
TEST YOUR SKILLS IN TROPICAL AND REAL GEOMETRY !

ERWAN BRUGALLÉ

Exercices marked by ◦ are supposed to be very easy. Exercices marked by ∗ might require (a bit)
more work than the others.

(1) ◦ Let (M,+) be an idempotent monoid with neutral element e (i.e. x + x = x for all x in
M). Show that e is the only invertible element in M .

(2) ◦ Draw the graph of the tropical polynomials P (x) = �x3 + 2x2 + 3x + (−1)� and Q(x) =
�x3 + (−2)x2 + 2x + (−1)�, and locate their tropical roots.

(3) Determine the tropical roots of a degree 3 tropical polynomial �a + bx + cx2 + dx3� in term
of a, b, c, and d.

(4) Prove that x0 is a tropical root of order k of the tropical polynomial P (x) if and only if
P (x) = �(x + x0)

kQ(x)� where Q(x) is a tropical polynomial which does not admit x0 as a
root.

(5) ◦ Let val : K→ T be a non-archimedean valuation on a �eld K. Show that if val(a) 6= val(b)
then val(a + b) = max(val(a), val(b)).

(6) ◦ Find an equation for each of the tropical curves depicted in Figure 1
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a) the curve contains b) the curve contains c) the vertex is the origin (0, 0) and
the point (0, 1) and has the point (1, 0) and has the three directions are (−1, 0),
primitive direction (0, 1) primitive direction (1, 3) (0,−1), and (1, 1)

Figure 1

(7) ◦ Draw the tropical curves de�ned by the tropical polynomials P (x, y) = �5+5x+5y+4xy+
1y2 +x2� and Q(x, y) = �7 + 4x+ y+ 4xy+ 3y2 + (−3)x2�, as well as their dual subdivision.
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(8) Prove that a rational (i.e. with integer slopes) weighted balanced polyhedral complex of pure
dimension n− 1 in Rn is a tropical hypersurface.

(9) Draw the dual subdivision and �nd an equation for each of the tropical cubics depicted in
Figure 2 (for some position of the vertices). Note that the primitive direction of edges which
are neither horizontal, vertical, nor of slope 1 can be deduced from the balancing condition.
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a) b) c)

Figure 2

(10) Let d ≥ 1 be a �xed integer. Prove that there exist �nitely many possible primitive directions
for an edge of a tropical curve of degree d.

(11) Let ∆ ⊂ Rn be an integer polytope of lattice area 1, and suppose for simplicity that the
origin is a vertex of ∆. Prove that there exists a map in GLn(Z) which maps the standard
simplex Conv{(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} to ∆.

Hint : if ∆ is a simplex (i.e. has n + 1 vertices v0, . . . , vn), then the volume of ∆ is equal
to |det( ~v0v1, . . . , ~v0vn)|.

(12) ◦ By perturbing the union of two ellipses meeting in 4 real points, construct all possible
isotopy types of a non-empty non-singular quartic in RP 2.

(13) ◦ Let us consider an arrangement of k ovals and l pseudolines in RP 2, all of them beeing
disjoint (so in particular l = 0 or 1). Prove that this arrangement is realizable by a non-
singular real algebraic curve of degree 2k + l.

(14) Classify non-singular real algebraic curves of degree 5 in RP 2.

(15) ◦ Using patchworking, construct a non-singular real algebraic quartic in RP 2 made of 2 ovals,
one containing the other.

(16) ◦ Using patchworking, construct the two maximal real algebraic curves of degree 6 in RP 2

originally constructed by Harnack and Hilbert.
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Figure 3

(17) Construct as much as possible of maximal real algebraic curves of degree 7 in RP 2. You can
start with the subdivision of the Newton polygon depicted in Figure 3.

(18) Using patchworking, prove that there exists a maximal real algebraic curve of any degree
d ≥ 1.

(19) Draw the amoeba of the complex polynomials ±2 + z + w + zw and 1 + zw3 + z2 + w2.

(20) We consider P (z, w) = z + w − 1 as a polynomial with coe�cients in the �eld of trans�nite
Puiseux series. Compute W (V (P )) ∩ Log−1(0, 0).

(21) Prove that the genus of a plane non-singular complex real algebraic curve C is equal to the
number of interior integer points of ∆(C).

(22) ∗ Prove Bernstein Theorem for plane curves :

If C1 and C2 are two generic complex algebraic curves in (C∗)2, then the number of
intersection points of C1 and C2 in (C∗)2 is exactly

A(∆(C1) + ∆(C2))−A(∆(C1))−A(∆(C2))
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You can assume as known that this number of intersection points in (C∗)2 is constant for
two generic curves C1 and C2 as soon as their Newton polygons are �xed.
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