α-DERIVATIONS

María Julia Redondo and Andrea Solotar

Abstract

Let A be a commutative k-algebra with 1 . We present a characterization of α-derivations, for $\alpha: A \rightarrow A$ a morphism of algebras, using α-Taylor series. When $S=\mathbf{C}\left[x, x^{-1}, \xi\right]$ and $\alpha(x)=q x, \alpha(\xi)=q \xi$, we compare the q-de Rham cohomology of the C-algebra S with the Hochschild homology of D_{q}, the algebra of q-difference operators on $\mathbf{C}\left[x, x^{-1}\right]$, for $q \in \mathbf{C}, \quad q \neq 0,1$.

α-Dérivations
Résumé. Soient k et A deux anneux commutatifs unitaires, A une k-algèbre. Etant donné un endomorphisme α de l'algèbre A, nous montrons une caracterisation des α-dérivations en utilisant les α-séries de Taylor, dont nous prouvons certaines propriétés. Dans le cas particulier de l'algèbre D_{q} des operateurs q-differentiels sur $\mathbf{C}\left[x, x^{-1}\right]$ nous faisons la comparaison entre la q-cohomologie de De Rham de $\mathbf{C}\left[x, x^{-1}, \xi\right]$, et de homologie d'Hochschild de $D_{q}, q \in \mathbf{C}, \quad q \neq 0,1$.
A.M.S. classification: $16 \mathrm{E} 40,16 \mathrm{U} 20$.

Version francaise abregée. Soient k et A deux anneaux commutatifs unitaries, a une k-algèbre et α un endomorphisme de A. Compte tenue de la définition d'une α-dérivation de A a valeurs dans un A-bimodule M [5], nous caracterisons le A module des α-dérivations $D_{k}^{\alpha}(A, M)$ à l'aide des applications de Taylor "tordues", $T_{\alpha}: A \rightarrow A \otimes A$ ou $T_{\alpha}(a)=1 \otimes a-\alpha(a) \otimes 1$.

Nous etablissons aussi un rapport entre les α-dérivations et l'homologie d'Hochschild tordue [4] $H H^{\alpha}(A, M)$. Ensuite, nous prouvons que l'application T_{α} est universelle parmi les k - α-séries de Taylor définies avant, et nous étudions le comportement de l' A-module des α-différentiels par rapport a la localisation. Finalement nous faisons une comparaison entre l'homologie d'Hochschild des opérateurs q-différentiels sur $A=\mathbf{C}\left[x, x^{-1}\right], q \in \mathbf{C}, \quad q \neq 0,1$, et la q-cohomologie de De Rham de $\mathbf{C}\left[x, x^{-1}, \xi\right][5]$.

1.Introduction

Let A be a commutative k-algebra with $1, \alpha: A \rightarrow A$ a morphism of algebras. We recall the definition of α-derivations of A into A-bimodules M, and present a characterization of them, using the analogies with the theory of derivations. We also relate them to "twisted" Hochschild homology.

In Section 2 we recall what a derivation is and we define α-derivations and α-Taylor operators, which allows us to characterize the module of α-differentials $\Omega_{k}^{\alpha}(A)$. In Section 3 we define k - α-Taylor series, and show that the α-Taylor operator is universal for k - α-Taylor series. We introduce the algebra D_{q} of q-difference operators on $\mathbf{C}\left[x, x^{-1}\right]$ in Section 4, and compare the q-de Rham cohomology of the \mathbf{C}-algebra $S=\mathbf{C}\left[x, x^{-1}, \xi\right]$ with the Hochschild homology of D_{q}.

2. α-Derivations and the α-Taylor operator

Let A be an associative k-algebra with 1 and $\alpha: A \rightarrow A$ a morphism of algebras. We shall present in the following section a characterization of α-derivations, using the analogies with the theory developed for derivations from A into an A-bimodule M. We recall that d is a derivation of A into an A-bimodule M if and only if d is a k-linear map, $d: A \rightarrow M$, such that

$$
d(x y)=x d(y)+d(x) y
$$

and $D_{k}(A, M)$ denotes the set of all derivations $d: A \rightarrow M$ (in fact, it is a k-module, and if A is commutative, it is an A-bimodule). If A is commutative and $A \otimes A^{o p}$ is considered an A-bimodule by $a(b \otimes c) d=a d b \otimes c$, we have the Taylor operator [7] $T: A \rightarrow A \otimes A^{o p}$ defined by $T(a)=1 \otimes a-a \otimes 1$, and the multiplication map, $\mu: A \otimes A^{o p} \rightarrow A$, given by $\mu(a \otimes b)=a b$. One easily verified consequence of these definitions is that

$$
0 \longrightarrow I \longrightarrow A \otimes A^{o p} \longrightarrow A \longrightarrow 0
$$

is a short exact sequence of A-modules, where I is the ideal in $A \otimes A^{o p}$ generated by $\{T(a), a \in A\}$. Next we observe that the Taylor operator is not a derivation, but

$$
T(a b)=a T(b)+T(a) b+T(a) T(b)
$$

Therefore, it seems reasonable to consider I / I^{2} as the module of 1-differentials $\Omega_{A / k}^{1}$. Summarizing this discussion, we recall the following important result form [6] :

Proposition 2.1. For an A-module M, there is a canonical A-isomorphism

$$
\operatorname{Hom}_{A}\left(I / I^{2}, M\right) \longrightarrow \operatorname{Der}_{k}(A, M)
$$

In particular, the isomorphism

$$
\operatorname{Hom}_{A}\left(I / I^{2}, A\right) \cong \operatorname{Der}_{k}(A)
$$

identifies the derivation module of A canonically with the dual of the differential module of A.

When A is commutative, the Hochschild homology of $A, H H_{1}(A)$ is isomorphic, as an A-module to $\Omega_{A / k}^{1}$. If A is not commutative, $H H_{1}(A)$ is considered instead of $\Omega_{A / k}^{1}$, which is not defined in this case.

We are now in a position to make the following definitions.
Definition 2.2. Assume A is commutative, $\alpha: A \rightarrow A$ is a morphism of algebras and M is an A-bimodule that verifies $m a=\alpha(a) m$, for $m \in M, a \in A$.
a) d_{α} is an α-derivation of A into M if d_{α} is a k-linear map, $d_{\alpha}: A \rightarrow M$, such that

$$
d_{\alpha}(a b)=\alpha(a) d_{\alpha}(b)+d_{\alpha}(a) b \quad \text { for } a, b \in A
$$

b) $D_{k}^{\alpha}(A, M)$ denotes the set of all α-derivations $d_{\alpha}: A \rightarrow M$.
c) We shall denote by $\Omega_{k}^{\alpha}(A)$ the module of α-differentials in A, ie, the A module satisfaying:
i) there is an α-derivation $D_{\alpha}: A \rightarrow \Omega_{k}^{\alpha}(A)$,
ii) $\Omega_{k}^{\alpha}(A)$ is generated by $\left\{D_{\alpha}(a), a \in A\right\}$ over A,
iii) for any α-derivation $d_{\alpha}: A \rightarrow M$, there exists a unique A-linear map $h: \Omega_{k}^{\alpha}(A) \rightarrow M$ such that $d_{\alpha}=h \circ D_{\alpha}$.

Remark 2.3. $D_{k}^{\alpha}(A, M)$ is an A-bimodule that verifies $d a=\alpha(a) d$, for $a \in A, d \in$ $D_{k}^{\alpha}(A, M)$.

Now we define the α-Taylor operator $T_{\alpha}: A \rightarrow A \otimes A^{o p}$ given by

$$
T_{\alpha}(P)=1 \otimes P-\alpha(P) \otimes 1
$$

and we denote by $\mu_{\alpha}: A \otimes A^{o p} \rightarrow A$ the α-multiplication map $\mu_{\alpha}(P \otimes Q)=P \alpha(Q)$. As an immediate consequence of these definitions, we have the following easily checked proposition.

Proposition 2.4.

$$
0 \longrightarrow I_{\alpha} \longrightarrow A \otimes A^{o p} \xrightarrow{\mu_{\alpha}} A \longrightarrow 0
$$

is a short exact sequence of A-modules, where I_{α} is the ideal in $A \otimes A^{o p}$ generated by $\left\{T_{\alpha}(a)\right\}$ where a ranges over A.

The following facts concerning the α-Taylor operator are easily verified, when $A \otimes A^{o p}$ is considered an A-bimodule by

$$
a(b \otimes c) d=\mu_{\alpha}(a d) b \otimes c=a \alpha(d) b \otimes c
$$

Properties 2.5.

a) T_{α} is k-linear
b) $T_{\alpha}(P Q)=(\alpha(P) \otimes 1) T_{\alpha}(Q)+T_{\alpha}(P)(1 \otimes Q)=$ $\alpha(P) T_{\alpha}(Q)+T_{\alpha}(P) Q+T_{\alpha}(P) T_{\alpha}(Q)$
c) $T_{\alpha}\left(P^{n}\right)=\sum_{i=0}^{n-1}\left(\alpha\left(P^{n-i-1}\right) \otimes P^{i}\right) T_{\alpha}(P)$
d) $T_{\alpha}\left(P_{1} \ldots P_{n}\right)=$

$$
\begin{aligned}
& \sum_{k=1}^{n-1}(-1)^{k+1}\left(\sum_{i_{1}<\cdots<i_{k}} \alpha\left(P_{i_{1}} \ldots P_{i_{k}}\right) T_{\alpha}\left(P_{1} \ldots \widehat{P}_{i_{j}} \ldots P_{n}\right)\right)+ \\
& T_{\alpha}\left(P_{1}\right) T_{\alpha}\left(P_{2}\right) \ldots T_{\alpha}\left(P_{n-1}\right) T_{\alpha}\left(P_{n}\right)
\end{aligned}
$$

Remark 2.6. $A \otimes A^{o p}$ has two module structures, given by the ring homomorphisms $A \rightarrow A \otimes A^{o p}, a \rightarrow \alpha(a) \otimes 1$, and $A \rightarrow A \otimes A^{o p}, a \rightarrow 1 \otimes a$. They induce two A module structures on I_{α}. From those, we get induced A-module structures of $I_{\alpha} / I_{\alpha}^{2}$ which, however, coincide in $I_{\alpha} / I_{\alpha}^{2}$ since

$$
(1 \otimes r-\alpha(r) \otimes 1)\left(1 \otimes a-\alpha(a) \otimes 1+I_{\alpha}^{2}\right) \in I_{\alpha}^{2}
$$

In view of Properties 2.5, we can reformulate Proposition 2.1 for α-derivations.

Proposition 2.7.

a) $\Omega_{k}^{\alpha}(A) \cong I_{\alpha} / I_{\alpha}^{2}$
b) For an A-module M, there is a canonical A-isomorphism of A-bimodules

$$
\operatorname{Hom}_{A}\left(I_{\alpha} / I_{\alpha}^{2}, M\right) \longrightarrow D_{k}^{\alpha}(A, M)
$$

Proof. To prove the first statement, we shall verify i), ii) and iii) of Definition 2.2 c).
i) The mapping $D_{\alpha}: A \rightarrow I_{\alpha} / I_{\alpha}^{2}$, defined by the composition

$$
A \xrightarrow{T_{\alpha}} I_{\alpha} \xrightarrow{\pi} I_{\alpha} / I_{\alpha}^{2}
$$

is an α-derivation (using Property 2.5 b)).
ii) It's obvious that $I_{\alpha} / I_{\alpha}^{2}$ is generated by $\left\{T_{\alpha}(a)+I_{\alpha}^{2}, \quad a \in A\right\}$ over A.
iii) Let $d_{\alpha}: A \rightarrow M$ be an α-derivation. We define $\Theta: A \otimes A^{o p} \rightarrow M$ by $\Theta(a \otimes b)=$ $a d_{\alpha}(b)$. Now, a direct computation shows that $\Theta\left(I_{\alpha}^{2}\right)=0$. So there exists a unique A-linear map $h: I_{\alpha} / I_{\alpha}^{2} \rightarrow M$ such that $h \circ \pi=\Theta / I_{\alpha}$.
Finally, $h \circ D_{\alpha}(a)=\Theta\left(T_{\alpha}(a)\right)=d_{\alpha}(a)$. Since the A-module $I_{\alpha} / I_{\alpha}^{2}$ is generated by $\left\{D_{\alpha}(a), \quad a \in A\right\}$, there can be only one mapping h such that $h \circ D_{\alpha}=d_{\alpha}$. Hence D_{α} is universal.
The second statement of the Proposition is only a reformulation of the universal property of $D_{\alpha}: A \rightarrow I_{\alpha} / I_{\alpha}^{2}$.

Remark 2.8. Given α, one may also consider "twisted Hochschild homology" and "twisted Cyclic homology", which differs from ordinary Hochschild homology by the face and cyclic operators, which now involves the action of the automorphism. The twisted theory appeared implicitely in [8] and [9], and explicitely in [4].

Explicitely, if $\alpha: A \rightarrow A$ is an automorphism of algebras, we have:
$d_{i}: A^{\otimes(n+1)} \rightarrow A^{\otimes n}, \quad$ for $\quad 0 \leq i \leq n$
$s_{i}: A^{\otimes(n+1)} \rightarrow A^{\otimes(n+2)}, \quad$ for $\quad 0 \leq i \leq n$
$t: A^{\otimes(n+1)} \rightarrow A^{\otimes(n+1)}$
defined by
$d_{i}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\left\{\begin{array}{lll}\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right) & \text { if } & i<n, \\ \left(\alpha\left(a_{n}\right) a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1}\right) & \text { if } & i=n .\end{array}\right.$
$s_{i}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\left(a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \ldots \otimes a_{n}\right)$
$t\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\left(\alpha\left(a_{n}\right) \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$
which verifies the relations:
$d_{i} d_{j}=d_{j-1} d_{i}, \quad$ for $\quad i<j$
$d_{i} t=\left\{\begin{array}{lll}t d_{i-1} & \text { for } & 1 \leq i \leq n, \\ d_{n}, & \text { for } & i=0 .\end{array}\right.$
$s_{i} s_{j}=s_{j+1} s_{i} \quad$ for $\quad i \leq j$
$d_{i} s_{j}=\left\{\begin{array}{lll}s_{j-1} d_{i} & \text { for } & i<j, \\ i d & \text { for } & i=j, j+1, \\ s_{j} d_{i-1} & \text { for } & i>j+1 .\end{array}\right.$
$s_{i} t=\left\{\begin{array}{lll}t s_{i-1} & \text { for } & 1 \leq i \leq n, \\ t^{2} s_{n} & \text { for } & i=0 .\end{array}\right.$
$t_{n}^{n+1}\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\left(\alpha\left(a_{1}\right) \otimes \ldots \otimes \alpha\left(a_{n}\right)\right)$
Writing $b^{\alpha}=\sum_{i=0}^{n}(-1)^{i} d_{i}$, we verify that $H H_{1}^{\alpha}(A)=\frac{\operatorname{Ker}\left(A \otimes A \xrightarrow{b^{\alpha}} A\right)}{\operatorname{Im}\left(A \otimes A \otimes A \xrightarrow{b^{\alpha}} A \otimes A\right)}$ is isomorphic to $I_{\alpha} / I I_{\alpha}$, by the map

$$
\begin{aligned}
I_{\alpha} / I I_{\alpha} & \rightarrow H H_{1}^{\alpha}(A) \\
\overline{T_{\alpha}(a)} & \rightarrow[1 \otimes a]
\end{aligned}
$$

So we can view the difference between ordinary Hochschild homology and twisted Hochschild homology in terms of the difference between I and I_{α}.

Now, we consider $\alpha-n$-derivations, ie, k-linear maps $d_{\alpha}^{n}: A \rightarrow M$ such that $d_{\alpha}^{n}\left(x_{0} \ldots x_{n}\right)=\sum_{k=1}^{n}(-1)^{k+1}\left(\sum_{i_{1}<\cdots<i_{k}} \alpha\left(x_{i_{1}} \ldots x_{i_{k}}\right) d_{\alpha}^{n}\left(x_{0} \ldots \widehat{x}_{i_{j}} \ldots x_{n}\right)\right)$
and we denote by $\Omega_{\alpha}^{k, n}(A)$ the module of α - n-differentials in A.
One easily verified consequence of Property 2.5 is the following proposition.

Proposition 2.9. $\Omega_{A / k}^{\alpha, n}$ is isomorphic to $I_{\alpha} / I_{\alpha}^{n}$.

3. α-TAYLOR SERIES.

Definition 3.1. Suppose C is an A-algebra, B is an A-subalgebra of C and $\alpha: A \rightarrow$ A is a morphism of algebras.
a) We say that $\eta_{\alpha}: A \rightarrow B$ is an B-valued k - α-Taylor serie if:
i) η_{α} is k-linear and $\eta_{\alpha}(1)=0$
ii) $\eta_{\alpha}(a b)=\alpha(a) \eta_{\alpha}(b)+\alpha(b) \eta_{\alpha}(a)+\eta_{\alpha}(a) \eta_{\alpha}(b) \quad$ for $\mathrm{a}, \mathrm{b} \in A$
b) Suppose B, C are k-algebras, $B \subseteq C, \alpha: C \rightarrow C$ a morphism of algebras. We define $I_{\alpha}(C / B)$ by the exact sequence

$$
0 \longrightarrow I_{\alpha}(C / B) \longrightarrow C \otimes_{B} C^{o p} \xrightarrow{\mu_{\alpha}} C \longrightarrow 0
$$

We now prove some results concerning α-Taylor series.

Proposition 3.2. The map $u: A \rightarrow I_{\alpha}(A / k)$ given by $a \rightarrow T_{\alpha}(a)$, is universal for $k-\alpha$-Taylor series (T_{α} is the k - α-Taylor operator defined in Section 2).

Proof. It's obvious that the map $u: A \rightarrow I_{\alpha}(A / k)$ is an $I_{\alpha}(A / k)$-valued k - α-Taylor serie. Let $\eta_{\alpha}: A \rightarrow B$ be a B-valued k - α-Taylor serie. We only have to show that there exists a unique A-morphism of algebras $\psi: I_{\alpha}(A / k) \rightarrow B$ such that $\psi \circ u=\eta_{\alpha}$. The given map $\eta_{\alpha}: A \rightarrow B$ is k-linear, therefore we may define an A linear map $h: A \otimes A^{o p} \rightarrow B$ by $h(a \otimes b)=a \eta_{\alpha}(b)$. It follows that $h\left(T_{\alpha}(a)\right)=\eta_{\alpha}(a)$ since $\eta_{\alpha}(1)=0$. Clearly, the restriction of h to $I_{\alpha}(A / k)$ satisfies the conditions requiered. Notice that uniqueness is immediate from the fact that $\left\{T_{\alpha}(a), a \in A\right\}$ generates $I_{\alpha}(A / k)$ as an A-module. To complete the proof, we only have to show that h is a morphism of algebras. To this end we observe that is sufficies to verify that

$$
h\left(\prod_{j=1}^{s}\left(1 \otimes x_{j}-\alpha\left(x_{j}\right) \otimes 1\right)\right)=\prod_{j=1}^{s} h\left(1 \otimes x_{j}-\alpha\left(x_{j}\right) \otimes 1\right)
$$

because h is A-linear. This may be easily done by induction. In case $s=1$, there is nothing to prove. Assume the equality for $r<s$. We first observe that
$\prod_{j=1}^{s-1}\left(1 \otimes x_{j}-\alpha\left(x_{j}\right) \otimes 1\right)=\sum u_{i} \otimes v_{i} \in I_{\alpha}(A / k)$
so $\sum u_{i} \alpha\left(v_{i}\right)=0$. On the other hand,
$h\left(\prod_{j=1}^{s-1}\left(1 \otimes x_{j}-\alpha\left(x_{j}\right) \otimes 1\right)\left(1 \otimes x_{s}-\alpha\left(x_{s}\right) \otimes 1\right)\right)=$
$h\left(\left(\sum_{i} u_{i} \otimes v_{i}\right)\left(1 \otimes x_{s}-\alpha\left(x_{s}\right) \otimes 1\right)\right)=\sum_{i}\left(u_{i} \eta_{\alpha}\left(x_{s} v_{i}\right)-u_{i} \alpha\left(x_{s}\right) \eta_{\alpha}\left(v_{i}\right)\right)=$
$\sum_{i}\left(u_{i}\left(\alpha\left(x_{s}\right) \eta_{\alpha}\left(v_{i}\right)+\alpha\left(v_{i}\right) \eta_{\alpha}\left(x_{s}\right)+\eta\left(v_{i}\right) \eta_{\alpha}\left(x_{s}\right)\right)-u_{i} \alpha\left(x_{s}\right) \eta_{\alpha}\left(v_{i}\right)\right)=$
$\sum_{i}\left(u_{i} \alpha\left(v_{i}\right)+u_{i} \eta_{\alpha}\left(v_{i}\right)\right) \eta_{\alpha}\left(x_{s}\right)=\sum_{i} u_{i} \eta_{\alpha}\left(v_{i}\right) \eta_{\alpha}\left(x_{s}\right)=$
$h\left(\sum_{i} u_{i} \otimes v_{i}\right) h\left(1 \otimes x_{s}-\alpha\left(x_{s}\right) \otimes 1\right)$.

Proposition 3.3. Suppose A, B are k-algebras such that $A \subseteq B$, and $\alpha: B \rightarrow B$ is a morphism of algebras such that $\alpha / A=i d$. There exists an exact sequence of B-algebras

$$
0 \longrightarrow N_{\alpha}(A / k) \longrightarrow I_{\alpha}(B / k) \xrightarrow{\Theta} I_{\alpha}(B / A) \longrightarrow 0
$$

where $N_{\alpha}(A / k)$ is generated as an ideal in $I_{\alpha}(B / k)$ by the elements $(1 \otimes x-\alpha(x) \otimes$ 1), $x \in A$, and Θ is the restriction of the map $B \otimes_{k} B^{o p} \rightarrow B \otimes_{A} B^{o p}$ to the ideal $I_{\alpha}(B / k)$.

Proof. The map Θ is clearly onto. We shall prove that $I_{\alpha}(B / k) / N_{\alpha}(A / k)$ is universal for A - α-Taylor series on B, from which the assertion of the theorem follows immediately. First note that the map $\eta_{\alpha}: B \rightarrow I_{\alpha}(B / k) / N_{\alpha}(A / k)$ defined as the composition

$$
\eta_{\alpha}: B \xrightarrow{T_{\alpha}} I_{\alpha}(B / k) \xrightarrow{\text { proj }} I_{\alpha}(B / k) / N_{\alpha}(A / k)
$$

satisfy the conditions:

$$
\eta_{\alpha}(x y)=\alpha(x) \eta_{\alpha}(y)+\alpha(y) \eta_{\alpha}(x)+\eta_{\alpha}(x) \eta_{\alpha}(y), \quad \text { for } x, y \in B
$$

If $a \in A$, then $\eta_{\alpha}(a y)=\alpha(a) \eta_{\alpha}(y)+\alpha(y) \eta_{\alpha}(a)+\eta_{\alpha}(a) \eta_{\alpha}(y)=a \eta_{\alpha}(y)$ since $\eta_{\alpha}(a) \in$ $N_{\alpha}(A / k)$ and $\alpha / A=i d$. As $\eta_{\alpha}(1)=0$, it follows that η_{α} is an $I_{\alpha}(B / k) / N_{\alpha}(A / k)-$ valued A - α-Taylor serie on B. Now, suppose that $\rho_{\alpha}: B \rightarrow R$ is an R-valued $A-\alpha$-Taylor serie. For $x \in k, \quad x 1 \in A$ (because A is a k-algebra). Therefore ρ_{α} is an R-valued k - α-Taylor serie, and thus there exists a unique B-algebra morphism $h: I_{\alpha}(B / k) \rightarrow R$ such that $\rho_{\alpha}=h \circ T_{\alpha}$. Since $\rho_{\alpha}(a 1)=a \rho_{\alpha}(1)=0$ for each $a \in A$, $\left(h \circ T_{\alpha}\right) / A=0$. Therefore the kernel of h contains $N_{\alpha}(A / k)$, and h factors uniquely through $I_{\alpha}(B / k) / N_{\alpha}(A / k)$.

Remark 3.4. The module $I_{\alpha}(A / k)$ has one outstanding drawback, which is that if S is a multiplicatively closed subset of A, then in general, $A_{S} \otimes_{A} I_{\alpha}(A / k) \not \approx I_{\alpha}\left(A_{S} / k\right)$, i.e., I_{α} doesn't localize. For example, $\alpha=i d, A=k[x]$ and $S=\left\{1, x, x^{2}, \ldots\right\}$.

Theorem 3.5. Let S be a multiplicatively closed subset of $A, 1 \in S, 0 \notin S$. Then

$$
I_{\alpha}\left(A_{S} / k\right) / I_{\alpha}\left(A_{S} / k\right)^{2} \cong A_{S} \otimes_{A} I_{\alpha}(A / k) / I_{\alpha}(A / k)^{2}
$$

Proof. The mapping $d_{\alpha}: A_{S} \rightarrow A_{S} \otimes_{A} I_{\alpha}(A / k) / I_{\alpha}(A / k)^{2}$ defined by
$d_{\alpha}\left(\frac{a}{s}\right)=-\frac{\alpha(a)}{\alpha\left(s^{2}\right)} \otimes \overline{T_{\alpha}(s)}+\frac{1}{\alpha(s)} \otimes \overline{T_{\alpha}(a)}$
is an α-derivation:
$d_{\alpha}\left(\frac{a_{1} a_{2}}{s_{1} s_{2}}\right)=-\frac{\alpha\left(a_{1} a_{2}\right)}{\alpha\left(s_{1}^{2} s_{2}^{2}\right)} \otimes \overline{T_{\alpha}\left(s_{1} s_{2}\right)}+\frac{1}{\alpha\left(s_{1} s_{2}\right)} \otimes \overline{T_{\alpha}\left(a_{1} a_{2}\right)}=$
$-\frac{\alpha\left(a_{1} a_{2}\right)}{\alpha\left(s_{1}^{2} s_{2}^{2}\right)} \otimes \overline{\alpha\left(s_{1}\right) T_{\alpha}\left(s_{2}\right)+\alpha\left(s_{2}\right) T_{\alpha}\left(s_{1}\right)}+\frac{1}{\alpha\left(s_{1} s_{2}\right)} \otimes \overline{\alpha\left(a_{1}\right) T_{\alpha}\left(a_{2}\right)+\alpha\left(a_{2}\right) T_{\alpha}\left(a_{1}\right)}=$
$\alpha\left(\frac{a_{1}}{s_{1}^{2}}\right) d_{\alpha}\left(\frac{a_{2}}{s_{2}}\right)+\alpha\left(\frac{a_{2}}{s_{2}^{2}}\right) d_{\alpha}\left(\frac{a_{1}}{s_{1}}\right)$.
So there exists a unique A_{S}-linear map

$$
h: I_{\alpha}\left(A_{S} / k\right) / I_{\alpha}\left(A_{S} / k\right)^{2} \rightarrow A_{S} \otimes_{A} I_{\alpha}(A / k) / I_{\alpha}(A / k)^{2}
$$

such that $d_{\alpha}=h \circ D_{\alpha}$, where $D_{\alpha}: A_{S} \rightarrow I_{\alpha}\left(A_{S} / k\right) / I_{\alpha}\left(A_{S} / k\right)^{2}$ is the composition

$$
A_{S} \xrightarrow{T_{\alpha}} I_{\alpha}\left(A_{S} / k\right) \xrightarrow{\pi} I_{\alpha}\left(A_{S} / k\right) / I_{\alpha}\left(A_{S} / k\right)^{2} .
$$

The map $\psi: A_{S} \otimes_{A} I_{\alpha}(A / k) / I_{\alpha}(A / k)^{2} \rightarrow I_{\alpha}\left(A_{S} / k\right) / I_{\alpha}\left(A_{S} / k\right)^{2}$ defined by

$$
\psi\left(\frac{a}{s} \otimes \overline{T_{\alpha}(b)}\right)=\frac{a}{s} \overline{T_{\alpha}\left(\frac{b}{1}\right)}
$$

is an inverse for h.

4. The ALGEBRA OF q-DIFFERENCE OPERATORS AND ITS HOMOLOGY

Let q be a complex number $\neq 0,1$, and let D_{q} be the algebra of q-difference operators on $\mathbf{C}\left[x, x^{-1}\right]$. By definition $D_{q}[5]$ is the algebra of all linear endomorphisms of $\mathbf{C}\left[x, x^{-1}\right]$ generated by multiplications by Laurent polynomials and by Jackson's q-differentiation operator ∂_{q} defined for any polynomial P by

$$
\partial_{q}(P)=\frac{P(q x)-P(x)}{q x-x} .
$$

As a complex associative algebra D_{q} is generated by x, x^{-1} and ∂_{q} and the relation $\partial_{q} x-q x \partial_{q}=1$, which is the q-analogue of the Heisenberg relation for differential operators. The family $\left\{x^{i} \partial_{q}^{j}\right\}_{i \in \mathbf{Z}, j \in \mathbf{N}}$ is a basis of D_{q}. It is convenient to introduce the algebra automorphism η_{q} of $\mathbf{C}\left[x, x^{-1}\right]$ defined by $\eta_{q}(x)=q x$. Since $\eta_{q}=$ $1+(q-1) x \partial_{q}$, the automorphism η_{q} belongs to D_{q}. We have the additional relations $\partial_{q} x-x \partial_{q}=\eta_{q}$ and $\eta_{q} x=q x \eta_{q}$. The q-differentiation operator is not a derivation, but a η_{q}-derivation; namely for all $P, Q \in \mathbf{C}\left[x, x^{-1}\right]$ we have

$$
\partial_{q}(P Q)=\eta_{q}(P) \partial_{q}(Q)+\partial_{q}(P) Q .
$$

It is easy to check that $\left\{x^{i} \partial_{q}\right\}_{i \in \mathbf{Z}}$ is a basis of the vector space $D_{\mathbf{C}}^{\eta_{q}}\left(\mathbf{C}\left[x, x^{-1}\right]\right)$ of all η_{q}-derivations of $\mathbf{C}\left[x, x^{-1}\right]$.

Properties 4.1. [5] For integers $n \in \mathbf{Z}$, set $(n)_{q}=1+q+\cdots+q^{n-1}$. Then
a) $\partial_{q}^{j} x=q^{j} x \partial_{q}^{j}+(j)_{q} \partial_{q}^{j-1}$
b) $\partial_{q} x^{i}=q^{i} x^{i} \partial_{q}+(i)_{q} x^{i-1}$.

In [5], Kassel shows that the Hochschild homology groups of D_{q} are the homology groups of the complex

$$
0 \longrightarrow D_{q} \otimes \wedge^{2} V_{q} \xrightarrow{\beta_{q}} D_{q} \otimes V_{q} \xrightarrow{\beta_{q}} D_{q} \longrightarrow 0
$$

where V_{q} is a two-dimensional vector space with basis $\left\{d x, d \partial_{q}\right\}$, and for any $M \in$ D_{q}
$\beta_{q}\left(M d x \wedge d \partial_{q}\right)=(x M-q M x) d \partial_{q}-\left(q \partial_{q} M-M \partial_{q}\right) d x$
$\beta_{q}(M d x)=x M-M x$
$\beta_{q}\left(M d \partial_{q}\right)=\partial_{q} M-M \partial_{q}$
Let S be the commutative \mathbf{C}-algebra generated by x, x^{-1}, ξ, and $\alpha: S \rightarrow S$ the morphism of algebras defined by $\alpha(x)=q x, \alpha(\xi)=q \xi$. Then,

$$
\begin{aligned}
& \frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(x)}=\frac{(q x)^{i} \xi^{j}-x^{i} \xi^{j}}{q x-x}=(i)_{q} x^{i-1} \xi^{j} \\
& \frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(\xi)}=\frac{x^{i}(q \xi)^{j}-x^{i} \xi^{j}}{q \xi-\xi}=(j)_{q} x^{i} \xi^{j-1}
\end{aligned}
$$

We shall compare the complex $\left(D_{q} \otimes \bigwedge^{2} V_{q}, \beta_{q}\right)$ with the q-de Rham complex of S

$$
0 \longrightarrow \Omega_{\mathbf{C}}^{\alpha, 0}(S) \xrightarrow{d_{1}} \Omega_{\mathbf{C}}^{\alpha, 1}(S) \xrightarrow{d_{2}} \Omega_{\mathbf{C}}^{\alpha, 2}(S) \longrightarrow 0
$$

where,
$\Omega_{\mathrm{C}}^{\alpha, 0}(S)=S$
$\Omega_{\mathbf{C}}^{\alpha, 1}(S)=\Omega_{\mathbf{C}}^{\alpha}(S)=I_{q} / I_{q}^{2}, \quad\left(I_{q}=I_{\alpha}(S / \mathbf{C})\right)$
$\Omega_{\mathbf{C}}^{\alpha, 2}(S)=\Omega_{\mathbf{C}}^{\alpha}(S) \wedge \Omega_{\mathbf{C}}^{\alpha}(S)$,
$\Omega_{\mathbf{C}}^{\alpha}(S)$ is generated by $d x=(1 \otimes x-q x \otimes 1)+I_{q}^{2}$ and $d \xi=(1 \otimes \xi-q \xi \otimes 1)+I_{q}^{2}$, and
$d_{1}\left(x^{i} \xi^{j}\right)=\left(q \frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(x)}+(q-1) \frac{\partial_{q}\left(x^{i+1} \xi^{j+1}\right.}{\partial_{q}(x)}\right) d x-\left(q \frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(\xi)}+(q-1) \frac{\partial_{q}\left(x^{i+1} \xi^{j+1}\right)}{\partial_{q}(\xi)}\right) d \xi$
$d_{2}\left(x^{i} \xi^{j} d x\right)=\left(\frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(\xi)}+(q-1) \frac{\partial_{q}\left(x^{i+1} \xi^{j}\right)}{\partial_{q}(\xi)} \xi\right) d x \wedge d \xi$
$d_{2}\left(x^{i} \xi^{j} d \xi\right)=\left(\frac{\partial_{q}\left(x^{i} \xi^{j}\right)}{\partial_{q}(x)}+(q-1) x \frac{\partial_{q}\left(x^{i} \xi^{j+1}\right)}{\partial_{q}(x)}\right) d x \wedge d \xi$
Consider the map $\sigma_{*}: D_{q} \otimes \bigwedge^{*} V_{q} \rightarrow \Omega_{\mathbf{C}}^{\alpha, 2-*}(S)$ defined by
$\sigma_{0}\left(x^{i} \partial_{q}^{j}\right)=x^{i} \xi^{j} d x \wedge d \xi$
$\sigma_{1}\left(x^{i} \partial_{q}^{j} d x\right)=-x^{i} \xi^{j} d x$
$\sigma_{1}\left(x^{i} \partial_{q}^{j} d \partial_{q}\right)=x^{i} \xi^{j} d \xi$
$\sigma_{2}\left(x^{i} \partial_{q}^{j} d x \wedge d \partial_{q}\right)=x^{i} \xi^{j}$
Lemma 4.2. $\sigma_{*}: D_{q} \otimes \bigwedge^{*} V_{q} \rightarrow \Omega_{\mathrm{C}}^{\alpha, 2-*}(S)$ is a chain bijection, and induces a bijection from $H_{*}\left(D_{q}\right)$ onto $H_{q-D R}^{*}(S)$.
Proof. It is obvious.

References

1. N.Bourbaki, Algebre homologique, chap. X, Masson (Paris), 1980.
2. J.L.Brylinski, Some examples of Hochschild and cyclic homology, Lectures Notes in Mathematics 1271 (1987), Springer Verlag, 33-72.
3. B.Feigin and B.Tsygan, Additive K-Theory, Lectures Notes in Mathematics 1289 (1987), 67-209.
4. D.Gong, Bivariant twisted cyclic theory and spectral sequences of crossed products, Jouranl of Pure and Applied Algebra 79 (1992), 225-254.
5. C.Kassel, Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Commun. Math. Phys. (1992).
6. E. Kunz, Kahler differentials, Braunschweig: Wiesbaden Vieweg, 1986.
7. K.R.Mount and O.E.Villamayor, Taylor series and higher derivations, Impresiones previas Dep. de Matemática (1969), Univ. de Buenos Aires.
8. Y.Nakai, On the theory of differentials in commutative rings, J.Math.Soc.Japan 13, No. 1 (1961), 63-84.
9. V.Nistor, Group cohomology and the cyclic homology of crossed products, Inv.Math. 99 (1990), 411-424.
10. M.Wodzicki, Cyclic homology of differential operators, Duke Math. 54 (1987).

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Universidad de Buenos Aires, (1428) Buenos Aires, Argentina

