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Abstract. We survey several results on A-hypergeometric systems of linear
partial differential equations introduced by Gelfand, Kapranov and Zelevinsky

in the case of integer (and thus resonant) parameters, in particular, those
differential systems related to sparse systems of polynomial equations. We also
study in particular the case of A-hypergeometric systems for which kerA has
rank 1. This allows us to clarify the combinatorial meaning of the parameters

in one variable classical generalized hypergeometric functions pFp−1, and to
describe all such rational functions.

1. Hypergeometric functions

Given three complex parameters α, β, γ such that γ /∈ Z≤0 (or if γ ∈ Z≤0, then
α−γ ∈ Z≥1), Gauss hypergeometric function F (α, β, γ;x) was introduced by Gauss
in 1812 ([15]). For any natural number n, let (α)n denote the Pochammer symbol

(α)n = α · (α+ 1) . . . (α+ n− 1).

Note that (1)n = n!. Then, define

F (α, β, γ;x) =
∑
n≥0

(α)n(β)n
(γ)n

xn

n!
, |x| < 1.(1.1)

In particular,

F (α, β, β.x) = (1− x)−α − xF (1, 1, 2;x) = log(1− x).

These functions were studied by many mathematicians including Riemann
([29]) who concentrated in their behaviour as functions of a complex variable,
and studied its analytic continuation regarding it as a solution to the differential
equation

x(1− x)y′′ + (γ − (α+ β + 1)x)y′ − αβy = 0,(1.2)

or, multiplying equation (1.2) by x and denoting Θ := x d
dx ,

[Θ(Θ + γ − 1)− x(Θ + α)(Θ + β)](y) = 0.(1.3)

Equation (1.2) (or (1.3)) has three regular singular points at 0, 1 and ∞ , and it is
up to normalization the general form of a second order linear differential equation
with this behaviour.

1991 Mathematics Subject Classification. 33C70,33C20,32A27.
Partially supported by UBACYT, ANPCYT and CONICET, Argentina.

1



2 ALICIA DICKENSTEIN

Another important feature is the following. Denote

An :=
(α)n(β)n

(γ)nn!
,

i.e.
F (α, β, γ;x) =

∑
n≥0

Anx
n.

Then, An+1/An is a rational function of n, namely

An+1

An
=

(α+ n)(β + n)
γ + n)(1 + n)

.(1.4)

Or, the coefficients An satisfy the following linear recurrence

(γ + n)(1 + n)An+1 − (α+ n)(β + n)An = 0.(1.5)

Indeed, (1.5) is equivalent to the fact that F (α, β, γ;x) satisfies equation (1.3).
Gauss hypergeometric functions also have interesting integral representations

and satisfy the so called contiguity relations, which express the relations among the
hypergeometric series associated with shifted parameters (cf. for example [3] and
the references therein).

The generalized (univariate) hypergeometric functions are defined as follows
(cf.[31], [5]). Fix a natural number p and let (µ;µ′) = (µ1, . . . , µp; ν1, . . . , µ

′
p−1) ∈

C2p−1 where no µ′i is a negative integer. We define

pFp−1((µ;µ′), x) :=
∞∑
n=0

(µ1)n . . . (µp)n
(µ′1)n . . . (µ′p−1)n

xn

n!
, |x| < 1.(1.6)

This definition makes also sense for negative integer values of the µi provided that
for such i there exists an index j such that µj − µi ∈ Z≥1. With this terminology,
Gauss function is written as 2F1((α, β; γ), x). If we write

pFp−1((µ;µ′), x) :=
∞∑
n=0

Anx
n,

the coefficients An satisfy the linear recursion

(µ′1 + n) . . . (µ′p−1 + n)(1 + n)An+1 − (µ1 + n) . . . (µp + n)An = 0(1.7)

which means that pFp−1((µ;µ′), x) satisfies the following linear differential equation
of order p

[Θ(Θ + µ′1 − 1) . . . (Θ + µ′p−1 − 1)− x(Θ + µ1) . . . (Θ + µp)](y) = 0.(1.8)

In fact, when the parameters are non resonant, it is possible to find a basis of
(multivalued) solutions to (1.8) around the origin given by p functions of the form
a monomial times a suitable pFp−1.

There exist many definitions of multivariate hypergeometric functions proposed
by Horn, Appell, Aomoto, etc. We recall the quite general definition proposed by
Gelfand and collaborators.

The A-hypergeometric (or GKZ) system of differential equations were intro-
duced in a series of papers in the 1980’s by the Gel’fand school, particularly
Gel’fand, Kapranov, and Zelevinsky ([16], [17], [18], see also [1], [30]). They
provide a multivariate generalization of the classical hypergeometric differential
equation (1.2).
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Let A = {ν1, . . . , νs} ⊂ Z
d be a finite subset which spans a d-dimensional

lattice in Zd. Suppose, moreover, that there exists a vector λ ∈ Qd such that

〈λ, νj〉 = 1 for all j = 1, . . . , s,(1.9)

i.e. the set A lies in a rational hyperplane which does not contain the origin. Let
A also denote the d× s matrix whose columns are the vectors νj . Let LA ⊂ Zs be
the sublattice of elements v ∈ Zs such that A · v = 0. Note that A has rank d and
thus LA has rank s− d. For any v ∈ LA, denote Dv the differential operator in Cs:

Dv :=
∏
vj>0

(∂j)
vj −

∏
vk<0

(∂k)−vk .

The A-hypergeometric system HA(β) with parameter β ∈ C(d) is defined by
the following constant coefficients operators

Dvϕ = 0 ; v ∈ LA(1.10)

and the following Euler operators describing A-homogeneity in infinitesimal terms
s∑
j=1

νji xj∂j ϕ = βi ϕ ; i = 1, . . . , d.(1.11)

A function f(x1, . . . , xs), holomorphic in an open set U ⊂ Cs, annihilated by
this system is said to be A-hypergeometric with homogeneity parameter β.

In fact, one can replace equations (1.10) by a finite number of equations in an
algorithmic way (cf. [35], Ch. 4).

Example 1.1. Gauss system
Consider the Gauss configuration in R3

A =

 1 1 1 1
0 1 1 0
0 1 0 1

 .(1.12)

In this case, LA is generated by the vector (1, 1,−1,−1) and the hypergeometric
system can be reduced to the following equations on four variables x1, x2, x3, x4.

(∂1∂2 − ∂3∂4) (ϕ) = 0
(x1∂1 + x2∂2 + x3∂3 + x4∂4) (ϕ) = β1ϕ

(x2∂2 + x3∂3) (ϕ) = β2ϕ
(x2∂2 + x4∂4) (ϕ) = β3ϕ

It is easy to check for example that 1/∆ is a rational solution with homogeneity
(−2,−1,−1), where ∆ = 1/x1x2 − x3x4 is the discriminant of the configuration A.
This matrix A and the corresponding system (1.1) are a nice encoding for Gauss
equation (1.3). In fact, given any homogeneity β and v ∈ Cn such that A · v = β
and v1 = 0, any solution ϕ of (1.1) can be written as

ϕ(x) = xv f

(
x1x2

x3x4

)
,

where f(z) satisfies Gauss equation (1.3) for α = v2, β = v3, γ = v4 +1. The general
statement for this assertion is given below in Proposition 2.1.
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The A-hypergeometric system is holonomic (cf. [17],[1]). For generic parameter
vectors β, the holonomic rank rA(β), i.e. the dimension of the space of local A-
hypergeometric functions at a generic point in Cs, equals the normalized volume
vol(A) of the convex hull conv{ν1, . . . , νs} of the configuration A (see 1.16 below)
and it is possible to construct bases of local holomorphic solutions in terms of Γ-
series based on triangulations of the convex hull of A. ([17]). The normalized
volume of the configuration (1.12) is 2! times the standard volume, i.e. it is equal
to 2 (so that each simplex in the two triangulations of A is assigned volume 1).

When dealing with solutions that may be developed as a Laurent series, the
parameter vectors have integer coordinates and are, therefore, automatically res-
onant. In this case, Euler integrals and Γ-series may not give a complete system
of solutions of the A-hypergeometric equations. Integer parameters correspond to
solutions of interest in toric mirror symmetry ([4],[23],[33]). Also, as we will show
in the next example and in section 3, integer parameters come into the picture
when dealing with roots (and residues) associated with sparse polynomial systems.

Example 1.2. Systems associated with toric curves
Given coprime integers 0 < k1 < . . . < km < n, set

A =
(

1 1 . . . 1 1
0 k1 . . . km n

)
,(1.13)

and β = (0,−1). Then, the local roots ρ(x) of the generic sparse polynomial

f(x; t) := x0 + xk1 t
k1 + · · ·+ xkm t

km + xn t
n ,

viewed as functions of the coefficients, are algebraic solutions to the A-hyper-
geometric system. This fact was observed for the generic univariate polynomial
of degree n (i.e., m = n − 1 and ki = i for all i) by Birkeland [6] and Mayr [24].
More recently, Sturmfels [36] refined their results and gave very explicit formu-
las for the roots in terms of Γ-series in open sets associated to any triangulation
(partition) of the segment [0, . . . , n]. It is not difficult to see that these formulas
may be restricted to the sparse case for any open set associated with a partition
with ending points contained in 0, k1, . . . , km, n. For any integer homogeneity, all
solutions to the A-hypergeometric system associated with the matrix (1.13) may be
described in terms of linear combinations of the local roots, their powers, deriva-
tives and logarithms [10]. In the case of the generic univariate polynomial of degree

n, the constant coefficients operators may be replaced by the finite set of order two
operators

(∂i∂j − ∂k∂`) (ϕ) = 0, for all i+ j = k + `.

For a sparse polynomial, higher order operators are needed. Consider for example
the system associated with the matrix (1.13), in case the second row is (0, 1, 3, 4).
Then, the operators (1.10) may be replaced by the following four operators (we
name the variables x0, x1, x3, x4 according to the powers of t).(

∂2
0∂3 − ∂3

1

)
(ϕ) = 0(

∂3
0∂4 − ∂4

1

)
(ϕ) = 0

(∂0∂4 − ∂1∂3) (ϕ) = 0(
∂1∂

2
4 − ∂3

3

)
(ϕ) = 0.

An implementation to get these equations is available in the computer system KAN
[37] by N. Takayama.
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Also, the powers ρs(x), s ∈ Z, of the roots of f(x; t), are A-hypergeometric
system with parameter (0,−s). The total sum

ps(x) := ρs1(x) + · · ·+ ρsd(x)

is then a rational solution with the same homogeneity. Similarly, one can show that
the local residues

Resρ(x)

(
tb

fa(x; t)
dt

t

)
; a, b ∈ Z, a ≥ 1(1.14)

give algebraic solutions with homogeneity (−a,−b) and, again, the total sum of
residues is a rational solution.

Mayr also tried to find differential equations satisfied for the roots of bivariate
polynomials, but he did not find a general pattern. Also, Norguet [25], [26] found
formulas for the common roots of a bivariate system of polynomials as functions of
the coefficients of the given polynomials, when there are two ”leading coefficients”
on each polynomial, in the sense that all the remaining coefficients have enough
smaller absolute value. But there is no nice known system of linear P.D.E. satisfied
by the roots. However, there is a natural A-hypergeometric system associated with
the (local or global) residues, from which the roots can be derived. We pursue this
discusion in section §3.

The hypothesis (1.9) means that the toric ideal

IA := 〈 ξu − ξv : A · u = A · v 〉 ⊂ C[ξ1, . . . , ξs](1.15)

is homogeneous with respect to total degree and defines a projective toric variety
XA ⊂ Ps−1. This condition ensures that the system HA(β) defined by (1.10) and
(1.11) has only regular singularities ([17], [30, Theorem 2.4.11]).

If IA is Cohen-Macaulay or β is generic then

rA(β) = vol(A)),(1.16)

The inequality rA(β) ≥ vol(A)) holds without any assumptions on A and β. See
[1], [17], [30] for proofs and details. If d = 2, i.e. when XA is a curve, then (1.16)
holds for all β ∈ C2 if and only if IA is Cohen-Macaulay [10]. It is interesting to
point out that we show that for a given (integer) homogeneity β the holonomic
rank is bigger than the normalized volume n = degree (f) = degree(XA) precisely
when the dimension of the rational solutions increases.

The irreducible components of Sing(HA(β)) are the hypersurfaces defined by
the A′-discriminants ∆A′ , where A′ runs over all facial subsets A, or, equivalently,
XA′ runs over the closures of torus orbits on XA. The A-discriminant ∆A is the
irreducible polynomial defining the dual variety of the toric variety XA, with the
convention ∆A = 1 if that dual variety is not a hypersurface; see [17], [20], [1].
Then, the denominator of any rational A-hypergeometric function is a product of
powers of some ∆A′ .

In the case of toric curves, i.e. if d = 2 the denominator of a rational A-
hypergeometric function may thus in principle contain powers of x0, xn, and the
discriminant ∆(f). However, we show in [10] that there are no rational solutions
whose denominator involves ∆(f) and therefore, every rational solution is in fact
a Laurent polynomial. This may be a somewhat surprising result peculiar to the
case d = 2, in view of example 1.1. The main result in [13] implies that, on the
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contrary, the Gauss system is a very particular case of a Cayley configuration (cf.
Definition 3.2) and that for general configurations A all rational A-hypergeometric
functions are Laurent polynomials .

The key building block for this result is the characterization of those matrices A
with one dimensional kernel, i.e. of codimension one, for which there exist rational
non Laurent polynomial A-hypergeometric functions. This is closely related to the
study of generalized univariate hypergeometric functions (cf. [17]). We stress this
connection in section §2.

On the other side, we prove in [13] that all essential Cayley configurations have
rational non Laurent polynomial solutions, by means of toric residues ([14], [9], [8]).
An important feature is our description of the denominator of the toric residues of
Laurent polynomials in [11], which we extend to the case of toric residues of rational
functions in general in section §3.

2. Codimension one systems and univariate hypergeometric functions

In this section we will study the particular case of configurations for which the
codimension n = s − d is equal to one. The lattice LA is generated by a single
vector

b = (b1, . . . , bs) ∈ Z
s ,(2.1)

which is unique up to sign. By the regularity assumption (1.9), we may suppose that
the first row of A is given by the vector (1, . . . , 1), which implies b1 + · · ·+ bs = 0,
or ∑

bj>0

bj = −
∑
bk<0

bk := p .(2.2)

Moreover, in this case

p = vol(A) = rA(β) ,(2.3)

for any β ∈ Cd (cf. [17]).
We may assume that all bj 6= 0 or, equivalently, that the set A is minimally

dependent, i.e. a circuit. Indeed, suppose bs = 0, then we can find an integral d× s
matrix, of rank d

A1 =
(
Ã 0
0 1

)
(2.4)

such that A1 · b = 0. Now, f(x1, . . . , xs) is A1-hypergeometric with parameters
γ = (γ1, . . . , γd) if and only if

f(x1, . . . , xs) = xγds · f̃(x1, . . . , xs−1)

where f̃ is Ã-hypergeometric with parameters γ̃ = (γ1, . . . , γd−1). Thus, the study
of rational A-hypergeometric functions reduces to that of rational functions which
are Ã-hypergeometric.

Suppose then that A is a circuit and assume that

bj > 0 for j = 1, . . . ,m ; bj < 0 for j = m+ 1, . . . , s.(2.5)

We note that the higher-order operators (1.10) are generated by the single operator

DA := ∂b+ − ∂b−(2.6)
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where b+ = (b1, . . . , bm, 0, . . . , 0)T and b− = (0, . . . , 0,−bm+1, . . . ,−bs)T .

Given any A-homogeneous function ϕ with homogeneity A.v, there exists a one
variable function f such that

φ(x1, . . . , xd+1) = xvf(
∏
i

(xi/bi)bi) = xvf((x/b)b).(2.7)

Proposition 2.1. Set Pv the one variable operator (in a variable z):

Pv :=
m∏
i=1

bi−1∏
j=o

(Θ +
vi − j
bi

)− z
d+1∏

i=m+1

|bi|−1∏
j=o

(Θ +
vi − j
bi

),

where we denote Θ := zd/dz. Then it holds that DA(φ) = 0 iff Pv(f) = 0.

Proof. First note that DA(φ) = 0 iff D̃A :=
(∏m

i=1(xi)bi
)
DA annihilates

φ. Set Θi := xi∂i. Using the identities Θix
v = xv(Θi + vi) and Θif((x/b)b) =

biΘf((x/b)b) it follows that

D̃A =
m∏
i=1

bi−1∏
j=0

(Θi − j)−
(∏

i

(xi)bi
)

d+1∏
i=m+1

|bi|−1∏
j=0

(Θi − j)(2.8)

and

D̃A(φ) = xv

(
m∏
i=1

bbii

)
Pv(f)((x/b)b).

Remark 2.2. Note that we may always change any integer vector v by a vector
v′ such that Av = Av′ and 0 ≤ v′1 ≤ b1− 1. For such v′, Pv′ has has the form (1.8).
In any case, the only singular points of Pv are 0, 1 and ∞, and all three are regular
singular points. Proposition 2.1 translates between A-hypergeometric functions
for codimension one configurations A and generalized univariate hypergeometric
functions attached to special values of the parameters (from which one can read
the generator b of the lattice LA).

Example 2.3. Consider the codimension one system associated with the ma-
trix

A =
(

1 1 1
0 1 2

)
.(2.9)

Given β ∈ Z2, let v = (0, v1, v2) ∈ Z3 such that A · v = β. In this case,

Pv = Θ(Θ + v2)− z(Θ− v1

2
)(Θ− v1

2
+

1
2

).(2.10)

The kernel LA has rank 1 and is generated by (1,−2, 1). The fact that the generator
has a coordinate equal to 2 is reflected by the two parameters differing by 1/2 in
the operator Pv.

Translating via Proposition 2.1 the results in [10], we know for example that
when v1 > 0 and v1 + 2v2 < 0, logarithmic solutions arise.

Let β ∈ Zd and c ∈ Zs such that A · v = β. A rational non Laurent polyno-
mial A-hypergeometric function F (x) with homogeneity β has two different series
expansions F+, F− at each of the vertices of the discriminant

∆A := b
b+
+ xb− − (−1)p bb−− xb+ = b

b+
+ xb− (1− (x/b)b)
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(cf. ([20]), which will converge for |(x/b)b| greater than 1 and less than 1 (may be
different also from 0) respectively. If we write, as in (2.7),

F (x1, . . . , xd+1) = xvf((x/b)b),(2.11)

this corresponds to the fact that 1 is a pole of f (and may be also 0 or ∞). Taking
into account that derivatives preserve “negative supports” of monomials, may be
after susbstracting an A-hypergeometric Laurent polynomial, the Laurent series

F−(x) = xv
∞∑
n=0

cn
(
(x/b)b

)n
, cn ∈ C,

is A-hypergeometric and rational (cf. [30, §3.4]), and we may suppose that

vj < 0⇔ j > m.(2.12)

]From the recursion relations for the coefficients derived from the operator (2.8),
we deduce that up to constant

F−(x) = xv
∞∑
n=0

∏
j>m(−vj − nbj − 1)!∏

j≤m(vj + nbj)!

(
(−1)p

xb+

xb−

)n
.(2.13)

Symmetrically, there is another A-hypergeometric rational Laurent series expansion
F+ in negative powers of (x/b)b.

Example 2.4. Consider the Gauss configuration in Example 1.1 and β =
(−2,−1,−2). In this case, the rational function

F (x) :=
x1

x4 (x3x4 − x1x2)

is A-hypergeometric. The Laurent series expansion of F in powers of (x1x2)/(x3x4)
is equal to the series F−, while the expansion of F in powers of (x3x4)/(x1x2) equals
the sum of −F+ and the A-hypergeometric Laurent polynomial −1/(x2x4).

Example 2.5. Consider again the configuration (2.9). In [10, Theorem 1.10]
we prove that the only rational A-hypergeometric functions are Laurent polynomi-
als, and we propose explicit bases of solutions for all integer homogeneities, which
can be translated into the solution to the corresponding equations Pv(y) = 0, where
Pv are given by (2.10). The Laurent series F− and F+ defined by (2.13) are hyperge-
ometric with non-trivial domains of convergence; in fact F−(x) = (x2

2 − 4x1x3)−1/2

and

F+(x) = 4 arcsin

((
x2

2

4x1x3

)1/2
)

1√
4x1x3 − x4

2
.

Note that while F−(x) is algebraic, F+(x) is not.

Definition 2.6. We will say that a circuit A is balanced if it satisfies d+1 = 2m
(i.e. the number of positive and negative coordinates in a genererator b of the
lattice LA coincide) and, after reordering if necessary, bi = −bm+i, i = 1, . . . ,m.
Otherwise, we will call A unbalanced

Remark 2.7. Balanced circuits are very special. They clearly satisfy the reg-
ularity condition (1.9). Moreover, it is easy to see that up to multiplication by an
element of GL(s,Q) the matrix A of a balanced circuit is of the form

A =
(
Im Im
0 Ã

)
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where Ã is a (m − 1) ×m integral matrix of maximal rank such that Ã · b+ = 0,
b+ = (b1, . . . , bm).

For d = 3 for example, a circuit consists of 4 points in a two dimensional plane,
such that no 3 of them are collinear, and such that the cuadrilateral with these
vertices has a pair of parallel sides. Note that for d even there are no balanced
circuits. In particular, 3 collinear points form an unbalanced circuit.

The following Theorem characterizes those circuits for which there exists a
rational hypergeometric function which is not a Laurent polynomial. When A is
a balanced circuit, it is easy to see that ∆(A)−1 is a rational A-hypergeometric
function (cf. [13], Lemma 2.2). In fact, only balanced circuits admit rational
A-hypergeometric functions with infinite Laurent series expansions.

Theorem 2.8. Let A be a circuit in R
d. Then, there exists a rational A-

hypergeometric function, which is not a Laurent polynomial, if and only if A is
balanced.

Corollary 2.9. Let A ∈ Zd×s be a codimension-one configuration. There
exists a rational A-hypergeometric function which is not a Laurent polynomial if
and only if there exists M ∈ GL(d;Q) such that

M ·A =
(
Ã 0
0 Ik

)
,

where Ik is a k × k identity matrix and Ã is a balanced circuit in Zd−k.

Proof. The only if part follows from Theorem 2.8 and the discussion at the
beginning of this section. To prove the converse, suppose Ã is balanced circuit in
Z
d−k. It follows from Theorem 2.8 that there exists a rational Ã hypergeometric

function f̃(x1, . . . , xs−k) with homogeneity β̃ = (β1, . . . , βd−k) ∈ Zd. Then,

f(x1, . . . , xs) := f̃(x1, . . . , xs−k)

is A-hypergeometric of exponent M−1 · (β1, . . . , βd−k, 0, . . . , 0) ∈ Zd.

A proof of Theorem 2.8 can be found in [13], Th.2.3. Instead, we stress now the
relation with classical univariate hypergeometric functions and give, with a similar
proof, a complete characterization of those hypergeometric Laurent series which
are the Laurent expansion of a hypergeometric rational function, and thus of those
homogeneities β for which there exists a rational A-hypergeometric function with
homogeneity β.

We first need the following slight generalization of [28, Lemma 2.1], whose
proof is left to the reader.

Lemma 2.10. Let ρ(z) be a rational function. Let Σ = {σ1, . . . , σp} and Σ′ =
{σ′1, . . . , σ′q} denote the poles and zeroes of ρ listed with multiplicity. There exists a
polynomial g(z) such that ρ(z) = g(z+1)/g(z) if and only if p = q and it is possible
to reorder the collections Σ and Σ′ in such a way that σj − σ′j ∈ N.

Because of Theorem 2.8, we may restrict ourselves to the case when A is a
balanced circuit, and moreover, bm+i = −bi, for all i = 1, . . . ,m, β ∈ Zd, A · v = β
and (2.12) holds.

Define
µ′i := −(vi + 1)/bi , i = 1, . . . ,m .
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and let
Σ′v := {µi − j/bi ; j = 0, . . . , bi − 1 ; j = 1, . . . ,m}.

Define also
µi := vm+i/bi , i = 1, . . . ,m .

and let similarly

Σv := {µi − j/bi ; j = 0, . . . , bi − 1 ; i = 1, . . . ,m}.
Note that both Σ and Σ′ have cardinality p. We list for simplicity

Σv = {σ1, . . . , σp} ; Σ′v = {σ′1, . . . , σ′p} .

Theorem 2.11. The series F−(x) in (2.13) is the Laurent expansion of a ra-
tional function if and only if it is possible to order the sets Σv and Σ′v in such a
way that for every j = 1 . . . , p, σj − σ′j ∈ N.

Proof. The Laurent series F−(x) is the expansion of a rational function if
and only if the associated univariate power series f−(z) defined as in (2.7) by
F−(x) = xvf−((x/b)b) is a rational function of z. Since A is a balanced circuit,
bb = (−1)p. We then have

f−(z) :=
∞∑
n=0

∏m
i=1(bin− vm+i − 1))!∏m

i=1(bin+ vi))!
zn(2.14)

Since f−(z) has no pole at the origin, it may be written as a quotient

f−(z) =
P (z)

(1− z)r+1

with P ∈ C[z]. Note that thanks to the fact that A is balanced, the coefficients γ(n)
of the series (2.14) are rational. It follows from [32, Corollary 4.3.1] that f−(z) is
rational if and only if γ(n) is polynomial in n. The function

ρ(z) :=
γ(z + 1)
γ(z)

is also rational. Moreover, Σv and Σv describe the poles and zeroes of ρ. When γ is
polynomial, we are done by Lemma 2.10. With respect to the if part, we know by
the same Lemma that there exists a polynomial g such that g(z+ 1)/g(z) = ρ(z) =
γ(z + 1)/γ(z). Then, as γ(n) is rational in n, the function r := γ/g is also rational
and verifies r(z+ 1) = r(z) for all z, and so is constant, from which we deduce that
γ is a polynomial.

Corollary 2.12. Suppose that the series F−(x) is the Laurent expansion of a
rational function. i.e. that Σ and Σ′ may be ordered in such a way that for every
j = 1 . . . , p, σ′j − σj ∈ N. Then, F−(x) = Q(x)/∆r+1

A , where r :=
∑
i>m(−vi)−∑

i≤m vi −m and Q ∈ Q[x] is a polynomial of degree at most r.

We now relate A-hypergeometric functions associated with a circuit A and
classical generalized hypergeometric functions. Recall that for µ ∈ C and n ∈ N,
(µ)n denotes the product

(µ)n = µ · (µ+ 1) . . . · (µ+ n− 1)

Note that (µ)n = 0 for some n ∈ N if and only if µ ∈ Z≤0.
Let (µ;µ′) = (µ1, . . . , µp;µ′1, . . . , µ

′
p−1) ∈ C2p−1 where no µ′i is a negative

integer (or such that there exists an injective function j(i) defined for all i for
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which µ′i is a negative integer, such that µj(i) is a bigger negative integer). The
classical hypergeometric function

pFp−1((µ;µ′), z) :=
∞∑
n=0

(µ1)n . . . (µp)n
(µ′1)n . . . (µ′p−1)n

zn

n!
(2.15)

is then defined and, clearly, it is a polynomial if and only if there exists an index i
such that µi ∈ Z≤0. Since pFp−1((µ;µ′), z) is annihilated by the (regular) operator
Θ
∏p−1
i=1 (Θ+µ′i − 1)− z

∏p
i=1(Θ+µi), its only possible poles are 0, 1 and∞. Since,

by definition, it is holomorphic at the origin, it might be written as P (z)/(1− z)r
for some r ∈ N and P ∈ C[z].

Translating into this language the proof of Theorem 2.11 we identify now all
other rational classical hypergeometric functions:

Theorem 2.13. Let (µ;µ′) = (µ1, . . . , µp;µ′1, . . . , µ
′
p−1) ∈ C \Z2p−1

≤0 The clas-
sical hypergeometric function pFp−1((µ;µ′), z) is rational if and only if up to re-
ordering, µi − µ′i ∈ Z≥ 0, i = 1, . . . , p − 1, and µp ∈ Z≥1. Moreover, in this
case, there exists a polynomial P such that pFp−1((µ;µ′), z) = P (z)/(1−z)r, where
r :=

∑p
i=1 µi −

∑p−1
i=1 µ

′
i.

Remark 2.14. The hypothesis µp ∈ Z≥1 reflects the fact that there’s a p-th
parameter equal to 1 in the denominator producing the factor n! = (1)n.

3. Cayley configurations, residues, and rational A-hypergeometric
functions

Theorem 2.8 is combined in [13] with a careful analysis of restrictions of A-
discriminants to subconfigurations, to find severe restrictions on a configuration
A in order to admit rational non Laurent polynomial A-hypergeometric function-
s. For instance, for any configuration A such that each facial subset of A has a
relative interior point, all rational solutions are Laurent polynomials . So, there
are “very few” configurations A having rational A-hypergeometric functions with
infinite series expansions. However, such functions are very interesting!

There is a general procedure to build rational A-hypergeometric functions based
on the notion of toric residue ([14],[9], [8],[13]), which corresponds to the total sum
of local Grothendieck residues ([22], Ch.5; [38]). There are analytic, geometric and
algebraic definitions of local multidimensional residues associated with a family of
n-variate polynomials f1, . . . , fn with an isolated zero at a point ξ, all of them
are natural extensions of the following definition in case ξ is a simple zero: given
any other regular function g at ξ, the local residue Resf,ξ(g) of g with respect to
f1, . . . , fn equals

Resf,ξ(g) =
g(ξ)
Jf (ξ)

,(3.1)

where Jf denotes the Jacobian determinant of f1, . . . , fn. In fact, a residue is
attached to a differential form, but in the affine case (resp. in the case of the torus
(C∗)n), the standard n-form dz1 ∧ . . . ∧ dzn (resp. dz1/z1 ∧ . . . ∧ dzn/zn) allows
us to assign a residue to a function. With this terminology, (1.14) is written as
Resfa,ρ(x)(tb−1).
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One important property of the residue is that Resf,ξ(Jf ) is an integer number,
namely, the (algebraic or geometric) i.e. traces are instances of residues, and in
particular, we recover the coordinates of the common root. The main property of
the residue operators is that they provide a natural local duality; namely, given g,
Resf,ξ(g · h) = 0 for any h if and only if g lies in the local ideal If,ξ generated by
f1, . . . , fn. There are manifold versions of this statement (local and global in the
algebraic and analytic settings), including “effective” versions useful for computer
algebra (cf. for instance [7], [12]).

Fix n+ 1 configurations of integer points A0, . . . , An in Zn and let f0, . . . , fn
be generic n-variate polynomials with these exponents

fi(x; t1, . . . , tn) =
∑
α∈Ai

xα,it
α.

Then, for generic values of the parameters x, f1, . . . , fn will have a finite set V of
common zeroes in the torus and f0 will not vanish on V.

Definition 3.1. The Cayley configuration AC associated with A0, . . . , An is
the configuration in Z2n+1 defined by

AC = {e0}×A0 ∪ {e1}×A1 ∪ · · · ∪ {en}×An(3.2)

Remark 3.2. Note that by Remark 2.7, balanced circuits are (after reordering)
Cayley configurations.

Define also

Definition 3.3. The Cayley configuration ÃC associated with A1, . . . , An is
the configuration in Z2n defined by

ÃC = {e1}×A1 ∪ · · · ∪ {en}×An(3.3)

We then have

Proposition 3.4. For any m ∈ Zn,
• the local residue Resf,ξ(tm) of the Laurent monomial tm at any point ξ ∈ V

is ÃC-hypergeometric function of the coefficients of f1, . . . , fn with homo-
geneity (−1, . . . ,−1,−m1 − 1, . . . ,−mn − 1) ∈ Z2n.
• the local residue Resf,ξ(tm/f0) of the rational function tm/f0 at any point
ξ ∈ V is AC-hypergeometric function of the x variables with homogeneity
(−1, . . . ,−1,−m1 − 1, . . . ,−mn − 1) ∈ Z2n+1.

Residues can be given an integral representation and Proposition 3.4 may be
proved by differentiating under the integral sign. One can also give a complete
algebraic proof, following [2], based on the equality (3.1).

Given any monomial tm, m ∈ Zn, we can also define the global residue

Resf1,... ,fn(tm/f0)

as the sum over all common roots

Resf1,... ,fn(tm/f0) =
∑
ξ∈V

Resf,ξ(tm/f0).(3.4)

Global residues are in fact cohomological objects in a suitable compact toric variety
containing (C∗)n as a dense open set (cf. [9]). Since the A-hypergeometric system
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is linear, the global residue is also an AC-hypergeometric function with the same
homogeneity, and moreover it is a rational function of x.

It has been observed in [36], the coordinates of the common roots of f1, . . . , fn
are not in general ÃC-hypergeometric, even in the case of linear polynomials. In the
case of monomial curves (1.2) it is shown in [10] that for (integer) homogeneities
with negative first coordinates, all rational A-hypergeometric functions are constant
multiples of global residues. In the multivariate setting, interesting combinatorial
problems arise and we expect that global residues become a key ingredient for the
description of all rational AC-hypergeometric functions. We end with a description
of the denominator of the global residues for special values of m.

Suppose that A0, . . . , An is an essential configuration. This means that the
Minkowski sum

∑
i∈I Ai has affine dimension at least |I| for every proper subset

I of {0, . . . , n}. Then, the sparse resultant RA0,... ,An is a non constant (and non
monomial!) polynomial in the variables x (cf. [34]) which vanishes for all those
values of the parameters such that f0, . . . , fn have a common root in the torus.
In [11] we described the denominator of the global residues

∑
ξ∈V Resf,ξ(tm) of

Laurent monomials in terms of explicit powers of resultants attached to the facets
of the convex hulls of A1, . . . , An. From the description of the singular locus of the
AC-hypergeometric system, we know that the denominator of Resf1,... ,fn(tm/f0) is
a product of powers of facet discriminants associated with the Cayley configuration
AC . In fact, in case A0, . . . , An is essential it happens that the discriminant ∆(AC)
coincides with the sparse resultant RA0,... ,An (cf. [13, Prop. 5.1]; [20]). Mimicking
the proof in [11, Th. 1.4], we can moreover prove

Proposition 3.5. For any m ∈ Zn which lies in the interior of the Minkowski
sum of the convex hulls P0, . . . , Pn of A0, . . . , An, there exists a polynomial P ∈
Q[x] such that

Resf1,... ,fn(
tm+1

f0
) =

Pm
RA0,... ,An

,

where 1 denotes the vector with all coordinates equal to 1.

Proof. As noted above, for values of x in a Zariski open set, f0, . . . , fn have
no common zeroes and V is finite and contained in the torus. Moreover, we can
suppose that all common zeroes of f1, . . . , fn are simple and, therefore, for any
ξ ∈ V ,

Resf,ξ(
tm+1

f0
) =

tm+1(ξ)
f0(ξ) · Jf (ξ)

=
gξ(x1, . . . , xn)

f0(ξ) · hξ(x1, . . . , xn)
,(3.5)

where the symbol xi stands for the vector (xα,i : α ∈ Ai) of coefficients of fi , and
gξ, hξ are algebraic functions in these coefficients.

We now sum (3.5) over all points ξ in V . For any choice of monomials tai , i =
0, . . . , n, the residue of tm+1/f0 with respect to f1, . . . , fn equals the residue of
tm+1+

∑
i ai/ta0f0 with respect to ta1f1, . . . , t

anfn, and we may thus suppose that
each Ai contains the origin. Then, the affine lattice L generated by A0 + . . . An
agrees with the linear lattice it generates. We assume by simplicity that L = Z

n. If
this is not the case, we can argue as in the proof of Theorem 1.4 in [11]. Therefore,

Resf1,... ,fn(
tm+1

f0
) =

∑
ξ∈V

1
f0(ξ)

aξ(x1, . . . , xn)
bξ(x1, . . . , xn)

.
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This expression depends rationally on x0, x1, . . . , xn. This implies that there exist
polynomials G(x0, . . . , xn) and H(x1, . . . , xn) such that

Resf1,... ,fn(
tm+1

f0
) =

G(x0, x1, . . . , xn)
(
∏
ξ∈V f0(ξ)) ·H(x1, . . . , xn)

.

It follows from [27, Theorem 1.1] that∏
ξ∈V

f0(ξ) = RA0,... ,An(x0, x1, . . . , xn) · C(x1, . . . , xn)

for some rational function C. Therefore, there exist polynomials G0, H0 such that

Resf1,... ,fn(
tm+1

f0
) =

G0(x0, u1, . . . , xn)
RA0,... ,An(x0, x1, . . . , xn) ·H0(x1, . . . , xn)

.

Now the key point is that because of the hypothesis that m lies in the interior of P =
P0 + . . .+Pn, and passing to a toric residue in the toric variety XP associated with
P , we deduce from [9, Th. 0.4] (see also [11, Prop. 1.3]) that for any i = 1, . . . , n,
the sum of the local residues of tm+1

fi
with respect to f0, . . . , fi−1, fi+1, . . . , fn at

each of the points of intersection of these n polynomials, coincides up to sign with
Resf1,... ,fn( t

m+1

f0
). We can thus repeat the previous argument for any other index

i = 1, . . . , n playing the role of the index 0, and the Proposition follows.

Remark 3.6. For any m ∈ Zn, we can similarly prove that the denominator of
the global residue of tm/f0 with respect to f1, . . . , fn equals the resultant RA0,... ,An

times explicit powers of the facet resultants associated with f1, . . . , fn.
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