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1. Introduction

Let X be a n-dimensional complex manifold and Y a complex subspace of X
of pure codimension p, 0 <p <n, which is locally a complete intersection.

Denote '9"? the sheaf of currents on X of bidegree (r,p). We prove in this
paper the following decomposition property for d-closed currents
Tely(X,'2"™") with support on Y:

a) T=R+0S, where Rel(X,’2"?) is a locally residual current and
SeL(X,'a"P 1)

b) if T=R'+ 0S5’ is a similar decomposition, then R=R’ and d5=0S".

The current R is called locally residual if it is equal locally to some current
Ry, . y,[®], where Ry y [@] is the residue operator (cf. [C-H]) associated
to some family % ={Y,,...,Y,} of complex hypersurfaces in an open set Uc X,
such that ¥, n...nY,=YnU, and where &el'(U, 2" (x U%)) is a meromorphic
form on U with poles on | J#=Y,uU... vY, A locally residual current is
always 0-closed.

This result provides canonical residual representatives for the classes in the
global moderate local cohomology groups Hfy(X, £7), which are defined as the
group of global sections of the moderate local cohomology sheaves #{,(X, Q")
(cf. Ramis [R]) and can be actually calculated as the p-cohomology of the
complex (I;(X,'2"),0). These groups cannot be identified with classical local
cohomology HZ(X, (), since the resolution ('2"",8) of @ has O -injective
fibers, xe X, but it is not an injective resolution on X. In fact, it holds #(X; ¢)
~D*Q A, (X;0) for the local cohomology sheaves, where & (resp. 2%) de-

g

.....

notes the sheaf of differential operators of finite (resp. infinite) order (cf. Meb-
khout [M], Chap. I1).

As an immediate consequence of our result we deduce that the support — in
the sense of sheaves — of any class in Hfy (X, Q) is always analytic.
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Conversely, we show in §7 that locally residual currents generalize analytic
cycles; precisely: given T a cycle of codimension p and xeX, for every family
of hypersurfaces # ={Y,,...,Y,} such that supp(T)< ()% near x, there exists a
meromorphic p-form t with poles on | J# such that T=Ry,, .y, [7]

Our methods also give a duality theorem for residual currents, which is the
natural extension of Grothendieck’s duality theorem for scalar residues. We
apply this duality theorem to obtain a result about fibration of analytic ideals.

Finally, we exhibit a straightforward construction for the cup-product

HE (X, @)@ HEy (X, @)= HEE (X, )

for subspaces Y and Y’ of X in the proper intersection position.

2. Background

Let X be a complex manifold of dimension n and # =1{Y,,....Y,,,} (0=q<n)

a family of hypersurfaces in X. As usual, Q" (resp. Q(xu%)) will denote the
g+1

sheaf of holomorphic (resp. meromorphic with poles on | J#% = | ] Yi) r-forms
i=1

on X and, for any analytic subspace Z, (2%,0) will denote the complex of
sheaves of currents on X of bidegree (r,) supported on Z, with differential ¢:
Dy Dy ) _
oT)(@)=(—1)"" T(0w)
for « a germ of ¥*-form of degree 2n—r—1—-.
gq+1
Also, ﬂ@:ig Y,and #()=% —{Y;} 1<jsq+1).
We have the following commutative diagram:
XU Dy
Ry 0 (2.1)
T

where RPy (resp. R,) is the g-multiple residue-principal value operator (resp. g
+ 1-multiple residue operator) in the sense of Coleff-Herrera (cf. [C-H J).

As an obvious consequence, 0(Rg[@])=0 for every meromorphic form &
(2.2).

When needed, we shall write

ReSY1 ,,,,, YqPYq+1=RP”y (23)
Resy,  .y,..=Ra
and, for equations {¢,,...,¢,, ,} defining {Y}, ..., Y, |} respectively,
Res, ¢, =Res,=Ry 24)

(for equations we only mean Z(¢,)=Y).
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We say that Tel'(X,’2"9) is a locally residual current if there exist locally a
family % ={Y,, ..., ¥} of hypersurfaces and a meromorphic r-form & with poles
on | J% such that

T=R4[&].

If dimg((\#)=n—(g+1) (¥ having complete intersection), the following
properties hold:

i) If @e Q" (+| ¥ () for some fixed j (ie. & is regular on Y), then

Ry [®]=0. 2.5)

Moreover, if JZq
and if j=q+1, RE[51=0 @6
RE[@]=Rg 1) [@]. (2.7)

ii) For any #'={Y},..., Y/, ,} family of hypersurfaces in X such that Y, Y/
for every j, 1<j<q+1, and dim((\¥)=n—(q+1)

Ry[d] =Ry [0], (2.8)

RE,[6)=RE,.[& 29
for de (x| ). sl@1=RE [5] 29
iii) Transformation law:
Let ¢;, ¥, (1 Zi=q) be holomorphic functions in €” such that

II D,g

¢)—ﬂz(¢

is a complete intersection. If ;= Za i¢; with M= a,;;|e**4(C"), then for
every wef"(C") i=1
) o -detM
Res [———]zRes [———] (2.10)
¢ ¢y 0, Yy, .y,

Note. For i) and i) ¢f. [C-H].

iii) can be deduced from the puntual case proved by Griffiths-Harris
([G-H], p. 657) by virtue of the locally semi-meromorphic fibered residue func-
tion (cf. [C-HT).

We shall refer to A(j,q) as the set of increasing families of j elements
running between {1,2,...,¢} and, for JeA(j,q), Y, will denote the hypersurface
\J Y. For the general theory of double complexes, cohomology and cup-
ieJ

product, see [G].
3. Characterization of the moderate cohomology sheaf
Let X be a n-dimensional complex manifold and Y= X an analytic subspace of

codimension p. Our main purpose in this section is the construction of an
explicit isomorphism between two representations of the moderate cohomology
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sheaf with coefficients in €" and supports on Y, given one by meromorphic r-
forms and the other by currents on X, in order to exhibit a canonical repre-
sentative in each class of the quotient sheaf #4”('2%’) (Theorem 3.6).

As a consequence, we get the following local characterization theorem for
currents on X supported on Y:

Theorem 3.1. Let X be a n-complex manifold and Y an analytic subspace of pure
dimension n—p. Let xe X and Te' @57, be a germ of a 0-closed current supported
on Y. If there is a family of p hypersurfaces # ={Y,,...,Y,} in some neigh-
borhood W of x such that Y nW=\%¥, then:

a) There exist a meromorphic r-form weQ (= )%) and S€'D57 " such that

T=R,[w]+3S.

b) This splitting is unique in the following sense: If ¥ ={Y],....,Y;} is
another family of hypersurfaces with ﬂWJ’=Y near X, w’eQ;(*U@’) and
S'€'@yE 1 such that

T=R, [w]+3S
then
Rylw]=R, [w]

3.2. For I a sheaf of ideals on X, we denote '@}’ the subsheaf of ‘92" whose
stalk at xe X is
‘D =A{Te'Dy . f T=0,Vfel }.

Lemma. If Z(I)=Y, then
H; (D) =inj lim #5 (D7)
k
(the direct limit is defined by the inclusions '@y ' Dli. o).
Proof. The lemma follows from the identity '@} =injlim'@%, which is easily

k
deduced from a theorem of Schwartz ([S], Th. XXVII, Chap. IIT).

3.3. Let US X be open, (f)i_,e0?(U). We denote I={f},....f,> the generated
sheaf of ideals and, for keN, I, ={ff,....f;>. As I, ,sI*?<I, for every k, the
following sheafs on U are isomorphic:

inj lim ' ( 25) = inj im # (27,).
k k

34. Let #={Y,,..., Y} be a family of hypersurfaces such that (\% =Y. Let o/
denote the following subsheaf of Q" (x( ) #):

q
&i={ Y @(i): @) is regular on Yi}
i=1

and
2=0Q" (» U@)/&f.
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Lemma. If () ,€0%U) satisfy (f;=00=Y,.nU (1Zi=q), there is an isomor-
phism of sheaves on U

injlimQ/I,®Q —%— 2
k

where the direct limit is constructed by means of the homomorphisms
o =Y oo ) - Yo

w1 f W,
Proof. For kelN, the morphisms
B QR -2,
T f gt
define the required isomorphism

B, injlimQ/I,®Q 2.
k

Proposition 3.5. If ¥ ={Y,,...,Y,} is a family of hypersurfaces having complete
intersection, (f)7_,e0?(U) are equations for each Y, in an open set U< X and I
={f1»----f,7, there is an isomorphism R

XNOL T A (DY)
induced by the mapping

Qr__} ’ ;,P’

)
w, > Ry, I:*—"—] .
x S S,
Note. We are going to show the 1 —1 correspondence at each stalk; we will
omit the point when no confusion may arise.

Proof. R, is well defined by virtue of (2.1), (2.2) and (2.5). We consider for each
xeU:
a) Koszul’s projective resolution of (0/I),

0— APOP 22 AP=1or 2oL, | S AP 0" 0/ 0

o le;)= Z(’“lv_ f‘,eJ ()

where JeA(k,p); {e)7_, is the canonical basis in (F and e;=e; A...Ae;, il
J, <...<J, are the elements of J and b) the injective resolution of Q: (%7, 0).
Functor Hom, (-, 2") applied to a) and functor Hom,_(0/I, -) applied to
b) give two complexes with canonically isomorphic cohomologies representing
the group Ext,, (0/I, 7). This isomorphism is constructed following the ar-
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rows in the double complex

(Hom,, (A°0P,'2"),0% a%).
Let
)

¢ = [I.-» R, [fl—f,,” eHom, (0/1,' ") ='P}?.

We define for each i, 1<i<p

0 if J&{p—(—-2),....,p—1,p}

o)
bile)={Ry,...v, B, ... [m]
if J={p—-(G-2),...,p},
¢,eHom (A 1 @7, g7,
Properties (2.6) and (2.7) assure that
0 fJx{p—-(G-1),...,p}

if J={p—-(i-1),...,p}
Therefore

and
¥ (e n...ne)=R [o]=fonr-=i*n,le,n...ne)

where n,eHom(A? 07, ') is the homomorphism

Noley Ao Ae)=w.

To complete the proof we should show that
o(a*(Homy (A7~ 1 07, Q) =1Q &
where ¢ denotes the isomorphism
¢: Hom (AP @, Q")
n—nle, A... Nep).

In fact, for yeHom, (A7~ 07, Q)

o(og(¥) =

p
i=

(=1 fi(eg Ao AN NeY)
1
as we wanted.
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Now, we can state:

Theorem 3.6. Let % ={Y,,...,Y,} be a family of complex hypersurfaces in X
such that Y= \% has pure dimension n—p.
The following morphism of sheaves on X

@)~ 2y,
Ry [D]
induces an isomorphism R
2R AP (),
Proof. Locally, there are (f)7_,€0?(U) equations for each Y, If I, ={ff,....f5>
for every ke, the mappings
/@Y L A ()

are isomorphisms (by Proposition 3.5), which commute with the respective
direct limit morphisms (3.2, 3.3 and 3.4) to give the quoted isomorphism R.

Corollary 3.7. Let @eQ(»\ J¥) and S€' 37" such that

Ry[®]=28
then
Ry[»]=0.
Proof. It is an immediate consequence of Theorem 3.6 and property (2.5).

We finish this section with the proof of Theorem 3.1:
a) is a consequence of the surjectivity of the mapping R in Theorem 3.6.
b) is clear in the case #'=%. Then, it is sufficient to show the following:

Let %'={Y],...,Y,} be another family of hypersurfaces with Y= ﬂ@’ near Xx,
and o/ eQ,(| J¥'). There exists we,({ J¥) such that

Ry [0]=Ry[o]. (3.9)

In fact, given oeQl, (g)7_,€0? local equations for (Y/)f_, such that o’

= , and (f)f_,€0? defining (Y)?_, near x, by the Nullstellensatz, there
g8,
exist geIN and 4 =(a;;)e¥%*? such that

r
fi=Ya;8 Jj=1,...p.
i=1

det A ;a verifies (3.9), thanks to the Transformation Law (2.10).

[1f

Then, w =
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4. Duality Law and fibration of regular ideals

4.1. As an immediate consequence of (2.5) and (3.5) we have the

Duality Law: Let xe X and (f)?_,€0F such that

;]

dim, [} (f;=0)=n-p.

1

il

For we, the following statements are equivalent:
®
i) Res [—] =0,
Ly, .
i) wel @, where I ={f1,....f,»-

4.2. Remark. The Duality Law is not valid without the hypothesis of complete
intersection, as the following examples show:
Let X=C, fi=2z,, [,=2, 2, ¥ ={Z(f)), Z(f))}.

1) Res ; =0 because V,(#%)={ (for the notion of V(%) cf. [C-H))
f1.f2 e e

hihs

and obviously 1¢<{z,,z,-z,).
2) f h=z,

h 1 1
Res,, 1[——]:Res s 1IZ—W]:——f(S +0
fat fifa Tad Z1'Zy 2mi 1

and helf1,f,)-

43. Let X be a complex manifold of dimension n and I a regular sheaf of
ideals, i.e. I is locally generated by a regular sequence of holomorphic func-
tions f},...,f, (which implies dim¢Z(I)=n—p).

Let x,eZ(I) and (U, ¢) be a coordinate neighborhood of x,. Let us denote
P ={zeU/p,(2)=¢@/x), i=n—p,...,n} for xeU. We have:

Theorem 4.3. Under the hypothesis/ B nZ({I)={x,} the following statements are
equivalent for heO(U):

i) hip €llp., for every xeregZ(I)n U,

ii) hel,.
Proof. As this is a local property, the theorem follows from the Duality Law and
Proposition 4.4 below.

Proposition 4.4. Let A< C" an open set, I={f,,....f,> a regular ideal in O(4)

and m: A>C" P, Xy, .0, X)) =X,y 15 ..., X,), verifying dimgn™ ' (n(x)) " Z(1)=0
for every xeZ(I).

For heO(4), we denote he #(4), h= h

fiof,

The following statements are equivalent :
i) Res [A]=0
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ii) The restricted currents Resp ;). 4] p ) are null on the p-plane P,={zeA:
n(z)=n(x)} for all xereg Z(I). :

Proof. Only ii) = 1) has to be proved.
Let x,eregZ(I) and (V,(z,, ..., z,)) be a coordinate system such that z(x,)=0
and

Ui=VrnZ()={z,=...=2,=0}.

p

For every ae U,

5 eees R
aZp-{»—la Ozna
and
/@ i
\’-1 > PN
X9 la Oxpa

are respective basis for T,(U) and T,(B). Let geO(U)

[0, 1 ) 0%, 4|
0z,,, 0z,
g=det :
ox,
Jz

n

and S={beU/g(h)=0}. As g is the determinant of the jacobian matrix of the
mapping
Ttly: U—-n(U)=C""? open
and dimg(U)=dimen(U)=n—p, we get g0 on U and codimy, (S=1.
Now, let aeU —S and W be a neighborhood of a in 4 verifying
i) WnZ(cU-S,
ii) 3reN, and A =(qa;)e 0" *7(W) such that

J4
=Y a,f; Vi=l..p
j=1
(this is possible by virtue of the Nullstellensatz because

(z2y=...=2,=0)nV=(f;=...=f,=0)nV,

i) (24,25 X4 15-.-5X,) 18 @ coordinate system in W (as g(a)+0, T,(F)
and T,(U) meet transversely at a).
For ae2?"~?(W), we have by (2.10)

r
p

.....

Res, [A]()=Res,, [detA : h] ().

P
2.z

We must prove the above term is zero only for
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oc=g(z,x)dzl/\.../\dzp/\dpo/\dpo/\.../\dxn/\cix‘n, geby (W)
(cf. [C-H], Prop. 2.13).

In this case,

Res, [h](x)=lim § vea(y)m*(dx,,  AdX, 1 A ... AdX)
00 Z(H)nWn(lpl>d)

where the semimeromorphic fibered residue function

detA-h-gdz, A ... ndz

r
zi..z2

p ]
Py

/wd(y)= ReSPy;zx,.,.,Zp;y [

r
P

=Resp ., [hlp (g dzy A ... Adz,|p)=0

for all ye Wn Z(I) (cf. [C-H], Th. 1.8.3).

Hence, supp(res, [A)~ U <S8, which implies supp(Res i [A]) ~ U =0, because
the support of the residual current is empty, or equal to the union of some
irreducible components of Z(I) (cf. [C-H], Theorem 1.7.6).

Finally, we have proved that x,¢supp(Res, [A]), for all x,ereg Z(I), and so,
by the same property of purity of the support of residual currents we deduce
that Res [A]=0 as wanted.

5. The global moderate cohomology group

Let Y= X be an analytic subspace of codimension p. We define the p®
moderate cohomology group with coefficients in Q" and supports on Y to be
the group of global sections:

HEy (X, Q7):=T(X, AF(Q7)).
Proposition 5.1. If Y is locally a complete intersection, we have
Hpp(X, Q) ~HYI'(X,'2%")).

Proof. As we have already seen, the moderate cohomology sheaves #y,(€2") can
be obtained from the presheaf

UrsKer (U, 2" )/8(I{U, 2" ~"))
Now, one is able to check that the natural homomorphism

is in fact an isomorphism, observing that the proof due to Siu-Trautmann
([S-T], Lemma 0.6) can be adapted to the moderate case by the following facts:
i) HY(X, 2%)=0 for every g= 1, because '@}  are fine sheaves.
i) #7,(2)=0 Vj=+p, as the stalk of a point xeX is given by

inj lim Ext,._ (0/1,).» )
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where I, are regular ideals. Functor s applied to Koszul’s resolution of
O/I, gives a complex with zero j-cohomology for j+p. (cf. [G-H]J, p. 690).

Remark. Proposition 5.1 is true for a general subspace Y of codimension p,
because H#;},(€2")=0 holds for j<p.

We give now characterization theorems for the global moderate cohomolo-
gy group:

Theorem 5.2. Let X be a holomorphic manifold of dimension n, Y and analytic
subspace of pure codimension p and ¥ =1Y,,...,Y,} a family of hypersurfaces
such that (\% =Y.

Let Tel,(X,"2"?) a d-closed current

a) There exist
1) U =(U),.4 an open covering of X,

1) a family of meromorphic forms (®,),e 4, »
w,el(U,, Q(xu%)), defining a global section of 2 (3.4), i.e. w,—wy= > wli),
where i=1

w@el(U,nU;, & (xu¥(i))is regular on Y.

i) SeL(X,'2"r" 1)
such that _
T=R,[(w,)]+0S.

(The collection (Ry[w,]),c4 defines a global current Ry[(w,)] by virtue of
compatibility in ii).)
b) This splitting is unique in the following sense:

Let %' ={Y{,...,Y;} be another family such that (\¥'=Y, ¥ =(V})yp an
open covering, (wp)z.g€L(X, 2) (where 2’ is the quotient sheaf associated to %),
and S'e(X," 2" ?~*) such that:

T =Ry, [(wj)]+3S
then
Ry [(0)]=Ry [(wp)]
and
0S =208
Proof. By 5.1, the sheaf isomorphism
25 AP (D)

provides a group isomorphism

(X, 2)—5 HPy (X, @),

(wa)aeA — R@ [((Ua)],

proving a).
b) is in fact a local result and has been proved in Theorem 3.1.
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Note. Under the assumptions
HYX, 2 (*|JY)=0 forevery g=1
ieJ
and every JeA(j, p)(1 £j =p), the collection (w,),., of a) in Theorem 5.2 can be
replaced by a global form wel'(X, Q" (* %)) if and only if T has zero class in
H?(X, Q") (cf. [D-H-S], Th. 2.9).
As a consequence, we obtain the following result:

Proposition 5.3. Under the above hypotheses, for every Tely (X, 2™F) the follow-
ing conditions are equivalent :

i) There exists SeI'(X,'@" P~ ') such that S=T.

ii) There exist an analytic subspace Y' containing Y of pure codimension p—1
and S'el;(X,”D"P~ ") such that 0S'=T.

Proof. If i) is verified, let  be a global meromorphic form with poles on | )%

such that T=R,[w]+dT,, supp(T})<Y. Then, Y'=()%¥(p) and S'=RP,[w]
+ T, satisfy ii).

Gathering all the above information, we conclude the following:

Theorem 5.4. Let X be a complex manifold and Y < X an analytic subspace which
is locally a complete intersection. For every Tel (X, @"") O-closed there exists
one and only one locally residual current R such that

T=R+34S
with Sel (X, 9"~ 1),

Remark. As a consequence, each class in Hf, (X, Q") has a representative with
purely analytic support.

6. Cup-product

Given an analytic subspace Y of codimension p in X, which is the intersection
ﬂ % of a family #={Y,,...,Y,} of hypersurfaces, Theorem 5.2 provides a

canonical representative for each class Te Hfy,(X, Q); namely, T =R, [(w,)] for
a suitable collection (,),., of meromorphic r-forms having its poles on | ) #.

Let Y'=ﬂ€?/’, ¥ ={Y,..., Y]}, be an analytic subspace of codimension g
such that codimg(YNY’)=p+gq. In this situation, for any TeHfy (X, Q") and
T'eHfy (X, Q%) we can assign a residual current, whose class in Hy" % (X, Q"*)
represents their “cup-product” in the following sense:

Theorem 6.1. The linear mapping
HEy (X, Q) ® Hiy(X, @) - Hi Iy (X, Q779),
T® T+ R@u@’ [(d)a)]

where T=Ryl(w,)], T'=Ry [(w))] and ¢,=w, A 3, makes the following dia-
gram commutative :
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HEy (X, Q) C>[9 Hiy (X, &) ——— H Ty (X, Q7)
|
HY(X, )@ HI(X, Q) — HP*(X, Q')
Jor v the standard cup-product in cohomology with coefficients in €

Remark. # w%' denotes the ordered family {Y,,...,Y,,Y],...,¥/}. The com-
patibility conditions required for (»,),., and (w)),., imply that the collection
(¢,),cqa actually defines a global residual current associated to the family

YOy

Preliminary result

Given #={Y,,..., Y} a family of hypersurfaces in complete intersection po-
sition, let us consider the resolution (%", ) of " by meromorphic r-forms with
poles on % and Cech type sheaf homomorphisms (cf. [D-H-S], Prop. 2.2):

t

0-Q->PDAHY)->DLH*YVY)>.. > (+xu¥)—>2-0.
i=1 i<j

meromorphic forms, a,eQ"(xU% (i), such that ) o,=0, there exists, for all i

i=1
=1,...,t, a family (;));4,; of t —1 meromorphic r-forms f;,€ Q"(» L% (i)(j)) such
that o;= )" f;;. When this is the case, we will say that o, splits and B,; is a j-
jFi

regular summand of a;. Moreover, if o,e I'(W, Q"(xU % (i) for some Stein open set

W where there are global equations for each hypersurface of %, then, o, splits

globally in W, ie. there exist j-regular summands f;,el"(W, Q" (x % (i)(j))) for

all j=+i. (cf. [D-H-S], Lemma 3.4).

Now, we give the proof of Theorem 6.1:

First step. Let o=(w,),., be a compatible collection of meromorphic r-forms
associated to an open Leray covering # =(U,),., of X for the sheaf ', given
by Stein open sets U,. We will construct the image cocycle of the class of the
residual current T=Res,,  y [w] through the canonical isomorphism

HY(I (X, ™)~ B, @)= H' (X, 2).
By the compatibility conditions, (5’(1))<mm1>=oum1 —w, el'(U, U,
. t—1
O (x» U ¥)) splits. We define o'e®! (%, o (* U Y;)) as follows:
i=1

0oy 15 @ t-regular summand of (§®)q,,5-

L t—J
Suppose that for j<t-1, we have already defined ¢’€%’ (41!, Q (* U X)) such
i=1

oy 18 @ (t—(j—1)-regular summand of 667 Neag..a,y- As 660771
splits

.....

=0, by the preliminary result it holds that (609, ...
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X .. t—j—1
Vog,...,a;,,€A.  We define then (f’“e(g’“(@l,{)’(* U Y)) as
follows:

¢’*' is a (t —j)-regular summand of (§¢’),,

~~~~~ Xyp+1)°

Finally, we have 3¢’ ~'e%"(%, 2'), and we note o' =3¢~ !, 6° = .
Now, for all i=0,...,t—1 and ay,...,0;€ A, we consider the currents

Tagay =Ry, v, B [0, 4]
which define a Cech cochain T,e€*(#,'2"'~"~'). It is easy to check that:
a) 0T, = Resy1 ..... v.[@]

b) Vi=1,...,t—1,0T,=38T,_,,
c) Vag,...,0,€A4, (5T_ Deaon.. m:ja'm ,,,,, > A This proves that the canoni-
cal isomorphism
SI(X,'2") - H' (U, )

sends .
r [o]-a.

Second Step. Given T and T’ as in the statement of Theorem 6.1, we can
respectively construct by the first step two collections of cochains of meromor-
phic forms:

and

satisfying
0-0 = (wa)aeA; 0./0 = (w;)ae/{ 5

altl .. 18 a (p—j)regular summand of Sal,, for every j=0,...,p—1,

(&g, esdyery 0 W/ pRGE SRAAALIA VY W a, .., ay+1)
rj+1
ot ke is a (g—j)-regular summand of 8¢/,

—1;0°=80""1;6"9=00""" .
The classes Eel—?"(%, ) and ﬁeﬁ"(%, ) represent T and T’ respective-

for every j=0,...,q

----- %y 41>

ly.
Letuscall Z,;=Y,i=1,...,p,and Z,=Y ,, i=p+1,...,p+q.
We define a new collectlon of meromorphic cochains

. pta—1
Mreorpras ve‘f(””( 1Z"))

=

as follows:
a) for j=0,...,q9

b) forj=0,...,p

q — 'q
y(ﬁo ..... aq+,>—6<ao ..... aJ>Aa<a, ----- ag+ 0
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It is straightforward to verify that:
i) 2, =w, A, Yae4,
i) yJat ... isa(p+qg—j)regular summand of

S Vaayirys Vi=0,pg—1,

i p+a — qP q
IV) y(“o ,,,,, ‘1p+q>—o-<a0 ----- 1p>AO.<“P ,,,,, @p+g)”

By the first step and conditions i), ii) and iii), we know that y**% is a

representing cocycle for the image of Res, g [(@, A @))] in HP*9(%, Q2 *%). The
last condition shows that y"*¢ is also a representing cocycle for the cup-
product of ¢” and ¢’¢ in Cech cohomology of €, which completes the proof of
the theorem.

We show in the next lemma that the definition is independent of the choice
of the families % and %"
Lemma6.2. Let #={Y,,...Y}, Z={Z,,...2,}, #¥={Y],.. Y}, &
=1{Z,....,Z,} be ordered families of hypersurfaces in X such that N¥=N\Z
=Y, ¥ =2 =Y, codimg(YnY)=p+q.

Let U be an open set, oel'(U,Q(xu%)), 7el(U,Q(xLZ)) such that
R, [@]1=R,[§] and &'l (U, (x ")), ¥l (U, L (» 0 Z’)) such that Rg. [&']
= R.‘E’ [?I] T'hen,

Ry g [ono =Ry 4 [y AY]
Proof. Let xe X. There exist a neighborhood U, of x and (f){_,, (/). (€)1,
(g)2_, in O(U,) such that:
1) Y,=(f,=0, Z;=@=0 1gi=p,
Y =(f=0), Z=(@g=0 1si=q
i) There exist Ae(©?**(U,) and Be0?*4(U,) such that
g=Af and g =B-f
. S
111 w—fl...fp’ y_gl...gp’
ol Y

(Z),:z—‘_ﬂ y = ’ ;
EYR g1+ &

where w, y, »’ and 7' are holomorphic forms. Transformation Law (2.10) gives

detA'a)]

R"[ : ]:R@[MZR'”"[gl...gp

g1---8,

Duality Law (4.1) yields that det A-w—yel (g,,...,g,). On the other hand,
det B- o' —vy'el,(g},...,g,); therefore

detA-detB-wAw —yAyel (g),.--,8,,815 589
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Rl

R [~ ~/] R [detAdetBa)/\(D/]
vy’ WA@ = v’ ' ’
vy S B S A

=Ry 4 [FAF] near x.

As

we finally get:

7. Application to analytic cycles

As it is well known, each (n—p)-dimensional analytic cycle T of the complex
manifold X defines a J-closed section [T]el(X,'Z%r ;). In case that T
=[f~!(0)] is the inverse image cycle associated to a holomorphic mapping f

=(f},..-.f,), [T] can be represented as a residual current, namely

L o !

for & ={Z(f}), ..., Z(f,)} (cf. [C-H], p. 52).
We are now ready to show the following general result:

Theorem 7.1. Every analytic cycle [T is a locally residual current.

Proof. Let xeX and % ={Y,,...,Y,} a family in complete intersection position
such that Y= ﬂ % 2supp T:=|T| near x. We get by Theorem 5.2 the splitting

[T]=Resy [ii]+8S

for some fieI(U, QP(x u®)) and Sel'(U,’?2%7~') in an open neighbourhood U
of x. Our aim is to show that dS=0.

For yeY —|T|, Resy [i]= —3S€'2%?, and so 3S,=0 by 3.7. Then, supp(dS)
cIT|.

For ye|T|nU, take (V,z) a coordinate system near y such that all the
coordinate projections n: YNnV—C" P are branched covering maps. Let
ae@"P"" (V) be a monomial, ie. a=ay,dz, AdZy with |A|=|B|=n—p and
a,€65 (VY so, fina=u-agdzndzy with pe@(+u%) and dz=dz, ndz, A
ndz,. We assume B={p+1,...,n} and let n: V> C"77, n(z)=(2,, 4, ..-,2,)

Recalling the fibered residue formula (cf. [C-H], p. 50), there exist meN,
pe0(V) and for every reNj, {r|<m, a meromorphic function k[r]lel'(YnV,
O(*(p =0))), such that

Resy ()0 =B,, 5 50

irl<m aZT 822}’ Y

k[r]dz, AdzB)

where B, , denotes the principal value current on Y associated to (p=0).
For each connected component of (Y —|T|)nV, we choose an open set V'
<V —|T| and p holomorphic functions x;; V'-»C 1<Zi<p, such that
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V' (xysonx,, 2
=0}.
Thus, for every ac%§ (V)

,z,) is a coordinate system and V'nY={x,=..=x

p+1oeee P

oa

0=FK ( T A
Y.p ',ém oz ..oz

k[r]dzy A d§B>
Y

¥

da
(xS

rizm OXT...0X}?

where k[r]= Y ¢} Kk'[s] with ¢ e@(V’). Consequently, k'[r]=0 on V'nY for
[s|<m
every r, [rl<m, which leads to k[r]=0 on V'Y for every r, |r|<m. Then,
k[r]=0on Y—|TI.
We may also choose p'e@(V) with (p'=0) containing sing|T| and the
branch locus of #, and ke O(V —(p’ =0)) such that

[T1(2) =Ry, yaoljr| k- dzg AdZy).

“k'[rldzg A d23>

Y

Then
0S(@)=([T]—Resy [A])(x)
d"a,

:PITI,o'p'({aolm'(k_k[o])_ 2 oz .oz
.0z

O<|r|sm

k [r]} dzp A dzs).
IT|

As above, for each connected component of |T|nV, we choose an open set V’
and (x,...,x,)e0"(V’) such that V'nY=V'n|T|={x;=...=x,=0} and
(V' i (X155 Xy Zpy1s---» 2,)) 18 @ coordinate system.

For ac6y (V)

- 0"a
d dzg) =Py ,. ( —_—
0S(adz,yndzZg) =Ry ,., hém Xy .. 0xy

h[Fldzy A dzB)
|

|T

where h[r] are holomorphic linear combinations of k—k[0] and k[r],
O<|r|Em, in V'
Let a,e€*(V'), a,€&"~ 0"~ 2(V)

1 d'a
. tg t
(X1 Xy 2y e n Z)i = Y, XX
’ >Vpr “p+ n ]t|5ml! 1 p axtlln.ax;p

Xi=..=xp=0

oy =a,dz, ndZg.

It holds:
1) K=suppa, nsupp S<supp a, n|TISsupp a is compact.
ii) da, =0,
" o
T =% | vr, plgm
OX'...0x 7 |im) OXY...0XF iy

Let S* be the usual extension of S to ¥*-forms such that supp fsupp S
:=K, is a compact set, i.e. S*(f)=S(¢p-p) for any ¢ €6y with ¢=1 in a
neighbourhood of K,. It is easy to check that (65)*(8)= —S*(6p), provided
that supp Snsupp S is compact.
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If a:=adz, AdZ,

“hlr]dzg A dEB>
Y

= J0"a
5S(oc)=Py’p.p, ( Z m
P

riZm
0" a _
-R,, (Irém m h[r)dzg n dzB)

=(3S)* (o) = —S* (Jot,) =0.

Then, A[r]=0 on |T|nV’ for every r, [rl<m, which leads to k[r]=0 on
ITINV' for every r, O0<|rl€m, and k[0]=k on |T|nV'. As a consequence,
these last identities hold on |TIn V.

So, 0S(a)=0 for every ae@"»"~?(V). g.ed.
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