 0→ Y → Z−n → · · · → Z−1 → X → 0

in A. It is clear that we can define a map Extn
A(X,Y ) → HomD(A)(X,Y [n]) by sending ψ

to the equivalence class of the morphism (X
f→ Z

s← Y [n]) given by

X · · · → 0 → 0 → · · · → 0 → X → 0 → · · ·
↓ f ↓ ↓ ↓ ‖ ↓
Z · · · → 0 → Z−n → · · · → Z−1 → X → 0 → · · ·
↑ s ↑ ↑ ↑ ↑ ↑
Y [n] · · · → 0 → Y → · · · → 0 → 0 → 0 → · · ·
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with s a quasi-isomorphism.
On the other hand, let (X

f→ Z
s← Y [n]) be a representative of a map from X to Y [n].

Since s is a quasi-isomorphism, the complex Z has cohomology zero except in degree −n.
Consider the following quasi-isomorphism

Z · · · → Z−n−1 d−n−1

→ Z−n → Z−n+1 → · · ·
↓ u ↓ ↓ ‖
U · · · → 0 → Z−n/ Im d−n−1 → Z−n+1 → · · ·

Observe that if n < 0, then u ◦ f = 0, so s−1 ◦ f ' (u ◦ s)−1 ◦ (u ◦ f) ' 0. Hence
HomD(A)(X,Y [n]) = 0 for any n < 0.

If n > 0, consider the quasi-isomorphism W
v→ U given by

· · · → 0 → Z−n/ Im d−n−1 → Z−n+1 → · · · → Z−1 → Im d−1 → 0 → · · ·
‖ ‖ ‖ ‖ ↓ ↓

· · · → 0 → Z−n/ Im d−n−1 → Z−n+1 → · · · → Z−1 → Z0 → Z1 → · · ·

and observe that there exists a commutative diagram

Z

u

��
X

f
>>~~~~~~~~ u◦f //

g
  @

@@
@@

@@
@ U Y [n]

s

bbDDDDDDDD

u◦s
oo

t||zz
zz

zz
zz

W

v

OO

where t, g are given by

X · · · → 0 → 0 → · · · → 0 → X → 0 → · · ·
↓ g ↓ ↓ ↓ ↓ ↓
W · · · → 0 → Z−n/ Im d−n−1 → · · · → Z−1 → Im d−1 → 0 → · · ·
↑ t ↑ ↑ ↑ ↑ ↑
Y [n] · · · → 0 → Y → · · · → 0 → 0 → 0 → · · ·

Finally the morphism s−1 ◦ f ' t−1 ◦ g from X to Y [n] can be associated with the exact
sequence appearing in the first row of the diagram

0 → Y → Z−n/ Im d−n−1 → Z−n+1 → · · · → Z−2 → E → X → 0
‖ ‖ ‖ ‖ ↓ ↓

0 → Y → Z−n/ Im d−n−1 → Z−n+1 → · · · → Z−2 → Z−1 → Im d−1 → 0
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This shows that there is a close connection between HomD(A)(X,Y [n]) and Extn
A(X,Y ).

In fact, the following theorem holds.

THEOREM 4.7. Let X,Y be objects in A. Then

(i) HomD(A)(X[m], Y [n]) = HomD(A)(X,Y [n−m]) for all n,m ∈ Z;

(ii) HomD(A)(X,Y ) = HomA(X,Y );

(iii) HomD(A)(X,Y [n]) = Extn
A(Y,X) for all n > 0;

(iv) HomD(A)(X,Y [n]) = 0 for all n < 0.

THEOREM 4.8. The derived category D(A) is abelian if and only if A is semisimple.

Proof. If A is semisimple then D(A) is equivalent to the abelian semisimple category
∏

ZA,
as we shall see in the second example of the following section.
Assume that D(A) is abelian. We know from Proposition 2.7 that any monomorphism splits,

and that any epimorphism splits. Let X
f→ Y be a morphism in D(A). Then f is equal to

the composition X π→ Im f
ι→ Y . Since π is an epimorphism and ι is a monomorphism, they

split. Hence there exist Im f
s→ X and Y

t→ Im f such that if v = s ◦ t then f = f ◦ v ◦ f .
Assume that A is not semisimple and let U

g→ V be a non-split monomorphism. Then
there exists a morphism q(V ) v→ q(U) in D(A) such that q(g) = q(g) ◦ v ◦ q(g). Now, q is
fully faithfull, so there exists a morphism V

u→ U in A such that g = g ◦ u ◦ g. But g is a
monomorphism, so idU = u ◦ g, a contradiction. � �

5 Examples

5.1 Hereditary categories

Let A be an hereditary category, that is, Ext2A(−,−) = 0. For instance, the category of
abelian groups is hereditary. In this case we can easily describe objects, morphisms and
triangles in D(A).

We start with the description of the objects of D(A). Let X = (Xn, dn) be a complex in

C(A). The vanishing of Ext2A(−,−) implies that Ext1A(W,−) is right exact. Let Xn−1 dn−1

→
Xn and consider the short exact sequences

0→ Ker dn−1 → Xn−1 → Im dn−1 → 0

0→ Im dn−1 → Ker dn → Hn(X)→ 0

Since
Ext1A(Hn(X), Xn−1)→ Ext1A(Hn(X), Im dn−1)→ 0
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is exact, there exists a morphism between short exact sequences

0 → Xn−1 hn

→ En fn

→ Hn(X) → 0
↓ ↓ sn ‖

0 → Im dn−1 → Ker dn → Hn(X) → 0

which induces the following quasi-isomorphisms

→ Hn−1(X) 0→ Hn(X) 0→ Hn+1(X) →
↑ ↑ ` fn 0

´ ↑

→ En−1 ⊕Xn−1

„
0 hn

0 0

«
−→ En ⊕Xn → En+1 ⊕Xn+1 →

↓ ↓ ` s̃n id
´ ↓

→ Xn−1 dn−1

→ Xn dn

→ Xn+1 →

where s̃n is the composition En sn

→ Ker dn → Xn. So (Xn, dn) is quasi-isomorphic to
(Hn(X), 0) =

∏
nH

n(X)[−n].
Let X,Y be objects in A. Then

HomD(A)(X[n], Y [m]) ' HomD(A)(X,Y [m− n]) ' Extm−n
A (X,Y )

which is zero except for m − n ∈ {0, 1}. Finally, HomD(A)(X[n], Y [n]) ' HomA(X,Y ) and
HomD(A)(X[n], Y [n+ 1]) ' Ext1A(X,Y ).

Concerning triangles, let X[n]
f→ Y [n] be a morphism in D(A). The previous computa-

tion applied to the complex

cone(f) : · · · → 0→ X
f→ Y → 0→ · · ·

says that it is quasi-isomorphic to the complex

· · · → 0→ Ker f 0→ Coker f → 0→ · · ·

Hence any distinguished triangle is isomorphic to one of the form

X[n]
f→ Y [n]→ Ker f [n+ 1]⊕ Coker f [n]→ X[n+ 1]

In particular, if 0→ X
f→ Y

g→ Z → 0 is a short exact sequence in A, then

X
f→ Y

g→ Z
δ→ X[1]

is a distinguished triangle in D(A), and δ ∈ HomD(A)(Z,X[1]) is the morphism associated
to the given short exact sequence.
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5.2 Semisimple categories

Let A be a semisimple category. In this case, A is hereditary, so the conclusions in the
previous example hold. But now Ext1A(−,−) = 0, so HomD(A)(X[n], Y [n]) ' HomA(X,Y )
and HomD(A)(X[n], Y [m]) = 0 for all m 6= n. Hence D(A) is equivalent to

∏
ZA.

5.3 A = mod k(A2)

Let A be the full subcategory of finitely generated left modules over the path algebra asso-
ciated to the quiver 1→ 2. In this case we only have three non-isomorphic indecomposable
modules: the simple projective module S2, the projective module of length two P1, and the
simple module S1. Moreover, if X,Y ∈ {S1, S2, P1}, then HomA(X,Y ) = k if (X,Y ) =
(S2, P1) or (P1, S1) and it is zero otherwise, and Ext1A(X,Y ) = k if (X,Y ) = (S1, S2) and it
is zero otherwise. Then D(A) has the following picture

S2[−1]

$$H
HH

HH
HH

HH
P1[0]

##F
FFFFFFF

S2[1]

##F
FFFFFFF

S1[1] . . .

. . .

==||||||||| S2[0]

;;xxxxxxxx
S1[0]

;;xxxxxxxx
P1[1]

;;xxxxxxxx

where the composition of any two consecutive arrows is zero. Observe that this category has
neither monomorphisms nor epimorphisms. All distinguished triangles can be visualized in
the picture as the diagrams of three consecutive arrows.

6 Invariants

7 Morita theory in D(A)

Given a commutative ring k and two k-algebras A and B the natural question is: when are
D(A) and D(B) equivalent categories? (triangle equivalent?) Of course, if A and B are
Morita equivalent (i.e. Mod-A and Mod-B are k-linearly equivalent) then D(A) and D(B)
are equivalent. Are there other equivalences ? The answer is yes. In fact, we shall present
some examples later.

Rickard developed [Rick89], [Rick91] a Morita theory for derived categories based on
the notion of tilting complex. As we shall see this is a generalization of the notion of
tilting module. A summary of the history of the subject is developed for example in [KZ98].
Keller’s approach [Ke94] is a little different and we will follow it. This is also the point of
view of [DG02].

DEFINITION 7.1. 1. A functor F between triangulated categories S and T is said
exact if it commutes whith shifts and preserves distinguished triangles, i.e. F is equipped
with a natural isomorphism iX : F (X[1])→ F (X)[1], ∀X ∈ Obj(S) such that for every
distinguished triangle

X
f→ Y

g→ Z
h→ X[1]
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in S,
F (X)

F (f)→ F (Y )
F (g)→ F (Z)

iX◦F (h)→ F (X)[1]

is a distinguished triangle in T .

2. An equivalence between two triangulated categories is an equivalence of categories which
is exact and whose inverse functor is also exact.

REMARK 7.2. If F : S → T is exact then it is automatically additive.

We know from classical Morita theory that two k-algebras A and B are Morita equivalent
if and only if there exists a bimodule APB such that it is finitely generated projective,
balanced and generator A-module and B ' EndA(P ) as a B-bimodule. We have that P is a
generator for Mod-A, that is for every M ∈ Mod-A, there exists a set I and an epimorphism
P (I) → M . For example, A is a generator A-module but this progenerator gives the trivial
equivalence. The fact that P is f.g. projective implies that P is a direct summand of A(n),
for some n ∈ N, in particular HomA(P,−) commutes with direct sums. The notion of tilting
complex appears naturally if we look at the properties verified by A[0] in D(A).

The free rank 1 A-module A considered as a cochain complex concentrated in degree 0
verifies that, ∀n 6= 0,

HomD(A)(A[n], A) = HomD(A)(A,A[−n]) = Ext−n
A (A,A) = 0.

DEFINITION 7.3. A complex X in D(A) is a generator of this category if and only if
the smallest full triangulated subcategory of D(A) containing X and closed by infinite direct
sums is D(A).

EXAMPLE 7.4. A[0] is a generator of D(A).

DEFINITION 7.5. A tilting complex T • for a k-algebra A is a bounded cochain complex
of f.g. projective A-modules which generates the derived category D(A) and such that the
graded ring of endomorphisms HomD(A)(T, T ) is concentrated in degree 0.

As a special case of tilting complexes we have the tilting modules over a finite dimensional
k-algebra (k is a field) (when thinking them as their projective resolutions).

DEFINITION 7.6. Let A be a finite dimensional k-algebra and T a finitly generated A-
module. We say that T is a tilting module if

1. pdimA(T ) ≤ 1.

2. Ext1A(T, T ) = 0 (i.e. there are no self-extensions of T ).

3. There exists a short exact sequence of A-modules

0→ A→ T1 → T2 → 0

such that Ti are direct summands of finite direct sums of T (i.e. Ti ∈ add(T )) for
i = 1, 2.
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REMARK 7.7. If T is a projective A-module the first and second conditions are automatic.
In that case the exact sequence in 3 splits, so A is a direct summand of Tn, for some n.
The third condition is verified if and only if T is a generator in Mod-A. As a consequence
A ∼M EndA(T ).

When A is self-injective, every A-module of finite projective dimension is projective .
Then for these algebras, tilting complexes are the same as Morita equivalences. The following
theorem is due to Rickard [Rick89]

THEOREM 7.8. Given two k-algebras A and B such that A or B is k-flat, then the
following are equivalent:

1. The unbounded derived categories of A and B are equivalent as triangulated categories.

2. There is a tilting complex T in D(A) whose endomorphism ring HomD(A)(T, T ) is
isomorphic to B.

3. There exists a cochain complex of B-A-bimodules M such that the derived tensor product

−⊗L
B M : D(B)→ D(A)

is an equivalence of categories.

We shall give a proof of this theorem following Keller. For this we must recall some
preliminaries first.

8 Derived category of a differential graded algebra

8.1 DG algebras

Let A = ⊕p∈ZA
p be a differential graded algebra (DG algebra for short), i.e. A is Z-graded

algebra with a morphism d : A → A of degree 1 such that d(ab) = d(a)b + (−1)pad(b), if
a ∈ Ap, b ∈ A. The map d is called differential.

EXAMPLE 8.1. 1. LetA = A0 be a k-algebra, and d = 0.

2. Given a k-algebra B and a complex (X•, d) of B-modules, let us take A = HomB(X,X),i.e.
A = ⊕p∈ZA

p with Ap =
∏

i∈Z HomB(Xi, X i+p) and differential defined by (δ(f))i =
d ◦ f i − (−1)pf i+1 ◦ d, for f = (f i)i∈Z ∈ Ap.

8.2 DG modules

Let A be a DG algebra.
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DEFINITION 8.2. A differential graded A-module (DG A-module for short) is a Z-graded
right A-module M = ⊕p∈ZM

p together with a k-linear differential d : M →M (of degree 1)
such that

d(ma) = d(m)a+ (−1)pmd(a), ∀m ∈Mp, a ∈ A.

A morphism of DG modules M and N is an A-linear map f : M → N of degree zero wich
commutes with the differentials.

EXAMPLE 8.3. 1. The DG modules for the DG algebra A of the first example of the
previous subsection are the same as the cochain complexes of A-modules.

2. Let A be the DG algebra of the second example of the previous subsection. Each complex
(N•, d) of B-modules gives rise to a DG A-module HomB(X,N) with A-action

(gj)j∈Z(f i)i∈Z = (gi+p ◦ f i)i∈Z, ∀(gj) ∈ HomA(X,N), (f i) ∈ HomA(X,X)p.

Also, (X•, d) is a DG A-module by means of the action:

HomA(X,X)⊗X → X, (f i)(xj) = (f i(xi)).

8.3 The homotopy category H(A)

We recall that the homotopy category H(A) is defined as follows.
Its class of objects is given by Obj(H(A)) = Obj(DGMod-A) and the set of morphisms

HomH(A)(M,N) is defined as HomA(M,N)/ ∼ where ∼ is the equivalence relation given by
identifying homotopic maps.

There is a shift operator
S : H(A)→ H(A)

defined by
(S(M))p = Mp+1

and dS(M) = −dM , ∀M ∈ Obj(H(A)).
We recall that endowed with S and all the triangles isomorphic to the standard triangles,

H(A) becomes a triangulated category.

EXAMPLE 8.4. For the first example of the previous subsection we have that H(A) is the
standard homotopy category of cochain complexes of A-modules.

8.4 The derived category

We also recall that D(A) = H(A)[Σ−1], where Σ denotes the class of all the homotopy classes
of quasi-isomorphisms.

EXAMPLE 8.5. For the first example of the previous subsection we have that D(A) may
be identified with the standard derived category of cochain complexes of A-modules.
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REMARK 8.6. We notice that D(A) has infinite direct sums (ordinary sums of DG A-
modules).

Consider now the free DG A-module A and let M be a DG A-module. Then

HomH(A)(A,M)→ H0(M)

f̄ 7→ f̄(1)

is bijective.
In particular, each quasi-isomorphism s : M →M ′ induces a bijection

HomH(A)(AA,M)→ HomH(A)(AA,M
′). (1)

Since H0(M) ' HomD(A)(A,M) then HomH(A)(A,M) ∼ HomD(A)(A,M).

DEFINITION 8.7. Given a DG A-module M satisfying that HomH(A)(M,N) ∼ HomD(A)(M,N),∀N
we shall say that M is closed. We shall denote by Hp(A) the full subcategory of H(A) formed
by closed objects.

EXAMPLE 8.8. 1. Free DG A-modules of finte type are closed.

2. Complexes of f.g. projective A-modules are closed.

3. Suppose that M and N are closed and let f : M → N be a morphism of DG A-modules.
Consider the mapping cone C(f) = S(M)⊕N . Then C(f) is also closed.

REMARK 8.9. As a consequence Hp(A) is a triangulated subcategory of H(A).

Why are we interested in considering the subcategory Hp(A)?

PROPOSITION 8.10. 1. For all M ∈ H(A) there is a quasi-isomorphism pM → M
with pM closed.

2. The map M → pM may be completed to a triangulated functor commuting with infinite
direct sums and such that it gives a triangulated equivalence D(A) ' Hp(A).

3. Hp(A) is the smallest full subcategory of H(A) containing A and closed under infinite
direct sums.

We will say that pM is the projective resolution of M .

EXAMPLE 8.11. For M and A concentrated in degree zero, choose pM to be the homotopy
class of any projective resolution of M . Then pM is closed since all epimorphisms split.

EXAMPLE 8.12. 1. If M is a right bounded complex, pM is a ”projective resolution”
of the complex M (see [Hart66]).

2. For A = A0, d = 0 and arbitrary M the description of pM has been obtained by
Spaltenstein ([Sp]).

3. For A and M arbitrary, see [Ke94].

REMARK 8.13. The two last items of the previous proposition imply that D(A) coincides
with the smallest full subcategory containing A and closed by infinite direct sums.
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8.5 Left derived tensor functors

Let A and B be two DG algebras and let BXA be a DG B-A-bimodule, i.e. X = ⊕p∈ZX
p

with a k-linear map d : X → X of degree 1 such that

d(bxa) = d(b)xa+ (−1)pbd(xa) = d(b)xa+ (−1)pbd(x)a+ (−1)p+qbxd(a),

for b ∈ Bp, x ∈ Xq and a ∈ A.
Define the DG algebra Bop ⊗k A by (Bop ⊗k A)n = ⊕p+q=nB

p ⊗k A
q and the map d is

given by

dn : (Bop ⊗k A)n → (Bop ⊗k A)n+1

d(b⊗ a) = dB(b)⊗ a+ (−1)pb⊗ dA(a),

for b ∈ Bp and a ∈ Aq. The product is given by

(b⊗ a)(b′ ⊗ a′) = (−1)qp′b′b⊗ aa′,

for b ∈ Bp, b′ ∈ Bp′ , a ∈ Aq and a′ ∈ Aq′ .
We notice then that X is a right DG Bop ⊗k A-module since

x(b⊗ a) = (−1)rpbxa, ∀ b ∈ Bp, x ∈ Xr, a ∈ Aq.

Let N be a right DG B-module. We define N ⊗k X as the DG A-module with action of
A in X as before and with the DG structure given by

(N ⊗k X)m = ⊕p+q=mN
p ⊗k X

q,

d(n⊗ x) = dN (n)⊗ x+ (−1)pn⊗ dX(x),

for n ∈ Np and x ∈ Xq.
The k-submodule generated by all differences nb ⊗ x − n ⊗ bx is stable under d and

under multiplication by elements of A. So N ⊗B X, the quotient module of N ⊗k X by this
submodule, is a well defined DG A-module. Moreover, this construction is functorial in N
and X.

The functor (−) ⊗B X : DG-Mod-B → DG-Mod-A yields a triangulated functor from
H(B) to H(A), denoted by the same symbol.

We define the left derived tensor product (−)⊗L
B X : D(B)→ D(A) by

N ⊗L
B X := pN ⊗B X.

Notice that (−)⊗L
B X commutes with direct sums since p(−) and (−)⊗B X do.

LEMMA 8.14. The functor F = (−) ⊗L
B X is an equvalence if and only if the following

conditions hold:
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(a) The functor F induces bijections

HomD(B)(B,B[n]) ' HomD(A)(XA, XA[n]), ∀ n ∈ Z.

(b) The functor HomD(A)(XA,−) commutes with (infinite) direct sums.

(c) The smallest full triangulated subcategory of D(A) containing XA and closed under
(infinite) direct sums coincides with D(A).

Proof. The conditions are necessary since they hold in D(B) for B and they must be pre-
served by equivalences.

In order to prove that they are sufficient let us consider the full subcategory C of objects
V in D(B) for which the maps

HomD(B)(B[n], V )→ HomD(A)(XA[n], F (V ))

are bijective for all n ∈ Z. This category is clearly closed under the shift and its inverse.
Using the 5-lemma we check that it is a triangulated subcategory. Using (b) it is closed
under (infinite) direct sums. Also, using (a) we see that C contains BB. Thus we must have
that C = D(B). So, the full subcategory C′ of objects U in D(B) such that

HomD(B)(U, V )→ HomD(A)(F (U), F (V ))

is bijective for all V in D(B) contains B. Again it is closed under the shift and its inverse,
and also closed under (infinite) direct sums. It is a triangulated category by the 5-lemma.
Thus C′ = D(B) and as a consequence F is fully faithful.

Condition (c) shows that F is surjective. �

EXAMPLE 8.15. Suppose that φ : A → B is a quasi-isomorphism, i.e. a morphism of
DG algebras inducing an isomorphism H•(A) → H•(B). Then (−)⊗L

B BA : D(B) → D(A)
is an equivalence. In fact, BA is isomorphic to AA in D(A), so that the conditions (b) and
(c) of the lemma before hold. In order to prove (a) consider the commutative diagram

HomD(B)(B,B[n]) // HomD(A)(BA, B[n]A)

Hn(B) ∼ //

∼
OO

HomH(A)(A,B[n]A).

∼
OO

Similarly, (−)⊗L
A BB : D(A)→ D(B) is an equivalence.

We may perform compositions of left derived functors of this kind:

LEMMA 8.16. If A, B and C are DG k-algebras, A is a flat k-module, CYB is a DG
C-B-bimodule, we have

((−)⊗L
C Y )⊗L

B X ' (−)⊗L
C Z,

for some DG C-A-bimodule Z.
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Proof. Take P = p(BXA), considering BXA as a DG right Bop⊗k A-module. The morphism
of functors

(−)⊗L
B P → (−)⊗L

B X

is clearly invertible since the composition

P
∼→ F (B) = B ⊗L

B P → B ⊗B X
∼→ X

is an isomorphism and, using a result of [Ke94], a morphism of functor between triangulated
categories is invertible if and only if it is an isomorphism when on applies the functors to a
generator of the category.

Also the morphism
N ⊗L

B P = (pN)⊗B P → N ⊗B P

is invertible in D(A) for each N ∈ D(B), using the same result and the facts that P is
closed over Bop ⊗k A and that the functor (−)⊗B (Bop ⊗k A) ∼→ (−)⊗k A preserves quasi-
isomorphisms by the k-flatness of A. Thus

(L⊗L
C Y )⊗L

B X ' (L⊗L
C Y )⊗B P

∼→ pL⊗C Y ⊗B P = L⊗L
C (Y ⊗B P ),

and we take Z = Y ⊗B P . �

9 Applications to tilting theory

Let k be a commutative ring, B a k-algebra, A a flat k-algebra. Recall Rickard’s theorem:

THEOREM 9.1. Given two k-algebras A and B such that A or B is k-flat, then the
following are equivalent

1. The unbounded derived categories of A and B are equivalent as triangulated categories.

2. There exists a cochain complex of B-A-bimodules X such that the derived tensor product

−⊗L
B X : D(B)→ D(A)

is an equivalence of categories.

Proof. (1)⇒ (2)
Let F : D(B) → D(A) be the given triangulated equivalence. Take T = p(F (BB)) and

B̃ = HomA(T, T ). There are canonical isomorphisms

Hn(B̃) ∼→ HomH(A)(T, T [n]), ∀ n ∈ Z.

Since T is closed in H(A), we also have

HomH(A)(T, T [n]) ∼→ HomD(A)(T, T [n]) ∼→ HomD(B)(B,B[n]), ∀ n ∈ Z.

25



Thus Hn(B̃) if n 6= 0 and H0(B̃) may be identified with H0(B) = B. If we view A as a DG
algebra concentrated in degree zero we may view T as a DG B̃-A-bimodule. We claim that
(−) ⊗L

B̃
T : D(B̃) → D(A) is an equivalence. Since F is an equivalence, conditions (b) and

(c) of lemma 8.14 clearly hold. For (a) use the commutative diagram

HomD(B̃)(B̃, B̃[n]) // HomD(A)(T, T [n])

Hn(B̃) ∼ //

∼
OO

HomH(A)(T, T [n]).

∼

OO

To establish a connection between B and B̃, let us introduce the DG subalgebra C ⊂ B̃
with Cn = B̃n for n ≤ −1, C0 = Z0B̃ and Cn = 0 for n ≥ 1. Note that there are canonical
morphisms

Z0/dZ1 = H0(B̃) = B ← C → B̃

which are both quasi-isomorphisms. So, by example 8.15 we have a chain of equivalences

D(B)
(−)⊗L

BB
→ D(C)

(−)⊗L
CB̃
→ D(B̃)

(−)⊗L
B̃

T
→ D(A).

Applying the previous lemma twice we get the required complex X of B-A-bimodules. �

10 Appendix

In this section we show an example of tilting equivalence which is not a Morita equivalence.
The example is due to Schwede ([Sch]).

Consider a field k and take the k-algebra A defined by:

A = {upper triangular matrices in M3(k)}

Up to isomorphism, there are three indecomposable A-projective modules:
P 1 = {(y1, y2, y3)|yi ∈ k}, P 2 = {(y0, y2, y3)|yi ∈ k} and P 3 = {(0, 0, y3)|yi ∈ k}.
The P i are the projective covers of the simple modules
S1 = P 1/P 2, S2 = P 2/P 3 and S3 = P 3.
In particular, S3 is projective and pdimA(Si) = 1 for i = 1, 2.
Let us take T = P 1 ⊕ P 2 ⊕ S2, which is clearly not projective.
The following projective resolution of S2:

0→ P 1 ⊕ P 2 ⊕ P 3 → P 1 ⊕ P 2 ⊕ P 2 → S2 → 0

may be used to compute Ext1A(T, T ) = Ext1A(S2, T ) = 0.
The module P 1 ⊕ P 2 ⊕ P 3 is A-free of rank 1, then T is a tilting A-module.
The k-algebra EndA(T ) may be identified, by a direct computation, to the subalgebra of

M3(k) consisting of upper triangular matrices (xij)1≤i,j≤3 such that x23 = 0.
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A and EndA(T ) are NOT Morita equvalent since their lattices of projective modules
differ.

Acknowledgement: we want to thank Estanislao Herscovich for his help in the prepa-
ration of this Notes.
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