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1. Introduction 

Let X be a n-dimensional  complex manifold and  Y a complex  subspace of X 
of pure  codimension p, 0 <p<n, which is locally a complete  intersection. 

Deno te  ,~r,p the sheaf of currents on X of bidegree (r,p). We prove  in this 
paper  the following decomposi t ion  proper ty  for ~-closed currents 
T~Fr(X ,,@r,v) with support  on Y: 

a) T=R+~S,  where R6Fr(X,'~ ~'p) is a locally residual current  and  
sery(x, 'y,~- 1). 

b) if T=R'+~S'  is a similar decomposi t ion,  then R=R'  and OS=~S'. 
The current R is called locally residual if it is equal locally to some current  

Ry ...... r , [&] ,  where Ry ...... r , [ (5]  is the residue opera to r  (cf. [C-H] )  associated 
to some family ~ = { Yt . . . . .  Yp} of complex hypersurfaces in an open set U _  X, 
such that  Y1 n. . .  n Yp= Yc~U, and where &sF(U, Or(. u ~ ) )  is a meromorph ic  
form on U with poles on U Y / = Y l w . . . ~ Y v .  A locally residual current  is 
always ~-closed. 

This result provides canonical  residual representatives for the classes in the 
global modera te  local cohomology  groups  HCrl(X, 0~), which are defined as the 
group  of global sections of the modera t e  local cohomology  sheaves ~ 1 ( X ,  f2 ~) 
(cf. Ramis  JR])  and can be actually calculated as the p -cohomology  of the 

r r , .  - complex (Fy(X, ~ ),0). These groups cannot  be identified with classical local 
cohomology  H~(X, f2~), since the resolution ( '~ r " ,3 )  of O ~ has C~-injective 
fibers, xeX,  but it is not  an injective resolution on X. In fact, it holds ~rP(X; (9) 
~ - @ ~ |  for the local cohomology  sheaves, where ~ (resp. ~ )  de- 

notes the sheaf of  differential opera tors  of finite (resp. infinite) order (cf. Meb-  
khout  [M],  Chap.  II). 

As an immedia te  consequence of our  result we deduce that  the suppor t  - in 
the sense of sheaves - of any class in H~yI(X, O r) is always analytic. 

* Supported by a Research Fellowship from the Consejo Nacional de Investigaciones Cientificas 
y T6cnicas of Argentina 
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Conversely, we show in w 7 that locally residual currents generalize analytic 
cycles; precisely: given T a cycle of codimension p and x e X ,  for every family 
of hypersurfaces ~={Y~ . . . . .  Yp} such that supp(T)~ ~ near x, there exists a 
meromorphic p-form r with poles on ~ such that T = R  r ...... r,[z]. 

Our methods also give a duality theorem for residual currents, which is the 
natural extension of Grothendieck's duality theorem for scalar residues. We 
apply this duality theorem to obtain a result about fibration of analytic ideals. 

Finally, we exhibit a straightforward construction for the cup-product 

H~r ~ ( X, f2') | H~r,~( X, 0 " ) ~  H(~-d~,I( X, (J'+ ") 

for subspaces Y and Y' of X in the proper intersection position. 

2. Background 

Let X be a complex manifold of dimension n and ~={Y1 . . . . .  Yq+l} (0<q<n)  
a family of hypersurfaces in X. As usual, Qr (resp. f2r(,w~)) will denote the 

, , q + l  

sheaf of holomorphic (resp. meromorphic with poles on U ~  

t r,. - on X and, for any analytic subspace Z, ( ~ z , 9 )  will denote the complex of 
sheaves of currents on X of bidegree (r, ") supported on Z, with differential ~: 
, ~ / . _ , , ~ / -  + 1 

~(T)(a) =( -- 1) "+" T(~a) 

for a a germ of cg~-form of degree 2n - r  - 1 - -. 
q + l  

Also, ~ / =  ('] Y~ and ~U)=~C-{Yj} ( l < j < q + l ) .  
i = 1  

We have the following commutative diagram: 

~ 1  ? (2.1) 
i ~ r , q +  1 
~ N e  

where RP e (resp. Re) is the q-multiple residue-principal value operator (resp. q 
+ 1-multiple residue operator) in the sense of Coleff-Herrera (cf. [C-HI). 

As an obvious consequence, ~(Re[cS])=0 for every meromorphic form (5 
(2.2). 

When needed, we shall write 

Resy, ..... r~PYq+, = RPe (2.3) 

Rest, ..... r~+,=Re 

and, for equations {4)1 . . . . .  4)q+a} defining {I11 . . . . .  Yq+l} respectively, 

Re% ...... ~ + = Re% = R e (2.4) 

(for equations we only mean Z(4)i)= Y~). 
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We say that T~F(X,'Nr'q) is a locally residual current if there exist locally a 
family ~ = { I:1 . . . . .  Yq} of hypersurfaces and a meromorphic r-form (5 with poles 
on U Yl such that 

T = e e [ & ] .  

If d i m r  (8/ having complete intersection), the following 
properties hold: 

i) If cS~Or(, ~ ( j ) )  for some fixed j (i.e, & is regular on Y), then 

R.~ [c53 =0. (2.5) 

Moreover, if j < q 

and if j = q + 1, RP~ [c5] = 0 (2.6) 

RP~ [6)] = Re(q+ 1)[(5]. (2.7) 

ii) For any ~ ' =  {U .. . . .  Yq'+ a} family of hypersurfaces in X such that Y1 -~ YJ' 
for every j, 1 <=j<=q+ 1, and d i m ( N ~ ' ) = n - ( q +  1) 

R~ [(5] = R~, [c5], (2.8) 

RPe[(7)] = RP~, [c5] (2.9) 
for ~5~ g2r (, U~)-  

iii) Transformation law." 
Let q~i, 0i (1 <=i<=q) be holomorphic functions in ~" such that 

i = 1  i = 1  

q 
q x q  n is a complete intersection. If Oi= ~ aij4) j with M=llai~lle(~ (~3), then for 

every co~f2~(I/; ") i= t 
co [co .de tM] .  

Res~ [~1 -- 4~q] = Reso [ ~  ~ .~q j (2.10) 

Note. For i) and ii) cf. [C-HI. 
iii) can be deduced from the puntual case proved by Griffiths-Harris 

([G-H], p. 657) by virtue of the locally semi-meromorphic fibered residue func- 
tion (cf. [C-H]). 

We shall refer to A(j,q) as the set of increasing families of j elements 
running between {1,2 . . . . .  q} and, for JeA(j,q), Yj will denote the hypersurface 

Y~. For the general theory of double complexes, cohomology and cup- 
i e J  

product, see [G]. 

3. Characterization of the moderate cohomology sheaf 

Let X be a n-dimensional complex manifold and y_c X an analytic subspace of 
codimension p. Our main purpose in this section is the construction of an 
explicit isomorphism between two representations of the moderate cohomology 
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sheaf with coefficients in O r and supports on Y, given one by meromorphic r- 
forms and the other by currents on X, in order to exhibit a canonical repre- 
sentative in each class of the quotient sheaf ~f~P('~]~') (Theorem 3.6). 

As a consequence, we get the following local characterization theorem for 
currents on X supported on Y: 

Theorem 3.1. Let X be a n-complex manifold and Y an analytic subspace of pure 
dimension n - p .  Let xEX  and TE'~,P~ be a germ of a ~-closed current supported 
on Y I f  there is a family of p hypersurfaces ~t= { Yl . . . . .  Yp} in some neigh- 
borhood W of x such that Y c~ W= ~ ~l, then: 

a) There exist a meromorphic r-form oE(2~(. U ~ )  and SE'~,P~ 1 such that 

T= R~ [~]  + 0S. 

b) This splitting is unique in the following sense: I f  ~'={YI '  . . . . .  Y~} is 
another .family of hypersurfaces with ~ J ' = Y  near x, of EY2~( ,~J ' )  and 
S' E '~v~  -1 such that 

T= R~, [o9'] + ~S' 
then 

R~ [o~] = R~, [c#]. 

3.2. For  I a sheaf of ideals on X, we denote ' ~ ' "  the subsheaf of '~"" whose 
stalk at x E X  is 

t r , .  t r �9 ~t ,~={T~  ~'~' :f.  T=O, VfEI~}. 

L e m m a .  I f  Z(I)= Y, then 

~ ' ( ' ~ )  = inj lim ~ f / ( ' ~ f )  
k 

(the direct limit is defined by the inclusions '~'~ ~_'~'G 1). 

Proof. The lemma follows from the identity ' ~ ; '  =inj l i m ' ~ G  which is easily 
k 

deduced from a theorem of Schwartz (IS], Th. XXVII, Chap. III). 

3.3. Let U~_X be open, (f.)q=IE(gq(u). We denote I = ( f x  . . . . .  fq) the generated 
I k sheaf of ideals and, for keN,  k=( f ]  . . . . .  f~).  AS Ik.qC_Ik'q~lk for every k, the 

following sheafs on U are isomorphic: 

�9 �9 r r , .  inj lim ~ "  ( ' ~ ' ) =  inj hm o;~f~ ( ~,~ ). 
k k 

3.4. Let ~ = { 111 . . . . .  Yq} be a family of hypersurfaces such that ( ~  = Y. Let d 
denote the following subsheaf of Or(, U ~): 

d =  &(i): &(i) is regular on Yi 
i 

and 

= e'(* U 
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q Lemma. I f  (fi)i= 1 ~ Oq (U) satisfy (f. = O) = Yi c~ U (1 < i < q), there is an isomor- 
phism of sheaves on U 

r r ~f  inj lim f2/I k | P - -  , .P. 
k 

where the direct limit is constructed by means of the homomorphisms 

Or/Ik | g2r--'~--~ f2r/Ik+ 1 | Or, 

...fpo x. 

Proof  For k e N ,  the morphisms 

ilk: f2r/Ik| f2r ~-~, 

r x 

St...S  
define the required isomorphism 

fly: inj l i m f 2 r / l k |  
k 

Proposition 3.5. I f  ~r .. . . .  Yp} is a family of  hypersurfaces having complete 
intersection, (fi)~= 16(gP(U) are equations for each Yi in an open set U ~ X  and I 
= ( f l  . . . . .  fp),  there is an isomorphism Rs 

Q'/I |  R~ , ~ov(,~},. ) 

induced by the mapping 
Or---, '~ .~ ,  

09 x 

Note. We are going to show the 1 - 1  correspondence at each stalk; we will 
omit the point when no confusion may arise. 

Proof  R f  is well defined by virtue of (2.1), (2.2) and (2.5). We consider for each 
x e U :  

a) KoszuI's projective resolution of ((P/I) x 

O___~ A p  (_flp ~p A p _  l ~ p ap -  , ) ~ . . ~ A l ( f f p _  ~.I___).(~__ . ~,(Q/I___~ 0 

k 
O~k(ej )= y] ( ~-1 -1) fj 

v = l  

where JeA(k ,p) ;  (ei)f=l is the canonical basis in C p and e j = e j  A...Aej~, if 
dt < ... <Jk are the elements of d and b) the injective resolution of 12~: ( ' ~ " ,  ~). 

Functor Homr f2 r) applied to a) and functor Hom~,~((9/I, .) applied to 
b) give two complexes with canonically isomorphic cohomologies representing 
the group Exte~ ~ (C/I, f2r). This isomorphism is constructed following the ar- 

�9 , x  
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rows  in the doub le  complex  

Let  

A. Dickenstein and C. Sessa 

( H o m ~ x , x ( A "  CP, ' ~ ' " ) ,  ~*, o:*). 

[ 4' = iv--* R e e H o m x ( ( 9 / I  , '~' ,P~ ~ ' ~ , P  

We define for each i, 1 =< i __< p 

0 if J 4 : { p - ( i - 2 )  p - l , p }  

/ if J = { p - ( i - 2 )  . . . . .  p} ,  

4'ie H o m ~ ( A  i -  1 (tip, ,~r,p-- i). 

Proper t ies  (2.6) and  (2.7) assure tha t  

Therefore  

[o if  ip, l,i  .... p, 
(c~*4,i)(ej)=4,,(cti(ej))= r ...... rp , f l  "~:fp--i 

if J = {p - ( i -  1) . . . .  ,p}. 

c~* 4,i= ~4,i+ 1, i = 1  . . . . .  p - l ,  

~4,1 =4' 

0~* 4' p(e I A. . .  A %) = g l  [CO] = I CO A "  = i* tlo,(el A . . .  A %)  

and  

where  r l~ ,aHom(AV(9  p, f2 r) is the h o m o m o r p h i s m  

r/o~(e I A ... A ep)=co. 

To  comple te  the p r o o f  we shou ld  show that  

a(c~* (Hom~(A p-  1 (gp, f2r))) = I | f2 r 

where  cr denotes  the i s o m o r p h i s m  

a: H o m ~ ( A P ( 9  p, fu  r 

tl~--,tl(e 1 A . . .  /x ep). 

In fact, for O e H o m ~ ( A  p-  1C p, f2~) 

P 

a(c~*(O)) = ~ ( - 1) i -  ' f /"  ~'(el A . . . / x  ~i A . . . / x  %) 
i = l  

as w e  w a n t e d .  
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Now, we can state: 

Theorem 3.6. Let ~#= {111 ... . .  Yp} be a family of complex hypersurfaces in X 
such that Y= ~ has pure dimension n - p .  

The following morphism of sheaves on X 

~'(, U~)~'~", 
oSw~ R~ [6~] 

induces an isomorphism R 

. ~ _  R , ~ p ( , ~ . ) .  

Proof Locally, there are (fi)~=16(gP(U) equations for each Yi. If I k = ( f  ~ .. . . .  fkp) 
for every k~l',I, the mappings 

are isomorphisms (by Proposi t ion 3.5), which commute  with the respective 
direct limit morphisms (3.2, 3.3 and 3.4) to give the quoted isomorphism R. 

Corollary 3.7. Let ~ f 2 ~ ( , U ~ )  and S~'~,P~ -1 such that 

R~ [r = { S 
then 

R~ [(5] = 0. 

Proof It is an immediate  consequence of Theorem 3.6 and proper ty  (2.5). 

We finish this section with the proof  of Theorem 3.1: 

a) is a consequence of the surjectivity of the mapping R in Theorem 3.6. 

b) is clear in the case ~ '=Yr  Then, it is sufficient to show the following: 

Let q]'= {Y~ ... . .  Y/,} be another family of hypersurfaces with Y= ~ '  near x, 
and o9'~s ). 7here exists co~(2~(U~J ) such that 

R~, [r = R~[co]. (3.9) 

In fact, given aef2~,, (gi)~v=le(9~ v local equations for (y,wln=l such that co' 
t7 

- - - ,  and (fi)f= l e(9~ defining (Yi)f=l near x, by the Nullstellensatz, there 
gl ... gp 

exist q 6 N  and A =(alj)6(gv~ • such that 

de tA.  a 
Then, co = , - ~ q  

l lJi  

p 

fjq= ~ a i j g  i j = l  . . . . .  p. 
i = 1  

verifies (3.9), thanks to the Transformat ion  Law (2.10). 
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4. Duality Law and fibration of regular ideals 

4.1. As an immedia te  consequence of (2.5) and (3.5) we have the 

Duality Law: Let x ~ X  and (f/)P= 1~C~ such that 

p 

dimx ("] (f~=0) = n - p .  
i = 1  

For cot f2"~, the .following statements are equivalent: 

6O 
it .es  

ii) cO~Ix| where I ~ = ( f  1 . . . . .  fp). 

4.2. Remark. The Dual i ty  Law is not valid without  the hypothesis  of complete  
intersection, as the following examples show: 

Let  X = I172, f l  = z l, J2 = zl .z 2, ~ / =  {Z(f l ) ,  Z(f2)}. 

1) Resyl,y 2 [ f i l l  = 0  because Ve(Y/)=r (for the not ion of V~(~)cf. [C-H])  

and obviously l r  1, z 1 �9 z2). 

2) If h = z  1 

ResI2,sl ~ = R e s I ~ , I  1 = - ~ / 6 ~ o ~ * 0  

and hs( fx , f2  ). 

4.3. Let  X be a complex manifold of dimension n and I a regular  sheaf of 
ideals, i.e. I is locally generated by a regular  sequence of ho lomorph ic  func- 
tions f l  . . . . .  fp (which implies d i m e Z ( I  ) = n - p ) .  

Let xo~Z(I ) and (U, ~o) be a coordinate  ne ighborhood  of x o. Let us denote  
P~={z~U/qh(z)=~oi(x), i = n - p  . . . . .  n} for x~U. We have: 

Theorem 4.3. Under the hypothesis Pxo~Z(I)= {Xo} the following statements are 
equivalent for h~(9(U): 

i) hlpxelIp,c;x for every xe regZ( I )n  U, 

ii) helxo. 

Proof. As this is a local property,  the theorem follows f rom the Dual i ty  Law and 
Proposi t ion  4.4 below. 

Proposition 4.4. Let A ~_IE" an open set, I = ( f  1 . . . . .  fp) a regular ideal in (9(A) 
and 7r: A--.IE "-p, n(x 1 . . . . .  x,)=(Xp+ 1 . . . . .  x,), verifying dim~n-x(n(x))c~Z(I)=O 
for every xEZ(I). 

h 
For h~(9(A), we denote hsJCl(A), l ~ = - -  L...L 
The following statements are equivalent: 

i) Resy [/~] = 0 
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ii) The restr icted currents Resex;ii~ [/~lpx ] are null on the p-plane P~= { z e A :  
n(z)=~(x)}  for  all x e r e g Z ( 1 ) .  

Proq[', Only ii) ~ i) has to be proved. 
Let  X o e r e g Z ( l  ) and (V,(z t . . . . .  z,)) be a coordinate  system such that  z (x0)=0  

and 
U'. = V ~ Z ( I ) =  {z t . . . . .  zp =0}. 

, 0 

and 

are respective basis for Ta(U ) and Ta(P.). Let gs (9 (U )  

~3, xp+ 1 (')Xp+ 
]~?zp+ 1~ "'" ~?z. 

g = det ~ 

Ox n 

Oz n 

and S = { b ~ U / g ( b ) = O } .  As g is the de terminant  of the jacobian  matr ix  of the 
mapp ing  

n[v: U ~ n ( U ) c _ ~ E  " -p  open 

and d i m r  we get g@O on U and codimv,r 1. 
Now,  let a~ U - S  and W be a ne ighborhood of a in A verifying 
i)  Wc~Z(I)~_ U-S, 

ii) 3rr  and A=(ai~)r215 such that  

p 

z~i = ~ a i j f j  V i = 1 . . . .  , p 
i=1 

(this is possible by virtue of the Nullstellensatz because 

(Z 1 . . . . .  zp=O) (") V = ( f  1 . . . .  = fp=O)  c~ V, 

iii) (z 1 . . . .  ,Zv, Xp+ 1 . . . . .  x , )  is a coordinate  system in W (as g (a )+0 ,  T,(P~) 
and To(U ) meet transversely at  a). 

For  ~ e ~ 2 " - P ( W ) ,  we have by (2.10) 

[ d e t A . h ]  
Resf  [/~] (e) = Res zl . . . . . . .  [_z] ... z - - - ~ p  ] (~)" 

We must  prove  the above te rm is zero only for 

For  every a~ U, 
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~ = g ( z , x ) d Z l A . . . A d z v A d x p + l A d x p +  1 A . . . A d x ,  Adx , ,  ge:g~~ (W) 

(cf. [C-HI, Prop. 2.13). 

In this case, 

Res:[/7] (~)=lim ~ ~eo(y)n*(dxv+ 1/xdxv+ 1/~ ... /xd~) 
a~O Z(lInWr~(Jp[>6) 

where the semimeromorphic fibered residue function 

[de tA .h .gdz~  A ... Adzp ] 
~e~(y) = Resv,; ........ ~,y e,a 

= Resv,;:;y [/7[e,] (g.dz 1 A ... A dzplpy ) : 0  

for all y e W n Z ( I )  (cf. [C-HI,  Th. 1.8.3). 
Hence, supp (res: [hi) c~ U _ S, which implies supp (Res: [/7]) ca U = 0, because 

the support of the residual current is empty, or equal to the union of some 
irreducible components of Z(1) (cf. [C-HI, Theorem 1.7.6). 

Finally, we have proved that Xo~supp(Res/[/7]), for all xoereg Z(I), and so, 
by the same property of purity of the support of residual currents we deduce 
that Res:  [/7] = 0 as wanted. 

5. The global moderate cohomology group 

Let Y~_X be an analytic subspace of codimension p. We define the pth 

moderate cohomology group with coefficients in ~r and supports on Y to be 
the group of global sections: 

u ~ ' n ( x ,  ~ ' ) . .  = r(x, ~(~')). 

Proposition 5.1. I f  Y is locally a complete intersection, we have 

Hf~ 1 (X, s ~_ H~ (F(X, ' ~  ")). 

Proof As we have already seen, the moderate cohomology sheaves A~[~](~2") can 
be obtained from the presheaf 

U v--. Ker ~ c Fy(U, '~r ')/~(Fy(U, ,~r , . -  ,)). 

Now, one is able to check that the natural homomorphism 

H~(F(X, '~? ")) - ,  r (X ,  ~"( '~? ' ) )  

is in fact an isomorphism, observing that the proof due to Siu-Trautmann 
(IS-T], Lemma 0.6) can be adapted to the moderate case by the following facts: 

i) Hq(X,'@~i')=O for every q>__ 1, because ' ~ "  are fine sheaves. 
ii) ~[{1(s Vj4=p, as the stalk of a point x e X  is given by 

inj lira Ext~x; ~ (((_9/Ik) ~, (2~) 
k 
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where I k are regular ideals. Functor ~ f ~  applied to Koszul's resolution of 
(9/1 k gives a complex with zero j-cohomology for j . p .  (cf. [G-H],  p. 690). 

Remark. Proposition 5.1 is true for a general subspace Y of codimension p, 
because ~Jrl(f2r)=0 holds for j<p .  

We give now characterization theorems for the global moderate cohomolo- 
gy group: 

Theorem 5.2. Let X be a holomorphic manifold of dimension n, Y and analytic 
subspace of pure codimension p and ~ = { Y1 . . . . .  Yp} a family of hypersurfaces 
such that ~ ~ = Y. 

Let T~Fr(X,'~r'P) a ~-closed current 

a) There exist 
i) ~ = ( U ~ ) ~ / a n  open covering of X,  

ii) a family of meromorphic forms (O)a)~A, p 

co~eF(U~, (2*(*u~)), defining a global section of ~ (3.4), i.e. o)~-~)~= ~, e)(i), 
where i = 
co(i)sF(U~c~ U~, Or(* w ~(i))) is regular on Yi. 

iii) S6Fy(X,'~*'P- ~) 
such that 

T = R~ E(~%)] + ~S. 

(The collection (R~[eg~])~A defines a global current R~[(e~,)] by virtue of 
compatibility in ii).) 

b) This splitting is unique in the following sense: 

Let ~'={Y~ . . . . .  Y~} be another family such that N~ Y/~=(V/~)B~ an 
open covering, (o9'p)r (where ~: is the quotient sheaf associated to o#,), 
and S'~F~(X,'~ r'p-1) such that: 

T = R~, [(r + OS' 

then 

R~ [(r )] = R~, [(e~)] 

and 

~S = 8S'. 

Proof. By 5.1, the sheaf isomorphism 

R --- ,  ~ p ( ' ~ )  

provides a group isomorphism 

r(x, ~ ) ~  H[yl(x, ~r), 

(~o~)~ A ~ R~ [(~o~)-], 

proving a). 
b) is in fact a local result and has been proved in Theorem 3.1. 
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Note. Under the assumptions 

Hq(x, YY(*~  Y3)=0 for every q_>_l 

and every JeA(j,p)(1 <=j<p), the collection (o~,)~ A of a) in Theorem 5.2 can be 
replaced by a global form ~oeF(X, fY(*w~)) if and only if T has zero class in 
HP(X, 0 9 (cf. [D-H-S], Th. 2.9). 

As a consequence, we obtain the following result: 

Proposition 5.3. Under the above hypotheses, for every T~Fr(X,'~'P) the follow- 
ing conditions are equivalent: 

i) There exists S~F(X , '~  *'p- 1) such that ~S= T. 
ii) There exist an analytic subspace Y' containing Y of pure codimension p - 1 

and S' cFr,(X,'~ ~'p- 1) such that OS'= 77. 

Proof If i) is verified, let co be a global meromorpbic form with poles on ~ 
such that T=R~[~o]+~T1, supp(T0~Y Then, Y'=(~q/(p) and S'=RPo.v[v~] 
+ T 1 satisfy ii). 

Gathering all the above information, we conclude the following: 

Theorem 5.4. Let X be a complex manifold and Y ~ X an analytic subspace which 
is locally a complete intersection. For every T6Fr(X, '~ *'p) ~-closed there exists 
one and only one locally residual current R such that 

T = R  +JS 

with SaFy(X, '@~'P- 1). 

Remark. As a consequence, each class in H~yI(X, 0 r) has a representative with 
purely analytic support. 

6. Cup-product 

Given an analytic subspace Y of codimension p in X, which is the intersection 
(~ ~ of a family ~={Y1 .. . . .  Yp} of hypersurfaces, Theorem 5.2 provides a 
canonical representative for each class TeH(r1(X, 09;  namely, T=Re[(o),)] for 
a suitable collection (o)~),~ a of meromorphic r-forms having its poles on ~ ~. 

Let Y '=(~ ~' ,  ~#'= {Y~ .. . .  , Yq'}, be an analytic subspace of codimension q 
such that cod ime(Y~Y ' )=p+ q. In this situation, for any TsH~y1(X, f2 r) and 
T'sH~r~(X, fY) we can assign a residual current, whose class in H(~-qr~(X, f2 ~+~) 
represents their "cup-product" in the following sense: 

Theorem 6.1. The linear mapping 

H~',,j (X, i f )  | (X, ~'~) --,./4~Z,,~ (X, Or+s), 

T |  Y ' ~  R ~ ,  [(~b~)] 

where T=Re[(c%)], T'=Re,[(~o'~)] and (a~=c% /xog'~, makes the following dia- 
gram commutative: 
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H~r~(X, fY) | H~yq(X, fY) ' H~f~r~(X, fY+9 
[ ,[ I 

HP(X, ty) |  t2 ,) ~----~ H~,+q(2, Fy+s) 

for ~ the standard cup-product in cohomology with coefficients in f2": 

Remark. ~ J '  denotes the ordered family {I11 . . . . .  Yp,u . . . . .  Yq'}. The com- 
patibility conditions required for (e)~)~ A and (co'~),~ a imply that the collection 
(qS,)~ A actually defines a global residual current associated to the family 
~ wYr 

Preliminary result 

Given ~={Y1 .. . . .  Yt} a family of hypersurfaces in complete intersection po- 
sition, let us consider the resolution (~4", 6) of Or by meromorphic r-forms with 
poles on off and ~ech type sheaf homomorphisms (cf. [D-H-S], Prop. 2.2): 

0--, ~r ~ ~ ~r(.  r , ) ~ |  ~ ' ( .  r,,J Y~)--.... ~ ~ ' ( .  u ~ ) - .  ~--,0. 
i = 1  i < j  

The exactness of (sC',fi) tells us in particular that for any family (~i)i=~ ..... ~ of 
t 

meromorphic forms, ~i~(2r(,u~(i)),  such that ~ c~i=0, there exists, for all i 
i = l  

--1 .. . . .  t, a family (flij)j,i of t - 1  meromorphic r-forms flij~FY(,w~(i)(j)) such 
that c~= ~ fl~j. When this is the case, we will say that c~ splits and fl~j is a j- 

j * i  

regular summand of c h. Moreover, if c~i6F(W,, O'(, u ~(i)) for some Stein open set 
W where there are global equations for each hypersurface of ~,  then, ~ splits 
globally in I41, i.e. there exist j-regular summands /~ij~F(W, fY(,w~(i)( j)))  for 
all j 4= i. (cf. [D-H-S], Lemma 3.4). 

Now, we give the proof of Theorem 6.1 : 

First step. Let co=(co,)~ A be a compatible collection of meromorphic r-forms 
associated to an open Leray covering ql=(U,)~ A of X for the sheaf 12 r, given 
by Stein open sets U,. We will construct the image cocycle of the class of the 
residual current T =  Resy ...... y~[co] through the canonical isomorphism 

H~(F(X, ' ~ '  ")) ~ Fr(~, f2 ~) = H'(X, f2"). 

By the compatibility conditions, (am)< . . . .  ~> = o9,~ -m=oeF(U=oC~ U~,, 

fY(, w Yr splits. We define tr' e @  (q/, O~ (* t~i Y~)) as follows: 

a~ ..... > is a t-regular summand of (oQo)< ..... >' 

Suppose that for j < t - 1 ,  we have already defined crJe~J (q/, f2~ (* IUI Y~) ) such 

that cr j is a ( t - ( j -1 ) ) - regu la r  summand of (o~a~-~)<~0. ....... >. As 3"3"a ~-~ <~o ..... ~> 
=0, by the preliminary result it holds that (6rr;)< ........ ;+,> splits 
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'Y'0~ O . . . . .  o~j+leA. W e  def ine  then  f f j + l ( = f ~ j + l  q/, f2r * ~ Yi as 
i = 1  

fol lows:  

a j+ ~ is a ( t - j ) - r e g u l a r  s u m m a n d  of (3"aJ)< ........ ~+ 1>" 

F ina l ly ,  we have  6err- 1 ec~(~ ' ,  f2'), a n d  we n o t e  d = $ d  -1, or~ = co. 
N o w ,  for all i = 0  . . . .  , t - 1  a n d  c% . . . . .  cqeA, we cons ider  the cu r ren t s  

o-i T/( ......... 5 = R e s g  ...... r . . . . .  Pr, , [  ( ......... 5] 

which  def ine  a (~ech cocha in  T~e~i(~ll,'~r't-i-1). I t  is easy to check tha t :  

a) ~ T  o = R e s r  ...... v~ [co] 
b) V i = I  . . . . .  t - l ,  c~T~=~'T~_a, 
c) ~'eo . . . . .  ofieA, (o~Tt_l)< ......... >=~a} ,o  ....... > A. This  proves  tha t  the c a n o n i -  

cal i s o m o r p h i s m  
H'~(F(X, '~', ")) -+ H'(~, ~ ' )  

sends 
Resy ...... y~ [co] ~ a ~ . 

Second Step. G i v e n  T a n d  T '  as in  the s t a t e m e n t  of T h e o r e m 6 . 1 ,  we can  
respect ively  cons t ruc t  by  the first s tep two col lec t ions  of cocha ins  of  m e r o m o r -  
phic  forms:  

( )j=o ..... p, \ ~ ' , ~  

a n d  

sat isfying 

~o =(co,L+A; ~,o =(CO'&+A; 

aJ+<,ol ..... ,~+1> is a ( p - j ) - r e g u l a r  s u m m a n d  of S a ~  o ...... j+ 1> for every j = O, . . . ,  p -  1, 

a ' j + l  is a ( q - j ) - r e g u l a r  s u m m a n d  of 5a}{ . . . . .  > for every j = 0  . . . .  q (aO,..., ~tj + 1) ,..., ' 

- 1 ;  o P : ~ o p - 1 ;  o"q='t~(7 t q - 1 .  

The  classes avelQP(~ll, f2 r) a n d  tr 'q ~/~q(~,  f2 *) represen t  T a n d  T '  respect ive-  

ly. 
Let  us call Zi=Yi, i = l  . . . . .  p, a n d  Zi=Yi'_p, i = p + l  . . . . .  p+q. 
W e  define a new col lec t ion  of  m e r o m o r p h i c  cocha ins  

(7'),= o ..... ~+q, 7t~t(~ 
\ \ i = 1 ] 1  

as fol lows:  

a) for j = 0  . . . .  ,q 

b) for j = 0  . . . . .  p 

•J - -  09 A (7 t j 

~q+J - -  (7 j A tq 
<~0 ..... ~ q + j ) - -  (~0 ..... ~j)  O'<aj ..... ~ q + s ) "  
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It is s traightforward to verify that: 

i) 7~>=co~Aco'~, V~eA, 
ii) ~A+ a ,< ........ ~ + ,> is a (p + q - j ) - regular  summand of 

~7~ ........ ,+,>, V j = 0  . . . . .  p + q - a ,  

iii) 7P+q=O~TP+q-1, and 
iv) 7 ~+q - P 'q (r ..... ~v + q) - -  0"(~o ..... ~v)  A O'(~p ..... ~p + q) .  

By the first step and conditions i), ii) and iii), we know that ?P+q is a 

representing cocycle for the image of Rese,~e, [(co, A co') ] in/4P+q(q/, Q'+~). The 
last condit ion shows that yP+q is also a representing cocycle for the cup- 
product  of a p and &q in (2ech cohomology of O', which completes the proof  of 
the theorem. 

We show in the next lemma that the definition is independent  of the choice 
of the families ~ and ~J'. 

Lemrna6 .2 . ,  Let ~ = { Y 1  .. . .  ,Vp}, ~ = { Z  a . . . . .  Zp}, ~l '={V; . . . . .  Y~}, ~ '  
= {Z1,. . . ,Zq} be ordered families of hypersulfaces in X such that (~ ~I= (~ 
= Y, 0 ~ ' =  ~ ' =  Y', c~  Y')=P+q" 

Let U be an open set, coeF(U, fZ (*u~) ) ,  ~6F(U, E2"(*u~)) such that 
R~ [(5] = R~ [9] and co'~ F(U, ~2~( * w Y/')), ~'~ F(U, ~2~(* w ~e,)) such that R~. [co'] 
=R~ .  [~']. Then, 

R e . e ,  [co/x co'] = R a . ~  r, [7 A ~/'].  

Proof. Let x e X .  There exist a ne ighborhood Ux of x and (fl)f= l, (f{)q= ~, (gl)[= a, 
(g')[= a in (9(U~) such that: 

i) Y~=(f~=0), Z~=(g~=0) 1 <i<p,  

Y/= (f{ =0), Z', = (g'~ = O) l<_i<_q. 

ii) There exist As(9 p• ~(U~) and Be~9 q• q(U x) such that 

iii) 

g = A ' f  and g ' = B ' f .  

co 7 
co L . . . L '  ~ g,...gp 

co' 7' 
6 ) ' - - -  ~' 

f , . . . f~' , , gl "" gq 

where co, 7, co' and 7' are ho lomorphic  forms. Transformat ion Law (2.10) gives 

Lgl . . .gp J '  

Duali ty Law (4.1) yields that d e t A ' c o - ? ~ I x ( g  1 . . . . .  gfl. On the other hand, 
det B.  co' - 7' ~ Ix (g'l . . . .  , g'q); therefore 

det A'  det B -  co A co' - 7 A ? ' 6 I ~ ( g a  . . . .  , gp ,  g ]  . . . . .  g'q). 
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~ -, [det A - det B,. co A ~o' 

c ] 
= Re ~a,' [7/x ~7'] near x. 

7. Application to analytic cycles 

As it is well known, each (n-p)-dimensional analytic cycle T of the complex 
manifold X defines a 0-closed section [T]eF(X,  '~p'P ~ In case that T ~supp  T]" 

= [ f -~(0) ]  is the inverse image cycle associated to a holomorphic mapping f 
= ( f l , - . -@) ,  I-T] can be represented as a residual current, namely 

for Yr = {Z(f0  . . . . .  Z(fp)} (el. [C-H], p. 52). 
We are now ready to show the following general result: 

Theorem "/.1. Every analytic cycle [T]  is a locally residual current. 

Proof. Let x e X  and ~ =  {Y1 . . . . .  Yp} a family in complete intersection position 
such that Y= ('] ~_~ supp T: = ]TI near x. We get by Theorem 5.2 the splitting 

[T]  = Res~ [/~] + ~S 

for some fzeF(U, (2P(. u ~ ) )  and SEF(U,'..~ p'p-1) in an open neighbourhood U 
of x. Our aim is to show that ~S---0. 

For  y e Y - I T [ , R e s ~ [ ~ ] = - ~ S e ' ~ ,  'p, and so (~Sy=0 by 3.7. Then, supp(~S) 
-~ITI. 

For  yelT!c~U, take (V,z) a coordinate system near y such that all the 
coordinate projections 7r: Y c ~ V ~  "-p are branched covering maps. Let 
ae~"-P '" -P(V)  be a monomial, i.e. o~=aodzAAd2 a with IAI=!B!=n-p  and 
a o e ~ ( V ) ;  so, FzAc~=#'aodzAd2 ~ with # E ( 9 ( , ~ )  and d z = d z l A d z 2 A . . .  
Adz,. We assume B = { p + l  . . . . .  n} and let n: V~(E "-p, n(z)=(Zp+ 1 . . . . .  z,). 

Recalling the fibered residue formula (cf. [C-H], p. 50), there exist meN,  
pe(9(V) and for every t e n  p, Irl<rn, a meromorphic function k[r]eF(Yc~V, 
(9(*(p=0))), such that 

Res~ [~] (e) =Pr,p Q~m ~?'a~ /x d2,)  c?z];~..~z;~ r k [r] dz B 

where Pr,p denotes the principal value current on Y associated to (p =0). 
For  each connected component of (Y-ITI)c~V, we choose an open set V' 

~ V - ] T I  and p holomorphic functions x~: V'--.II? l < i < p ,  such that 
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(V',(x 1 ..... xp, Zp+~ ..... z,) is a coordinate  system and V'c~Y={x~ . . . . .  x v 
=0}.  

Thus, for every aeCg~'(V ') 

8 r a d ~ )  
O=Pr'P (k~,, c?z:~...Szp~ r "k[r]dzBA ! 

a 
�9 k' [r]  dz B/,, d~B) 

where k [ r ] =  ~ qo~.k'[s] with (0~e(5~(V'). Consequently,  k'[r]-O on V'm Y for 
I~l_<m 

every r, ]r[<m, which leads to k [ r ] - = 0  on V'c~Y for every r, ]r]__<m. Then, 
k [ r ] - 0  on Y-IT!. 

We may  also choose p's(9(V) with ( p ' = 0 )  containing sing!T! and the 
branch locus of n, and ke(9(V-(p' =0)) such that  

[ r ]  (~) = PITI, 0'(%!1T1" k" dz B/x d2u). 
Then  

c~S(cr = ( I T ]  - Rese  [/]]) (c 0 

=PIT"~176 a~ o < I,'l<m ~ 8z] xO( -a~~ ...~?z;~ 'lrl k[r]}dzt~Adz~)" 

As above, for each connected componen t  of [TD c~ V, we choose an open set V' 
and (x 1 ..... xp)~(gP(V ') such that  V'~Y=V'c~[T!={x 1 . . . . .  x v = 0  } and 
(V',(x 1 ..... xp, %+1 . . . .  ,z,)) is a coordinate  system. 

For  aECgf (V'), 

( ~ c3" a ITIh[r]dzsAdz~ ) 8S(adz A/xd2~) =Plrl,o.o" I~ =,, OX[~..SXp "~ r 1 r p  

where h[r] are ho lomorph ic  linear combinat ions  of  k - k [ O ]  and k[r], 
O < ] r l < m ,  in V'. 

Let al~cg~(V') ,  O~I~gn-p'n-P(V') 

x~ . . . . .  xv=O 

8 ' a  
a l i x l  . . . . .  xp, zp+ ,  . . . . .  z.): = E 

~x~l 1 Itl <m 

~1 = a l  d2A Ad28. 
It holds: 

i) K = supp cq c~ supp S _~ supp a~ m IT! ~_ supp a is compact .  
ii) 8cq =0, 

8~al ITI Ora 
iii) 8x]'  ... 8x~p 8x lr~ .__.--~Xprp iiTl Vr '  , rl =<m. 

Let S* be the usual extension of S to cg~-forms such that  s u p p f l ~ s u p p S  
: = K  o is a compac t  set, i.e. S*(fl)=S(~o.fl) for any ~0 s~g~ with q~=l  in a 
ne ighbourhood  of K o. It  is easy to check that  (~S)*( f l )= -S*(~f l ) ,  provided 
that  supp fl c~ supp S is compact�9 
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If c~: = a d z  a/x d~ B 

~*a 
~S(~ = PY, o. O" (lrl~<=rn 63xrl~ . . . (~x;v r " h [r] dzB A d2z ) 

~?~ aa .h[r]dzBAd2n) 
= Pg'~ (lrl~<=m 63Xrl-l [. .~x;v ll , 

~--" (~S)* (0~1)= - S *  (g(x1)=0.  

Then, h [ r ] = 0  on !T[~V' for every r, !rr<m, which leads to k [ r ] = 0  on 
]T[~V' for every r, 0 < ] r [ < m ,  and k [ 0 ] = k  on ]T!c~V'. As a consequence, 
these last identities hold on IT] c~ V. 

So, ~S(a)=0  for every ae~"-v'"-v(V), q.e.d. 
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